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Doctor of Philosophy 

Energy markets optimization considering integration of 

sustainability policies 

by Christos Dimitriadis 

In recent decades, the power industry has experienced remarkable reforms and 

advances, with the most drastic of these being the deregulation of energy markets from a 

centralized operational approach to a competitive model. The purpose of this new 

competitive structure is to eliminate monopolies, enhance the operational efficiency of 

power systems, ensuring a satisfactory quality of electricity supply and minimize costs 

for end-users. Furthermore, it seeks to offer improved incentives for capital formation, 

encourage consumers to abstain from consumption when costs outweigh benefits, and 

foster incentives for research and development. 

The integration of sustainability policies aligns with energy market deregulation by 

incentivizing environmentally friendly practices. Deregulation allows renewable energy 

sources and energy storage technologies to compete on a level playing field with 

traditional forms of energy, encouraging the adoption of sustainable technologies. 

Governments often use policy instruments like feed-in tariffs or renewable energy 

certificates to promote the generation and consumption of green energy within a 

deregulated framework. This approach not only addresses environmental concerns but 

also aligns with broader societal goals of reducing carbon emissions and achieving a more 

sustainable energy future. In essence, the combination of energy market deregulation and 

sustainable policies creates an environment where market forces drive the adoption of 

cleaner, more efficient energy sources. 
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This thesis considers the development of optimization frameworks to integrate 

sustainability policies and investigate the strategic participation of power producers in 

contemporary energy markets. The proposed methodologies are based on mixed integer 

linear programming (MILP) modelling and mathematical programs with equilibrium 

constraints (MPEC). A known issue of these modelling techniques is that the model size 

increases exponentially with the problem size and can easily become intractable, 

especially in the case of nonlinear MPECs that must be linearized before being solved. 

Therefore, decomposition algorithms and linearization techniques have been employed 

to allow the applicability of the proposed methodologies in real-life cases. The presented 

solution strategies can address large-scale problems using commercially available MILP 

solvers, such as CPLEX. 

More specifically, at first the strategic participation of a price-maker energy storage 

agent in pool-based energy and reserve markets, under wind power generation 

uncertainty is considered. A bi-level model is developed with the upper-level problem 

aiming to maximize storage agent’s expected profits, whereas the lower-level problem 

represents the two-stage energy market clearing procedure. The first stage refers to a 

jointly cleared energy and reserve day-ahead market, deriving the optimal quantities for 

energy dispatch and reserve procurement, while at the second stage, a real-time energy-

only market settlement is realized, considering plausible wind power generation 

scenarios. Real-time decisions include activated upward and downward reserves, already 

procured in the day-ahead market. The proposed mathematical framework is applied to 

a 6-bus power grid and investigates the potential arbitrage opportunities for the storage 

agent, under wind generation increment scenarios and plausible transmission line 

congestions. 

Next, a stochastic mixed-integer linear programming (MILP) optimization 

framework to investigate the optimal participation and economics of various energy 

storage technologies, such as pumped-hydro, advanced adiabatic and diabatic 

compressed air systems and li-ion battery, in a perfectly competitive coupled electricity 

and natural gas market. The clearing scheme pertains to energy-only markets, aiming to 

optimize dispatch and maximize social welfare for the integrated energy system, through 

a two-stage stochastic programming. The first stage presents the day-ahead market 

clearing procedure, while the second stage illustrates the integrated system operation in 

the real-time trading floor, through a set of plausible wind power generation realizations. 
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The two markets mainly interact through the bilateral operation of the diabatic 

compressed air energy storage system, both as an electricity producer and as natural gas 

consumer. The proposed algorithm is applied to a real-life modified IEEE 24-bus power 

grid and a single-node gas network and provides a thorough analysis of the operational 

characteristics and profitability of each energy storage technology in the integrated 

energy system.  

The strategic participation of a gas-fired power plant, exerting market power in 

interdependent pool-based electricity and natural gas markets, under a carbon emission 

trading (CET) scheme, constitutes the third thematic section of this thesis. A novel a bi-

level model is developed where the upper-level problem aims at maximizing the profits 

of the strategic player, while at the lower-level problem, the day-ahead electricity and 

natural gas markets are cleared sequentially, considering the provision of carbon 

emission allowances for conventional power producers and high penetration of wind 

power generation. The proposed algorithm is applied to a Pennsylvania-New Jersey-

Maryland (PJM) 5-bus power grid, incurred by transmission constraints and a single node 

natural gas network. Numerical simulations provide CETS-embedded electricity clearing 

prices and optimal bidding decisions for the strategic gas-fired power plant, under 

plausible power transmission congestions and natural gas prices increment scenarios. 

The optimal trading strategies for a strategic renewable energy aggregator, exerting 

market power in a joint auction-based electricity and green certificates market is 

addressed in the final part of this thesis. In the upper-level problem of the bi-level 

formulation, the strategic renewable aggregator aims at maximizing its expected profits, 

while the two lower-level problems represent the sequential day-ahead electricity and 

green certificates market clearing mechanism, respectively. The proposed approach is 

first applied to a Pennsylvania-New Jersey-Maryland (PJM) 5-bus transmission 

constrained power network and then to a modified IEEE 24-bus system to illustrate its 

computational efficiency and applicability in a real-life case study. Numerical simulations 

determine electricity and green certificates clearing prices and optimal trading plan for 

the strategic renewable aggregator, under plausible power network congestion. 
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     Περίληψη Abstract in Greek 
Τις τελευταίες δεκαετίες, ο κλάδος της ηλεκτρικής ενέργειας έχει βιώσει 

εντυπωσιακές μεταρρυθμίσεις και προόδους, με πιο σημαντική από αυτές να είναι η 

απελευθέρωση των αγορών ενέργειας από μια κεντρική λειτουργική προσέγγιση σε ένα 

ανταγωνιστικό μοντέλο. Ο σκοπός αυτής της νέας ανταγωνιστικής δομής είναι η 

εξάλειψη των μονοπωλίων, η ενίσχυση της λειτουργικής αποτελεσματικότητας των 

συστημάτων ενέργειας, η εξασφάλιση ικανοποιητικής ποιότητας παροχής ηλεκτρικής 

ενέργειας και η ελαχιστοποίηση των δαπανών για τους τελικούς χρήστες. Επιπλέον, 

επιδιώκει να προσφέρει βελτιωμένα κίνητρα για τη συσσώρευση κεφαλαίου, να 

ενθαρρύνει τους καταναλωτές να απέχουν από την κατανάλωση όταν οι δαπάνες 

υπερβαίνουν τα οφέλη και να προάγει κίνητρα για έρευνα και ανάπτυξη. 

Η ενσωμάτωση πολιτικών βιωσιμότητας συμβαδίζει με την απελευθέρωση των 

αγορών ενέργειας, παράγοντας κίνητρα για περιβαλλοντικά φιλικές πρακτικές. Η 

απελευθέρωση επιτρέπει στις ανανεώσιμες πηγές ενέργειας και τεχνολογίες 

αποθήκευσης ενέργειας να ανταγωνίζονται σε ίση βάση με τις παραδοσιακές μορφές 

ενέργειας, ενθαρρύνοντας την υιοθέτηση βιώσιμων τεχνολογιών. Οι κυβερνήσεις 

χρησιμοποιούν συχνά πολιτικές όπως το σύστημα των εγγυημένων σταθερών τιμών 

(feed-in tariffs) ή τα πιστοποιητικά ανανεώσιμης ενέργειας για την προώθηση της 

παραγωγής και κατανάλωσης πράσινης ενέργειας εντός ενός απελευθερωμένου 

πλαισίου αγοράς. Αυτή η προσέγγιση όχι μόνο αντιμετωπίζει περιβαλλοντικά 

προβλήματα, αλλά συμβαδίζει και με τους ευρύτερους κοινωνικούς στόχους της μείωσης 

των εκπομπών άνθρακα και της επίτευξης μιας πιο βιώσιμης ενεργειακής μελλοντικής 

προοπτικής. Ουσιαστικά, ο συνδυασμός της απελευθέρωσης της αγοράς ενέργειας και 

των πολιτικών βιωσιμότητας δημιουργεί ένα περιβάλλον όπου οι δυνάμεις της αγοράς 

καθοδηγούν την υιοθέτηση καθαρότερων, πιο αποδοτικών μορφών παραγωγής 

ενέργειας. 

Η παρούσα διατριβή εξετάζει την ανάπτυξη μοντέλων βελτιστοποίησης για την 

ενσωμάτωση πολιτικών βιωσιμότητας και την εξέταση της στρατηγικής συμμετοχής 

των παραγωγών ηλεκτρικής ενέργειας στις σύγχρονες αγορές ενέργειας. Οι 

προτεινόμενες μεθοδολογίες βασίζονται σε μοντέλα μεικτού ακέραιου γραμμικού 

προγραμματισμού (MILP) και μοντέλα μαθηματικού προγραμματισμού με περιορισμούς 

εξισορρόπησης (MPEC). Ένα γνωστό πρόβλημα αυτών των τεχνικών μοντελοποίησης 
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είναι ότι το μέγεθος του μοντέλου αυξάνεται εκθετικά με το μέγεθος του προβλήματος 

και μπορεί εύκολα να καταστεί μη επιλύσιμο, ειδικά στην περίπτωση των μη γραμμικών 

MPECs που πρέπει να γραμμικοποιούνται πριν λυθούν. Επομένως, έχουν χρησιμοποιηθεί 

αλγόριθμοι διάσπασης (decomposition) και τεχνικές γραμμικοποίησης για να επιτραπεί 

η εφαρμογή των προτεινόμενων μεθοδολογιών σε πραγματικές περιπτώσεις. Οι 

παρουσιαζόμενες στρατηγικές επίλυσης μπορούν να αντιμετωπίσουν προβλήματα 

μεγάλης κλίμακας χρησιμοποιώντας εμπορικά διαθέσιμα εργαλεία επίλυσης MILP, όπως 

ο CPLEX. 

Πιο συγκεκριμένα, αρχικά εξετάζεται η στρατηγική συμμετοχή ενός ιδιοκτήτη δύο 

μονάδων αποθήκευσης στις αγορές ενέργειας και εφεδρειών, υπό αβεβαιότητα στην 

παραγωγή αιολικής ενέργειας. Ένα διεπίπεδο μοντέλο αναπτύσσεται, με το πρόβλημα 

του άνω επιπέδου να έχει ως στόχο τη μεγιστοποίηση του κέρδους που αναμένεται για 

τον ιδιοκτήτη μονάδων αποθήκευσης, ενώ το πρόβλημα του κάτω επιπέδου 

αντιπροσωπεύει τη διαδικασία εκκαθάρισης της αγοράς σε δύο στάδια. Το πρώτο 

στάδιο αναφέρεται σε ένα πλαίσιο κοινής εκκαθάρισης των αγορών ενέργειας και 

εφεδρειών επόμενης ημέρας, προκειμένου να καθοριστούν οι βέλτιστες ποσότητες για 

την κατανομή ενέργειας και την προμήθεια εφεδρειών, ενώ στο δεύτερο στάδιο, 

πραγματοποιείται η εκκαθάριση της αγοράς εξισορρόπησης, λαμβάνοντας υπόψη 

πιθανά σενάρια παραγωγής αιολικής ενέργειας. Οι αποφάσεις στην αγορά 

εξισορρόπησης περιλαμβάνουν ενεργοποίηση ανοδικών και καθοδικών εφεδρειών, που 

έχουν ήδη υποβληθεί στην αγορά επόμενης ημέρας. Το προτεινόμενο μαθηματικό 

πλαίσιο εφαρμόζεται σε ένα ηλεκτρικό δίκτυο 6 κόμβων και εξετάζει τις δυνητικές 

ευκαιρίες εξισορροπητικής κερδοσκοπίας (arbitrage) για τον ιδιοκτήτη συστημάτων 

αποθήκευσης, υπό σενάρια αύξησης της παραγωγής αιολικής ενέργειας και πιθανές 

περιπτώσεις συμφόρησης στις γραμμές μεταφοράς ενέργειας του δικτύου. 

Στη συνέχεια, παρουσιάζεται ένα στοχαστικό πλαίσιο βελτιστοποίησης μεικτού 

ακέραιου γραμμικού προγραμματισμού (MILP) για τη μελέτη της βέλτιστης συμμετοχής 

και την οικονομική ανάλυση διάφορων τεχνολογιών αποθήκευσης ενέργειας, όπως το 

συστήματα αντλησιοταμίευσης, προηγμένα αδιαβατικά και διαβατικά συστήματα 

συμπίεσης αέρα και μπαταρίες ιόντων λιθίου, σε συζευγμένη αγορά ηλεκτρικής 

ενέργειας και φυσικού αερίου υπό συνθήκες τέλειου ανταγωνισμού (perfect 

competition). Το πλαίσιο εκκαθάρισης αφορά μόνο αγορές ενέργειας, με στόχο τη 

βέλτιστη κατανομή και τη μεγιστοποίηση του κοινωνικού πλεονάσματος (social welfare) 
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για το ενοποιημένο ενεργειακό σύστημα, μέσω ενός μοντέλου στοχαστικού 

προγραμματισμού δύο σταδίων. Το πρώτο στάδιο παρουσιάζει τη διαδικασία 

εκκαθάρισης της αγοράς επόμενης ημέρας, ενώ το δεύτερο στάδιο παρουσιάζει την 

εκκαθάριση και λειτουργία της αγοράς εξισορρόπησης, μέσω ενός συνόλου πιθανών 

σεναρίων παραγωγής αιολικής ενέργειας. Οι δύο αγορές επικοινωνούν κυρίως μέσω της 

αμφίπλευρης λειτουργίας του διαβατικού συστήματος αποθήκευσης ενέργειας με 

συμπίεση αέρα, τόσο ως παραγωγός ηλεκτρικής ενέργειας όσο και ως καταναλωτής 

φυσικού αερίου. Ο προτεινόμενος αλγόριθμος εφαρμόζεται σε ένα πραγματικό 

τροποποιημένο δίκτυο ηλεκτρικής ενέργειας IEEE 24 σταθμών και ένα μονοκομβικό 

δίκτυο φυσικού αερίου και παρέχει μια λεπτομερή ανάλυση των λειτουργικών 

χαρακτηριστικών και της κερδοφορίας κάθε τεχνολογίας αποθήκευσης ενέργειας στο 

ενοποιημένο ενεργειακό σύστημα. 

Η στρατηγική συμμετοχή μιας μονάδας παραγωγής ηλεκτρικής ενέργειας με χρήση 

φυσικού αερίου (GFPP), ασκώντας ισχύ (market power) στις συζευγμένες αγορές 

ηλεκτρικής ενέργειας και φυσικού αερίου που βασίζονται σε ωριαίες δημοπρασίες, με 

ενσωμάτωση της αγοράς δικαιωμάτων εκπομπών άνθρακα (CETS), αποτελεί τον τρίτο 

θεματικό τομέα αυτής της διατριβής. Αναπτύσσεται ένα νέο διεπίπεδο μοντέλο όπου το 

πρόβλημα του άνω επιπέδου στοχεύει στο να μεγιστοποιήσει τα κέρδη του στρατηγικού 

παίκτη, ενώ στο πρόβλημα του κάτω επιπέδου, οι αγορές ηλεκτρικής ενέργειας και 

φυσικού αερίου εκκαθαρίζονται διαδοχικά για την υπό εξέταση ημέρα, λαμβάνοντας 

υπόψη την έκδοση αδειών εκπομπής άνθρακα (emission allowances) για τους 

συμβατικούς παραγωγούς ηλεκτρικής ενέργειας και την υψηλή διείσδυση της 

παραγωγής ηλεκτρικής ενέργειας από αιολικά πάρκα. Ο προτεινόμενος αλγόριθμος 

εφαρμόζεται σε ένα ηλεκτρικό δίκτυο 5 κόμβων σύμφωνα με τα πρότυπα της αγοράς 

Πενσυλβάνια-Νιου Τζέρσεϊ-Μέριλαντ (PJM), και ένα μονοκομβικό δίκτυο φυσικού 

αερίου. Τα αποτελέσματα των μελετών παρέχουν τιμές εκκαθάρισης ηλεκτρικής 

ενέργειας που έχουν ενσωματώσει τις τιμές άνθρακα και τις βέλτιστες προσφορές για το 

στρατηγικό παίκτη (GFPP), υπό πιθανά προβλήματα συμφόρησης στη μεταφορά 

ηλεκτρικής ενέργειας και σενάρια αύξησης των τιμών του φυσικού αερίου. 

Οι βέλτιστες στρατηγικές συναλλαγών για ένα στρατηγικό φορέα σωρευτικής 

εκπροσώπησης (ΦοΣΕ, aggregator) ανανεώσιμης ενέργειας, που κατέχει κυρίαρχη θέση 

στην κοινή αγορά ηλεκτρικής ενέργειας και πράσινων πιστοποιητικών, 

αντιμετωπίζονται στο τελευταίο μέρος αυτής της διατριβής. Στο πρόβλημα του άνω 
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επιπέδου της διεπίπεδης μαθηματικής διατύπωσης, ο στρατηγικός ΦοΣΕ ανανεώσιμης 

ενέργειας στοχεύει στο να μεγιστοποιήσει τα κέρδη του, ενώ τα δύο προβλήματα του 

κάτω επιπέδου αντιπροσωπεύουν τον διαδοχικό μηχανισμό εκκαθάρισης της αγοράς 

επόμενης ημέρας ηλεκτρικής ενέργειας και πράσινων πιστοποιητικών αντίστοιχα. Η 

προτεινόμενη προσέγγιση εφαρμόζεται πρώτα σε ένα ηλεκτρικό δίκτυο 5 κόμβων στην 

στα πρότυπα της αγοράς PJM και στη συνέχεια σε ένα τροποποιημένο σύστημα IEEE 24 

κόμβων για να επιδείξει την υπολογιστική αποδοτικότητα και την εφαρμοσιμότητα της 

σε ένα ρεαλιστικό πλαίσιο. Οι αριθμητικές προσομοιώσεις που πραγματοποιήθηκαν 

καθορίζουν τις τιμές εκκαθάρισης ηλεκτρικής ενέργειας και πράσινων πιστοποιητικών 

και το βέλτιστο σχέδιο συναλλαγών για το στρατηγικό ΦοΣΕ ανανεώσιμης ενέργειας, 

υπό πιθανές συμφορήσεις στο δίκτυο ηλεκτρικής ενέργειας. 
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Chapter 1 
 

Introduction  

1.1 Motivation and objectives 

In recent years, climate change has emerged as one of the most pressing challenges 

of our time, with far-reaching consequences for the planet and its inhabitants (Olabi & 

Abdelkareem, 2022). Rising temperatures, extreme weather events, and disruptions to 

ecosystems are just a few manifestations of this crisis. One of the primary problems 

arising from climate change is the overreliance on fossil fuels for energy, leading to a 

significant increase in greenhouse gas emissions. Α shift towards renewable energy 

sources holds immense potential in addressing these problems and vastly supports the 

transition towards a low-carbon economy. In particular, renewable energy derived 

mostly from sources such as solar, wind, hydro, and geothermal power, can contribute to 

the greenhouse gas emissions mitigation, disengagement from fossil fuels, industrial 

development, generation portfolio diversification and poverty reduction (Gielen et al., 

2019). Global tendencies designate a sound growth in renewables, accounting for the 

40% of the global installed power capacity, according to the International Renewable 

Energy Agency (IRENA, 2021), while by 2050 it is estimated that renewable sources will 

hold around two-thirds of the total energy supply (Larsson, 2009). 

In tandem with the adoption of renewable energy, advancements in energy storage 

technologies play a crucial role in addressing the intermittent nature of some renewable 

sources (IRENA, 2017). Energy storage systems, such as advanced batteries, pumped-

hydro and compressed air energy storage, enable the capture and efficient utilization of 

energy generated from renewable sources during peak production times. This stored 

energy can then be deployed during periods of high demand or when renewable sources 

are not actively generating power. By overcoming the intermittency challenge, energy 

storage technologies contribute to the reliability and stability of renewable energy, 

making it a more viable and consistent option for meeting the world's growing energy 

needs. 
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Moreover, sustainability policies play a pivotal role in steering societies towards a 

greener and more resilient future. Governments, businesses, and communities must 

collaborate to formulate and implement policies that incentivize the adoption of 

renewable energy and promote sustainable practices. Carbon emission trading (CET), 

often referred to as cap-and-trade or carbon pricing, is a market-based mechanism 

aiming at reducing greenhouse gas emissions by putting a price on carbon (Tang et al., 

2020). Integrating carbon emission trading into energy markets is a key strategy for 

promoting sustainability and incentivizing a shift toward lower-carbon energy sources. 

In cap-and-trade systems worldwide, governments or regulatory bodies set a limit (cap) 

on the total amount of emissions allowed within a specific time frame. Emission 

allowances that represent the right to emit a certain amount of greenhouse gases are 

issued, often auctioned, and allocated to regulated entities, such as power plants, 

industrial facilities, and energy producers. Companies that can reduce emissions at a 

lower cost may sell excess allowances, while those facing challenges may purchase 

additional allowances. The regulatory cap can be gradually reduced over time to 

encourage emissions reduction. 

Tradable green certificates (GCs), often referred to as renewable energy certificates 

(RECs) or green energy credits, are a financial instrument used in energy markets to 

promote and track the production and consumption of renewable energy (Hulshof et al., 

2019). RECs play a crucial role in supporting the growth of renewable energy sources and 

encouraging the transition to a more sustainable and environmentally friendly energy 

mix. Renewable energy generators, such as wind farms, solar parks, and hydroelectric 

plants, produce electricity from clean and sustainable sources. For every megawatt-hour 

(MWh) of electricity generated, a corresponding number of green certificates are issued. 

The specific details of issuance and the number of certificates per MWh can vary by region 

and program. RECs are traded in energy markets, either directly between parties or 

through various platforms and brokers. Buyers purchase RECs to support and claim the 

environmental attributes of renewable energy. The revenue generated from REC sales 

can provide an additional source of income for renewable energy projects. This revenue 

can help make these projects economically viable and encourage further investment in 

clean energy infrastructure. 

Within the above context, our focus is to integrate the above-mentioned 

sustainability policies in the current energy market framework and study the strategic 
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participation of power producers that have dominant position and exert market power 

in such market schemes. The proposed methodologies are based on the assumptions of a 

Stackelberg single-leader single-follower game. Initially, we develop a stochastic bi-level 

complementarity model. The upper-level problem seeks to maximize the expected profits 

of the strategic producer (leader), while the lower-level problems address the markets’ 

clearing procedure managed by Market Operator (MO) as the follower. Assuming 

continuity and differentiability of the lower-level problem, the latter is replaced by its 

first-order Karush-Kuhn-Tucker (KKT) reformulation, transforming the bi-level model 

into a single-level mathematical programming with equilibrium constraints (MPEC). 

Subsequently, the KKT complementarity conditions are formulated as disjunctive 

constraints (Fortuny-amat et al., 1981), reshaping the MPEC into a mixed-integer linear 

programming (MILP) format. This MILP formulation is amenable to solution by 

commercial solvers and allows for achieving global optimality. 

The primary objectives of this thesis are: 

i. To develop a novel optimization framework to investigate the optimal bidding and 

offering strategies of an energy storage agent participating in a jointly cleared 

energy and reserve day-ahead and balancing market. 

ii. To develop a stochastic MILP market-clearing model and analyze the economics 

of various energy storage technologies in a coupled electricity and natural gas 

market, under perfect competition. 

iii. To propose a novel CET-embedded electricity and natural gas market scheme and 

determine the optimal bidding decisions and emission allowances manipulation 

of a strategic gas-fired power plant who acts bilaterally as power producer and 

natural gas consumer. 

iv. To develop a novel auction-based hourly clearing scheme for green certificates 

market that harmonizes with EnergyTag Initiative standards (EnergyTag, 2021) 

and verifies the source of electricity.  

v. To provide a bi-level mathematical model that ensures optimal trading strategies 

and management of green certificates for a renewable energy aggregator in an 

integrated electricity and green certificates market. 



Chapter 1                                             
 

4 
 

1.2 Pool-based energy markets 

1.2.1 Market structure 

Energy markets nowadays operate in two separate trading arenas to provide a 

holistic interchange framework and optimally manage transactions between energy 

generators and consumers i.e., futures and pools. Future markets are managed by for-

profit organizations and allow medium- and long-term power trading. While they 

illustrate significant research and practical interest, a thorough overview of their 

operational structure and function is beyond the realm of this work. Instead, a meticulous 

analysis on pool-based energy markets’ design and agents’ interactions, is the 

fundamental purpose of this thesis. 

A power exchange (PX), also called market operator (MO), is the independent 

nonprofit entity that operates pool-based energy markets and handles short-term 

transactions i.e., couples generation and demand quotes and settles market prices 

(Conejo et al., 2010). Day-ahead market (also referred as spot markets in Europe) is 

predominantly characterized as the main marketplace for energy transactions and is 

organized as a two-sided auction, where market participants (producers, consumers, 

retailers) submit their corresponding energy and demand blocks, as well as their price 

offers/bids, one day in advance. Adjustment (intraday) and balancing (real-time) 

markets successively, constitute the necessary actions to prevent unwanted deviations 

and balance power system’s operation (Morales et al., 2014). In particular, balancing 

markets deal with last minute energy schedule clutters and cover dispatched power, that 

due to equipment failures and the stochastic nature of renewable energy sources does 

not materialize. Transmission congestions and load deviations also constitute key factors 

that justify the crucial contribution of balancing stage to well-regulated energy markets’ 

operation. 

Apart from energy markets, some countries have established reserve capacity 

markets to further guarantee the sufficient supply of balancing power throughout the 

power system’s real-time operation. Reserve capacity provision can be determined by 

two means i.e., sequentially, in a series of auctions subsequent to the day-ahead energy 

market clearing, so that unsuccessfully placed capacity, to be offered in the following 

auctions and simultaneously, in a single coupled auction by employing co-optimizing 
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algorithms. Producers participating in that type of markets, are compensated according 

to the available capacity. It is worth noting that the majority of market frameworks also 

provide long-term clearing services through financial contracts, such as options, 

forwards and derivatives. However, an extended examination on these terms is beyond 

the purview of this work. 

1.2.2 Merit-order effect – Market clearing price 

In organized pool-based power markets two principal mechanisms for the 

determination of wholesale prices are embraced. In the absence of transmission 

congestion, the resulting power price is identical for all locations and set by the marginal 

cost offer of the most expensive generating asset. On the contrary, when power network 

congestion takes place, various locational marginal prices (LMPs) for each system’s node 

emerge, due to line losses, and nodal pricing is adopted (Gan et al., 2013). Significant 

benefits, such as several operational characteristics and explicit price signals and 

incentives for the establishment of new investments and demand response, render LMP-

based markets the preferred approach for the majority of well-regulated energy pools. 

While alternative approaches exist -with the principal one dictating a single price across 

the network and the handling of congestion cost as a separate uplift charge- their 

application is considered insufficient, due to their inefficiency in hedging long-term 

contracts and their unpredictable nature (Sioshansi, 2008). 

 

Figure 1.1: Merit-order effect 



Chapter 1                                             
 

6 
 

The endorsement of the appropriate auction design in electricity spot markets 

constitutes a fundamental decision for the constitution of a well-configurated market 

framework and depends on several factors. Sealed-bid auction format, where each 

buyer/seller submits its offers/bids anonymously and without having knowledge of the 

rest of the agents’ offering strategies, comprises two primary pricing mechanism 

approaches i.e., uniform and pay-as-bid (or discriminatory). Uniform pricing rule entails 

that all generators receive an identical market clearing price, set by the highest priced 

resource nominated to provide supply and is particularly popular in the US ISO markets. 

Conversely, in a pay-as-bid auction setup, prices paid to the dispatching generators are 

based on their actual offers, rather than the offer of the most expensive supplier selected 

for energy provision. As a result of paying winning suppliers in a distinct price, depending 

on their individual bids, pay-as-bid auctions are also called discriminatory auctions, while 

energy markets of England and Wales constitute nowadays the main ground of their 

application.    

As supported by numerous analyses, while small deviations may emerge due to 

market design, organization, and setting factors, market prices are unlikely to 

substantially differ between these auction formats, while the literature cannot 

audaciously support a verdict that a pay-as-bid auction will generate lower overall prices 

in competitive energy markets (Tierney et al., 2007). 

1.2.3 Market power in energy markets 

The main objective of electricity market deregulation/liberalisation is to motivate 

electricity producers to reduce their expenses, promote innovation, and maintain 

competitive market prices, ultimately delivering high-quality services and affordable 

electricity to consumers. Nevertheless, it's not always assured that deregulation alone 

will automatically create competitive conditions and outcomes. Factors such as pricing 

strategies, industry-specific characteristics, and the inherent properties of electrical 

energy can leave the market susceptible to the exercise of market power. To begin with, 

the absence of large-scale energy storage options means that real-time electricity 

production is necessary to meet demand, and this can lead to supply shortages because 

power generators may face technical limitations in providing short-term reserve power 

(Borenstein, 2000). Secondly, the physical laws governing power flow make the 
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scheduled operation of the grid complex and any network stability failure can have 

significant financial consequences. Thirdly, the power generation industry often exhibits 

a concentration of firms, coupled with relatively inelastic demand for electricity and its 

limited supply, which provides an incentive for incumbent companies to boost their 

profits by stifling competition and raising market prices. 

In the realm of economic theory, the concept of market power is defined as "the 

capacity to adjust prices in a way that is profitable when compared to competitive 

pricing" (Kirschen & Strbac, 2005), (Twomey et al., 2005). The United States Department 

of Justice offers a similar definition, stating that market power is "the ability of a supplier 

to raise prices above competitive levels and sustain those prices over a significant 

period." Each term in these definitions carries significant weight and is chosen 

thoughtfully. The term "ability" is crucial because it enables regulators to differentiate 

between merely "possessing" market power and actively "utilizing" it, as the latter isn't 

inherently illegal. However, a firm with market power typically has a rational incentive 

to exercise it. This distinction becomes meaningful when examining market power 

through either an ex-post (post-exercise) or ex-ante (pre-exercise) analysis. 

The term "profitably" in the definition signifies that market power exertion should 

be carried out in a way that generates profits. Therefore, actions like reducing production 

or shutting down units can only be considered as instances of market power exertion if 

they meet profitability criteria. The phrase "maintain prices above" excludes situations 

where an established firm sets prices lower than competitive levels to discourage new 

competitors (known as predatory pricing). Moreover, Hansen and Percebois (2019) 

suggest that a dominant firm might have incentives to allow new entrants, benefiting 

from short-term price increases while attracting less attention from regulatory 

authorities. This is why the definition of market power indirectly alludes to an increase 

in market prices. 

Finally, the phrase "above competitive levels" is the most crucial aspect of the 

market power definition, even though it can be contentious because there are situations 

where it may result in higher market prices. For instance, this can occur when demand 

outstrips supply, and consumers are willing to pay more than the cost of supply or when 

high demand allows more expensive units to operate and cover their fixed costs. In these 

cases, market power isn't exercised, as market equilibrium is based on the system's 
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marginal cost, even if prices are high. Hence, a firm is considered to exercise market 

power when it raises market prices above the system's marginal cost. 

1.2.4 Capacity withholding strategies 

In the context of energy markets, the literature acknowledges the existence of two 

distinct forms of market power: vertical and horizontal. Vertical market power pertains 

to companies that engage in multiple aspects of the downstream process, such as both 

energy generation and transmission. In such instances, a company leverages its dominant 

position in one of these activities to gain a competitive advantage and boost its overall 

earnings. On the other hand, horizontal market power pertains to companies that wield 

their market influence at one stage of the production process, affecting outcomes and 

prices at another stage. In our specific study, which focuses solely on electricity 

generation and energy-only markets, our attention is directed toward examining 

horizontal market power. The primary means by which a power producer exercises this 

type of market power typically involves strategies like capacity withholdings. 

 

 

Figure 1.2: Physical withholding strategy 
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Figure 1.3: Financial withholding strategy 

 

The term "withholding" refers to tactics that have two main components: physical 

or quantity withholding and financial or economic withholding. The former involves 

situations where a producer uses their market influence to reduce production 

intentionally. As illustrated in Figure 1.2, when production is deliberately reduced 

(shown in red), it shifts the competitive supply curve to the left, resulting in a higher 

market price. In the case of financial withholding, strategic producers achieve the same 

outcome by making higher offers. As depicted in Figure 1.3, the marginal energy block (in 

red), which dictates the market price, bids higher, causing the competitive supply curve 

to move upward. When examining markets, we observe the effects of capacity 

withholding, but it can be challenging to discern which strategy the producer is 

employing. Lastly, in a network-constrained market, a producer with a diversified 

generation portfolio may use a third method to exert market power: manipulating the 

mix of production. By doing so, based on transmission line constraints, the producer can 

create areas of monopoly, driving up Locational Marginal Prices (LMPs) and increasing 

their profits. 

The exertion of market power has two primary social implications. Firstly, it leads 

to a wealth shift from consumers to producers, which can be calculated as the difference 

in price (P* - P) multiplied by the total energy production, resulting in price distortion. 

Secondly, the enhanced profits resulting from market power exertion are not exclusive 

to the specific producer wielding this power; they benefit all producers since everyone is 

paid the same price. In reality, in many instances, the entity exerting market power may 

find it less profitable due to the associated exercise costs. 
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1.3 Derivatives markets 

1.3.1 Carbon emission trading 

Carbon markets are structured systems designed to regulate and incentivize the 

reduction of greenhouse gas emissions. They typically operate through one of two main 

mechanisms: cap and trade schemes (also known as emissions trading schemes or ETS) 

and baseline-and-credit mechanisms (carbon credit schemes). These markets aim to 

encourage emissions reductions by assigning a financial value to carbon emissions and 

allowing companies to trade emissions allowances or carbon credits. 

Cap and trade schemes are typically regulated and enforced by government 

agencies or regulatory bodies and place a cap on the total allowable emissions of 

greenhouse gases within a specific jurisdiction or industry sector. Emissions allowances 

or permits are allocated to participating companies, often based on historical emissions 

or other criteria. Companies can buy, sell, or trade these allowances among themselves 

in a secondary market. This trading allows entities that can reduce emissions more cost-

effectively to sell excess allowances to those facing greater challenges in reducing 

emissions. Companies must also provide enough allowances at the end of a compliance 

period to cover their actual emissions. If they exceed their allocated allowances, they may 

face financial penalties. 

On the other hand, baseline-and-credit mechanisms operate in a more 

decentralized manner. Organizations, projects, or individuals implement activities that 

reduce or remove greenhouse gas emissions. These activities are assessed and verified to 

determine the number of carbon credits they generate. Carbon credits represent a 

quantifiable reduction in emissions or removal of carbon from the atmosphere (e.g., 1 

tonne of CO2 equivalent). These credits can be bought and sold on voluntary carbon 

markets. Participation in carbon credit schemes is usually voluntary, and organizations 

may purchase credits to offset their own emissions voluntarily or as part of corporate 

sustainability initiatives. 

Carbon markets involve a range of participants, including emitters, project 

developers, carbon credit brokers, and investors and most of them are influenced by 

international agreements and protocols, such as the Kyoto Protocol or the Paris 

Agreement, which set global emission reduction targets and mechanisms for carbon 
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trading on an international scale. Overall, carbon markets aim to create economic 

incentives for reducing greenhouse gas emissions and promoting sustainable practices 

while providing a flexible approach to achieving emission reduction goals. The structure 

and regulation of these markets can vary significantly between jurisdictions and market 

types. 

1.3.2 Green certificates 

Green certificates, often referred to as renewable energy certificates (RECs) or 

renewable energy credits (RECs), are market-based instruments designed to promote the 

production and use of renewable energy sources. They are an important component of 

renewable energy policy and sustainability efforts in many countries. 

Green certificates are created when renewable energy is generated. For each 

megawatt-hour (MWh) of electricity produced from a renewable source, one green 

certificate is typically issued. These certificates represent the environmental attributes of 

the renewable electricity and can be bought, sold, or traded independently of the 

electricity itself. The entity that owns the certificate is considered the "owner" of the 

renewable energy attributes. To ensure transparency and avoid double counting, green 

certificates are tracked in a centralized registry or database. This tracking system records 

the issuance, transfer, and retirement of certificates. Green certificates usually have an 

expiration date to encourage timely use and retirement. If a certificate is not retired by 

the deadline, it may become invalid. 

Most regions or countries have specific legislation or regulations that govern the 

creation, trading, and use of green certificates. These regulations define the eligibility 

criteria for renewable energy sources, the structure of the certificate market, and 

compliance obligations for market participants. Common sources include wind, solar, 

hydroelectric, biomass, and geothermal energy. Regulatory authorities, such as energy 

agencies or commissions, oversee the green certificate market. They ensure compliance 

with the rules and monitor trading activities. 

Green certificates can be traded on various platforms, including over-the-counter 

(OTC) markets and organized exchanges. Many regions require electricity suppliers or 

utilities to obtain a certain number of green certificates to demonstrate their commitment 
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to renewable energy. These obligations are often referred to as renewable portfolio 

standards (RPS) or similar mandates. Non-compliance can result in penalties. 

When a certificate is used to make a renewable energy claim, it is retired, indicating 

that the associated environmental benefits have been accounted for. Verification 

processes ensure that certificates are legitimate and represent genuine renewable energy 

generation. It's important to note that the specific structure and regulations governing 

green certificates can vary significantly from place to place, reflecting the unique energy 

policy goals and priorities of each jurisdiction. 

1.4 Literature review 

1.4.1 Electricity market 

Electricity market clearing and the determination of the optimal offering strategies 

for participating agents are considered areas of particular interest in the scientific 

community and have drawn a lot of attention in recent years. Ruiz and Conejo (2009) are 

considered some of the first to propose a non-linear bi-level optimization mathematical 

framework to derive the optimal strategic decisions of a power generator, participating 

in a pool-based electricity market and a network-constrained six-bus test system. The 

upper-level objective aims at maximizing the strategic producer’s profit, while the lower-

level problem represents the market clearing procedure, deriving the local marginal 

prices (LMPs) endogenously, with respect to social welfare maximization. The algorithm 

is reduced to a mixed-integer linear programming (MILP) problem using well established 

mathematical techniques such as, the strong duality theorem, Karush-Kuhn-Tucker 

optimality conditions and Fortuny-Amat and McCarl linearization approach. The 

computational analysis demonstrated the capability of the proposed model to generate 

optimal multiple-block offers for the strategic producer and the fact that network 

congestion can be highlighted as profit-increasing factor. Gabriel and Leuthold (2010) 

presented a novel linear bi-level model to capture the behavior of a strategic player, 

acting as a Stackelberg leader and exercising market power in a network-constrained 

electricity market, where ISO acts a follower, considering offering decisions of 

competitive firms. As Stackelberg leaders are considered large-scale electricity 

generation companies, such as EDF, Electrabel, EON and RWE. The approach is 
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implemented into two different power networks i.e., a 3-bus test system and a 15-bus 

representation of the Western European grid. A thorough comparison between perfect 

and imperfect competition market setups is conducted, and the effects of network 

congestion are analyzed. Results indicate that the proposed mathematical approach is 

promising in addressing realistic problems and that when these firms act strategically 

(particularly EDF), acquire great profit increase.  

Although binary variables constitute fundamental elements to model non-

convexities, such as electricity generators’ minimum power outputs and start-up costs, 

they prevent MILP models to obtain market clearing prices as dual variables of the energy 

balance equations. Ruiz et al. (2012) addressed this problematic situation, by proposing 

a novel primal-dual multi-block formation that ensures well approximated social welfare 

comparing to the original clearing problem. The suggested approach provides LMPs for a 

single-shot pool-based market and guarantees generators’ revenue adequacy, without 

incorporating additional uplift charges. A base-demand and a peak-demand case study 

concerning an IEEE 24-bus Reliability Test System was used to demonstrate the 

efficiency of the proposed methodology. Simulation analysis illustrates that both market 

prices and total profits are higher in the relaxed duality approach, when compared to the 

equivalent conventional one.  

Ruiz et al. (2013) extended their research scope considering a strategic electricity 

producer participating in an electricity market regime, similar to the ISO New England 

and PJM, interested in revealing its rival producers’ offering decisions, via inverse 

optimization. The market clearing procedure conducted by the Independent System 

Operator (ISO) is expressed by a primal linear optimization problem formulation, aiming 

at social welfare maximization and its equivalent dual formulation. The solution of these 

problems provides the main market outcomes, such as power produced by block for each 

generator and local marginal prices for each electric network bus. Consequently, 

considering the results arisen from the above procedure, the inverse problem is 

developed and solved by the strategic producer, in order to identify rival stepwise offer 

prices setting the market clearing price. The mathematical framework considers a 24-

period electricity pool for a 30-days duration and is applied to a 24-bus test system. The 

results indicate that network congestion stimulates offer price revealing process on 

account of strategic generator. 
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Kardakos et al. (2014) introduced a bi-level mathematical model to derive optimal 

offering strategies for a strategic producer, owning multiple generating units, under a 

day-ahead transmission-constrained electricity market setup. The upper-level 

represents producer’s detailed unit commitment problem aiming at maximizing its 

expected profit, whereas the lower-level illustrates ISO’s hourly market clearing 

mechanism, under the Nodal and the Power Transfer Distribution Factor (PTDF) 

formulation. The particular methodology is implemented on a modified IEEE 118-bus 

power test system, to examine its applicability and efficiency, in a realistic pool-based 

market environment. The authors (Kardakos et al., 2016) extended their research on 

optimal bidding in electricity markets, considering a price-maker virtual power plant 

(VPP), which consists of wind farms, battery storage systems and residential/commercial 

electricity consumers. More specifically, a stochastic bi-level mathematical model is 

formed, the upper-level of which, aims at maximizing VPP’s expected profits, while the 

lower-level represents ISO’s day-ahead market clearing procedure. Uncertainty is 

introduced into the problem, via unpredictable market measures, such as RESs’ 

generation, demands’ consumption, rivals’ offering curves and real-time prices. A series 

of case studies applied to the Greek power system are examined. Numerical results 

demonstrate that the coordinated operation of VPP elements leads to a significant profit 

increase by 4.7%, compared to the uncoordinated operation scenario, and that when VPP 

acts as a price-maker agent, acquires higher profits in comparison to the price-taker or 

non-strategic case.  

Several European electricity markets nowadays, such as Germany and Italy, have 

adopted a pay-as-bid pricing scheme in the balancing stage. While these markets’ trading 

problem is typically addressed though non-linear optimization approaches, Mazzi et al. 

(2018) proposed a leading-edge linear formulation to bypass possible computational 

challenges, instigated by these nonlinearities. More specifically, authors considered a 

two-stage stochastic MILP model to derive optimal offering strategies for a price-taker 

conventional generator, under a simultaneous clearing of a two-settlement electricity 

market i.e., the day-ahead stage, characterized by a uniform pricing scheme, and the 

balancing stage, based on a pay-as-bid pricing scheme. Results underline the efficiency of 

the linear formulation, as it fairly approximates the non-linear one, and demonstrate that 

the simultaneous market clearing, provides a better performance in view of generator’s 

profitability, compared to the sequential market clearing case. However, the application 
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of the model to a multi-bus electric network could provide better insights about its 

efficiency in large-scale problems.  

Lastly, Porras-Ortiz et al. (2020) introduced an inspired bi-level mathematical 

approach, for a strategic zonal operator in a regional electricity market (REM) setup. In 

the upper-level optimization problem, strategic operator seeks to maximize zonal social 

welfare (SW), by managing zonal generators’ strategic day-ahead energy and reserve 

offers, whereas the objective function of the lower-level problem aims at maximizing 

regional social welfare and generating market equilibrium prices and dispatches. Results 

emphasized that strategic behavior on behalf of zonal operator can negatively affect 

regional social welfare and induce crucial alterations in congestion rents.  

1.4.1.1 Integration of renewable energy sources 

Climate change and security of energy supply constitute two increasingly critical 

challenges affecting markets, regulations, policies and investments at a global level (Olabi 

& Abdelkareem, 2022). Renewable energy (RE) plays a significant role in the transition 

towards a low-carbon economy and contributes to the mitigation of greenhouse gas 

emissions, disengagement from fossil fuels, industrial development, generation portfolio 

diversification and poverty reduction (Gielen et al., 2019). Global trends indicate a 

substantial increase in renewable energy, comprising 40% of the worldwide installed 

power capacity, as reported by the International Renewable Energy Agency (IRENA, 

2021). Projections suggest that by 2050, renewable sources are expected to constitute 

approximately two-thirds of the overall energy supply (Larsson, 2009). Thus, the analysis 

of the participation and operation of renewables assets in modern energy and derivatives 

markets constitutes a fundamental field of research. 

De la Nieta et al. (2013) proposed a mathematical framework to derive the optimal 

bidding strategy of a power producer with a mixed wind-hydro generation portfolio in 

the Iberian pool-based day-ahead market. The authors investigated the synergies arising 

from the combined operation of these two technologies. Results show that a single joint 

offer with physical connection between the two units ensures the highest profit for the 

producer. Sheikhahmadi and Bahramara (2020) considered a bi-level optimization 

approach to study the strategic participation of a distributed energy resource aggregator 

(DERA) with RE assets in the real time (RT) energy market. The risk level of the 
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aggregator due to the uncertain nature of RE is managed by employing Conditional Value 

at Risk (CVaR) and the outcomes confirm that the presence of the DERA leads to an 

increase in social welfare of the RT market. Sun et al. (2022) formulated a bi-level model 

to determine the optimal bidding strategies of a prosumer aggregator with renewable 

energy production (photovoltaic, PV) in day-ahead energy and reserve markets. The 

upper-level problem maximizes the prosumer’s profits, while the lower-level problem 

describes the market clearing procedure. 

Afshar et al. (2018) developed a bi-level mathematical framework to derive the 

strategic bidding of the wind power producers exercising market power in the day-ahead 

market and matching its actual and predicted production in the balancing market. Since 

the producers’ compensation mechanism is pay-as-bid (PAB), the authors employ 

particle sward optimization (PSO) to solve the problem at both levels. Hosseini et al. 

(2020) introduced a bi-objective two-stage change-constrained model to examine the 

optimal  bidding strategy of a wind power producer (WPP) participating in a day-ahead 

joint electricity and reserve market. Results show that compared to alternative models, 

the proposed methodology ensures the availability of the offered bid and enhances WPP’s 

revenues. Zhang et al. (2023) proposed a bi-level market model based on a Nash-

Stackelberg game to determine the strategic participation of a WPP and large-scale 

electric vehicles (EV) in day-ahead energy and frequency regulation market. Numerical 

simulations illustrate that the suggested method can achieve accurate and more 

consistent solution, compared to price taker or collaborative bidding modes, with 

reasonable computational requirements.  

Laia et al. (2016) presented a stochastic mixed-integer linear program (MILP) to 

examine the bidding strategies of a price-taker joint wind and thermal power producer 

in a pool-based electricity market setup. A series of different scenarios is considered to 

model the uncertainty on wind generation and electricity price. Li et al. (2023) developed 

a MILP model to determine the offering strategy of a RE and energy storage aggregator 

in mid-to-long-term and spot electricity markets. To deal with the uncertainty of RE 

output the authors solve the problem by employing distributionally robust optimization 

(DRO). Fang and Zhao (2020) developed a MILP look-ahead technique to derive the 

optimal bidding for a joint system of concentrating solar power (CSP) plant with wind 

farms in the day-ahead and ancillary services markets. Numerical simulations show that 
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the joint bidding approach enhances the coordination of the system and improves its 

profitability.  

Gomes et al. (2023) formulated a MILP framework to optimize the operation and 

maximize revenue for an integrated system comprising a wind farm, a solar PV and an 

electrical battery participating in the Italian and Iberian day-ahead electricity markets. 

Results verify the superiority of the proposed methodology in terms of revenue, 

compared to the non-optimized bidding strategy case. Khaloie et al. (2020) examined the 

optimal bidding problem of a strategic wind producer in the spot electricity market 

through a bi-level stochastic optimization model. Wind power generation and demand 

uncertainties are represented by multiple plausible scenarios. Tsimopoulos and 

Georgiadis (2020), (2019a) developed a bi-level complementarity model to derive 

optimal withholding strategies for a producer with mixed conventional and wind power 

generation portfolio participating in energy and reserve markets. Khaloie et al. (2020) 

formulated a stochastic multi-objective MILP to derive the determine the optimal offering 

strategy for a wind-thermal-energy storage generation company (GenCo) in the energy 

and reserve markets. The proposed algorithm simultaneously maximizes company’s 

profits and minimizes carbon emissions, while the uncertainty that originates from wind 

power generation is modeled through a set of plausible scenarios.   

Morales et al. (2010) were among the firsts to propose a mathematical framework 

that delves into wind power generator’s actions. They formulated a multi-stage stochastic 

LP problem to generate optimal offering strategies and maximize expected profits for a 

wind power generator, in a joint day-ahead, adjustment and balancing market settlement. 

Uncertainty induced by wind availability and hourly market clearing prices at different 

trading stages, is modelled through the realization of weighted plausible scenarios, the 

higher quality of which leads to more reliable and representative results. Consequently, 

the authors (Morales et al., 2012) developed a fundamental two-stage stochastic 

electricity pool-based market clearing approach, including a substantial number of WPPs. 

The first stage represents the day-ahead market clearing procedure, while the second 

stage presents the balancing system operation, under a set of plausible wind generation 

realizations. Co-optimization of both electricity and reserves, endogenously provides 

pool (day-ahead) and real-time energy prices, as dual variables of the equivalent energy 

equilibriums. The proposed algorithm is studied in a 24-bus transmission-constrained 
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single-area IEEE Reliability Test System (RTS) (Grigg & Wong, 1999) and ensures 

producers’ cost recovery and revenue reconciliation in expectation. 

Baringo and Conejo (2011) on the other hand, introduced a stochastic mathematical 

programming with equilibrium constraints (MPEC) model, to identify the profit margin 

for a wind power investor willing to implement a wind investment and participating in 

an electricity pool. The upper-level problem accounts for the optimal investment and 

operation decisions of the wind investor, considering different plausible load and wind 

generation scenarios. Concerning the lower-level problem, due to the fact that demand 

loads are considered to be inelastic, the social welfare maximization and cost 

minimization problems can be equivalently formulated by the system operator. The 

proposed algorithm is applied to a 118-bus case study to illustrate the applicability of the 

model to real-world energy systems. The solution strategy of this problem considers 

linearization of the MPEC formulation to an MILP through the aforementioned 

mathematical techniques. The results showed that overestimating the number of 

plausible scenarios needed, does not negatively affect the resulting investment decisions, 

while their underestimation leads to a suboptimal investment evaluation.  

Baringo et al. (2013) proceed with their research formulating an inspired stochastic 

bi-level mathematical model, to derive optimal offering strategies for a wind power 

generator, exercising its market power by participating as price-maker in the day-ahead 

stage, while acting as a deviator in the real-time stage. A set of weighted scenarios is 

employed, to imprint the uncertainty, induced by wind production and real-time market 

price. The upper-level problem, seek to maximize the wind producer’s expected profit, 

whereas the lower-level objective function represents the day-ahead market clearing 

process, in terms of maximizing social welfare. Case studies performed, indicate a sound 

escalation of wind producer’s expected profits and market prices, when adopting 

strategic behavior, compared to the non-strategic state, and a parallel decrease of social 

welfare. The considerable size of test systems (up to 118-buses), combined with their 

negligible temporal computational requirements, highlight the applicability of the 

proposed model in real-world power networks. 

Zugno et al. (2013) investigated the optimal offering strategies of a wind power 

generator by acting as a price-taker in the day-ahead market and as a price-maker in 

balancing market. The uncertainty inserted in the system concerns the day-ahead market 

price, wind generation and residual system deviation and is modelled though the 
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weighted probabilistic realization of different scenarios. At the upper-level problem, 

wind power generator seeks to maximize its profit from its involvement in both markets, 

while the lower-level problem pertains to the balancing market clearing for each 

plausible scenario. The case study simulated, considered the Scandinavian electricity 

market framework and an one price balancing market settlement, with one of the critical 

findings of this work reporting that the optimal offer for the wind producer in day-ahead 

market, increases analogously to its market penetration. Pandžić et al. (2013) considered 

a virtual power plant (VPP) with a mixed generation portfolio (conventional (CPP), wind 

(WPP) and pumped hydro storage (PHS) power plants), purchasing and selling 

electricity, in a joint day-ahead and real-time market setup. A two-stage stochastic MILP 

framework is designed, in order to maximize VPP’s expected profits, which acts as a price-

taker in the day-ahead market and as a passive agent in the balancing market. 

Uncertainty-related parameters, such as non-dispatchable power output and market 

prices, are modelled through a set of plausible scenarios realization, based on historical 

data. Numerical analysis illustrates that the majority of energy is traded in the day-ahead 

floor, while the balancing market revenue constitutes less than 2% of the overall 

earnings.  

Delikaraoglou et al. (2015) introduced a bi-level mathematical configuration based 

on Stackelberg hypothesis’ game, where wind power generator acts as a leader (price-

maker) in both day-ahead and balancing market, while system operator, as a follower. 

The stochastic nature of the power production of non-dispatchable agents, is inserted 

into the problem via 50 different plausible wind generation scenarios using a Beta 

distribution. At the upper-level problem strategic wind power producer seeks to 

maximize its expected profit from its participation in both electricity markets, while the 

lower-level objective presents the simultaneous day-ahead and balancing market 

clearing procedure conducted by ISO. A case study concerning an IEEE Reliability Test 

System showed, that the strategic wind producer improves its expected profits by 

regulating its day-ahead quantity offers and avoiding severe up regulation costs. 

Dai and Qiao (2015) proposed a bi-level stochastic mathematical model to derive 

the optimal offering strategy for a wind power generator acting strategically in a pool-

based electricity market. The upper-level problem maximizes the total profit of the 

strategic producer, while at the lower-level one a sequential clearing procedure of the 

day-ahead and balancing market takes place. The risk induced by the uncertainty in 
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demand power consumption, wind power production and offering strategies of power 

producers is managed by including the conditional value at risk of the worst-case 

scenarios in the objective function. The above methodology is applied to the IEEE 

Reliability Test System and features significant results such as: the day-ahead and 

balancing LMPs decrease as the market share of wind power generation amplifies, the 

network congestion can be exploited by the wind power producer to further arbitrage 

and increase its expected profits. Reddy et al. (2015) recommended a novel electricity 

and spinning reserves market clearing mechanism for a power system, comprised of 

conventional and wind generators, under wind power generation uncertainty. More 

specifically, authors calculated a real-time adjustment cost, deploying data from day-

ahead schedule and plausible balancing operating scenarios, and incorporated it in the 

day-ahead problem, to address the uncertainties emerged. The mathematical approach 

consists of two discrete models, with the first one accounting for spinning reserve 

deployment exclusively by thermal generators, whereas the second one, also allowing the 

participation of demand-side offers in reserve market setup. The proposed technique is 

tested on an IEEE 30-bus system, while the results validation is realized through Monte 

Carlo Simulation method.  

Exizidis et al. (2016) proposed a stochastic bi-level mathematical model to analyze 

the impact of rival wind generators, on the optimal bidding strategy of a WPP, exercising 

market power in a deregulated electricity market settlement. At the upper-level, the 

WPP’s profit maximization problem is represented, while in the lower-level a joint day-

ahead and balancing market clearing takes place. Power generation of both strategic and 

non-strategic WPPs is considered problem’s uncertainty source and is modelled through 

a set of foreseen balancing scenarios. The algorithm is applied to an IEEE one-area RTS, 

while numerical analysis reveals that strategic WPP further exerts market power, when 

having a mid- or low-mean forecast distribution and that its bidding strategies firmly 

depends on rival’s wind power production. Soares et al. (2017) developed an 

optimization framework to derive optimal bidding strategies for a wind power producer, 

participating in an electricity and primary reserve market setup. Authors considered two 

different reserve offering strategies i.e., proportional and constant, the discretization of 

which lies on the allocation of wind power generation in energy and reserve markets. 

Despite their divergent characteristics, quantitative analysis shown that both approaches 

ensure critical profit increase for the wind plant owner, especially in comparison to an 
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energy-only bid case and are firmly affected by market prices and penalties from being 

insufficient to meet market requirements. Finally, a central conclusion of this work states 

that, even though the provision of market services by a wind power plant is technically 

feasible, it is not a common tactic in current market environments.     

Tsimopoulos and Georgiadis (2019b) presented a bi-level optimization model to 

derive optimal hourly offering strategies for a conventional power producer possessing 

a dominant position in pool-based electricity market, under high penetration of non-

dispatchable generation. The upper-level problem demonstrates the expected profit 

maximization of the strategic dispatchable producer, whereas at the lower-level 

materializes the simultaneous clearing of day-ahead and balancing markets. The case 

study pertains to a network constrained 2-bus system, while network congestions 

outcomes are also investigated, as capacity decrement of the transmission line 

constitutes a possible contingency. Additionally, a thorough comparison is carried out 

regarding the market price scheme and the electricity dispatch, when the conventional 

generator under study, acts strategically versus as a price-taker. Tsimopoulos and 

Georgiadis (2019a) extended their work to incorporate the stepwise offering strategy for 

the dispatched energy production and consumption blocks, introduced by Ruiz and 

Conejo (2009). This offering structure requires, accepted energy blocks to be offered at 

their marginal cost, whereas marginal blocks at the equivalent market price, to avoid 

multiple solutions and degeneracy. The mathematical programming with equilibrium 

constraints model is recast into a MILP to investigate optimal offering decisions of a 

conventional producer, under wind generation uncertainty and is applied to a 6-bus 

network constrained system and consequently to the IEEE RTS. Results reinforced 

findings from previous contributions on this topic and shown that expected profits of 

strategic agent decrease, while wind generation market’s share increases.  

Tsimopoulos and Georgiadis (2020) examined the optimal withholding strategies 

for an agent with a mixed conventional and wind production portfolio, participating in a 

pool-based energy and reserve market. The upper-level of the proposed mathematical 

framework guarantees profit maximization for the market agent under study, whereas at 

the lower level the simultaneous day-ahead and balancing market clearing process is 

modelled, through a two-stage stochastic programming. Aftermath established the 

generic perception that the strategic agent can financially benefit by network congestion, 

by charging the production blend and exploiting transmission line capacities. Finally, 
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Rintamäki et al. (2020) recently proposed a bi-level optimization model to study the 

optimal offering decisions of a flexible generator in day-ahead and intraday markets. The 

upper-level problem’s objective concerns the profit maximization of the generator, while 

the lower-level one represents the sequential market clearing procedure of the markets. 

At first the authors, considered a three-node transmission constrained network and 

demonstrated that the flexible generator can increase its expected profits by regulating 

its offers in order to cause transmission congestion or shortage on price-takers 

generators’ capacity. Furthermore, authors applied their optimization model in a Nordic 

5-node test network and confirmed that flexible benefit at a greater extent when acting 

strategically under imperfect forecasts, compared to a perfect competition setup. 

1.4.1.2 Integration of energy storage technologies  

Given the strong penetration and the growing market share of renewable energy 

sources, as well as their stochastic nature regarding electricity generation, the role of 

electricity storage in mitigating potential market imbalances becomes particularly 

important. For this reason, a plethora of research publications have emerged in recent 

years, to evaluate the strategic and non-strategic market behavior of various storage 

technologies. 

1.4.1.2.1 Pumped-Hydroelectric Storage 

According to the U.S. Department of Energy (DOE), pumped-hydro storage (PHS) is 

eminently the most popular form, accounting for 95% of the total utility-scale energy 

storage in the United States (Uria-Martinez et al., 2021). Despite the fact that PHS facilities 

are large-scale plants that provide long-duration energy storage (LDES), their operation 

requires unique topographic characteristics that do not allow their ubiquitous utilization. 

Lu et al. (2004) developed a mathematical framework to derive the optimal offering 

strategies for a PHS unit and maximize its profit under a competitive electricity market 

scheme. The optimization performed entails the precise knowledge of the weekly market 

clearing price curve and is compared to a fixed-schedule bidding strategy, based on the 

profit each one ensures for the storage agent. 

Kazempour et al. (2008) formulated a mixed-integer non-linear program (MINLP) 

to investigate the shelf-scheduling problem of an individual PHS agent, participating in 

the day-ahead (DA) energy and regulation markets. The proposed algorithm guarantees 
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to attain the maximum expected profits, while the agent is considered a price-taker, with 

no capability of acting strategically and influencing market clearing prices (MCPs). 

Kanakasabapathy et al. (2010) proposed a multistage-looping algorithm to determine 

optimal bidding strategies for a PHS plant and maximize its expected profits in a coupled 

day-ahead electricity and ancillary services market. Aburub et al. (2019) developed an 

optimization framework to model the operation of adjustable-speed PHS systems in the 

day-ahead U.S electricity market, considering both networks constraints in a 240-bus 

system and the effects of the ramping rate. Akbari-Dibavar et al. (2020) presented a 

bilevel mathematical framework, where the upper-level provides optimal offering 

strategies and maximizes profit for PHS systems, while the lower-level illustrates the pay-

as-bid electricity market clearing, under wind power generation uncertainty. 

 

1.4.1.2.2 Compressed Air Energy Storage 

Compressed air energy storage (CAES) is an additional LDES technology that seems 

to lead to significant economic potential. Depending on its’ operational characteristics it 

is further divided into diabatic (D-CAES) and the more recently developed advanced 

adiabatic (AA-CAES) systems (Cavallo, 2007). Liquid air energy storage (LAES), is also a 

developed concept over the CAES systems (Babaei et al., 2021). Budt et al. (2016) 

presented a comprehensive review on the fundamental concepts and principles of these 

storage systems, and also provided a thorough classification and evaluation of different 

CAES types.  

Drury et al. (2011) introduced a mixed integer linear program (MILP) to simulate 

the optimal energy dispatch of diabatic and adiabatic CAES units, under a day-ahead 

energy and reserves market setup. Results show that the provision of operating reserves 

is considered essential for the CAES investment to become economically viable. Madlener 

and Latz (2013) introduced a mathematical model to investigate the economic feasibility 

of three different CAES concepts for improved wind power integration. In particular, the 

authors analyzed the economics of a wind power plant with centralized or integrated 

CAES in diabatic or adiabatic operation and the corresponding results without any 

storage system. Simulations demonstrated that the centralized and diabatic CAES case 

proves to be the most economically viable one. 
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Rahimi et al. (2022) introduced an MILP approach to study the scheduling of a 

virtual power plant (VPP) containing a compressed air energy storage wind turbine (CA-

WT), in the day-ahead and real-time (RT) market. Results demonstrated that the 

integration of the CA-WT significantly increases VPP’s profitability in both trading floors, 

while also effectively handles stochastic generation uncertainty. Arabkoohsar et al. 

(2020) proposed a thermodynamic model and conducted a comprehensive analysis of a 

low-temperature AA-CAES, to determine at which demanded or surplus power levels, it 

is economically viable for the system to (dis)charge electricity in real-life energy markets. 

Khatami et al. (2020) presented a novel look-ahead approach for the optimal 

participation of a CAES unit in the day-ahead and real-time energy and ancillary services 

market. Chen et al. (2020) performed a thorough energy, economic and environmental 

analysis of an integrated biomass-driven combined heat and power plant with a CAES 

system. Lastly, Bafrani et al. (2021) developed a two-stage stochastic MINLP model to 

determine the optimal operation of CAESs in a unit-commitment based joint energy and 

reserve market. Numerical analysis indicated that the consideration of restrictions on 

reserve deliverability resulted in lower total reserves and higher operation cost.  

1.4.1.2.3 Battery Energy storage 

Battery storage systems (BSSs) also constitute a popular and viable energy storage 

technology that has received a great deal of research interest, mainly due to a wide range 

of advantages they offer compared to other energy storage technologies. Especially with 

the rapid evolution and utilization of electric vehicles (EV) (Baherifard et al., 2022), 

(Ahmad et al., 2022) by numerous manufacturers in recent years, special emphasis has 

been placed on the technological development of various battery types with distinct 

characteristics. However, the effort to increase storage duration as well as their 

maximum capacity is considered crucial, in order to play a dominant role in 

contemporary energy markets. Lithium-ion (Li-ion) batteries constitute the most 

established type of battery storage and represent nearly 90% of the total installed 

capacity, while sodium sulphur and lead acid batteries are secondary alternatives for the 

provision of grid applications (IRENA, 2019b).  

Akhavan-Hejazi et al. (2015) proposed an optimization framework for the optimal 

offering and operation strategy of a battery storage agent, willing to maximize its 

expected revenues in the day-ahead and real-time market. The authors deploy the 
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Markowitz portfolio selection theory to efficiently control financial risk and a real-time 

receding horizon algorithm, to update profit and financial value-at-risk (VAR) 

predictions. He et al. (2016) examined the optimal bidding and operating strategies for a 

large-scale battery storage system seeking to increase its profitability. The authors also 

incorporated a novel mathematical approach to account for battery life drop, due to 

frequent charging and discharging cycling operation. Mohsenian-Rad (2016) formulated 

a nonlinear mathematical model to optimally coordinate the operation of independently-

operated price-maker battery storage systems which are seeking to maximize their 

revenues, under a nodal transmission-constrained electricity market scheme.  

Khojasteh et al. (2022) provided a security-constrained linear mathematical model 

for the optimal scheduling of BSSs in a joint energy and reserve market, based on the 

limitations of primary and secondary frequency services. Results show that the increased 

battery capacity reduces total frequency reserves and total system’s cost. Lastly, Arteaga 

and Zareipour (2019) developed a mixed-integer nonlinear algorithm to model the 

participation of a shelf standing Li-ion battery storage facility, participating as a price-

taker in the energy and ancillary services markets. 

1.4.2 Natural gas market 

The coupled operation of electricity and natural gas markets is considered to 

provide significant benefits as it allows better coordination and information exchange 

between the two systems and also reduces the overall cost. In recent years, there seems 

to be a particular shift towards this operation, with more and more organizations 

worldwide choosing to adopt it. 

Duenas et al. (2015) were some of the first to study the market coupling and develop 

a mixed integer programming problem to simulate the optimal long- and medium- term 

operation of a power generation company (Genco), owning a group of gas-fired power 

plants (GFPPs), under a coordinated competitive electricity and gas market settlement. 

The model also accounts for the simultaneous optimization of natural gas purchases in a 

zonal gas spot market and minimization of long-term natural gas pipeline capacity 

contracting costs under renewable energy sources’ (RES) power generation uncertainty. 

As interactions between electricity and natural gas markets are increasing, a 

plethora of companies appear to act simultaneously as major players in both markets, by 
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operating a decision-making department for each market. Gil et al. (2016) developed two 

mathematical approaches to simulate each’s departments optimization actions. The 

“electricity-perspective” approach accounts for the maximization of the electricity 

market profit, after generating equivalent natural gas contracts via the implementation 

of the gas market algorithm. On the other hand, “gas-perspective” method aims at 

minimizing natural gas operation costs, in the aftermath of acquiring the correlation 

between marginal revenue and gas consumption by the electricity market equilibrium 

problem. Results display, that both methodologies produce identical optimal solutions 

and are characterized by sufficient adaptability. 

Ordoudis et al. (2017) proposed an insightful price-based stochastic bi-level 

approach, considering a coupled electricity and natural gas market, where gas 

consumption and price offered by NGFPPs, constitute the coordination parameters 

between the two market setups. The upper-level problem minimizes total operation cost 

of the integrated energy system, by optimally determining the gas price adjustment 

variable. In turn, lower-level problems account for the sequential clearing of the 

electricity and natural gas coupled market. The recommended optimization mechanism 

ensures that ISO will form a financial day-ahead equilibrium, whereas may encounter an 

implicit real-time shortage or surplus.  Numerical analysis reveals a substantial market 

efficiency increase, due to a significant reduction in the overall system cost, through an 

enhanced unit dispatch, that successfully addresses stochastic generation. The authors 

extended their research approach to examine the coordination of electricity and natural 

gas markets, in view of their mutual interactions and time intersection of day-ahead/real-

time trading floors (Ordoudis et al., 2019). More specifically, three mixed-integer linear 

programming (MILP) approaches are presented accounting for the linepack of the natural 

gas network i.e., a coupled and a decoupled deterministic sequential and a coupled 

stochastic market clearing procedure. A modified IEEE RTS and a 12-node natural gas 

network are employed to compose the integrated power system, while wind power 

generation uncertainty is modelled, via the realization of 25 equally probable scenarios. 

Results demonstrated that although all three models adequately capture gas system 

operation, coupled stochastic scheme, ensures the lowest expected costs and 

incorporates uncertainty induced by significant amounts of wind energy in a preferable 

manner, compared to the remaining two methodologies. 
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Ordoudis et al. (2020) depending on their previously developed PB method, 

established a novel volume-based coordination approach, to reduce the expected cost of 

an integrated electricity and natural gas system, by optimally defining gas availability for 

power generation by GFPPs, under high shares of renewable energy. The presented bi-

level mathematical formulation seeks to improve day-ahead and real-time stage 

coordination, while conforming to the sequential market clearing settlement, which 

constitutes the current market design. A realistic analysis is conducted to evaluate the 

proposed model’s performance and compare it with the price-based method; thus, an 

identical integrated power and gas system setup is employed. Results revealed that, an 

efficient adjustment of natural gas quantities or price, can critically enhance the 

performance of the sequential market clearing model, in terms of minimizing system cost, 

so as to resemble the ideal condition of stochastic modelling. 

Chen et al. (2018) recommended a non-deterministic scenario-based mathematical 

model for the day-ahead market clearing, under a coordinated electricity and natural gas 

market setup. This approach achieves a direct link between the flexible resources and the 

system uncertainties arisen by RESs’ (wind and solar) unpredictable power production, 

thus enhancing economic efficiency. Case studies indicate a more suitable allocation of 

available resources, such as gas transmission capacity, as joint market curtails (with the 

analogous compensation) low-priority gas demand loads, in order to meet electricity 

demand and ensure the power system’s stability. Solution time ranges at reasonable 

levels, considering the substantial size and complexity of the proposed algorithm. 

However, the general assumptions and compromises made to reduce computational 

requirements render the proposed model inadequate to be implemented in current 

market designs.  

Zhao et al. (2019) developed two independent optimization frameworks for the 

day-ahead market clearing of power and natural gas systems. The coordination between 

these two systems is implemented via an iterative heuristic algorithm, which is based on 

Lagrangian Relaxation, which allows the exchange of fundamental information such as 

fuel price, supply and demand and aims at maximizing social welfare. The purpose of such 

a coordination lies on ensuring that, natural gas supplied to power system to meet 

electricity demands, does not result in gas loads’ curtailment. Results for a case study 

concerning a 24-bus IEEE RTS and a 25-node gas system, revealed that gas curtailments 

may lead to unserved energy in the electricity system, which can cause a great social 
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welfare reduction and in parallel electricity prices increase. Yan et al. (2019) considered 

an Integrated Energy System (IES) with multi-type energy units and storage systems, 

integrated in a coupled simultaneous day-ahead electricity and natural gas market, 

including carbon emission market. Gaussian Copula method is adopted to form the joint 

probability distribution of market prices and develop an optimal low-carbon offering 

strategy. A sensitivity analysis of emission prices is conducted, to assess the impact of the 

carbon emission trading mechanism in the IES operation, considering a Henry Hub 

natural gas and ERCOT electricity market settlement. Simulation results illustrated that 

the proposed approach can efficiently address possible price fluctuation uncertainties 

and that carbon emission trading, could stimulate wind penetration level in the IES. 

Nasiri et al. (2020) introduced a stochastic bi-level optimization approach to 

analyze the impact of ESSs on a regional-local coupled electricity and natural gas market 

clearing. More specifically, the upper-level problem presents energy hub operator’s 

optimal scheduling, with the aim of minimizing purchasing costs of electricity and natural 

gas, whereas the objective function of the lower-level one, aims at clearing the 

coordinated electricity and natural gas market, considering wind power generation and 

the integration of linepack flexibility. The proposed algorithm is simulated on an IEEE 6-

bus power system and a 6-node natural gas network and three case studies to analyze 

MES’s operation at local-regional level, are formulated. Numerical analysis demonstrated 

that the adaptation of the multi-carrier ESS can entail a significant drop of 7.01% and 

1.7%, on the daily operational cost of local and regional level, equivalently.  

Finally, Baziar et al. (2021) proposed a two-stage algorithm to derive optimal 

offering strategies for electricity and gas generators, under a coupled power and gas, day-

ahead energy and reserve market settlement. At the first stage, a bi-level formulation is 

presented, pertaining to the minimization of strategic electricity producers’ expected 

cost-revenue difference and the electricity market clearing problem, whereas at the 

second stage, the equivalent bi-level model for strategic gas producers and natural gas 

market, is implemented. Demand and RESs’ power uncertainty is modelled by stochastic 

programming, through a set of probability weighted scenarios. Two case studies with 

different networks topologies were considered, with the second one consisting of an IEEE 

24-bus power network and a 7-node gas network. Numerical analysis emphasizes the 

computational efficiency of the proposed model and reports that, assets with low 

operation costs, tend to participate in the day-ahead energy market, while strategic 
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electricity and gas producers achieve a profit of 37.5% and 13.6%, correspondingly, in 

their operational cost. However, the case of network congestion, which could offer a more 

in-depth analysis, has not been studied. 

1.4.3 Carbon emission trading 

Global warming caused by greenhouse gas (GHG) emissions, constitutes one of the 

predominant international concerns during the last decades and the establishment of a 

low-carbon economy is crucial (R. Zhang et al., 2020). Power industry is one of the major 

emission sources, mainly due to the large amounts of CO2 generated by fossil fuel-fired 

power plants (Reddy et al., 2013). Emission trading system (ETS) is considered a 

particularly promising market-based instrument that creates incentives to mitigate GHG 

emissions and save significant natural gas reserves (Labay et al., 2019), by exposing 

emitters to the external emission costs in the most versatile and least costly way (Wei et 

al., 2022).  

Chen et al. (2006) formulated a mathematical program with equilibrium constraints 

(MPEC) based on Stackelberg hypothesis, to investigate the strategic participation of a 

price-maker power producer and its ability to manipulate Pennsylvania-New Jersey-

Maryland (PJM) electricity and emission market. The analysis indicated that the leader 

could gain significant economic profits by withholding emission permits and thus 

increasing NOx permit costs for rival producers. Tanaka and Chen (2012) developed a 

general mathematical model, in which Cournot firms are able to manipulate permit and 

electricity prices in the California energy market, through fringe firms in order to 

maximize their profits. Simulation results illustrated that the firms substantially raise 

power and CO2 permit prices, resulting in a significant loss in social welfare. 

Akbari-Dibavar et al. (2021) introduced a multi-objective mixed-integer non-linear 

program (MINLP) to model the economic-emission dispatch problem including wind 

farms and carbon capture power plants. The model is implemented in a modified IEEE 

24-bus reliability test system (RTS), while stochastic programming is deployed to model 

wind generation and demand uncertainty. Zhang et al. (2023) considered a Stackelberg-

based game to study the participation and derive the optimal bidding of renewable 

energy power producers in an integrated day-ahead electricity and CET market. Feng et 

al. (2020) developed a multi-objective bi-level model to derive the optimal carbon price 
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and achieve revenue maximization and minimization of carbon intensity in the electricity 

supply sector. Corchero et al. (2012) proposed a novel stochastic mathematical model to 

derive the optimal unit commitment and bidding strategy of a Genco for the day-ahead 

Iberian electricity market, considering SO2, CO2 and NOx emissions.  

Lu et al. (2022) formulated a bi-level model for a multi-leader multi-follower game 

based on Stackelberg hypothesis, to analyze the impact of carbon emission trading (CET) 

market on the bidding strategy of the leader Gencos, participating in the day-ahead and 

real-time electricity market. The authors employed a real 2778-bus system to show the 

applicability of the model. Zhang et al. (2021) presented a novel bi-level algorithm to 

determine optimal bidding approach for a power-to-gas (P2G) facility in the PJM 

electricity market, considering carbon emission trading. The upper-level objective 

function aims at maximizing P2G facility’s expected profit, while the lower-level model 

represents market clearing through a low-carbon ED under wind power uncertainty. 

1.4.4 Green certificates market 

Tradable green certificates, also known as renewable energy certificates/credits 

(REC) (Nguyen & Felder, 2020), is a market-based policy instrument established to 

provide incentives for further investments in the renewable energy sector and mitigate 

greenhouse gas (GHG) emissions in a global level (Narula, 2013). In particular, green 

certificates mechanism has been designed to deal with the mismatch between the 

potential renewable electricity generation and the renewable purchase obligations of the 

load-serving entities (Gupta & Purohit, 2013). A plethora of articles have been published 

to investigate and assess the performance of green certificates market in either a group 

of nations, such as the European countries (Hulshof et al., 2019) and BRICS (Z. Chen et al., 

2023), or in individual states such as USA (Joshi, 2021).  

Irfan (2021) conducted an empirical analysis employing an econometric approach 

to examine the relationship between electricity and REC markets in India, using monthly 

data. The strong correlation between traded volume/wholesale price of electricity and 

traded volume of solar and non-solar RECs are some of the main findings of this research. 

Helgesen et al. (2018) investigated the economic impact of integrating green certificates 

trading to enhance the renewable assets’ generation. In particular, the authors developed 

a mixed complementarity partial equilibrium model to simulate the joint clearing of 
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electricity and green certificates market under Nash-Cournot competition. Results 

showed that the integration of tradable green certificates can affect to a different extent 

each marker participant, with existing participants, however, bearing most of the losses.  

Hustveit et al. (2017) extended the work of Coulon et al. (2015) and developed a 

dynamic programming-based stochastic model to analyze the operation of the Swedish-

Norwegian electricity and green certificates market. Numerical simulations highlighted 

that electricity generation/consumption and over-investment can increase certificates’ 

price volatility and significantly affect market stability, respectively. Pineda et al. (2016) 

proposed a class of generation expansion model regarding a joint electricity and green 

certificates market, to examine to what extent renewable-based generation investment is 

affected by quota obligations and non-compliance penalty. Safarzadeh et al. (2022) 

proposed a novel leader-follower mathematical framework to maximize energy market 

performance integrating tradable white certificates and green certificates, as effective 

financial instruments. In this game, the government plays the role of the leader, while the 

energy suppliers act as followers in a duopolistic competition scheme.  

An et al. (2019) proposed an equilibrium problem with equilibrium constraints 

(EPEC) to investigate the power generation firms’ strategic behavior in an imperfect 

wholesale electricity tradable green certificates market. Results showed that renewable 

power producers can exercise market power both by withholding green certificates and 

by cutting back their electricity dispatch depending on the renewable portfolio standards 

(RPS) value. Hui et al. (2021) examined the financialization of green certificates and 

investigated market participants’ optimal strategies in green certificates market both in 

a theoretical and a methodological level. Results indicated that the strategic behavior of 

the market participants can critically affect the stability of green certificates price and 

convergence rate to the equilibrium price. Guo et al. (2020) developed a nonlinear bi-

level model to study the strategic behavior of renewable energy sources in day-ahead and 

real-time joint electricity and green certificates market. The authors transformed their 

problem into a single-level linear model and applied it into a modified IEEE 30-bus 

system. 
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1.5 Mathematical framework for perfect and imperfect 
competition  

Modelling electricity markets has received considerable attention over the past few 

years. A plethora of mathematical approaches has been proposed to address several 

problems in energy markets, such as the market-clearing process and games of single or 

multiple leaders.  

1.5.1 Perfect competition – LP 

Perfect competition in energy markets refers to a theoretical scenario where 

numerous small firms produce an identical product with easy market entry. No single 

firm can influence prices, and buyers and sellers have perfect information. This model 

rarely applies to real-world energy markets, where various factors lead to imperfect 

competition. This type of competition in electricity markets is usually formulated as 

single-level two-stage stochastic programming, with the first stage involving day-ahead 

optimal energy dispatch and generating LMPs as dual variables. Equivalently, the second 

stage derives real-time market dispatch and prices, while the various sources of 

uncertainty are handled through the realization of multiple plausible scenarios. The 

objective function of the energy market clearing problem aims at the maximization of 

social welfare, as depicted in Figure 1.4. The addition of binary variables that capture 

specific market operations or agents’ decisions, such as (dis)charging function for energy 

storage systems (ESSs), transforms the existing problem into a mixed-integer program 

(MIP).  

 

 

Figure 1.4: Market clearing formulation. 
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1.5.2 Imperfect competition - MPEC 

Imperfect competition in energy markets refers to a situation where market 

conditions fall between the extremes of perfect competition and monopoly. Factors such 

as differentiated products, barriers to entry, and limited supplier options create an 

environment where an individual strategic market participant has some degree of market 

power, influencing prices and outcomes. This type of competition, following the 

Stackelberg hypothesis, is described as a single-leader single-follower game, in which the 

strategic participant, referred to as the leader, makes the initial decision regarding its 

output, while the ISO (Independent System Operator), acting as the follower, 

subsequently makes its optimal choice (Figure 1.5). A strategic participant is mainly 

considered a producer holding a dominant position in the market due to their ownership 

of a substantial number of generation units. In the case of a two-stage market structure, 

where both day-ahead and balancing market are investigated, two distinct clearing 

mechanisms can be employed, that is, simultaneous and sequential. While electricity 

markets are currently organized sequentially, both approaches have drawn significant 

attention in the recent literature. 

 

 

Figure 1.5: Bi-level formulation for strategic participation. 

 

A Stackelberg game can be mathematically captured through bi-level modelling. In 

this context, the upper-level problem (1.1) – (1.3) allows the strategic agent to optimally 

determine its profit-maximizing offering/bidding strategy, while the lower-level problem 

(1.4) – (1.6) represents ISO’s market-clearing procedure and yields pool prices as dual 

variables, as illustrated in Figure 1.5. 
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The two optimization problems have distinctive objective functions and 

constraints, denoted by the superscripts U and L, respectively. Consequently, there also 

exist two sets of decision variables, namely xU and xL. Given that the lower-level problem 

imposes constraints on the upper-level problem, the primary variable vector xL, along 

with the dual variable vectors λ and μ, from the former, is also included in the variable 

vector set of the latter. Therefore, the primary variable set for the upper-level problem 

(1.1) - (1.3) is denoted as ΞU = { xU, xL; λ, μ}. 

 

Upper-level problem  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝛯𝑈          𝑓𝑈(𝑥𝑈, 𝑥𝐿, 𝜆, 𝜇) (1.1) 

  

𝑠. 𝑡.                      ℎ𝑈(𝑥𝑈, 𝑥𝐿, 𝜆, 𝜇) = 0 (1.2) 

                            𝑔𝑈(𝑥𝑈, 𝑥𝐿, 𝜆, 𝜇) ≤ 0  (1.3) 

 

Lower-level problem  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑥𝐿           𝑓𝐿(𝑥𝑈, 𝑥𝐿) (1.4) 

  

𝑠. 𝑡.                      ℎ𝐿(𝑥𝑈, 𝑥𝐿) = 0                ∶ 𝜆 (1.5) 

                            𝑔𝐿(𝑥𝑈, 𝑥𝐿) ≤ 0               ∶ 𝜇  (1.6) 

 

  To efficiently generate solutions though, bi-level model is recast into a 

mathematical program with equilibrium constraints (MPEC). MPECs are 

complementarity hierarchical problems, that are extensively used in modelling a broad 

range of market-based scopes. Investment and sizing models for market agents, as well 

as the demand-side strategic bidding, are well-established examples of the MPECs’ 

applicability.  The MPEC models’ structure consists of the upper-level’s objective function 

and the Karush–Kuhn–Tucker (KKT) optimality conditions of the lower level, as depicted 

in Figure 1.6.  
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Figure 1.6: MPEC formulation 

Karush–Kuhn–Tucker conditions are characterized as first-order conditions, as they are 

formulated through first derivative vectors and Jacobian matrices, and their 

implementation constitutes an essential requirement for the solution of various non-

linear bi-level optimization problems. The substitution of the lower-level problem (1.4) 

– (1.6) occurs through the introduction of a series of equality constraints (1.11), which 

are obtained from the partial derivatives of the corresponding Lagrangian function (1.10) 

concerning each primary variable. Additionally, a set of complementarity conditions 

(1.12) is incorporated, articulating the orthogonal relationship between the lower-level 

problem's inequality constraints and the corresponding dual variables. Finally, the 

condition (1.13) ensured that the dual variable related to the equality (1.5) is free. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑓𝑈(𝑥𝑈, 𝑥𝐿, 𝜆, 𝜇) (1.7) 

  

𝑠. 𝑡.                      ℎ𝑈(𝑥𝑈, 𝑥𝐿, 𝜆, 𝜇) = 0 (1.8) 

                            𝑔𝑈(𝑥𝑈, 𝑥𝐿, 𝜆, 𝜇) ≤ 0              (1.9) 

                            ∇𝑥𝐿𝑓𝑈(𝑥𝑈, 𝑥𝐿) + 𝜆𝛵∇𝑥𝐿ℎ𝐿(𝑥𝑈, 𝑥𝐿) + 𝜇𝑇∇𝑥𝐿ℎ𝐿(𝑥𝑈, 𝑥𝐿) = 0 (1.10) 

                            ℎ𝐿(𝑥𝑈, 𝑥𝐿) = 0 (1.11) 

                           0 ≤ −𝑔𝐿(𝑥𝑈, 𝑥𝐿) ⟂𝜇 ≥ 0 (1.12) 

                           𝜆: 𝑓𝑟𝑒𝑒 (1.13) 
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Given that the lower-level problem (1.4) - (1.6) is regarded as linear, it can be 

reformulated in a linear form. The dual variable vectors are then denoted by a colon 

alongside the corresponding constraints. 

Primal lower-level problem  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑐(𝑥𝑈)𝑇𝑥𝐿 (1.14) 

  

𝑠. 𝑡.                      𝐴(𝑥𝑈)𝑥𝐿 = 𝑏(𝑥𝑈)               ∶ 𝜆 (1.15) 

                            𝐵(𝑥𝑈)𝑥𝐿 ≤ 𝑑(𝑥𝑈)               ∶ 𝜇 (1.16) 

                            𝑥𝐿 ≥ 0                                    ∶ 휁 (1.17) 

 

The cost vector is denoted as c(xU), while A(xU) and B(xU) represent the constraint 

matrices. The right-hand-side vectors are b(xU) and d(xU). Additionally, the dual variable 

vectors λ and μ correspond to the constraints (1.15) and (1.16), similar to those in the bi-

level model's constraints (1.5) and (1.6). Finally, the dual variable vector ζ is associated 

with the non-negativity of the lower-level prime variable vector xL. The Lagrangian dual 

problem for the primal problem (1.14) - (1.17) is as follows: 

Dual lower-level problem  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒         𝑏(𝑥𝑈)𝑇𝜆 + 𝑑(𝑥𝑈)𝑇𝜇 (1.18) 

  

𝑠. 𝑡.                      𝐴(𝑥𝑈)𝑇𝜆 + 𝐵(𝑥𝑈)𝑇𝜇 + 휁 = 𝑐(𝑥𝑈) (1.19) 

                            𝜇 ≥ 0, 휁 ≥ 0 (1.20) 

                            𝜆: 𝑓𝑟𝑒𝑒 (1.21) 

 

The following are the optimality conditions linked to the lower-level problem (1.14) - 

(1.17), originating from the primal-dual formulation: 

                            𝐴(𝑥𝑈)𝑥𝐿 = 𝑏(𝑥𝑈) (1.22) 

                            𝐵(𝑥𝑈)𝑥𝐿 ≤ 𝑑(𝑥𝑈) (1.23) 

                             𝐴(𝑥𝑈)𝑇𝜆 + 𝐵(𝑥𝑈)𝑇𝜇 + 휁 = 𝑐(𝑥𝑈) (1.24) 

                             𝑐(𝑥𝑢)𝑇𝑥𝐿 = 𝑏(𝑥𝑈)𝑇𝜆 + 𝑑(𝑥𝑈)𝑇𝜇 (1.25) 

                            𝑥𝐿 ≥ 0, 𝜇 ≥ 0, 휁 ≥ 0 (1.26) 
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                            𝜆: 𝑓𝑟𝑒𝑒 (1.27) 

 

The primal problem (1.14) - (1.17) incorporates constraints A(xU)xL = b(xU), B(xU)xL 

≤ d(xU), and xL ≥ 0. In the dual problem (1.18) - (1.21), constraint A(xU)T λ + B(xU)T μ + ζ = 

c(xU) is included, where λ is unrestricted, μ ≥ 0, and ζ ≥ 0. The strong duality constraint 

c(xU)T xL = b(xU)T λ + d(xU)T μ ensures equality between the primal optimal objective 

function (1.14) and the dual optimal objective function (1.18). The resulting MPEC model, 

formulated with a primal-dual approach equivalent to the bi-level model (1.1) - (1.6), is 

as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑓𝑈(𝑥𝑈, 𝑥𝐿, 𝜆, 𝜇) (1.28) 

  

s.t.                       ℎ𝑈(𝑥𝑈, 𝑥𝐿, 𝜆, 𝜇) = 0                              (1.29) 

                            𝑔𝑈(𝑥𝑈, 𝑥𝐿, 𝜆, 𝜇) ≤ 0                              (1.30) 

                            𝐴(𝑥𝑈)𝑥𝐿 = 𝑏(𝑥𝑈)                                 (1.31) 

                            𝐵(𝑥𝑈)𝑥𝐿 ≤ 𝑑(𝑥𝑈)                                 (1.32) 

                            𝐴(𝑥𝑈)𝑇𝜆 + 𝐵(𝑥𝑈)𝑇𝜇 + 휁 = 𝑐(𝑥𝑈)   (1.33) 

                            𝑐(𝑥𝑈)𝑇𝑥𝐿 = 𝑏(𝑥𝑈)𝑇𝜆 + 𝑑(𝑥𝑈)𝑇𝜇     (1.34) 

                            𝑥𝐿 ≥ 0                                                       (1.35) 

                           𝜇 ≥ 0                                                          (1.36) 

                           휁 ≥ 0                                                          (1.37) 

1.6 Thesis overview 

This thesis is organized as follows: 

Chapter 2 addresses the strategic bidding problem of an energy storage agent in 

joint electricity and reserve markets. A bi-level modelling approach is presented, 

where the upper-level problem ensures the strategic agent’s profit maximization, 

while the two lower-levels mimic the clearing of the day-ahead and balancing 

market. The model is formulated as a MPEC problem and is further recast into a 

MILP using a series of mathematical transformations. Numerical simulations 

provide the optimal dispatch and bidding strategies for the strategic agent under 

the assumption of a congested and an uncongested power network. 
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Chapter 3 presents an optimization-based economic analysis of various electricity 

storage technologies participating as standalone entities in a fully coupled 

electricity and natural gas market. More specifically, a MILP model is formulated to 

represent the simultaneous clearing procedure of the day-ahead and balancing 

market. The power generation uncertainty introduced by the nature of the wind 

energy is modelled through a set of plausible wind power generation scenarios. The 

analysis reveals the profitability and optimal power dispatch of each storage 

technology in the market under power network congestion and natural gas price 

increase scenarios. 

Chapter 4 studies the optimal participation of a strategic GFPP in a low-carbon 

integrated pool-based electricity and natural gas market. In particular, the upper-

level of the proposed bi-level formulation ensures profit maximization of the 

strategic producer, while the lower-level mimics the sequential clearing of the two 

markets incorporating a cap-and-trade program for carbon emissions. The model is 

applied in a modified PJM 5-bus system and derives the optimal bidding and 

management of carbon emission allowances for the strategic player under plausible 

power transmission congestions and natural gas prices increment scenarios. 

Chapter 5 investigates the optimal trading strategies of a renewable aggregator in 

electricity and green certificates markets. A novel bi-level model is developed to 

address this problem. The upper-level problem focuses on maximizing the strategic 

player's profits, while the two lower-level problems represent the sequential 

clearing mechanism of the two markets conducted by the same Market Operator 

and aim at minimizing overall operating market cost. The proposed model is 

initially applied to a PJM 5-bus and then to a modified IEEE 24-bus system to 

showcase its effectiveness in a real-life case. 

Chapter 6 provides a synopsis of the research outcomes of this thesis and proposes 

possible future research directions. 

 

 



 
 

 
 

Chapter 2  

 

Strategic bidding of an energy storage 

agent in electricity and reserve 

markets 
 

In this Chapter, a bi-level model is proposed, based on a single-leader single-

follower Stackelberg game, to derive the optimal bidding strategies for an energy storage 

agent participating in electricity and reserve markets. The upper-level problem 

maximizes the expected profits of the strategic storage agent, while the two lower-level 

problems mimic the day-ahead and balancing market clearing procedure conducted by 

the MO (follower). The bi-level problem is recast into an MPEC, which is further 

reformulated into a MILP, using the KKT first-order conditions, strong duality theory and 

binary expansion. The model provides the clearing prices, the optimal bids and electricity 

dispatch for the strategic agent under network congestion and different wind power 

generation scenarios. 

2.1 Introduction 

The ever-increasing necessity for assertive penetration of non-dispatchable energy 

sources, such as wind, due to their beneficial financial and environmental impact, has 

contributed to the critical deployment of the role, Energy Storage Systems (ESS) own in 

electricity markets’ contemporary scheme. An increased contribution of renewable 

energy sources’ (RES) share into the electricity grid’s mixture, can provide a decisive 

prospect for suppressing wholesale energy prices, through outplacing high-cost 

generators from the merit-order. Furthermore, this RES contribution can lead to 

downscaling dependence on dispatchable generation (fossil fuels) and confining 

greenhouse gas emissions (Green & Vasilakos, 2010). Their erratic and fluctuating nature 
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regarding their generation levels though, can originate concerns about the reliability of 

the power grid comprised in great measure of these sources (Denholm et al., 2011). 

The significant progress that has been achieved in energy storage technologies and 

their applications can address the aforementioned issues, leading to a rapid 

decarbonization, while providing ancillary services such as reserves, to guarantee the 

stability of supply and demand equilibrium in power systems (International Renewable 

Energy Agency (IRENA), 2017). Apart from the implicitly advantageous contribution to 

the electrical grid, nowadays a large-scale privately owned ESS can enable significant 

economic opportunities for an investor who seeks to maximize his expected profit, 

participating in a liberalized energy market environment (Shafiee et al., 2016). In 

particular, storage systems can act strategically and capitalize their (dis)charging 

decisions by arbitraging; procuring and storing electricity when off-peak electricity prices 

occur and trade it back in the market when electricity prices rise (R. Sioshansi et al., 2009). 

A case study conducted by McConnell et al. (2015) demonstrated that the above ESS’s 

operation can stimulate a significant competitive advantage over other involved 

generators in Australian National Electricity Market, an especially well designed and 

regulated energy-only market, that is characterized by high wind power generation 

insertion (Sioshansi, 2008). 

Inspired by the market clearing optimization algorithm presented in (Nasrolahpour 

et al., 2018), this Chapter proposes an MPEC approach, to derive optimal offering 

strategies for a strategic ESS operator, participating in a sequential joint energy and 

reserve day-ahead and real-time market clearing settlement. While a common 

assumption suggests that ESS agents act as price-takers, large-scale investor-owned 

storage systems can offer/bid strategically in electricity markets, especially as wind 

power generation uncertainty increases (Mohsenian-Rad, 2016). Electricity market of 

California constitutes a great example of such a market environment, as California Public 

Utilities Commission has called the three large independently-operated utility companies 

to install a capacity of 1325 MW of energy storage by 2020 (California Public Utility 

Commission). Therefore, examining and analyzing the optimal strategic behavior of large-

scale investor-owned energy storage systems appears to attract significant interest in 

recent years. Other types of renewable energy sources could also be considered in the 

mathematical framework, but this will inevitably lead to computationally intractable 
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problems. It is important to emphasize that ESS agent is considered as profit-making 

agent and its detailed operational scheduling is beyond the scope of this work. 

In the above context, the main objectives and contributions of this Chapter are as 

follows: 

i. A novel bi-level complementarity model to analyze the inter-relationships between 

the ESS’s optimal bidding and offering strategies, participating in a jointly cleared 

energy and reserve day-ahead pool, as well as in real-time pool, under network 

transmission constraints.  

ii. Transformation of the bi-level model into an MPEC and further reduce it to the 

equivalent MILP model, by deploying KKT optimality conditions, strong duality 

theorem and a binary expansion method. 

iii. A systematic methodology, in order to generate day-ahead, upward/downward 

reserve and real-time market prices, as dual variables of the corresponding energy 

balance constraints. 

iv. Introduce a comprehensive market operations structure and a thorough 

mathematical framework for the integration of ESS in a transmission constrained 

multi-bus network, under wind power generation uncertainty. 

v. Analyse the market outcomes of transmission lines congestions and variable levels 

of wind power generation insertion and the measure of their influence on ESS 

agent’s (dis)charging decision strategies.   

2.2 Problem statement 
 

The proposed bi-level programming problem is formulated on the basis of a single 

leader-follower Stackelberg hypothesis’ game (Vega-Redondo, 2003) and considers the 

optimal offering/bidding strategies and (dis)charging decisions for a price-maker ESS 

operator, while competing conventional and wind generation agents, which act as price-

takers in energy and reserve pools. The adopted market setup is aligned with the 

Pennsylvania-New Jersey-Maryland (PJM) market’s structure, where wind power 

generation uncertainty is addressed through the real-time realization of ancillary 

services’ operations. 
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The upper level of the proposed mathematical framework contains strategic 

generator’s expected profit maximization problem and relies on the marginal prices, 

intrinsically provided by the lower-level problem’s implementation. The lower-level 

problem on the other hand, represents the market clearing mechanism conducted by the 

ISO (Figure 2.1). It also determines the optimal generators’ energy dispatch and reserve 

procurement, for the purpose of maximizing social welfare, by virtue of a two-stage 

stochastic program (Morales et al., 2014). The first stage pertains to the optimization of a 

jointly encountered energy and upward/downward reserve day-ahead pool, deriving the 

optimal amounts of scheduled generation and reserve procurement, as well as their 

reciprocal clearing prices. At the second stage, the ISO’s real-time market clearing 

procedure is presented, determining the deployment levels of the reserves -formerly 

procured in the day-ahead clearance phase- and generating the RT market prices (Stoft, 

2003). Wind power generation uncertainty is modelled through the establishment of 

conceivable wind generation scenarios (Conejo et al., 2010). Considering the lower 

problem satisfies continuity and convexity prerequisites, the proposed bi-level problem 

can be reformulated to an MPEC, on the strength of the KKT optimality conditions’ 

application. Consequently, applying Fortuny-Amat and McCarl linearization approach 

(Fortuny-Amat & McCarl, 1981), strong duality theorem and a binary expansion method 

(Pereira et al., 2005), the mathematical model is further reduced into an equivalent MILP, 

which entails reasonable computational requirements by commercial solvers such as 

GAMS/CPLEX (Brook et al., 1988). 
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Figure 2.1: Mathematical structure and function of the bi-level model 

2.3 Mathematical Formulation 

2.3.1 Bi-level model structure 

The following bi-level mathematical model is formulated to determine optimal 

offering and (dis)charging strategies for an ESS agent, in a joint energy and reserve market 

settlement, in order to counteract occasional system imbalances, imposed by wind power 

generation deviations and plausible network congestions. 

2.3.2 Upper-level problem: ESS’s expected profit maximization 

The upper-level problem maximizes the expected profit for the ESS operator, 

stemming from its involvement in all different types of markets, and is described below 

by constraints (2.1) - (2.18): 
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𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆    ∑ ∑ [−(𝜆𝑛,𝑡
𝐷𝐴 + 𝑐𝑠

𝑐ℎ) ∙ 𝐺𝑠,𝑡
𝐷𝐴,𝑐ℎ + (𝜆𝑛,𝑡

𝐷𝐴 − 𝑐𝑠
𝑑𝑖𝑠) ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠  

𝑠𝑡

+ [𝜆𝑡
↑ ∙ (𝑟𝑝𝑠,𝑡

𝑐ℎ,↑ + 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↑) + 𝜆𝑡

↓ ∙ (𝑟𝑝𝑠,𝑡
𝑐ℎ,↓ + 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓)]

+ ∑ 𝜋𝜔

𝜔

∙ [(𝜆𝑛,𝑡,𝜔
𝑅𝑇 + 𝑐𝑠

𝑐ℎ) ∙ (𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↑ − 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ ) + (𝜆𝑛,𝑡,𝜔
𝑅𝑇 − 𝑐𝑠

𝑑𝑖𝑠)

∙ (𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑ − 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓)]] 

(2.1) 

s.t.  

𝑥𝑠,𝑡
𝑐ℎ  , 𝑥𝑠,𝑡

𝑑𝑖𝑠   ∈   {0,1}      ∀𝑠, ∀𝑡 (2.2) 

𝑥𝑠,𝑡
𝑐ℎ + 𝑥𝑠,𝑡

𝑑𝑖𝑠  ≤ 1     ∀𝑠, ∀𝑡 (2.3) 

0 ≤  �̅�𝑠,𝑡
𝑑𝑖𝑠 ≤  𝑥𝑠,𝑡

𝑑𝑖𝑠  ∙ 𝐺𝑠
𝑑𝑖𝑠,𝑚𝑎𝑥        ∀𝑠, ∀𝑡 (2.4) 

0 ≤  𝑟�̅�𝑠,𝑡
𝑑𝑖𝑠,↑ ≤  𝑥𝑠,𝑡

𝑑𝑖𝑠  ∙ 𝑅𝐶𝑠
𝑑𝑖𝑠,↑,𝑚𝑎𝑥        ∀𝑠, ∀𝑡 (2.5) 

0 ≤  𝑟�̅�𝑠,𝑡
𝑑𝑖𝑠,↓ ≤  𝑥𝑠,𝑡

𝑑𝑖𝑠  ∙ 𝑅𝐶𝑠
𝑑𝑖𝑠,↓,𝑚𝑎𝑥        ∀𝑠, ∀𝑡 (2.6) 

�̅�𝑠,𝑡
𝑑𝑖𝑠 + 𝑟�̅�𝑠,𝑡

𝑑𝑖𝑠,↑ ≤  𝑥𝑠,𝑡
𝑑𝑖𝑠  ∙ 𝐺𝑠

𝑑𝑖𝑠,𝑚𝑎𝑥        ∀𝑠, ∀𝑡 (2.7) 

𝑟�̅�𝑠,𝑡
𝑑𝑖𝑠,↓ − �̅�𝑠,𝑡

𝑑𝑖𝑠  ≤ 0    ∀𝑠, ∀𝑡 (2.8) 

0 ≤  �̅�𝑠,𝑡
𝑐ℎ ≤  𝑥𝑠,𝑡

𝑐ℎ  ∙ 𝐺𝑠
𝑐ℎ,𝑚𝑎𝑥        ∀𝑠, ∀𝑡 (2.9) 

0 ≤  𝑟�̅�𝑠,𝑡
𝑐ℎ,↑ ≤  𝑥𝑠,𝑡

𝑐ℎ  ∙ 𝑅𝐶𝑠
𝑐ℎ,↑,𝑚𝑎𝑥        ∀𝑠, ∀𝑡 (2.10) 

0 ≤  𝑟�̅�𝑠,𝑡
𝑐ℎ,↓ ≤  𝑥𝑠,𝑡

𝑐ℎ  ∙ 𝑅𝐶𝑠
𝑐ℎ,↓,𝑚𝑎𝑥        ∀𝑠, ∀𝑡 (2.11) 

�̅�𝑠,𝑡
𝑐ℎ + 𝑟�̅�𝑠,𝑡

𝑐ℎ,↓ ≤  𝑥𝑠,𝑡
𝑐ℎ  ∙ 𝐺𝑠

𝑐ℎ,𝑚𝑎𝑥        ∀𝑠, ∀𝑡 (2.12) 

𝑟�̅�𝑠,𝑡
𝑐ℎ,↑ − �̅�𝑠,𝑡

𝑐ℎ  ≤ 0    ∀𝑠, ∀𝑡 (2.13) 

𝑂𝑠,𝑡
𝑐ℎ ,  𝑂𝑠,𝑡

𝑐ℎ,↑,  𝑂𝑠,𝑡
𝑐ℎ,↓ ≥ 0      ∀𝑠, ∀𝑡 (2.14) 

𝑂𝑠,𝑡
𝑑𝑖𝑠 ,  𝑂𝑠,𝑡

𝑑𝑖𝑠,↑,  𝑂𝑠,𝑡
𝑑𝑖𝑠,↓ ≥ 0      ∀𝑠, ∀𝑡 (2.15) 

0 ≤ 𝑠𝑜𝑐 ≤ 𝑆𝑂𝐶𝑠
𝑚𝑎𝑥            ∀𝑠, ∀𝑡 (2.16) 

𝑠𝑜𝑐𝑠,𝑡 = 𝑆𝑂𝐶𝑠
𝑖𝑛𝑖       ∀𝑠, 𝑡 = 𝑁𝑡 (2.17) 

𝑠𝑜𝑐𝑠,𝑡 = 𝑆𝑂𝐶𝑠
𝑖𝑛𝑖 + ∑ 휂𝑐ℎ ∙ [𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ + ∑ 𝜋𝜔 ∙ (−𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↑ + 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ )

𝜔

]

𝑘

     

− ∑
1

휂𝑑𝑖𝑠
∙ [𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠 + ∑ 𝜋𝜔 ∙ (𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑ − 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓)

𝜔

]    ∀𝑠, ∀𝑡

𝑘

 

(2.18) 
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Objective function (2.1) includes all ESS operator’s revenue and cost terms, 

generated from its participation in the day-ahead, reserve and balancing pool. More 

specifically, the first line corresponds to the day-ahead market profit, derived from the 

energy discharged income, 𝜆𝑛,𝑡
𝐷𝐴 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠 , operational charging/discharging costs, 𝑐𝑠
𝑐ℎ ∙

𝐺𝑠,𝑡
𝐷𝐴,𝑐ℎ/𝑐𝑠

𝑑𝑖𝑠 ∙ 𝐺𝑠,𝑡
𝐷𝐴,𝑑𝑖𝑠 , as well as the cost for purchasing energy during charging periods, 

𝜆𝑛,𝑡
𝐷𝐴 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ . The second line, refers to the ESS’s income, originating from the upward and 

downward reserve procurement, in the course of day-ahead market clearing. The 

remaining lines, correlate with the ESS’s profit in the balancing market. The upward 

charging reserve activation, 𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↑  constitutes an income factor for the storage system 

agent, as it is compensated from the market at real-time price, 𝜆𝑛,𝑡,𝜔
𝑅𝑇 , for its charging 

power curtailment and is exempt from the corresponding operational charging cost, 𝑐𝑠
𝑐ℎ. 

Regarding downward charging reserve activation, the storage system disburses funds to 

purchase the additional charging power, 𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ , and to cover the necessary 

operational costs, 𝑐𝑠
𝑐ℎ ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ . In the upward discharging reserve activation mode, the 

energy storage agent provides power to the market, acquiring earnings based on the real-

time price, 𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑ and bearing the cost of discharging function, 𝑐𝑠
𝑑𝑖𝑠 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑. 

Conclusively, in the downward discharging reserve activation mode, ESS agent 

compensates market for the energy not dispatched 𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓, while freed from 

discharging operational expenses, 𝑐𝑠
𝑑𝑖𝑠 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓. 

Constraints (2.2) and (2.3) declare the binary nature and ensure the mutually 

exclusive function of the charging/discharging decision variables. Constraints (2.4)-(2.6) 

and (2.9)-(2.11) limit the energy and reserve capacity offers/bids of the ESS, in 

discharging and charging mode correspondingly. Constraints (2.7), (2.8) and (2.12), 

(2.13) ensure that the summation of energy and reserve quantity offers/bids, cannot 

exceed the discharging/charging maximum capacity of the storage system. Furthermore, 

constraints (2.14), (2.15) guarantee the non-negative interpretation of energy and 

reserve bidding/offering prices, whereas constraints (2.16) and (2.17) enforce that the 

state of charge at the end of the planning horizon harmonizes with the initial one. 

Constraints (2.18) represent the ESS’s hourly state of charge fluctuations, depending on 

the ESS’s optimal operational decisions, with 휂𝑐ℎ , 휂𝑑𝑖𝑠  denoting charging and discharging 

efficiencies, respectively. The analyzed upper-level problem is constrained by the two-
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stage lower-level problem (2.19)-(2.44) and (2.45)-(2.59), described in the following 

sections. 

2.3.3 Lower-level problem: Joint energy and reserve day-ahead market 

clearing 

The lower-level problem thoroughly investigates a two-stage sequentially cleared 

day-ahead and real-time market structure, providing the optimal energy dispatch and 

reserve procurement, as well as deriving marginal prices, as dual variables of the energy 

and reserve equilibriums analogously. It is critical to mention that ESS agent’s 

offering/bidding decisions 𝑂𝑠,𝑡
𝑐ℎ ,  𝑂𝑠,𝑡

𝑐ℎ,↑,  𝑂𝑠,𝑡
𝑐ℎ,↓, 𝑂𝑠,𝑡

𝑑𝑖𝑠 ,  𝑂𝑠,𝑡
𝑑𝑖𝑠,↑,  𝑂𝑠,𝑡

𝑑𝑖𝑠,↓ are treated as variables in 

the profit maximization upper-level problem, while in the lower-level problem are 

encountered by ISO as parameters. Hence, the mathematical framework presented in 

Section 2.3.2 and 2.3.3 is classified as linear and convex (Steven A. Gabriel et al., 2013). 

 

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆      ∑(𝑂𝑠,𝑡
𝑐ℎ ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ − 𝑂𝑠,𝑡
𝑑𝑖𝑠 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠) + ∑ 𝑢𝑑,𝑡 ∙ 𝐿𝑑,𝑡
𝐷𝐴

𝑑𝑠

− ∑ 𝑐𝑖,𝑡 ∙ 𝑃𝑖,𝑡
𝐷𝐴 − ∑ 𝑐𝑗,𝑡

𝑤 ∙ 𝑊𝑗,𝑡
𝐷𝐴

𝑗𝑖

− ∑(𝑂𝑠,𝑡
𝑐ℎ,↑ ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑ + 𝑂𝑠,𝑡
𝑐ℎ,↓ ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓ + 𝑂𝑠,𝑡
𝑑𝑖𝑠,↑ ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑ + 𝑂𝑠,𝑡
𝑑𝑖𝑠,↓

𝑠

∙ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↓) − ∑ 𝑐𝑖,𝑡

𝑟𝑒𝑠 ∙ (𝑟𝑝𝑐𝑖,𝑡
↑ + 𝑟𝑝𝑐𝑖,𝑡

↓ )

𝑖

− ∑ 𝑢𝑑,𝑡
𝑟𝑒𝑠 ∙ (𝑟𝑝𝑑𝑑,𝑡

↑ + 𝑟𝑝𝑑𝑑,𝑡
↓ )

𝑑

       ∀𝑡 

(2.19) 

s.t.  

∑ 𝐿𝑑,𝑡
𝐷𝐴

𝑑∈𝐷𝑎𝑁

− ∑ (𝐺𝑠,𝑡
𝐷𝐴,𝑑𝑖𝑠 − 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ) − ∑ 𝑃𝑖,𝑡
𝐷𝐴

𝑖∈𝐼𝑎𝑁𝑠∈𝑆𝑎𝑁

− ∑ 𝑊𝑗,𝑡
𝐷𝐴

𝑗∈𝐽𝑎𝑁

+ ∑ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡
∘ − 𝛿𝑚,𝑡

∘ ) = 0      ∶ [𝜆𝑛,𝑡
𝐷𝐴]       ∀𝑛, ∀𝑡 

𝑚∈𝑁𝑎𝑀

 

(2.20) 

∑(𝑟𝑝𝑠,𝑡
𝑐ℎ,↑ + 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑)

𝑠

+ ∑ 𝑟𝑝𝑐𝑖,𝑡
↑

𝑖

+ ∑ 𝑟𝑝𝑑𝑑,𝑡
↑

𝑑

= 𝑅𝑡
↑       ∶ [𝜆𝑡

↑]       ∀𝑡 (2.21) 
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∑(𝑟𝑝𝑠,𝑡
𝑐ℎ,↓ + 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓)

𝑠

+ ∑ 𝑟𝑝𝑐𝑖,𝑡
↓

𝑖

+ ∑ 𝑟𝑝𝑑𝑑,𝑡
↓

𝑑

= 𝑅𝑡
↓       ∶ [𝜆𝑡

↓]       ∀𝑡 (2.22) 

0 ≤ 𝑃𝑖,𝑡
𝐷𝐴 ≤ 𝑃𝑖

𝑚𝑎𝑥      ∶ [𝑎𝑖,𝑡
𝑚𝑖𝑛 , 𝑎𝑖,𝑡

𝑚𝑎𝑥]         ∀𝑖, ∀𝑡 (2.23) 

0 ≤ 𝐿𝑑,𝑡
𝐷𝐴 ≤ 𝐿𝑑,𝑡

𝑚𝑎𝑥      ∶ [𝛽𝑑,𝑡
𝑚𝑖𝑛 , 𝛽𝑑,𝑡

𝑚𝑎𝑥]         ∀𝑑, ∀𝑡 (2.24) 

0 ≤ 𝐺𝑠,𝑡
𝐷𝐴,𝑐ℎ ≤ �̅�𝑠,𝑡

𝑐ℎ      ∶ [𝛾𝑠,𝑡
𝑐ℎ,𝑚𝑖𝑛 , 𝛾𝑠,𝑡

𝑐ℎ,𝑚𝑎𝑥]         ∀𝑠, ∀𝑡 (2.25) 

0 ≤ 𝐺𝑠,𝑡
𝐷𝐴,𝑑𝑖𝑠 ≤ �̅�𝑠,𝑡

𝑑𝑖𝑠      ∶ [𝛾𝑠,𝑡
𝑑𝑖𝑠,𝑚𝑖𝑛 , 𝛾𝑠,𝑡

𝑑𝑖𝑠,𝑚𝑎𝑥]         ∀𝑠, ∀𝑡 (2.26) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑐ℎ,↑ ≤ 𝑟�̅�𝑠,𝑡

𝑐ℎ,↑      ∶ [𝛾𝑠,𝑡
𝑐ℎ,↑,𝑚𝑖𝑛 , 𝛾𝑠,𝑡

𝑐ℎ,↑,𝑚𝑎𝑥]         ∀𝑠, ∀𝑡 (2.27) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑐ℎ,↓ ≤ 𝑟�̅�𝑠,𝑡

𝑐ℎ,↓      ∶ [𝛾𝑠,𝑡
𝑐ℎ,↓,𝑚𝑖𝑛 , 𝛾𝑠,𝑡

𝑐ℎ,↓,𝑚𝑎𝑥]         ∀𝑠, ∀𝑡 (2.28) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↑ ≤ 𝑟�̅�𝑠,𝑡

𝑑𝑖𝑠,↑      ∶ [𝛾𝑠,𝑡
𝑑𝑖𝑠,↑,𝑚𝑖𝑛 , 𝛾𝑠,𝑡

𝑑𝑖𝑠,↑,𝑚𝑎𝑥]         ∀𝑠, ∀𝑡 (2.29) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↓ ≤ 𝑟�̅�𝑠,𝑡

𝑑𝑖𝑠,↓      ∶ [𝛾𝑠,𝑡
𝑑𝑖𝑠,↓,𝑚𝑖𝑛 , 𝛾𝑠,𝑡

𝑑𝑖𝑠,↓,𝑚𝑎𝑥]         ∀𝑠, ∀𝑡 (2.30) 

𝑟𝑝𝑠,𝑡
𝑐ℎ,↑ ≤ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ      ∶ [𝛾𝑠,𝑡
𝑐ℎ,↑]         ∀𝑠, ∀𝑡 (2.31) 

𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↓ ≤ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠      ∶ [𝛾𝑠,𝑡
𝑑𝑖𝑠,↓]          ∀𝑠, ∀𝑡 (2.32) 

0 ≤ 𝑟𝑝𝑐𝑖,𝑡
↑ ≤ 𝑅𝐶𝑐𝑖

↑,𝑚𝑎𝑥      ∶ [𝑎𝑖,𝑡
↑,𝑚𝑖𝑛 , 𝑎𝑖,𝑡

↑,𝑚𝑎𝑥]         ∀𝑖, ∀𝑡  (2.33) 

0 ≤ 𝑟𝑝𝑐𝑖,𝑡
↓ ≤ 𝑅𝐶𝑐𝑖

↓,𝑚𝑎𝑥      ∶ [𝑎𝑖,𝑡
↓,𝑚𝑖𝑛 , 𝑎𝑖,𝑡

↓,𝑚𝑎𝑥]         ∀𝑖, ∀𝑡 (2.34) 

𝑃𝑖,𝑡
𝐷𝐴 + 𝑟𝑝𝑐𝑖,𝑡

↑ ≤ 𝑃𝑖
𝑚𝑎𝑥      ∶ [𝑎𝑖,𝑡

↑ ]         ∀𝑖, ∀𝑡 (2.35) 

𝑟𝑝𝑐𝑖,𝑡
↓ − 𝑃𝑖,𝑡

𝐷𝐴 ≤ 0     ∶ [𝑎𝑖,𝑡
↓ ]         ∀𝑖, ∀𝑡 (2.36) 

0 ≤ 𝑟𝑝𝑑𝑑,𝑡
↑ ≤ 𝑅𝐶𝑑𝑑,𝑡

↑,𝑚𝑎𝑥      ∶ [𝛽𝑑,𝑡
↑,𝑚𝑖𝑛 , 𝛽𝑑,𝑡

↑,𝑚𝑎𝑥]         ∀𝑑, ∀𝑡 (2.37) 

0 ≤ 𝑟𝑝𝑑𝑑,𝑡
↓ ≤ 𝑅𝐶𝑑𝑑,𝑡

↓,𝑚𝑎𝑥      ∶ [𝛽𝑑,𝑡
↓,𝑚𝑖𝑛 , 𝛽𝑑,𝑡

↓,𝑚𝑎𝑥]         ∀𝑑, ∀𝑡 (2.38) 

𝐿𝑑,𝑡
𝐷𝐴 + 𝑟𝑝𝑑𝑑,𝑡

↓ ≤ 𝐿𝑑,𝑡
𝑚𝑎𝑥      ∶ [𝛽𝑖,𝑡

↓ ]         ∀𝑑, ∀𝑡 (2.39) 

𝑟𝑝𝑑𝑑,𝑡
↑ − 𝐿𝑑,𝑡

𝐷𝐴 ≤ 0     ∶ [𝛽𝑖,𝑡
↑ ]         ∀𝑑, ∀𝑡 (2.40) 

0 ≤ 𝑊𝑗,𝑡
𝐷𝐴 ≤ 𝑊𝑗,𝑡

𝑚𝑎𝑥      ∶ [휀𝑗,𝑡
𝑚𝑖𝑛 , 휀𝑗,𝑡

𝑚𝑎𝑥]         ∀𝑗, ∀𝑡 (2.41) 

−𝑇𝑛,𝑚
𝑚𝑎𝑥 ≤ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡

∘ − 𝛿𝑚,𝑡
∘ ) ≤ 𝑇𝑛,𝑚

𝑚𝑎𝑥     ∶ [휁𝑛,𝑚,𝑡
𝑚𝑖𝑛 , 휁𝑛,𝑚,𝑡

𝑚𝑎𝑥 ]    ∀𝑛, ∀𝑚 ∈ 𝑁𝑎𝑀, ∀𝑡 (2.42) 

−𝜋 ≤ 𝛿𝑛,𝑡
∘ ≤ 𝜋    ∶ [휁̃𝑛,𝑡

𝑚𝑖𝑛 , 휁̃𝑛,𝑡
𝑚𝑎𝑥]    ∀𝑛, ∀𝑡 (2.43) 

𝛿𝑛1,𝑡
∘ = 0    ∶ [휁𝑛,𝑡

∘ ]    ∀𝑛 = 𝑛1, ∀𝑡 (2.44) 

 

Objective function (2.19) constitutes the basis for the first stage optimization and 

represents the joint day-ahead and reserve market clearing, maximizing total social 

welfare. Alternative definitions for the objective function can be considered the economic 

dispatch or total social cost minimization, given the inelasticity of electricity demand. It is 
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worth mentioning that conventional generators, energy storage systems and demands are 

capable of procuring both upward and downward reserves, in order to contribute to 

market’s function stability, in contrast to wind power generation systems, whose erratic 

nature excludes equivalent potential. Constraints (2.20), (2.21) and (2.22) ensure energy 

and upward/downward reserve procurement equilibriums, deriving day-ahead market’s 

energy and reserve prices, as their corresponding dual variables. Constraints (2.23) and 

(2.24) limit conventional generators’ production and demands’ consumption level, 

respectively. Constraints (2.25) and (2.26) restrict ESS’s charging/discharging energy 

levels, while (2.27)-(2.32) restrain upward/downward (dis)charging reserve provision. 

Equally, constraints (2.33)-(2.36) and (2.37)-(2.40) limit conventional generators’ and 

demand’s reserve procurements, respectively. Constraints (2.41) on the other hand, 

circumscribe the wind power dispatch levels in the day-ahead market. Finally, constraints 

(2.42) enforce capacity limits for network transmission lines, while constraints (2.43), 

(2.44) limit each bus’s voltage angle range and define 𝑛1 as power grid’s slack bus, at the 

day-ahead market.  

2.3.4 Lower-level problem: Real-time market clearing under wind power 

generation uncertainty 
 

The second stage of the lower-level problem represents real-time market clearing 

under stochastic wind power generation. Τhe participation of non-dispatchable 

generators, such as wind, into the power grid can evoke imbalances into the final supply-

demand equilibrium, due to their volatile electricity provision. Thus, the existence of the 

balancing market accounting for these supply deviations can contribute establishing an 

auxiliary stability tier. 
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𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆     ∑ 𝑉𝑂𝐿𝐿𝑑,𝑡 ∙ 𝐿𝑑,𝑡,𝜔
𝑠ℎ

𝑑

+ ∑ 𝑐𝑗,𝑡
𝑤 ∙ (𝑊𝑗,𝑡,𝜔

𝑅𝑇 − 𝑊𝑗,𝑡
𝐷𝐴 − 𝑊𝑗,𝑡,𝜔

𝑆𝑃 )

𝑗

+ ∑ 𝑐𝑖,𝑡 ∙ (𝑟𝑎𝑐𝑖,𝑡,𝜔
↑ − 𝑟𝑎𝑐𝑖,𝑡,𝜔

↓ )

𝑖

+ ∑ 𝑂𝑠,𝑡
𝑑𝑖𝑠 ∙ (𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑ − 𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓)

𝑠

+ ∑ 𝑂𝑠,𝑡
𝑐ℎ ∙ (𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑ − 𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↓ )

𝑠

+ ∑ 𝑢𝑑,𝑡 ∙ (𝑟𝑎𝑑𝑑,𝑡,𝜔
↑ − 𝑟𝑎𝑑𝑑,𝑡,𝜔

↓ ) 

𝑑

         ∀𝑡, 𝜔 

(2.45) 

s.t.  

∑ 𝐿𝑑,𝑡,𝜔
𝑠ℎ

𝑑∈𝐷𝑎𝑁

+ ∑ (𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↑ − 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ )

𝑠∈𝑆𝑎𝑁

+ ∑ (𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑ − 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓)

𝑠∈𝑆𝑎𝑁

+ ∑ (𝑟𝑎𝑐𝑖,𝑡,𝜔
↑ − 𝑟𝑎𝑐𝑖,𝑡,𝜔

↓ )

𝑖∈𝐼𝑎𝑁

+ ∑ (𝑟𝑎𝑑𝑑,𝑡,𝜔
↑ − 𝑟𝑎𝑑𝑑,𝑡,𝜔

↓ )

𝑑∈𝐷𝑎𝑁

+ ∑ (𝑊𝑗,𝑡,𝜔
𝑅𝑇 − 𝑊𝑗,𝑡

𝐷𝐴 − 𝑊𝑗,𝑡,𝜔
𝑆𝑃 )

𝑗∈𝐽𝑎𝑁

− ∑ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡,𝜔 − 𝛿𝑛,𝑡
∘ + 𝛿𝑚,𝑡

∘ − 𝛿𝑚,𝑡,𝜔) = 0   

𝑚∈𝑁𝑎𝑀

∶ [𝜆𝑛,𝑡,𝜔
𝑅𝑇 ]      ∀𝑛, ∀𝑡, ∀𝜔 

(2.46) 

0 ≤ 𝑟𝑎𝑐𝑖,𝑡,𝜔
↑ ≤ 𝑟𝑝𝑐𝑖,𝑡

↑    ∶ [휃𝑖,𝑡,𝜔
↑,𝑚𝑖𝑛 , 휃𝑖,𝑡,𝜔

↑,𝑚𝑎𝑥]       ∀𝑖, ∀𝑡, ∀𝜔 (2.47) 

0 ≤ 𝑟𝑎𝑐𝑖,𝑡,𝜔
↓ ≤ 𝑟𝑝𝑐𝑖,𝑡

↓    ∶ [휃𝑖,𝑡,𝜔
↓,𝑚𝑖𝑛 , 휃𝑖,𝑡,𝜔

↓,𝑚𝑎𝑥]       ∀𝑖, ∀𝑡, ∀𝜔 (2.48) 

0 ≤ 𝑟𝑎𝑑𝑑,𝑡,𝜔
↑ ≤ 𝑟𝑝𝑑𝑑,𝑡

↑    ∶ [𝜇𝑑,𝑡,𝜔
↑,𝑚𝑖𝑛 , 𝜇𝑑,𝑡,𝜔

↑,𝑚𝑎𝑥]       ∀𝑑, ∀𝑡, ∀𝜔 (2.49) 

0 ≤ 𝑟𝑎𝑑𝑑,𝑡,𝜔
↓ ≤ 𝑟𝑝𝑑𝑑,𝑡

↓    ∶ [𝜇𝑑,𝑡,𝜔
↓,𝑚𝑖𝑛 , 𝜇𝑑,𝑡,𝜔

↓,𝑚𝑎𝑥]       ∀𝑑, ∀𝑡, ∀𝜔 (2.50) 

0 ≤ 𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑ ≤ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑    ∶ [𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑,𝑚𝑖𝑛 , 𝜈𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑,𝑚𝑎𝑥]       ∀𝑠, ∀𝑡, ∀𝜔 (2.51) 

0 ≤ 𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓ ≤ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓    ∶ [𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓,𝑚𝑖𝑛 , 𝜈𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓,𝑚𝑎𝑥]       ∀𝑠, ∀𝑡, ∀𝜔 (2.52) 

0 ≤ 𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↑ ≤ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑    ∶ [𝜈𝑠,𝑡,𝜔
𝑐ℎ,↑,𝑚𝑖𝑛 , 𝜈𝑠,𝑡,𝜔

𝑐ℎ,↑,𝑚𝑎𝑥]       ∀𝑠, ∀𝑡, ∀𝜔 (2.53) 

0 ≤ 𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↓ ≤ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓    ∶ [𝜈𝑠,𝑡,𝜔
𝑐ℎ,↓,𝑚𝑖𝑛 , 𝜈𝑠,𝑡,𝜔

𝑐ℎ,↓,𝑚𝑎𝑥]       ∀𝑠, ∀𝑡, ∀𝜔 (2.54) 

0 ≤ 𝐿𝑑,𝑡,𝜔
𝑠ℎ ≤ 𝐿𝑑,𝑡

𝐷𝐴    ∶ [𝜇𝑑,𝑡,𝜔
𝑚𝑖𝑛 , 𝜇𝑑,𝑡,𝜔

𝑚𝑎𝑥 ]    ∀𝑑, ∀𝑡, ∀𝜔 (2.55) 

0 ≤ 𝑊𝑗,𝑡,𝜔
𝑠𝑝

≤ 𝑊𝑗,𝑡,𝜔
𝑅𝑇    ∶ [𝜉𝑗,𝑡,𝜔

𝑚𝑖𝑛 , 𝜉𝑗,𝑡,𝜔
𝑚𝑎𝑥]    ∀𝑗, ∀𝑡, ∀𝜔 (2.56) 

−𝑇𝑛,𝑚
𝑚𝑎𝑥 ≤ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡,𝜔 − 𝛿𝑚,𝑡,𝜔) ≤ 𝑇𝑛,𝑚

𝑚𝑎𝑥     ∶ [𝜑𝑛,𝑚,𝑡,𝜔
𝑚𝑖𝑛 , 𝜑𝑛,𝑚,𝑡,𝜔

𝑚𝑎𝑥 ]    ∀𝑛, ∀𝑚

∈ 𝑁𝑎𝑀, ∀𝑡, ∀𝜔 
(2.57) 

−𝜋 ≤ 𝛿𝑛,𝑡,𝜔 ≤ 𝜋    ∶ [�̃�𝑛,𝑡,𝜔
𝑚𝑖𝑛 , �̃�𝑛,𝑡,𝜔

𝑚𝑎𝑥 ]    ∀𝑛, ∀𝑡, ∀𝜔 (2.58) 
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𝛿𝑛1,𝑡,𝜔 = 0    ∶ [𝜑𝑛,𝑡,𝜔
∘ ]    ∀𝑛 = 𝑛1, ∀𝑡, ∀𝜔 (2.59) 

 

Objective function (2.45) portrays the minimization of the expected social 

imbalance cost of the system, conducted by ISO and contains the following terms: i) load 

shedding cost, ii) wind power spillage cost iii) conventional generators’ 

upward/downward reserve activation savings/cost iv) ESS’s upward/downward 

(dis)charging reserve activation savings/cost, v) demands’ upward/downward reserve 

activation savings/cost. Constraints (2.46) on the other hand, constitute the real-time 

energy balances and counteract the supply-demand equilibrium’s asymmetries, posed by 

wind production discontinuities in the multi-bus network. Constraints (2.47)-(2.54) 

regulate activated energy’s levels, with respect to the equivalent amounts, already 

procured in the day-ahead market. Concerning constraints (2.55) and (2.56), they ensure 

that both curtailed load and wind spillage cannot exceed day-ahead energy consumption 

and real-time wind production correspondingly. Conclusively, constraints (2.57)-(2.59) 

apply limits to the network’s transmission lines capacity and buses’ voltage angle, while 

establishing 𝑛1 as the real-time market slack bus. 

2.3.5 Solution Approach 

The solution approach aims at reformulating the above analyzed bi-level model, into 

a computationally solvable single-level model, while simultaneously eradicating any 

inherent non-linearities. Given the linear and continuous nature of lower-level problems 

2.3.2 and 2.3.3, KKT first order optimality conditions (Gabriel et al., 2013) can be applied, 

thus recasting the bi-level optimization problem, into a single level MPEC. Due to 

manuscript space limitations, the KKT optimality conditions of the lower-level problems 

and all the necessary mathematical reformulations, are detailed in the Appendix A. 

The resulted non-linear complementarity conditions (A.15)-(A.50) and (A.62)-

(A.85) of the form 0 ≤ 𝑔(𝑥)⟘𝜇 ≥ 0, are replaced by equations (A.86)-(A.158) and 

(A.159)-(A.206) respectively, using the Fortuny-Amat and McCarl big-M linearization 

technique (Fortuny-Amat & McCarl, 1981). The determination of big-Ms comprises a 

significant challenge, as both the over- and underestimation of their value can lead to an 

unrestricted or computationally and numerically inadequate problem, respectively. While 

many algorithmic approaches have been developed for this determination, in this chapter 
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the value of Ms was established at 104, after implementing a series of trials, aiming at 

achieving an optimal solution time and results’ robustness equilibrium. Strong duality 

theorem is applied to the day-ahead and real-time ISO’s optimization problems, in order 

to incorporate dual variables and generate a linear equivalent for the objective functions 

(2.19) and (2.45) respectively. Combining these formulations, objective function (2.1) can 

be recast into the following expression: 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆    ∑ ∑ [(𝑐𝑠
𝑐ℎ ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ + 𝑐𝑠
𝑑𝑖𝑠 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠) − ∑ 𝑢𝑑,𝑡 ∙ 𝐿𝑑,𝑡
𝐷𝐴

𝑑𝑠𝑡

+ ∑ 𝑐𝑖,𝑡 ∙ 𝑃𝑖,𝑡
𝐷𝐴

𝑖

+ ∑ 𝑐𝑖,𝑡
𝑟𝑒𝑠 ∙ (𝑟𝑝𝑐𝑖,𝑡

↑ + 𝑟𝑝𝑐𝑖,𝑡
↓ )

𝑖

+ ∑ 𝑢𝑑,𝑡
𝑟𝑒𝑠 ∙ (𝑟𝑝𝑑𝑑,𝑡

↑ + 𝑟𝑝𝑑𝑑,𝑡
↓ )

𝑑

− 𝛺𝑡
𝐷𝐴

+ ∑ 𝜋𝜔

𝜔

∙ [−𝑐𝑠
𝑐ℎ ∙ (𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑ − 𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↓ ) + 𝑐𝑠

𝑑𝑖𝑠 ∙ (𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑ − 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓)

+ ∑ 𝑉𝑂𝐿𝐿𝑑,𝑡 ∙ 𝐿𝑑,𝑡,𝜔
𝑠ℎ

𝑑

+ ∑ 𝑐𝑖,𝑡 ∙ (𝑟𝑎𝑐𝑖,𝑡,𝜔
↑ − 𝑟𝑎𝑐𝑖,𝑡,𝜔

↓ )

𝑖

+ ∑ 𝑢𝑑,𝑡 ∙ (𝑟𝑎𝑑𝑑,𝑡,𝜔
↑ − 𝑟𝑎𝑑𝑑,𝑡,𝜔

↓ )

𝑑

− 𝛺𝑡,𝜔
𝑅𝑇 ]] 

(A.247) 

 

The remaining non-linearities in the objective function (A.247), are due to the term 𝛺𝑡,𝜔
𝑅𝑇  

(A.232), which consists of bilinear terms i.e., the product of a primal day-ahead and a dual 

real-time variable {휃𝑖,𝑡,𝜔
↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑐𝑖,𝑡

↑ , 휃𝑖,𝑡,𝜔
↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑐𝑖,𝑡

↓ , 𝜇𝑑,𝑡,𝜔
↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑑𝑑,𝑡

↑ , 𝜇𝑑,𝑡,𝜔
↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑑𝑑,𝑡

↓ , 𝜇𝑑,𝑡,𝜔
𝑚𝑎𝑥 ∙ 𝐿𝑑,𝑡

𝐷𝐴 , 

𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑊𝑗,𝑡

𝐷𝐴 , 𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝛿𝑛,𝑡

∘ }. The linearization process of these terms originates from a binary 

expansion method (Nasrolahpour et al., 2018),(Pereira et al., 2005), as illustrated in the 

Appendix A. 

2.4 Application study 
 

The proposed bi-level model is implemented into a 6-bus transmission constrained 

network and consists of two main areas, interrelated through the transmission lines that 
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connect buses n2-n4 and n3-n6, as illustrated by Figure 2.2. The left area, which consists 

of buses n1, n2 and n3 is characterized by augmented generation and limited 

consumption levels, while in the right area (buses n4, n5, n6) a diametrically opposed 

scheme is adopted. The reason for this network separation lies in investigating the 

behavior of the ESS agent and the rest of the market participants in case of network 

congestion. Strategic ESS agent owns storage units 𝑠1, 𝑠2, each one established at different 

area and incurred by unique (dis)charging costs and installed energy and reserve capacity 

tiers, as shown in Table 2.1. Unit 𝑠1 is characterized by greater energy-reserve capacities 

and reduced marginal costs comparing to 𝑠2, therefore being more flexible and 

inexpensive for the ESS operator. The capacity and cost offer of each storage unit is chosen 

to be slightly different, considering that their installation on different buses can affect 

these parameters, since each bus is governed by different conditions.  

Conventional units 𝑖1 − 𝑖6 and wind power generator 𝑗1, represent a non-strategic 

producer apiece and their technical data are given in Table 2.2. Conventional generators 

𝑖4 − 𝑖6 are associated with greater flexibility, as they can provide higher reserve 

provisions, while generators 𝑖2, 𝑖6 claim extended upward and downward reserve 

procurements, due to their inexpensive reserve offers. Wind power generation 

uncertainty is captured through a dual-scenario approximation i.e., a high wind 

generation scenario 𝜔1 and a low wind generation scenario 𝜔2, with occurrence 

probability 0.7 and 0.3 respectively. Conventional generators’ cost offers for dispatching 

energy are summarized in Table B.1 in the Appendix B, in the interest of presentation 

purposes. It is necessary to mention that all Table numbers starting with an B are 

available in the Appendix B. From this table, it can be seen that conventional producers 

𝑖1, 𝑖4, 𝑖6 offer their energy provision at lower prices than the rest of the producers, 

increasing their possibility of being chosen by ISO, for dispatching energy in the day-

ahead and balancing pool. The value of lost load 𝑉𝑂𝐿𝐿𝑑,𝑡  equals to 200 €/MWh for all the 

demand loads. Furthermore, the (dis)charging efficiencies 휂𝑐ℎ , 휂𝑑𝑖𝑠  equal to 1 for both 

storage units 𝑠1, 𝑠2, while maximum capacity and susceptance for each grid’s 

transmission line 𝑇𝑛,𝑚
𝑚𝑎𝑥 , 𝐵𝑛,𝑚 , equal to 200 MW and 12.412, respectively. 
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Figure 2.2: 6-bus network. 

 

Units 
𝑮𝒔

𝒄𝒉,𝒎𝒂𝒙 

(𝑴𝑾) 

𝒄𝒔
𝒄𝒉 

(€/𝑴𝑾𝒉) 

𝑮𝒔
𝒅𝒊𝒔,𝒎𝒂𝒙 

(𝑴𝑾) 

𝒄𝒔
𝒅𝒊𝒔  

(€/𝑴𝑾𝒉) 

𝑹𝑪𝒔
𝒄𝒉,↑,𝒎𝒂𝒙 

𝑹𝑪𝒔
𝒄𝒉,↓,𝒎𝒂𝒙 

(𝑴𝑾) 

𝑹𝑪𝒔
𝒅𝒊𝒔,↑,𝒎𝒂𝒙 

𝑹𝑪𝒔
𝒅𝒊𝒔,↓,𝒎𝒂𝒙 

(𝑴𝑾) 

𝑺𝑶𝑪𝒔
𝒎𝒂𝒙 

(𝑴𝑾) 

𝑺𝑶𝑪𝒔
𝒊𝒏𝒊 

(𝑴𝑾) 

𝒔𝟏 50 4 50 24 12 12 120 0 

𝒔𝟐 40 5 40 25 10 10 100 0 

Table 2.1: Data for ESS’s units. 

 

Units 
𝑷𝒊

𝒎𝒂𝒙 

(𝑴𝑾) 

𝑾𝒋,𝒕
𝒎𝒂𝒙 

(𝑴𝑾) 

𝑹𝑪𝒄𝒊
↑,𝒎𝒂𝒙, 𝑹𝑪𝒄𝒊

↓,𝒎𝒂𝒙 

(𝑴𝑾) 

𝒄𝒊,𝒕
𝒓𝒆𝒔 

(€/𝑴𝑾𝒉) 

𝑾𝒋,𝒕,𝝎𝟏
𝑹𝑻 , 𝑾𝒋,𝒕,𝝎𝟐

𝑹𝑻  

(𝑴𝑾𝒉) 

𝒄𝒋,𝒕
𝒘  

(€/𝑴𝑾𝒉) 

𝒊𝟏 80 - 8,8 7 - - 

𝒊𝟐 80 - 7,7 5.5 - - 

𝒊𝟑 100 - 6,6 7 - - 

𝒊𝟒 75 - 10,10 6 - - 

𝒊𝟓 70 - 9,9 5 - - 

𝒊𝟔 100 - 9,9 7 - - 

𝒋𝟏 - 70 - - 70,12 0 

Table 2.2: Data for conventional and wind generators.  
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2.4.1 Uncongested network 

The proposed optimization framework is solved for this case, assuming an 

uncongested network, using the GAMS/CPLEX solver (Brook et al., 1988). The strategic 

ESS operator participates in the day-ahead market -designated as a joint energy and 

reserve establishment- and real-time market, through two individually operating 

electricity storage units 𝑠1, 𝑠2, on a 24-hours horizon basis. Storage systems behave 

strategically by charging, when the day-ahead prices range at low levels and discharging 

at time periods, identified by high prices. More specifically, as shown in Table B.4, unit 𝑠1 

strategically bids at 200 €/MWh during charging time periods (i.e., 1,3,7,11,13,18-20,23-

24) to ensure it is being supplied, as the day-ahead prices are low. On the other hand, the 

same unit discharges at time periods 9, 14-17, 21-22, exploiting the elevated energy 

prices, and maximizing its profit share. An equivalent bidding/offering arbitrage 

approach is adopted by storage unit 𝑠2. The results are presented in Table B.6. 

 It is important to emphasize that ESS’s strategic decisions dictate low price offers, 

to ensure that the storage systems are being selected from ISO to dispatch energy in the 

day-ahead market, displacing the non-strategic producers from the merit-order. 

Concerning the reserve market realization, storage systems offer their upward and 

downward reserve provisions at a low price, in order to assure their robust presence in 

this type of market and capitalize this advantageous position in the real-time market, 

where the clearing prices can approximate 200 €/MWh. To ratify the above policy, Table 

B.5 and Table B.7 reveal that the storage systems 𝑠1 and 𝑠2, are actively involved in the 

balancing market and increase their revenues mostly by deploying upward charging and 

discharging reserves in the low wind generation scenario 𝜔2. 

Intending to thoroughly investigate the storage system’s 𝑠1 operation, its behavior 

is analyzed in time period 14. At this time interval, it can be noticed from Figure 2.3 that 

the day-ahead price increases up to 35 €/MWh (due to the cost offer of marginal producer 

𝑖3) and therefore the storage system 𝑠1 decides to discharge 8.3 MWh of energy. In 

parallel, system 𝑠1 strategically procures 8.3 MW of downward and 3.7 MW of upward 

reserve in discharging mode. As illustrated by Figure 2.4, the upward and downward 

reserve prices are 5 €/MWh and 7 €/MWh respectively and are defined by the 

participation of marginal conventional generators, 𝑖5, 𝑖6, in the reserve market. 

Conclusively, as demonstrated in Table B.5, unit 𝑠1 activates the entire amount of the 
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already engaged upward and downward reserves, depending on the real-time wind 

generation scenario 𝜔1, 𝜔2, and is compensated in the corresponding premium balancing 

price i.e., 41 €/MWh and 200 €/MWh. 

 

Figure 2.3: Day-ahead prices and energy (dis)charging quantities for storage systems 

𝑠1, 𝑠2. 

 

 

Figure 2.4: Upward and downward day-ahead reserve market prices and procurements 

for storage system 𝑠1. 
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Another, significant observation derived from Table B.5 is related to the amount of 

activated upward reserves in discharging mode, for the real-time scenario 𝜔2. Due to the 

curtailed wind power generation (i.e.,12 MWh) comparing to scenario 𝜔1 (70 MWh), the 

storage system 𝑠1 is deployed by the Independent System Operator, for the purpose of 

providing additional energy and balancing the supply-demand equilibrium. Indisputably, 

this contribution of the storage system 𝑠1 in the balancing market is associated with 

significant income sources, as formerly mentioned. Table B.7 demonstrates an 

homologous demeanor pursued by the energy storage system 𝑠2.  

Apropos of the price-taker agents’ involvement in the market, wind generator 𝑗1 is 

nominated by ISO to dispatch the entire amount of its electricity production in the day-

ahead pool (70 MWh), for each time period, as a result of its zero cost offers’ contribution 

to the market prices suppression. Analogous results are realized in the real-time market 

framework, with wind generator 𝑗1 dispatching his whole electricity production. As for 

the balancing market prices, as shown in Table B.5, low wind power generation in real-

time scenario 𝜔2  (i.e.,12 MWh) stimulates explicit escalation of the market price up to 

200 €/MWh, comparing to the equivalent market price generated from the high wind 

generation scenario 𝜔1, which ranges between 16 €/MWh and 41€/MWh. On the other 

hand, conventional generators’ day-ahead dispatch and reserve procurement, are 

determined in respect of their equivalent energy and upward/downward reserve cost 

offers. Specifically, as depicted in Table B.8, producers 𝑖1, 𝑖3, 𝑖4, 𝑖6 are characterized by 

relatively low generation marginal costs, therefore generating energy for the whole 24-

hours planning horizon. Furthermore, unit 𝑖5 occasionally dispatch energy to the day-

ahead pool, while unit 𝑖2 is constantly eliminated by the ISO clearing, due to its higher-

priced offers. On the contrary, units 𝑖1, 𝑖2, 𝑖5 dominate the upward and downward reserve 

provision settlement -and consequently the balancing market- overthrowing the 

remaining conventional generators, since their correlated offering is summarized in 5.5 

€/MWh, 6 €/MWh and 5 €/MWh respectively, as presented in Table 2.2 and Table B.8. It 

is also worth mentioning that, equally to the ESSs’ operation, dispatchable generators 

preeminently deploy their procured reserves in the low wind generation balancing 

scenario 𝜔2, to offset possible system supply imbalances, as Table B.9 renders.  
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Figure 2.5: State of charge of storage systems, for the uncongested network. 

 

Figure 2.5 illustrates the storage systems’ 𝑠1, 𝑠2 state of charge for a 24-hours 

horizon. More specifically, unit’s 𝑠2 state of charge varies at higher levels than the 

equivalent of the unit 𝑠1 and this policy can be justified by their different marginal costs 

in discharging mode, 24 €/MWh and 25 €/MWh, respectively. Due to this operating cost 

distinction, storage unit 𝑠1 is favored by the ESS agent, to discharge higher amounts of 

energy in the day-ahead market (42.19 MWh), comparing to the corresponding from the 

unit 𝑠2 (26.25 MWh), thus leading to higher energy accumulation for storage unit 𝑠2.  

2.4.2 Congested Network 

In this case study, power systems congestions are considered for the 6-bus network, 

as a result of a capacity decrement for the transmission line 3-6. More precisely, while the 

maximum power flow between buses 𝑛3 − 𝑛6 for the uncongested network reaches up to 

30.33 MW, the system’s response during the same 24-hours horizon when line capacity is 

reduced to 15 MW is studied. A substantial differentiation occurred, pertains to the 

existence of different local marginal prices (LMPs) in the day-ahead market, due to the 

impeded energy transfer among buses, as shown in Figure 2.6. 
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Figure 2.6: Local marginal prices for the congested network. 

 

Despite these design modifications, the main ESS agent’s offering/bidding and 

(dis)charging principles comply with the overall strategic behavior, adopted at the 

uncongested network case. As Figure 2.7 indicates, storage system 𝑠1 discharges at time 

periods when the day-ahead price for the bus 𝑛1 fluctuates at high levels, such as 33.7 

€/MWh and 37 €/MWh for time periods 9,21,22 and 14,17, respectively. Equivalently, 

unit 𝑠1 charges when the price levels are reduced i.e., time periods 1-4,6-8,10-13,15-

16,18,20,23. Figure 2.7, also illustrates the upward and downward reserve procurements 

in the dis(charging) mode, which constitute a precursor of storage system’s 𝑠1 

involvement in the real-time market.  
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Figure 2.7: Day-ahead (dis)charging energy dispatch and reserve procurements for 

storage system 𝑠1, for the congested network. 

 

 

Figure 2.8: State of charge of storage systems, for the congested network. 

 

As already mentioned in Section 2.4, the network is discretized into two subareas 

i.e., the left one where the installed capacity outblanaces demand loads and the right one, 

where the potential power generation yields at the demand’s higher quantity levels. Due 

to the congested transmission line 3-6, energy tranfer between these areas becomes 
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extremely limited, thus leading to two discretized network settlements and resulting in 

different outcomes for the ESS agent, comparing to the uncongested network case. More 

specifically, storage system 𝑠1 located at bus 𝑛1 exploits this generation surplus occurred 

in the left area, by receiving more profitable (dis)charging decisions in order to maximize 

its revenues. These optimal strategies culminate in increased state-of-charge levels, as 

displayed in Figure 2.8, in comparison to the equivalent quantities presented in Figure 2.5. 

On the contrary, storage system 𝑠2 located in the low power generation subarea (bus 𝑛6), 

is qualified for managing restricted amount of energy comparing to the uncongested 

network case, which negatively affects its profit share, as it is analyzed below. 

Table 2.3 to Table 2.4 and Table 2.5 to Table 2.6 summarize a comparison between 

the ESS agent’s function in these two different networks. Table 2.3 presents the charging 

operation of storage system 𝑠1 for time period 7. More specifically, given the higher 

amounts of the energy charged and the increased day-ahead pool price, system 𝑠1 appears 

at first to experience profit losses under the congested network conditions. Analyzing the 

results further, the increase of upward reserve deployments at scenario 𝜔2 (which are 

compensated at 200 €/MWh) with the parallel elimination of downward reserve 

deployments (which constitute a cost factor) seem to recast this conviction and crucially 

contribute to the 𝑠1′𝑠 revenue increment in the congested network. 

An equivalent attribute by 𝑠1 is noticed in Table 2.4, regarding time period 14. 

Storage system 𝑠1 under congested power grid conditions, dispatches higher energy 

amounts in the day-ahead and real-time market, escalating the corresponding incomes 

and nullifies expenses originating from downward reserve activation in discharging 

mode, in comparison to the uncongested network. Α reverse settlement is portrayed in 

Table 2.5 and Table 2.6, regarding the strategies of storage system 𝑠2. System 𝑠2 charges 

less energy in the congested day-ahead market during time period 4, avoiding operational 

and purchasing expenses. Its insignificant participation in the real-time market though 

and particularly in activating upward reserves in the low wind generation scenario 𝜔2, 

leads to profit depletion in comparison to 𝑠2′𝑠 profit generated in the uncongested 

network. Ultimately, during time period 16 and under congested network conditions, 

storage system 𝑠2 experiences zero revenues in the day-ahead and real-time energy 

market, in contradiction to the uncongested power grid case, where 𝑠2 increase its profit 

by activating upward reserves in discharging mode. 
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𝑮𝒔𝟏,𝒕𝟕

𝑫𝑨,𝒄𝒉 

(𝑴𝑾𝒉) 

𝒓𝒑𝒔𝟏,𝒕𝟕
𝒄𝒉,↓  

(𝑴𝑾) 

𝒓𝒑𝒔𝟏,𝒕𝟕
𝒄𝒉,↑  

(𝑴𝑾) 

𝒓𝒂𝒔𝟏,𝒕𝟕,𝝎𝟏
𝒄𝒉,↓  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟏,𝒕𝟕,𝝎𝟐
𝒄𝒉,↓  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟏,𝒕𝟕,𝝎𝟏
𝒄𝒉,↑  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟏,𝒕𝟕,𝝎𝟐
𝒄𝒉,↑  

(𝑴𝑾𝒉) 

𝝀𝒏𝟏,𝒕𝟕
𝑫𝑨  

(€/𝑴𝑾𝒉) 

𝝀𝒏𝟏,𝒕𝟕,𝝎𝟏
𝑹𝜯  

(€/𝑴𝑾𝒉) 

𝝀𝒏𝟏,𝒕𝟏,𝝎𝟐
𝑹𝜯  

(€/𝑴𝑾𝒉) 

Uncongested 

network 
4.3 12 3.83 12 - - 3.83 15 16 200 

Congested 

network 
12 9.35 12 - - 2.36 12 16 16 200 

Table 2.3: Storage system’s 𝑠1 operation in charging mode during time period 7. 

 

 

 
𝑮𝒔𝟏,𝒕𝟏𝟒

𝑫𝑨,𝒅𝒊𝒔 

(𝑴𝑾𝒉) 

𝒓𝒑𝒔𝟏,𝒕𝟏𝟒
𝒅𝒊𝒔,↓  

(𝑴𝑾) 

𝒓𝒑𝒔𝟏,𝒕𝟏𝟒
𝒅𝒊𝒔,↑  

(𝑴𝑾) 

𝒓𝒂𝒔𝟏,𝒕𝟏𝟒,𝝎𝟏
𝒅𝒊𝒔,↓  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟏,𝒕𝟏𝟒,𝝎𝟐
𝒅𝒊𝒔,↓  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟏,𝒕𝟏𝟒,𝝎𝟏
𝒅𝒊𝒔,↑  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟏,𝒕𝟏𝟒,𝝎𝟐
𝒅𝒊𝒔,↑  

(𝑴𝑾𝒉) 

𝝀𝒏𝟏,𝒕𝟏𝟒
𝑫𝑨  

(€/𝑴𝑾𝒉) 

𝝀𝒏𝟏,𝒕𝟏𝟒,𝝎𝟏
𝑹𝜯  

(€/𝑴𝑾𝒉) 

𝝀𝒏𝟏,𝒕𝟏𝟒,𝝎𝟐
𝑹𝜯  

(€/𝑴𝑾𝒉) 

Uncongested 

network 
8.3 8.3 3.7 8.3 - - 3.7 35 41 41 

Congested 

network 
14 12 12 - - 1.6 12 37.14 41 41 

Table 2.4: Storage system’s 𝑠1 operation in discharging mode during time period 14. 
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𝑮𝒔𝟐,𝒕𝟒

𝑫𝑨,𝒄𝒉 

(𝑴𝑾𝒉) 

𝒓𝒑𝒔𝟐,𝒕𝟒
𝒄𝒉,↓  

(𝑴𝑾) 

𝒓𝒑𝒔𝟐,𝒕𝟒
𝒄𝒉,↑  

(𝑴𝑾) 

𝒓𝒂𝒔𝟐,𝒕𝟒,𝝎𝟏
𝒄𝒉,↓  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟐,𝒕𝟒,𝝎𝟐
𝒄𝒉,↓  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟐,𝒕𝟒,𝝎𝟏
𝒄𝒉,↑  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟐,𝒕𝟒,𝝎𝟐
𝒄𝒉,↑  

(𝑴𝑾𝒉) 

𝝀𝒏𝟔,𝒕𝟒
𝑫𝑨  

(€/𝑴𝑾𝒉) 

𝝀𝒏𝟔,𝒕𝟒,𝝎𝟏
𝑹𝜯  

(€/𝑴𝑾𝒉) 

𝝀𝒏𝟔,𝒕𝟒,𝝎𝟐
𝑹𝜯  

(€/𝑴𝑾𝒉) 

Uncongested 

network 
10 10 10 - - 0.5 10 15 16 200 

Congested 

network 
- 7.8 - - - - - 22 16 200 

Table 2.5: Storage system’s 𝑠2 operation in charging mode during time period 4. 

 

 

 
𝑮𝒔𝟐,𝒕𝟏𝟔

𝑫𝑨,𝒅𝒊𝒔 

(𝑴𝑾𝒉) 

𝒓𝒑𝒔𝟐,𝒕𝟏𝟔
𝒅𝒊𝒔,↓  

(𝑴𝑾) 

𝒓𝒑𝒔𝟐,𝒕𝟏𝟔
𝒅𝒊𝒔,↑  

(𝑴𝑾) 

𝒓𝒂𝒔𝟐,𝒕𝟏𝟔,𝝎𝟏
𝒅𝒊𝒔,↓  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟐,𝒕𝟏𝟔,𝝎𝟐
𝒅𝒊𝒔,↓  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟐,𝒕𝟏𝟔,𝝎𝟏
𝒅𝒊𝒔,↑  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟐,𝒕𝟏𝟔,𝝎𝟐
𝒅𝒊𝒔,↑  

(𝑴𝑾𝒉) 

𝝀𝒏𝟔,𝒕𝟏𝟔
𝑫𝑨  

(€/𝑴𝑾𝒉) 

𝝀𝒏𝟔,𝒕𝟏𝟔,𝝎𝟏
𝑹𝜯  

(€/𝑴𝑾𝒉) 

𝝀𝒏𝟔,𝒕𝟏𝟔,𝝎𝟐
𝑹𝜯  

(€/𝑴𝑾𝒉) 

Uncongested 

network 
- 0.03 10 - - - 10 24 26 26 

Congested 

network 
- - - - - - - 47.5 26 26 

Table 2.6: Storage system’s 𝑠2 operation in discharging mode during time period 16. 
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Figure 2.9, through the triangular points on the green line, illustrates the positive or 

negative differentiations occurred in revenue for storage system 𝑠1, between the 

uncongested and congested network cases for an 24-hours planning horizon and are 

measured in the right y-axis. On the other hand, the bars shown in the figure, correspond 

to energy amounts and are measured in MWh. Storage system 𝑠1 under congested 

network conditions, experiences losses due to an increase of day-ahead charging energy 

𝐺𝑠1,𝑡
𝐷𝐴,𝑐ℎ and decrease of upward discharging reserve activation for low wind generation 

scenario 𝑟𝑎𝑠1,𝑡,𝜔2
𝑑𝑖𝑠,↑ , comparing to the uncongested network case. However, the quantitative 

increase of the remaining income increasing terms, such as 𝐺𝑠2,𝑡1
𝐷𝐴,𝑑𝑖𝑠 , 𝑟𝑎𝑠1,𝑡,𝜔1

𝑐ℎ,↑ , 𝑟𝑎𝑠1,𝑡,𝜔2
𝑐ℎ,↑ , 

contribute to a total profit increase by 6,206 € in the congested network, as presented in 

Figure 2.11. On the other hand, as demonstrated in Figure 2.10, storage system 𝑠2, mainly 

due to the curtailed real-time upward charging and discharging reserve activation in 

scenario 𝜔2 (𝑟𝑎𝑠2,𝑡,𝜔2
𝑐ℎ,↑ , 𝑟𝑎𝑠2,𝑡,𝜔2

𝑑𝑖𝑠,↑ ), generates significant profit losses up to 3,406.6 €, 

comparing to the uncongested network settlement. In conclusion, despite the deficit of 

storage system 𝑠2, ESS agent, from the joint operation of storage systems s1 and s2, 

benefits from network congestions and experiences an overall profit increase by 2,799.4 

€ compared to the uncongested case, as depicted in Figure 2.11. 

 

 

Figure 2.9: Energy dispatch and revenue comparison for storage system 𝑠1, between 

uncongested and congested network. 
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Figure 2.10: Energy dispatch and revenue comparison for storage system 𝑠2, between 

uncongested and congested network. 

 

 

Figure 2.11: Profit comparison between uncongested and congested network. 

 

2.4.3 Wind power generation increment scenarios 

Two additional cases of wind power generation increment are investigated, under 

uncongested network conditions, with Case 1 representing the base case with zero wind 

generation increase. Particularly, in Case 2, production of unit 𝑗1 rises from 70 MWh -

which constitute the 12.17% of the grid’s installed capacity- to 100 MWh in the high wind 

scenario 𝜔1, thus increasing wind generation’s share up to 16.53%, in the examined 
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power system. As for the low wind scenario 𝜔2, wind penetration increases to 20 MWh. 

These alterations result to less generation of expensive conventional units, as ISO favors 

the augmented energy provision by unit 𝑗1, due to its zero marginal cost offers. 

Specifically, unit’s 𝑖3 and 𝑖4 dispatch in the day-ahead market is reduced by 56.2% and 

15.1% respectively, due to their increased cost offers during the 24-hours horizon, as 

shown in Table B.1. Concerning Case 3, wind power provision reaches up to 19.2% of 

network’s installed capacity, by dispatching 120 MWh and 20 MWh in the high and low 

wind scenario correlatively and de novo restricts conventional generators’ participation 

in the energy day-ahead and real-time market.  

Table B.16 depicts storage system’s 𝑠1 response in the above analyzed wind 

increment cases, during time period 1. While additional energy originated from non-

dispatchable producers accesses the power system, storage system 𝑠1, acting as a 

demand load, charges higher amounts of energy in the day-ahead and activates increased 

quantities of upward reserves in the real-time pool, as the market prices de-escalate, due 

to the zero marginal cost offers by 𝑗1. Characteristically, day-ahead price 𝜆𝑛,𝑡1
𝐷𝐴  is reduced 

from 15 €/MWh to 14 €/MWh, while the balancing price 𝜆𝑛,𝑡1,𝜔1
𝑅𝛵  for the high wind 

generation scenario 𝜔1 decreases from 16 €/MWh to 14 €/MWh. Figure 2.12 illustrates 

the differentiations in storage system’s 𝑠1 energy dispatch and reserve procurements, 

occurred by the different wind generation increment cases. In Case 2 and Case 3, a parallel 

increase of energy charged, and a decrease of energy discharged in the day-ahead market 

appear. At first, this realization could lead to the conclusion that 𝑠1 suffers significant 

profit losses while wind penetration intensifies, as 𝐺𝑠1,𝑡
𝐷𝐴,𝑐ℎ and 𝐺𝑠1,𝑡

𝐷𝐴,𝑑𝑖𝑠  correspond to an 

expense and revenue factor apiece. However, the assertive involvement of 𝑠1 in balancing 

market and especially by activating upward reserves in charging mode, compensated by 

market prices up to 200 €/MWh, leads to a critical source of income, which dominates 

any potential losses. 

This claim is unambiguously justified in Figure 2.13, as storage system’s 𝑠1 profits 

systematically rise up to 15,792 € and 16,734 € in Case 2 and Case 3 equivalently. On the 

other hand, profit of storage system 𝑠2 is not considerably affected by the level of wind 

penetration. As for the ESS agent in total, mainly due to the unit’s 𝑠1 optimal operation, 

experiences profit surplus by 6,293 € in Case 2 and 7,004 € in Case 3, in comparison to 

Case 1. 
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Figure 2.12: Overall energy dispatch and reserve procurements of storage system 𝑠1, 

under three wind generation cases. 

 

 

Figure 2.13: Profit differentiation for storage systems 𝑠1, 𝑠2 and ESS agent, under three 

wind generation cases. 
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2.5 Computational issues 

The resulting MILP has been solved using CPLEX/GAMS 32.1.0, on an Intel Core i7-

9700 processor at 3.00 GHz, with 32 GB RAM. The average CPU time for solving the 

Uncongested network case is 1150 seconds, while for the Congested network case, 1640 

seconds. Computational time increases in accordance with the network sophistication, 

examined wind power generation scenarios and transmission lines congestions. Binary 

expansion approach provides an additional critically challenging factor, regarding the 

computational requirements of the model, as each bilinear term is substituted by a set of 

multiple parameters. Finally, as already mentioned the determination of big-Ms’ value is 

firmly associated with the efficiency of the computation procedure. 

2.6 Conclusions 

This chapter, based on a single leader-follower Stackelberg hypothesis’ game, 

illustrates a bi-level mathematical framework to generate optimal offering/bidding 

strategies for a strategic ESS agent in a pool-based market settlement. The model 

considers a sequential clearing mechanism of a joint energy and reserve day-ahead 

market and an energy-only real-time market, conducted by ISO. Uncertainty is introduced 

in the balancing stage through the realization of plausible wind power generation 

scenarios. The application of the proposed modelling approach on a 6-bus transmission 

constrained network, derives local marginal prices as dual variables of the lower-level 

problems and generates optimal dis(charging) energy dispatch and upward/downward 

reserve provisions for the ESS operator. The algorithm leads to an increase in clearing 

prices compared to cost optimization. Furthermore, the effects on ESS’s functioning and 

expected profit inflow caused by potential network transmission congestions, are 

investigated. More specifically, the ESS agent benefits from line congestions and 

experiences significant profit increase, compared to the uncongested case. Conclusively, 

the model provides significant insights into designing policies that the energy storage 

agents should adopt, in order to capitalize a possible rise in the wind generation installed 

capacity and achieve an attractive profit increase. 
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Nomenclature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters 

𝑐𝑠 Marginal cost of storage system s at (dis)charging mode 

(€/MWh) 

𝐺𝑠
𝑚𝑎𝑥  Maximum (dis)charging capacity of storage system s (MW) 

𝑅𝐶𝑠
𝑚𝑎𝑥  Maximum upward/downward reserve capacity of storage 

system s at (dis)charging mode (MW) 

𝑆𝑂𝐶𝑠
𝑚𝑎𝑥  Maximum storage capacity of storage system s (MW) 

𝑆𝑂𝐶𝑠
𝑖𝑛𝑖  Initial reserved energy of storage system s (MW) 

휂 (Dis)charging efficiency of storage system s  

Indices and sets 

𝑖 Index of conventional generating units 

𝑗 Index of wind generating units 

𝑑 Index of demands 

𝑠 Index of storage systems 

𝑡, 𝑘 Indices of time periods 

𝑛, 𝑚 Indices for system buses 

𝜔 Index of scenarios 

𝛪𝛼𝛮 Set of indices of conventional generating units located at bus n 

𝐽𝑎𝑁 Set of indices of wind generating units located at bus n 

𝐷𝑎𝑁 Set of indices of demands located at bus n 

𝑆𝑎𝑁 Set of indices of storage systems located at bus n 

𝑁𝑎𝑀 Set of buses n connected with bus m 

Superscripts 

𝑐ℎ Charging mode of storage system s 

𝑑𝑖𝑠 Discharging mode of storage system s 

↑ Upward reserve 

↓ Downward reserve 
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𝐵𝑛,𝑚  Susceptance of line n-m 

𝑅𝑡  Upward/downward reserve requirements of the market at time 

interval t (MW) 

𝑃𝑖
𝑚𝑎𝑥  Maximum capacity at conventional generating unit i (MW) 

𝐿𝑑,𝑡
𝑚𝑎𝑥  Maximum load of demand d at time t (MW) 

𝑅𝐶𝑐𝑖
𝑚𝑎𝑥 

 

Maximum upward/downward reserve capacity of conventional 

generating unit i (MW) 

𝑅𝐶𝑑𝑑,𝑡
𝑚𝑎𝑥 

 

Maximum upward/downward reserve capacity load of demand d 

(MW) at time t 

𝑊𝑗,𝑡
𝑚𝑎𝑥  Available generation of wind unit j at time t (MW) 

𝑇𝑛,𝑚
𝑚𝑎𝑥  Transmission capacity of circuit line n-m 

𝜋𝜔 Occurrence probability of scenarios ω 

𝑉𝑂𝐿𝐿𝑑,𝑡  Value of lost load d at time t (€/MWh) 

𝑊𝑗,𝑡,𝜔
𝑅𝑇  Scenario dependent generation of wind unit j at time t (MWh) 

𝑐𝑖,𝑡 Cost offer for dispatched energy of conventional unit i at time t 

(€/MWh) 

𝑐𝑖,𝑡
𝑟𝑒𝑠 

 

Cost offer for procured reserves of conventional unit i at time t 

(€/MWh) 

𝑐𝑗,𝑡
𝑤  Cost offer for dispatched energy of wind generator j at time t 

(€/MWh) 

𝑢𝑑,𝑡 

 

Utility cost for consumed energy of demand d at time t (€/MWh) 

𝑢𝑑,𝑡
𝑟𝑒𝑠 

 

Utility cost for procured reserves of demand d at time t 

(€/MWh) 

 

Upper-level variables 

𝑠𝑜𝑐𝑠,𝑡 Energy stored for storage system s at time t (MWh) 

𝑥𝑠,𝑡  

 

Binary decision variable indicating (dis)charging mode of 

storage system s at time t 

�̅�𝑠,𝑡  

 

Energy amount bid by storage system s at time t in (dis)charging 

mode (MW) 



Chapter 2                                 

70 
 

𝑟�̅�𝑠,𝑡 

 

Reserve capacity bid by storage system s at time t in 

(dis)charging mode (MW) 

𝑂𝑠,𝑡 

 

Price bid by storage system s at time t in (dis)charging mode 

(€/MWh) 

 

Lower-level variables 

𝑃𝑖,𝑡
𝐷𝐴 

 

Scheduled production of conventional generating unit i at time t 

in DA market (MWh) 

𝑟𝑝𝑠,𝑡  

 

Upward/downward reserve procurement from storage unit s in 

time t in (dis)charging mode in DA market (MW) 

𝐿𝑑,𝑡
𝐷𝐴  Energy consumed by load d at time t in DA market (MWh) 

𝑟𝑝𝑑𝑑,𝑡 

 

Reserve procurement from demand d at time t in DA market 

(MW) 

𝐺𝑠,𝑡
𝐷𝐴 

 

Scheduled energy consumption of storage system s at time t in 

(dis)charging mode in DA market (MWh) 

𝑟𝑝𝑐𝑖,𝑡  

 

Reserve procurement from conventional generating unit i at 

time t in DA market (MW) 

𝑊𝑗,𝑡
𝐷𝐴  

 

Scheduled energy production of wind generating unit j at time t 

in DA market (MWh) 

𝜆𝑛,𝑡
𝐷𝐴 Clearing price in DA market at bus n at time t (€/MWh) 

𝛿𝑛,𝑡
∘  Voltage angle at bus n in DA market 

𝜆𝑡
↑  

 

Clearing price for upward reserve procurement at time t 

(€/MWh) 

𝜆𝑡
↓  

 

Clearing price for downward reserve procurement at time t 

(€/MWh)  

𝑟𝑎𝑐𝑖,𝑡,𝜔  

 

Reserve activation from conventional generating unit i at time t 

under scenario ω (MWh) 

𝑟𝑎𝑑𝑑,𝑡,𝜔  

 

Reserve activation from demand d at time t under scenario ω 

(MWh) 

𝐿𝑑,𝑡,𝜔
𝑠ℎ  Load shedding of demand d at time t under scenario ω (MWh) 
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𝑟𝑎𝑠,𝑡,𝜔 

 

Reserve activation from storage system s at time t under 

scenario ω in (dis)charging mode (MWh) 

𝜆𝑛,𝑡,𝜔
𝑅𝑇  

 

Clearing price in RT market at bus n at time t under scenario ω 

(€/MWh) 

𝛿𝑛,𝑡,𝜔  Voltage angle at bus n at time t under scenario ω 

𝑊𝑗,𝑡,𝜔
𝑠𝑝

 Power spillage from wind generating unit j at time t under 

scenario ω (MWh) 

  

Dual Variables 

𝛼, 휃 Dual variables corresponding to conventional generating unit i 

in DA and RT market 

𝛽, 𝜇 Dual variables corresponding to demand d in DA and RT market 

𝛾, 𝜈 Dual variables corresponding to storage system s in DA and RT 

market 

휀, 𝜉 Dual variables corresponding to wind generating unit j in DA 

and RT market 

휁, 𝜑 Dual variables corresponding to transmission lines of buses n, 

m in DA and RT market 



 

 
 

Chapter 3 

 

Analysis of energy storage technologies 

in electricity and natural gas markets 
 

This chapter introduces a stochastic mixed-integer linear programming (MILP) 

optimization framework designed to explore the optimal participation and economic 

aspects of diverse energy storage technologies—such as pumped-hydro, advanced 

adiabatic and diabatic compressed air systems, and li-ion batteries—in a perfectly 

competitive interconnected electricity and natural gas market. The clearing mechanism 

is specific to energy-only markets, with the objective of optimizing dispatch and 

maximizing social welfare for the integrated energy system. This is achieved through a 

two-stage stochastic programming approach: the first stage involves the day-ahead 

market clearing process, while the second stage depicts the real-time operation of the 

integrated system on the trading floor, considering various plausible wind power 

generation scenarios. The two markets are primarily interconnected through the 

bilateral operation of the diabatic compressed air energy storage system, serving both as 

an electricity producer and a consumer of natural gas. The proposed algorithm is applied 

to a modified IEEE 24-bus power grid and a single-node gas network, offering a 

comprehensive analysis of the operational characteristics and profitability of each energy 

storage technology within the integrated energy system.  

3.1 Introduction 

In the wake of climate change, the adoption of a green agenda that will establish the 

increase of renewable energy sources’ (RES) percentage into the global energy mix, 

seems to be the only solution. However, the verdicts that emerge from both international 

literature and real facts prove that a disproportionate integration of RESs into the energy 

markets can give rise to significant stability problems, due to their inherent uncertain 
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nature. Energy storage systems (ESSs) on the other hand seem to provide a solution to 

this problem. Among the numerous advantages they offer, they seem to constitute one of 

the main pillars of reliability for the optimal operation of contemporary energy markets, 

thus experiencing a sound appeal in the global re-search community. In particular, the 

Market Operator (MO) can optimally adjust the (dis)charging energy dispatch of the 

energy storage systems, to improve the electricity market efficiency and suppress prices. 

Up to the present time, a plethora of energy storage technologies have been 

developed including different types of mechanical, electrochemical and battery, thermal, 

chemical (Koohi-Fayegh & Rosen, 2020), hydrogen energy storage (Nasiri et al., 2021) 

and water-energy microgrids (Moazeni & Khazaei, 2020). However, not all technologies 

have received the same research interest, as some of them seem to unveil comparative 

disadvantages, or may not be technologically mature enough, to comprise a reliable and 

sustainable alternative.  

This chapter provides a novel stochastic MILP framework to evaluate the financial 

gains and optimal (dis)charging dispatch of pumped-hydro, advanced adiabatic CAES, 

diabatic CAES and Li-ion battery systems in a coupled electricity and natural gas market, 

under perfect competition. The choice of these specific energy storage technologies lies, 

either on their technological maturity and the large share they hold in the energy mix 

(PHS, D-CAES), or on their promising evolution (AA-CAES, Li-ion). The coupling of the two 

markets and the merger of the two MOs (EMO and GMO) to create a common clearing 

entity is of great importance, as it allows the optimal synchronization and exchange of 

information between them thus resulting in lower operating costs (Ordoudis et al., 2019). 

Especially for the investigation of the operation of a diabatic CAES plant, which acts 

bilaterally as an electricity generator and a natural gas consumer, the market coupling is 

essential for the simultaneous determination of its optimal (dis)charging decisions, based 

on the electricity and gas MCPs. To the best of authors’ knowledge this is the first time 

that such an analysis is carried out, since the participation of electricity storage 

technologies has only been studied in an electricity market settlement (Zou et al., 2016). 

With this approach, however, the bilateral operation of the D-CAES plant, which naturally 

affects the operation of the rest of storage systems as well, cannot be captured. 

Furthermore, contrary to the common practice of treating the natural gas MCPs as fixed 

values, in the present model, gas prices are generated endogenously, during the gas 

market clearing process. 
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The contributions of this Chapter are fourfold: 

i. A coupled day-ahead and real-time electricity and natural gas market de-sign, 

considering the integration of electricity storage technologies and wind power 

production uncertainty. 

ii. Development of a stochastic MILP market-clearing model to determine optimal 

dispatch and analyze expected profits of PHS, AA-CAES, D-CAES and Li-ion battery 

systems in a coupled electricity and natural gas market, under perfect competition.  

iii. Modelling of the diabatic CAES system operation and its participation in an 

integrated electricity and natural gas market. 

iv. Analysis of the impact of transmission line congestions and increasing levels of 

wind power generation volatility on the expected profits of the four energy storage 

technologies. 

3.2 Problem Statement 

The proposed MILP framework considers the operation of four energy storage 

technologies (PHS, AA-CAES, D-CAES, Li-ion battery), as well as conventional power 

plants and demand loads in the electricity and natural gas networks. Both day-ahead and 

real-time trading floors are taken into account, while wind power production uncertainty 

is modelled via the realization of two plausible real-time wind generation scenarios.  

3.3 Mathematical framework 

3.3.1 General energy storage modelling 

In this section, a generalized presentation of the operational constraints of an 

electricity storage system in energy markets, is carried out. Certainly, the set of 

constraints below does not necessarily govern all storage technologies, since each system 

has its own peculiarities, however it constitutes a comprehensive guide of the operational 

limitations faced by the majority of storage systems. 

Constraints (3.1), (3.2) limit the electricity dispatch for the day-ahead charging and 

discharging mode, while constraints (3.3)–(3.6) serve the same purpose for the 



Chapter 3  

75 
 

charging/discharging upward and downward reserves in the real-time market. It is 

critical to point out that both the upward charging and discharging reserves constitute 

an income factor for any storage system, since it is compensated from the MO for its 

charging power curtailment and the additional electricity discharged, respectively. 

Contrastingly, downward charging and discharging reserves mean that the storage 

system has to pay off the MO, either for charging additional power or for failing to 

dispatch the agreed amount of electricity. Constraints (3.7), (3.9) guarantee that the 

summation of the day-ahead and real-time electricity dispatch cannot exceed the 

maximum capacity of the storage system, while constraints (3.8), (3.10) certify that the 

reserves’ provision is lower than the day-ahead electricity dispatch. Constraint (3.11) 

excludes the simultaneous operation in charging and discharging mode, while constraints 

(3.12), (3.13) impose that a storage system cannot provide both upward and downward 

reserves at the same time. Constraints (3.14)–(3.15) pertain to the upper and lower levels 

of the electricity stored in the system and enforce that the state of charge at the end of 

the daily horizon is equal to the amount of energy stored in the beginning of the day. 

Constraint (3.16) represents the storage system’s state-of-charge intertemporal 

fluctuations, depending on its optimal dispatching decisions, as stated in (Nasrolahpour 

et al., 2018). 

 

𝐺𝑠 ∙ 𝑥𝑠,𝑡
𝑐ℎ ≤ 𝑔𝑠,𝑡

𝑐ℎ ≤ 𝐺𝑠 ∙ 𝑥𝑠,𝑡
𝑐ℎ         ∀𝑠, ∀𝑡 (3.1) 

𝐺𝑠 ∙ 𝑥𝑠,𝑡
𝑑𝑖𝑠 ≤ 𝑔𝑠,𝑡

𝑑𝑖𝑠 ≤ 𝐺𝑠 ∙ 𝑥𝑠,𝑡
𝑑𝑖𝑠          ∀𝑠, ∀𝑡 (3.2) 

𝐺𝑠
↑ ∙ �̂�𝑠,𝜔,𝑡

𝑐ℎ,↑ ≤ �̂�𝑠,𝜔,𝑡
𝑐ℎ,↑ ≤ 𝐺𝑠

↑
∙ �̂�𝑠,𝜔,𝑡

𝑐ℎ,↑            ∀𝑠, ∀𝜔, ∀𝑡 (3.3) 

𝐺𝑠
↓ ∙ �̂�𝑠,𝜔,𝑡

𝑐ℎ,↓ ≤ �̂�𝑠,𝜔,𝑡
𝑐ℎ,↓ ≤ 𝐺𝑠

↓
∙ �̂�𝑠,𝜔,𝑡

𝑐ℎ,↓            ∀𝑠, ∀𝜔, ∀𝑡 (3.4) 

𝐺𝑠
↑ ∙ �̂�𝑠,𝜔,𝑡

𝑑𝑖𝑠,↑ ≤ �̂�𝑠,𝜔,𝑡
𝑑𝑖𝑠,↑ ≤ 𝐺𝑠

↑
∙ �̂�𝑠,𝜔,𝑡

𝑑𝑖𝑠,↑           ∀𝑠, ∀𝜔, ∀𝑡 (3.5) 

𝐺𝑠
↓ ∙ �̂�𝑠,𝜔,𝑡

𝑑𝑖𝑠,↓ ≤ �̂�𝑠,𝜔,𝑡
𝑑𝑖𝑠,↓ ≤ 𝐺𝑠

↓
∙ �̂�𝑠,𝜔,𝑡

𝑑𝑖𝑠,↓           ∀𝑠, ∀𝜔, ∀𝑡 (3.6) 

𝑔𝑠,𝑡
𝑐ℎ + �̂�𝑠,𝜔,𝑡

𝑐ℎ,↓ ≤ 𝐺𝑠           ∀𝑠, ∀𝜔, ∀𝑡 (3.7) 

�̂�𝑠,𝜔,𝑡
𝑐ℎ,↑ − 𝑔𝑠,𝑡

𝑐ℎ ≤ 0           ∀𝑠, ∀𝜔, ∀𝑡 (3.8) 

𝑔𝑠,𝑡
𝑑𝑖𝑠 + �̂�𝑠,𝜔,𝑡

𝑑𝑖𝑠,↑ ≤ 𝐺𝑠           ∀𝑠, ∀𝜔, ∀𝑡 (3.9) 

�̂�𝑠,𝜔,𝑡
𝑑𝑖𝑠,↓ − 𝑔𝑠,𝑡

𝑑𝑖𝑠 ≤ 0           ∀𝑠, ∀𝜔, ∀𝑡 (3.10) 

𝑥𝑠,𝑡
𝑐ℎ + 𝑥𝑠,𝑡

𝑑𝑖𝑠 ≤ 1           ∀𝑠, ∀𝑡 (3.11) 
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�̂�𝑠,𝜔,𝑡
𝑐ℎ,↑ + �̂�𝑠,𝜔,𝑡

𝑐ℎ,↓ ≤ 1           ∀𝑠, ∀𝜔, ∀𝑡 (3.12) 

�̂�𝑠,𝜔,𝑡
𝑑𝑖𝑠,↑ + �̂�𝑠,𝜔,𝑡

𝑑𝑖𝑠,↓ ≤ 1           ∀𝑠, ∀𝜔, ∀𝑡 (3.13) 

𝑆𝑂𝐶𝑠 ≤ 𝑠𝑜𝑐𝑠,𝑡 ≤ 𝑆𝑂𝐶𝑠           ∀𝑠, ∀𝑡 (3.14) 

𝑠𝑜𝑐𝑠,𝑡 = 𝑆𝑂𝐶𝑠
𝑖𝑛𝑖            ∀𝑠, 𝑡 = 𝑁𝑡 (3.15) 

𝑠𝑜𝑐𝑠,𝑡 = 𝑆𝑂𝐶𝑠
𝑖𝑛𝑖 + ∑ 휂𝑠

𝑐ℎ [𝑔𝑠,𝑡
𝑐ℎ + ∑ 𝜋𝜔 ∙ (−�̂�𝑠,𝜔,𝑡

𝑐ℎ,↑ + �̂�𝑠,𝜔,𝑡
𝑐ℎ,↓ )

𝜔

]

𝑡

𝜃

− ∑ 휂𝑠
𝑑𝑖𝑠 [𝑔𝑠,𝑡

𝑑𝑖𝑠 + ∑ 𝜋𝜔 ∙ (�̂�𝑠,𝜔,𝑡
𝑑𝑖𝑠,↑ − �̂�𝑠,𝜔,𝑡

𝑑𝑖𝑠,↓)

𝜔

]           ∀𝑠, ∀𝑡

𝑡

𝜃

 

(3.16) 

3.3.2 Pumped-Hydroelectric Storage Modelling 

The pumped-hydroelectric storage facilities reserve energy in an upper reservoir in 

the form of water originating from a lower reservoir. During high electricity demand 

periods, the PHS station discharges (generates) energy, as the stored water is released 

through turbines to generate electric power. Conversely, when the electricity demand is 

low, the station operates in charging (pumping) mode as the water is pumped back to the 

upper reservoir (Arabkoohsar & Namib, 2021). Adopting the principles applied in 

(Kazempour et al., 2008), the PHS facility has the ability to operate in discharging mode 

in the real-time market as shown by constraints (3.5), (3.6), but is not qualified for 

providing up and down regulation in charging mode. Thus, constraints (3.3), (3.4), (3.7), 

(3.8), (3.12) are not included in the modelling of the PHS’s operation, while constraint 

(3.16) should be reformulated and take the form of constraint (3.19). Constraints (3.17), 

(3.18) capture the (dis)charging changeover times of the pumped hydro power plant, 

which correspond to one hour, for an electricity market operated on an hourly basis. 

 

𝑥ℎ,𝑡−1
𝑐ℎ + 𝑥ℎ,𝑡

𝑑𝑖𝑠 ≤ 1           ∀ℎ, ∀𝑡 (3.17) 

𝑥ℎ,𝑡−1
𝑑𝑖𝑠 + 𝑥ℎ,𝑡

𝑐ℎ ≤ 1           ∀ℎ, ∀𝑡 (3.18) 

𝑠𝑜𝑐ℎ,𝑡 = 𝑆𝑂𝐶ℎ
𝑖𝑛𝑖 + ∑[휂ℎ

𝑐ℎ ∙ 𝑔ℎ,𝑡
𝑐ℎ ]

𝑡

𝜃

 

 

(3.19) 
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− ∑ 휂ℎ
𝑑𝑖𝑠 ∙ [𝑔ℎ,𝑡

𝑑𝑖𝑠 + ∑ 𝜋𝜔 ∙ (�̂�ℎ,𝜔,𝑡
𝑑𝑖𝑠,↑ − �̂�ℎ,𝜔,𝑡

𝑑𝑖𝑠,↓ )

𝜔

]

𝑡

𝜃

        ∀ℎ, ∀𝑡 

3.3.3 Advanced Adiabatic Compressed Air Energy Storage Modelling 

An AA-CAES system is an energy storage system based on air compression, 

expansion and storage in geological underground caverns, as shown in Figure 3.1. The 

available electricity from the grid is used to compress air and inject it into the cavern at 

high pressures up to 100 bar. The thermal energy produced by the compression stage is 

stored and then re-used for heating the released compressed air before entering suitable 

turbines for power generation at the expansion stage. Contrary to the PHS, the AA-CAES 

has no further operational limitations and is capable of providing both charging and 

discharging balancing services. Thus, all the constraints of Section 3.3.1, are employed to 

model the function of the AA-CAES. Compressor’s and expander’s efficiencies 휂𝑐𝑎
𝑐𝑜𝑚 , 휂𝑐𝑎

𝑒𝑥𝑝
 

imposed in constraints (3.20), (3.21) and (3.22)–(3.25) determine the quantitative 

correspondence between charged/injected energy and discharged/released energy for 

the day-ahead and real-time market, respectively. 

 

Figure 3.1: The layout of the advanced adiabatic CAES. 

 

𝑔𝑐𝑎,𝑡
𝑐ℎ =

𝑔𝑐𝑎,𝑡
𝑖𝑛𝑗

휂𝑐𝑎
𝑐𝑜𝑚            ∀𝑐𝑎 , ∀𝑡 (3.20) 

𝑔𝑐𝑎,𝑡
𝑑𝑖𝑠 = 휂𝑐𝑎

𝑒𝑥𝑝
∙ 𝑔𝑐𝑎,𝑡

𝑟𝑒𝑙            ∀𝑐𝑎 , ∀𝑡 (3.21) 
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�̂�𝑐𝑎,𝜔,𝑡
𝑐ℎ,↑ =

�̂�𝑐𝑎,𝜔,𝑡
𝑖𝑛𝑗,↑

휂𝑐𝑎
𝑐𝑜𝑚            ∀𝑐𝑎 , ∀𝜔, ∀𝑡 (3.22) 

�̂�𝑐𝑎,𝜔,𝑡
𝑐ℎ,↓ =

�̂�𝑐𝑎,𝜔,𝑡
𝑖𝑛𝑗,↓

휂𝑐𝑎
𝑐𝑜𝑚            ∀𝑐𝑎 , ∀𝜔, ∀𝑡 (3.23) 

�̂�𝑐𝑎,𝜔,𝑡
𝑑𝑖𝑠,↑ = 휂𝑐𝑎

𝑒𝑥𝑝
∙ �̂�𝑐𝑎,𝜔,𝑡

𝑟𝑒𝑙,↑            ∀𝑐𝑎 , ∀𝜔, ∀𝑡 (3.24) 

�̂�𝑐𝑎,𝜔,𝑡
𝑑𝑖𝑠,↓ = 휂𝑐𝑎

𝑒𝑥𝑝
∙ �̂�𝑐𝑎,𝜔,𝑡

𝑟𝑒𝑙,↓            ∀𝑐𝑎 , ∀𝜔, ∀𝑡 (3.25) 

3.3.4 Diabatic Compressed Air Energy Storage Modelling 

Diabatic or conventional CAES (D-CAES), is another electricity storage technology, 

which is governed by the same fundamental operating principles as the adiabatic CAES 

system, thus the majority of the constraints are common for both systems. The main 

difference lies on the fact that the thermal energy released during the compression stage 

of the diabatic system is not stored. Therefore, an exogenous energy source, such as 

natural gas, is required to heat the released air, in order to drive the turbine and generate 

electricity, as illustrated by Figure 3.2.  

As with the adiabatic CAES case, the D-CAES also follows the operational constraints 

analytically presented in Section 3.3.1. In this section only the function mechanism 

differentiations ruling the diabatic CAES system, are presented. Constraints (3.26), (3.27) 

and (3.28)–(3.31) serve the same purpose for the D-CAES as the constraints (3.20), (3.21) 

and (3.22)–(3.25) for the AA-CAES, equivalently. However, the difference with the AA-

CAES, lies in the fact that the energy discharged by the D-CAES consists of the summation 

of the energy equivalent of the air released from the cavern and the natural gas 𝑒𝑥𝑝𝑐𝑑,𝑡 , 

required for its heating. Constraints (3.32)–(3.35) ensure that the proper ratio between 

these two energy sources is maintained for both the day-ahead and real-time dispatch. 

This ratio emerges from the diabatic CAES McIntosh power plant case in Alabama, which 

requires 0.67 kWh of electricity before the compression stage and 1.17 kWh of natural 

gas, in order to generate 1 kWh of electricity (Madlener & Latz, 2013), (Greenblatt et al., 

2007). Constraints (3.35)–(3.37) impose capacity limits for the required natural gas for 

both trading floors, while constraint (3.38) excludes the simultaneous natural gas 

upward and downward provision for the real-time market. 
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Figure 3.2: The layout of the diabatic CAES. 

 

𝑔𝑐𝑑,𝑡
𝑐ℎ =

𝑔𝑐𝑑,𝑡
𝑖𝑛𝑗

휂𝑐𝑑
𝑐𝑜𝑚            ∀𝑐𝑑 , ∀𝑡 (3.26) 

𝑔𝑐𝑑,𝑡
𝑑𝑖𝑠 = 휂𝑐𝑑

𝑒𝑥𝑝
∙ (𝑔𝑐𝑑,𝑡

𝑟𝑒𝑙 + 𝑒𝑥𝑝𝑐𝑑,𝑡)           ∀𝑐𝑑 , ∀𝑡 (3.27) 

�̂�𝑐𝑑,𝜔,𝑡
𝑐ℎ,↑ =

�̂�𝑐𝑑,𝜔,𝑡
𝑖𝑛𝑗,↑

휂𝑐𝑑
𝑐𝑜𝑚            ∀𝑐𝑑, ∀𝜔, ∀𝑡 (3.28) 

�̂�𝑐𝑑,𝜔,𝑡
𝑐ℎ,↓ =

�̂�𝑐𝑑,𝜔,𝑡
𝑖𝑛𝑗,↓

휂𝑐𝑑
𝑐𝑜𝑚            ∀𝑐𝑑, ∀𝜔, ∀𝑡 (3.29) 

�̂�𝑐𝑑,𝜔,𝑡
𝑑𝑖𝑠,↑ = 휂𝑐𝑑

𝑒𝑥𝑝
∙ (�̂�𝑐𝑑,𝜔,𝑡

𝑟𝑒𝑙,↑ + 𝑒𝑥�̂�𝑐𝑑,𝜔,𝑡
↑ )           ∀𝑐𝑑 , ∀𝜔, ∀𝑡 (3.30) 

�̂�𝑐𝑑,𝜔,𝑡
𝑑𝑖𝑠,↓ = 휂𝑐𝑑

𝑒𝑥𝑝
∙ (�̂�𝑐𝑑,𝜔,𝑡

𝑟𝑒𝑙,↓ + 𝑒𝑥�̂�𝑐𝑑,𝜔,𝑡
↓ )           ∀𝑐𝑑 , ∀𝜔, ∀𝑡 (3.31) 

𝑒𝑥𝑝𝑐𝑑,𝑡 =
1.17

0.402
𝑔𝑐𝑑,𝑡

𝑟𝑒𝑙          ∀𝑐𝑑, ∀𝑡 (3.32) 

𝑒𝑥�̂�𝑐𝑑,𝜔,𝑡
↑ =  

1.17

0.402
 �̂�𝑐𝑑,𝜔,𝑡

𝑟𝑒𝑙,↑            ∀𝑐𝑑 , ∀𝜔, ∀𝑡 (3.33) 

𝑒𝑥�̂�𝑐𝑑,𝜔,𝑡
↓ =

1.17

0.402
�̂�𝑐𝑑,𝜔,𝑡

𝑟𝑒𝑙,↓            ∀𝑐𝑑 , ∀𝜔, ∀𝑡 (3.34) 

𝐸𝑋𝑃𝑠 ∙ 𝑥𝑐𝑑,𝑡
𝑒𝑥𝑝

≤ 𝑒𝑥𝑝𝑐𝑑,𝑡 ≤ 𝐸𝑋𝑃𝑠 ∙ 𝑥𝑐𝑑,𝑡
𝑒𝑥𝑝

           ∀𝑐𝑑, ∀𝑡 (3.35) 

𝐸𝑋𝑃𝑠
↑ ∙ �̂�𝑐𝑑,𝜔,𝑡

𝑒𝑥𝑝,↑
≤ 𝑒𝑥�̂�𝑐𝑑,𝜔,𝑡

↑ ≤ 𝐸𝑋𝑃𝑠

↑
∙ �̂�𝑐𝑑,𝜔,𝑡

𝑒𝑥𝑝,↑
           ∀𝑐𝑑, ∀𝜔, ∀𝑡 (3.36) 

𝐸𝑋𝑃𝑠
↓ ∙ �̂�𝑐𝑑,𝜔,𝑡

𝑒𝑥𝑝,↓
≤ 𝑒𝑥�̂�𝑐𝑑,𝜔,𝑡

↓ ≤ 𝐸𝑋𝑃𝑠

↓
∙ �̂�𝑐𝑑,𝜔,𝑡

𝑒𝑥𝑝,↓
           ∀𝑐𝑑, ∀𝜔, ∀𝑡 (3.37) 

�̂�𝑐𝑏,𝜔,𝑡
𝑒𝑥𝑝,↑

+ �̂�𝑐𝑏,𝜔,𝑡
𝑒𝑥𝑝,↓

≤ 1           ∀𝑐𝑑, ∀𝜔, ∀𝑡 (3.38) 
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3.3.5 Battery Energy Storage Modelling 

As already mentioned, Li-ion batteries constitute the dominant battery 

technologies nowadays and their market integration does not illustrate any particular 

modelling eccentricities. In particular, the application of the constraints developed in 

Section 3.3.1, fully describes the operation and participation of a Li-ion battery in energy 

markets.   

3.3.6 Electricity and Natural Gas Market Clearing Modelling 

Historically, natural gas markets are developed mainly on long-term contracts with 

confined short-term variability, while electricity and gas markets are cleared 

independently. However, a coupled market design allows for increased operational 

flexibility and improved communication between the two systems, thus it is adopted in 

this work (Figure 3.3). The objective function (3.39) represents a stochastic day-ahead 

and real-time coupled market clearing procedure (Ordoudis et al., 2019), conducted by 

the MO. The aim is to determine the optimal energy production and consumption 

dispatch, with respect to social welfare maximization. Equivalently, the objective function 

can represent the total market cost minimization (economic dispatch), as both electricity 

and natural gas demands are assumed to be inelastic (Ordoudis et al., 2019). The 

stochastic approach is preferred over the sequential one, in order to ensure perfect 

temporal coordination and lower expected operating costs (Morales et al., 2014). 

It is important to emphasize that the D-CAES’s power generation cost is not fully 

included in the objective function, as this would lead to double counting it (Ordoudis et 

al., 2019), since it operates equivalently to a gas-fired power plant i.e., as a power 

producer and a natural gas consumer. More specifically, the objective function includes 

only the D-CAES’s generation cost derived from the use of electricity  휂𝑐𝑑

𝑒𝑥𝑝
∙ 𝑔𝑐𝑑,𝑡

𝑟𝑒𝑙 , while 

the production cost from natural gas is omitted, so as not to be double-measured. The 

operating cost of this unit can be explicitly determined through the natural gas balancing 

constraints (3.41) and (3.43). Constraints (3.40) and (3.41) apply the electric and natural 

gas balance for each bus/node equivalently, enforcing transmission capacity limits at the 

day-ahead stage. Similarly, constraints (3.42) and (3.43) offset the imbalances caused by 

the uncertain wind power generation, activating reserve procurements, and employing 

wind power spillage and load shedding. Electricity and natural gas prices for the day-
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ahead and real-time market are endogenously generated as dual variables from the above 

analyzed energy balance constraints.  

 

 

Figure 3.3: Coupled electricity and natural gas market structure. 

 

Constraints (3.44), (3.45), (3.46) define the day-ahead upper and lower capacity 

limits for conventional power, wind and natural gas generating units, respectively. 

Constraints (3.47), (3.48) and (3.49), (3.50) define the capacity limits for reserve 

deployments offered by each conventional power plant and natural gas generating unit. 

Constraints (3.51), (3.52) and (3.53), (3.54) capture the interdependency between the 

scheduled energy dispatch and the activated reserves for the above units and ensure that 

the overall energy production does not exceed maximum capacity. Moreover, constraints 

(3.55), (3.56) and (3.57) guarantee that the wind power spillage cannot surpass actual 

wind power generation and that electricity and natural gas load shedding cannot exceed 

the consumption of these energy sources. Constraints (3.58) and (3.59) apply capacity 

limits to power network transmission lines, while constraints (3.60) and (3.61) 

determine the upper and lower bounds of voltage angle at each power bus. Finally, 

constraints (3.62) and (3.63) dictate n1 as the slack bus, for both the day-ahead and the 

real-time market. 
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𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆     ∑ {− ∑ 𝑂𝑖 ∙ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

− ∑ 𝑂𝑘 ∙ 𝑓𝑘,𝑡

𝑘∈𝐾𝑎𝑅

+ ∑ 𝑂ℎ ∙ (𝑔ℎ,𝑡
𝑐ℎ − 𝑔ℎ,𝑡

𝑑𝑖𝑠)

ℎ∈𝑆𝑎𝑁𝒕

+ ∑ 𝑂𝑐𝑎
∙ (𝑔𝑐𝑎,𝑡

𝑐ℎ − 𝑔𝑐𝑎 ,𝑡
𝑑𝑖𝑠 ) +

𝑐𝑎∈𝑆𝑎𝑁

∑ 𝑂𝑐𝑑
∙ (𝑔𝑐𝑑,𝑡

𝑐ℎ −  휂𝑐𝑑

𝑒𝑥𝑝
∙ 𝑔𝑐𝑑,𝑡

𝑟𝑒𝑙 )

𝑐𝑑∈𝑆𝑎𝑁

+ ∑ 𝑂𝑙𝑖 ∙ (𝑔𝑙𝑖,𝑡
𝑐ℎ − 𝑔𝑙𝑖,𝑡

𝑑𝑖𝑠)

𝑙𝑖∈𝑆𝑎𝑁

+ ∑ 𝑈𝑑
𝐸𝐿 ∙ L𝑑,𝑡

𝐸𝐿

𝑑𝐸𝐿∈𝐷𝑎𝑁

+ ∑ 𝑈𝑑
𝑁𝐺 ∙ L𝑑,𝑡

𝑁𝐺

𝑑𝑁𝐺∈𝐷𝑎𝑅

− ∑ 𝜋𝜔 ∙

𝜔

[ ∑ (𝑂𝑖
↑ ∙ �̂�𝑖,𝜔,𝑡

↑ − 𝑂𝑖
↓ ∙ �̂�𝑖,𝜔,𝑡

↓ )

𝑖∈𝐼𝑎𝑁

+ ∑ (𝑂𝑘
↑ ∙ 𝑓𝑘,𝜔,𝑡

↑ − 𝑂𝑘
↓ ∙ 𝑓𝑘,𝜔,𝑡

↓ )

𝑘∈𝐾𝑎𝑅

+ ∑ (𝑂ℎ
↑ ∙ �̂�ℎ,𝜔,𝑡

↑ − 𝑂ℎ
↓ ∙ �̂�ℎ,𝜔,𝑡

↓ )

ℎ∈𝐻𝑎𝑁

+ ∑ 𝑂𝑐𝑎
↑ ∙ (�̂�𝑐𝑎,𝜔,𝑡

𝑑𝑖𝑠,↑ − �̂�𝑐𝑎,𝜔,𝑡
𝑐ℎ,↑ )

𝑐𝑎∈𝑆𝑎𝑁

− ∑ 𝑂𝑐𝑎
↓ ∙ (�̂�𝑐𝑎,𝜔,𝑡

𝑑𝑖𝑠,↓ − �̂�𝑐𝑎,𝜔,𝑡
𝑐ℎ,↓ )

𝑐𝑎∈𝑆𝑎𝑁

+ ∑ 𝑂𝑐𝑑
↑ ∙ (휂𝑐𝑑

𝑒𝑥𝑝
∙ �̂�𝑐𝑑,𝜔,𝑡

𝑟𝑒𝑙,↑ − �̂�𝑐𝑑,𝜔,𝑡
𝑐ℎ,↑ )

𝑐𝑑∈𝑆𝑎𝑁

− ∑ 𝑂𝑐𝑑
↓ ∙ (휂𝑐𝑑

𝑒𝑥𝑝
∙ �̂�𝑐𝑑,𝜔,𝑡

𝑟𝑒𝑙,↓ − �̂�𝑐𝑑,𝜔,𝑡
𝑐ℎ,↓ )

𝑐𝑑∈𝑆𝑎𝑁

+ ∑ 𝑂𝑙𝑖
↑ ∙ (�̂�𝑙𝑖,𝜔,𝑡

𝑑𝑖𝑠,↑ − �̂�𝑐𝑎,𝜔,𝑡
𝑐ℎ,↑ )

𝑙𝑖∈𝑆𝑎𝑁

− ∑ 𝑂𝑙𝑖
↓ ∙ (�̂�𝑙𝑖,𝜔,𝑡

𝑑𝑖𝑠,↓ − �̂�𝑐𝑎,𝜔,𝑡
𝑐ℎ,↓ )

𝑙𝑖∈𝑆𝑎𝑁

+ ∑ 𝑉𝑂𝐿𝐿𝑑,𝑡
𝐸𝐿 ∙ 𝑙𝑑,𝜔,𝑡

𝐸𝐿,𝑠ℎ

𝑑𝐸𝐿∈𝐷𝑎𝑁

+ ∑ 𝑉𝑂𝐿𝐿𝑑,𝑡
𝑁𝐺 ∙ 𝑙𝑑,𝜔,𝑡

𝑁𝐺,𝑠ℎ

𝑑𝑁𝐺∈𝐷𝑎𝑅

]} 

 

 

 

(3..39) 

 

s.t.  

∑ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

+ ∑ 𝑤𝑗,𝑡

𝑗∈𝐽𝑎𝑁

− ∑ (𝑔ℎ,𝑡
𝑐ℎ − 𝑔ℎ,𝑡

𝑑𝑖𝑠)

ℎ∈𝑆𝑎𝑁

− ∑ (𝑔𝑐𝑎,𝑡
𝑐ℎ − 𝑔𝑐𝑎,𝑡

𝑑𝑖𝑠 )

𝑐𝑎∈𝑆𝑎𝑁

− ∑ (𝑔𝑐𝑑,𝑡
𝑐ℎ − 𝑔𝑐𝑑,𝑡

𝑑𝑖𝑠 )

𝑐𝑑∈𝑆𝑎𝑁

− ∑ (𝑔𝑙𝑖,𝑡
𝑐ℎ − 𝑔𝑙𝑖,𝑡

𝑑𝑖𝑠)

𝑙𝑖∈𝑆𝑎𝑁

− ∑ 𝐿𝑑,𝑡
𝐸𝐿

𝑑𝐸𝐿∈𝐷𝑎𝑁

− ∑ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) = 0      ∶ [𝜆𝑛,𝑡
𝐸𝐿 ]       ∀𝑛, ∀𝑡 

𝑚∈𝑁𝑎𝑀

 

 

 

(3.40) 
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∑ 𝑓𝑘,𝑡

𝑘∈𝐾𝑎𝑅

− ∑ 𝐿𝑑,𝑡
𝑁𝐺

𝑑𝑁𝐺∈𝐷𝑎𝑅

− ∑ ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒 ∙ 𝑒𝑥𝑝𝑐𝑑,𝑡 

𝑐𝑑∈𝐶𝑑𝑎𝑅

= 0      ∶ [𝜆𝑟,𝑡
𝑁𝐺 ]       ∀𝑛, ∀𝑡 (3.41) 

∑ (�̂�𝑖,𝜔,𝑡
↑ − �̂�𝑖,𝜔,𝑡

↓ )

𝑖∈𝐼𝑎𝑁

+ ∑ (�̂�ℎ,𝜔,𝑡
𝑑𝑖𝑠,↑ − �̂�ℎ,𝜔,𝑡

𝑑𝑖𝑠,↓ ) − ∑ (�̂�𝑐𝑎,𝜔,𝑡
𝑐ℎ,↑ − �̂�𝑐𝑎,𝜔,𝑡

𝑐ℎ,↓ )

𝑐𝑎∈𝑆𝑎𝑁ℎ∈𝑆𝑎𝑁

+ ∑ (�̂�𝑐𝑎 ,𝜔,𝑡
𝑑𝑖𝑠,↑ − �̂�𝑐𝑎,𝜔,𝑡

𝑑𝑖𝑠,↓ )

𝑐𝑎∈𝑆𝑎𝑁

− ∑ (�̂�𝑐𝑑,𝜔,𝑡
𝑐ℎ,↑ − �̂�𝑐𝑑,𝜔,𝑡

𝑐ℎ,↓ ) + ∑ (�̂�𝑐𝑑,𝜔,𝑡
𝑑𝑖𝑠,↑ − �̂�𝑐𝑑,𝜔,𝑡

𝑑𝑖𝑠,↓ )

𝑐𝑑∈𝑆𝑎𝑁𝑐𝑑∈𝑆𝑎𝑁

− ∑ (�̂�𝑙𝑖,𝜔,𝑡
𝑐ℎ,↑ − �̂�𝑙𝑖,𝜔,𝑡

𝑐ℎ,↓ )

𝑙𝑖∈𝑆𝑎𝑁

+ ∑ (�̂�𝑙𝑖,𝜔,𝑡
𝑑𝑖𝑠,↑ − �̂�𝑙𝑖,𝜔,𝑡

𝑑𝑖𝑠,↓ ) + ∑ (𝑊𝑗,𝜔,𝑡
𝑅𝑇 − 𝑤𝑗,𝑡 − 𝑤𝑗,𝜔,𝑡

𝑠𝑝 )

𝑗∈𝐽𝑎𝑁𝑙𝑖∈𝑆𝑎𝑁

+ ∑ 𝑙𝑑,𝜔,𝑡
𝐸𝐿,𝑠ℎ

𝑑𝐸𝐿∈𝐷𝑎𝑁

− ∑ 𝐵𝑛,𝑚 ∙ (�̂�𝑛,𝜔,𝑡 − 𝛿𝑛,𝑡 + 𝛿𝑚,𝑡 − �̂�𝑚,𝜔,𝑡)

𝑚∈𝑁𝑎𝑀

= 0:        [�̂�𝑛,𝜔,𝑡
𝐸𝐿 ]      ∀𝑛, ∀𝜔, ∀𝑡 

(3.42) 

∑ (𝑓𝑘,𝜔,𝑡
↑ − 𝑓𝑘,𝜔,𝑡

↓ )

𝑘∈𝐾𝑎𝑁

+ ∑ 𝑙𝑑,𝜔,𝑡
𝑁𝐺,𝑠ℎ

𝑑𝑁𝐺∈𝐷𝑎𝑅

− ∑ ℎ𝑒𝑎𝑡𝑟𝑎𝑡𝑒 ∙ (𝑒𝑥�̂�𝑐𝑑,𝜔,𝑡
↑ − 𝑒𝑥�̂�𝑐𝑑,𝜔,𝑡

↓ )

𝑐𝑑∈𝐶𝑑𝑎𝑅

= 0     

∶ [�̂�𝑟,𝜔,𝑡
𝑁𝐺 ]       ∀𝑟, ∀𝜔, ∀𝑡   

 

 

(3.43) 

0 ≤ 𝑝𝑖,𝑡 ≤ 𝑃𝑖            ∀𝑖, ∀𝑡 (3.44) 

0 ≤ 𝑤𝑗,𝑡 ≤ 𝑊𝑗            ∀𝑗, ∀𝑡 (3.45) 

0 ≤ 𝑓𝑘,𝑡 ≤ 𝐹𝑘           ∀𝑘, ∀𝑡 (3.46) 

0 ≤ �̂�𝑖,𝜔,𝑡
↑ ≤ 𝑃𝑖

↑
           ∀𝑖, ∀𝜔, ∀𝑡 (3.47) 

0 ≤ �̂�𝑖,𝜔,𝑡
↓ ≤ 𝑃𝑖

↓
           ∀𝑖, ∀𝜔, ∀𝑡 (3.48) 

0 ≤ 𝑓𝑘,𝜔,𝑡
↑ ≤ 𝐹𝑘

↑
           ∀𝑘, ∀𝜔, ∀𝑡 (3.49) 

0 ≤ 𝑓𝑘,𝜔,𝑡
↓ ≤ 𝐹𝑘

↓
           ∀𝑘, ∀𝜔, ∀𝑡 (3.50) 

𝑝𝑖,𝑡 + �̂�𝑖,𝜔,𝑡
↑ ≤ 𝑃𝑖            ∀𝑖, ∀𝜔, ∀𝑡 (3.51) 
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�̂�𝑖,𝜔,𝑡
↓ − 𝑝𝑖,𝑡 ≤ 0           ∀𝑖, ∀𝜔, ∀𝑡 (3.52) 

𝑓𝑘,𝑡 + 𝑓𝑘,𝜔,𝑡
↑ ≤ 𝐹𝑘           ∀𝑘, ∀𝜔, ∀𝑡 (3.53) 

𝑓𝑘,𝜔,𝑡
↓ − 𝑓𝑘,𝑡 ≤ 0           ∀𝑘, ∀𝜔, ∀𝑡 (3.54) 

0 ≤ 𝑤𝑗,𝜔,𝑡
𝑠𝑝

≤ 𝑊𝑗,𝜔,𝑡
𝑅𝑇            ∀𝑗, ∀𝜔, ∀𝑡 (3.55) 

𝑙𝑑,𝜔,𝑡
𝐸𝐿,𝑠ℎ ≤ L𝑑,𝑡

𝐸𝐿            ∀𝑑𝐸𝐿 , ∀𝜔, ∀𝑡 (3.56) 

𝑙𝑑,𝜔,𝑡
𝑁𝐺,𝑠ℎ ≤ L𝑑,𝑡

𝑁𝐺            ∀𝑑𝑁𝐺 , ∀𝜔, ∀𝑡 (3.57) 

−𝑇𝑛,𝑚 ≤ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) ≤ 𝑇𝑛,𝑚           ∀(𝑛, 𝑚) ∈ 𝑁𝑎𝑀, ∀𝑡 (3.58) 

−𝑇𝑛,𝑚 ≤ 𝐵𝑛,𝑚 ∙ (�̂�𝑛,𝜔,𝑡 − �̂�𝑚,𝜔,𝑡) ≤ 𝑇𝑛,𝑚         ∀(𝑛, 𝑚) ∈ 𝑁𝑎𝑀, ∀𝜔, ∀𝑡 (3.59) 

−𝜋 ≤ 𝛿𝑛,𝑡 ≤ 𝜋         ∀𝑛, ∀𝑡 (3.60) 

−𝜋 ≤ �̂�𝑛,𝜔,𝑡 ≤ 𝜋         ∀𝑛, ∀𝜔, ∀𝑡 (3.61) 

𝛿𝑛1,𝑡 = 0           ∀𝑛 = 𝑛1, ∀𝑡 (3.62) 

�̂�𝑛1,𝜔,𝑡 = 0         ∀𝑛 = 𝑛1, ∀𝜔, ∀𝑡 (3.63) 

3.4 Application study 

3.4.1 Data 

The applicability of the proposed MILP optimization framework is illustrated using 

an integrated energy system, consisting of a modified 24-bus IEEE Reliability Test System 

and a single-node natural gas network, analytically presented at Figure 3.5 and Figure 3.6, 

respectively. Apropos of the 24-bus electricity network, considering an imaginary 

horizontal line between buses 𝑛11, 𝑛12, 𝑛24 and 𝑛3, 𝑛9, 𝑛10, the power grid can be 

divided into two different areas, the upper and the lower. The difference between these 

two areas lies in the fact that the upper area is characterized by increased electricity 

generation and limited consumption, while in the lower area an exact opposite scheme 

takes place. The reason for this separation pertains to the power network congestion case 

and will be analyzed in detail in subsection 3.4.3. 

The integrated system includes 10 conventional power plants, 2 wind farms, 2 gas 

suppliers, 17 electricity loads, 1 natural gas load and 4 electricity storage facilities (PHS, 

AA-CAES, D-CAES and Li-ion battery). It is important to emphasize that the diabatic CAES 

system constitutes the means of interconnection of the two systems, as it acts as 
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generators in the electricity market and as demand loads in the natural gas market. The 

total installed capacity of the conventional units accounts for 3,918 MW, while for wind 

farms this capacity reaches up to 350 MW.  

Wind power generation uncertainty is modelled through a dual scenario approach 

i.e., a high wind generation scenario 𝜔1, where the two wind farms operate at their 

maximum capacity and a low wind generation scenario 𝜔2, where their total power 

production reaches up to 70 MW. Their occurrence probability is estimated at 0.8 and 0.2, 

respectively. Total electricity demand fluctuates over the 24-hour horizon between 1,517 

MW and 2,989 MW, while the corresponding hourly gas demand remains constant 

throughout the day and is equal to 1,210 kcf, as shown in Figure 3.4. The value of lost load 

𝑉𝑂𝐿𝐿𝑑,𝑡
𝐸𝐿 , 𝑉𝑂𝐿𝐿𝑑,𝑡

𝑁𝐺  equals 2,000 $/MWh and 600 $/kcf, respectively.  

Furthermore, Table 3.1 shows the electricity storage technologies’ quantitative and 

economic figures, extracted from (Madlener & Latz, 2013), (Jülch, 2016). In particular, 

(dis)charging energy and reserve capacities, maximum and initial state-of-charge 

(dis)charging efficiency parameters and cost offers for each storage technology in both 

the day-ahead and the real-time stage, are presented. It is critical to emphasize that a 

price premium is applied in the real-time market. In an economic perspective, this means 

that 𝑂↑ > 𝑂 and 𝑂↓ < 𝑂, for each electricity and natural gas market agent. 

 

 

Figure 3.4: Total hourly electricity and natural gas load. 
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Figure 3.5: Modified 24-bus IEEE Reliability Test System. 
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Figure 3.6: Single-node natural gas network. 

 

 
𝑮𝒔  

(𝑴𝑾)  

�̅�𝒔
↑  

(𝑴𝑾) 

�̅�𝒔
↓ 

(𝑴𝑾) 

𝑺𝑶𝑪𝒔 

(𝑴𝑾) 

𝑺𝑶𝑪𝒔
𝒊𝒏𝒊 

(𝑴𝑾) 
𝜼𝒔

𝒄𝒉 𝜼𝒔
𝒅𝒊𝒔 

𝑶𝒔 

($/𝑴𝑾𝒉) 

𝑶𝒔
↑ 

($/𝑴𝑾𝒉) 

𝑶𝒔
↓ 

($/𝑴𝑾𝒉) 

PHS 400 40 40 400 200 0.86 0.88 5 5.5 4.5 

AA-CAES 260 26 26 260 100 0.81 0.86 4 4.4 3.6 

D-CAES 300 80 80 300 100 0.6 0.63 4 4.4 3.6 

Li-ion 130 13 13 130 100 0.98 0.98 7 7.7 6.3 

Table 3.1: Data for electricity storage technologies. 

3.4.2 Uncongested power network 

The proposed MILP framework is applied to the integrated energy system assuming 

an uncongested power network and solved using GAMS/CPLEX (Brooke et al., 1998). The 

coupled electricity and natural gas market operates in a perfectly competitive settlement; 

thus, all market agents offer their generation at marginal cost.  

The integration of the pumped-hydro, adiabatic/diabatic CAES and Li-ion battery 

electricity storage systems in the proposed integrated energy system, proves to be 

particularly beneficial for the MO, to balance the generation-consumption dipole and 

optimize economic dispatch. In particular, Figure 3.7 illustrates the day-ahead electricity 

locational marginal prices, both when the four storage technologies are active (ELMPs) 

and when there are no storage (NS) units (ELMPs NS) in the power network. It is obvious 

that the ELMPs NS are significantly higher compared to the normal ELMPs, since the only 

units that provide electricity into the mix, besides the wind power plants, are the more 

expensive conventional power plants. It is important to point out that even at the time 

periods 𝑡2 − 𝑡5, 𝑡11 − 𝑡12, when the ELMPs are higher that the ELMPs NS, it is beneficial 

for the market. In particular, at these periods, as shown in Figure 3.8, the storage units 
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charge electricity and thus constitute a positive factor for the social welfare 

maximization. Το confirm the economic importance of the establishment of electricity 

storage facilities, the social welfare in both cases is calculated. In the case where all 

storage units are present, the social welfare is estimated at 9,134,065.3 $ and it is 6.2% 

higher compared to the NS case.  

By combining Figure 3.7 and Figure 3.8, the operation of storage units can also be 

analyzed. At time periods 𝑡6 − 𝑡10 and 𝑡16 − 𝑡18, where the day-ahead prices range at 

high levels (89 $/MWh to 117 $/MWh) due to increased electricity demand, the storage 

systems operate in discharging mode to ensure energy balance and minimize total cost. 

For a better understanding of Figure 3.8, it is clarified that the negative values of the y-

axis correspond to the discharging energy amounts of the aforementioned storage 

technologies. On the other hand, in the remaining time periods 𝑡1 − 𝑡5, 𝑡11, 𝑡23 when the 

requirements for electricity are lower, the storage systems operate in charging mode to 

take advantage of the low day-ahead prices of 28.22 $/MWh to 52.9 $/MWh. Despite the 

fact that the natural gas demand is stable during the daily horizon, a GLMP fluctuation is 

observed, which is due to the power generation by the D-CAES. More specifically, for the 

time periods 𝑡16 − 𝑡18, the diabatic CAES discharges the highest hourly amount of 

electricity i.e.,127.1 MWh. As a result, the more expensive natural gas supplier also needs 

to provide gas to meet the demand, thus increasing the GLMP from 3.5 $/kcf to 4.2 $/kcf.  

 

Figure 3.7: Day-ahead electricity and gas market clearing prices. 
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Figure 3.8: Day-ahead (dis)charging energy dispatch for storage systems. 

 

Figure 3.9 shows the real-time ELMPs for two wind power generation scenarios i.e., 

a high and a low. In the high wind generation scenario 𝜔1 realization, the RT prices range 

in lower levels compared those of the DA market with the maximum clearing price 

reaching up to 95.4 $/MWh. This happens, since the almost zero cost electricity 

production from wind farms contributes to a great extent into the system, thus lowering 

the electricity prices. The exact opposite situation is observed with the low wind 

generation scenario 𝜔2, where due to the low production in cheaper energy, generators 

with higher cost offers enter the energy mix in order to meet the demand. Consequently, 

the equivalent prices fluctuate at particularly high levels reaching up to 203.5 $/MWh for 

time periods 𝑡16 − 𝑡18. Ιn addition to the entry of more expensive producers into the 

market, as already mentioned, a price premium is applied in the RT market. Thus, the 

upward reserve activation of power producers is provided at higher bids compared to 

their day-ahead electricity dispatch. 

The right vertical axis of Figure 3.10 provides the real-time natural gas prices (lines 

with markers) for both high and low wind generation scenarios, ranging from 3.15 $/kcf 

to 4.53 $/kcf and 3.15 $/kcf to 4.62 $/kcf, respectively. The figure also presents the 

amount of electricity (columns) that the diabatic CAES system provides to the RT market, 

by activating charging downward reserves (positive values) and discharging upward 

reserves (negative values). It is also important to note that the diabatic CAES operates in 
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discharging mode in the real-time market at the same time periods as in the day-ahead 

market. The natural gas pricing scheme appears to follow the same basic principles as the 

electricity one, since a price premium policy is also preserved and gas prices correspond 

to the wind power production stochasticity. In particular, when wind power production 

is low (scenario 𝜔2), the D-CAES system is required to supply additional electricity into 

the real-time electricity market (discharging upward reserves), and therefore engage 

higher quantities of natural gas as fuel. This, of course leads to an increase in gas prices, 

as shown in Figure 3.10. In particular, the D-CAES system throughout the 24-hours 

horizon consumes a total amount of natural gas corresponding to 900 MWh, in order to 

provide upward discharging balancing services in electricity market. The exact opposite 

scenery occurs in the case of scenario 𝜔1, where the high production of wind farms 

results in a decrease in natural gas demand and subsequently in its price. In fact, in 

scenario 𝜔1, the diabatic system purchases a quantity of gas equivalent to only 60 MWh 

in total, since the requirements for electricity in the real-time market are limited. 

 

 

Figure 3.9: Real-time electricity market clearing prices. 
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Figure 3.10: Real-time gas market clearing prices and D-CAES dispatch.  

 

Figure 3.11 depicts electricity storage systems’ day-ahead and overall profits over a 

daily time horizon. More specifically, the D-CAES system earns 80,056.9 $ in the day-

ahead market, making it the most profitable among storage technologies in the integrated 

energy system. This is attributed to the fact that the diabatic CAES provides the largest 

amount of electricity during the 24 hours into the market, through its discharging 

operation. The market operator, who aims at maximizing social welfare, sets D-CAES to 

produce the largest amount of energy, since its overall cost is lower compared to the rest 

of the storage technologies. The primary reason for this low cost is the fact that this 

energy on a great extent derives from the combustion of natural gas, the price of which is 

noticeably lower compared to the electricity. The profits of PHS, AA-CAES and Li-ion 

battery in the DA market are summarized in 67,035.8 $, 23,558.7 $ and 21,935.4 $, 

respectively. 

Regarding the overall profits of the four storage technologies, a particularly 

significant decrease compared to their day-ahead profits, is noticed. The main reason is 

the provision of charging downward reserves in the real-time market, in order to 

preserve energy balance and ensure social welfare maximization. More specifically, the 

activation of charging/discharging downward reserves is costly for the storage systems, 

either due to the extra power charged or because the system pays back to the market at 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-150

-100

-50

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G
as lo

catio
n

al m
argin

al p
rice ($/kcf)

El
ec

tr
ic

it
y 

(M
W

h
)

Hour (h)

HW LW HW LW



Chapter 3  

92 
 

RT price for the energy not produced. In addition to the cost of purchasing the energy, 

each storage facility is also charged for the operating charging costs. 

As shown in Figure 3.11, with the exception of PHS system, which provide only 

discharging reserves, the rest of the storage technologies offer significant amounts of 

charging downward reserves, which constitute a cost factor. This is also the reason why 

the DA profits of the PHS system are reduced proportionally less, compared to the other 

storage systems. However, it is important to highlight that the formulated pricing scheme 

for the coupled electricity and natural gas market clearing model, ensures cost recovery 

for each electricity storage technology. 

 

 

Figure 3.11: Day-ahead and overall profits for electricity storage systems. 

3.4.3 Congested power network 

As already pointed out in subsection 3.4.2, the power grid is further divided into the 

upper and lower area, due to different levels of electricity generation and consumption. 

In this case study, this topological feature of the network is utilized, in order to draw 

useful conclusions for the configuration of electricity prices and the operation of energy 

storage technologies, under power network congestion. The congestion is a result of the 

decreased capacity of transmission lines connecting buses 𝑛3, 𝑛9, 𝑛10, 𝑛11, 𝑛12 and 𝑛24, 

from 1,600 MW to 200 MW. 

As shown in Figure 3.12, due to the impeded energy transfer among buses, 

electricity local marginal prices (ELMPs) occur in the day-ahead market, in contrast to 
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the uncongested network case (Case 1), where the price is identical for all nodes. It should 

be clarified, however, that only the ELMPs of the buses where the storage technologies 

are installed, are presented, in order to ensure a more coherent depiction of the prices 

that constitute the main research object of this work. It is evident that the day-ahead 

ELMPs for all four buses, range at significantly higher levels compared to the DA price in 

the uncongested network case in Figure 3.7. In fact, the greatest increase is observed at 

time periods 𝑡16 − 𝑡18, when storage facilities operate in discharging mode, providing 

electricity into the grid. Analyzing Figure 3.12 further, the ELMPs for buses 𝑛2 and 𝑛5, 

where the PHS and AA-CAES facilities are installed, are noticeably higher than the 

corresponding prices for buses 𝑛16 and 𝑛19, where the Li-ion battery and D-CAES 

facilities are located. This differentiation is based on the fact that buses 𝑛2 and 𝑛5 belong 

to the lower area of the grid, where electricity demand is higher; thus, producers with 

higher bids are included in the energy mix, and therefore marginal prices increase. More 

specifically, the ELMP can reach 164.26 $/MWh and 163.2 $/MWh for buses 𝑛2 and 𝑛5, 

while for buses 𝑛16 and 𝑛19, 144.8 $/MWh and 150.5 $/MWh, respectively. 

A different pricing scheme compared to the day-ahead market, is observed in the 

real-time market for both wind power generation scenarios 𝜔1, 𝜔2, as illustrated in 

Figure 3.13. In particular, in the real-time market the reserve capacities of the power 

producers are significantly lower compared to the day-ahead ones. Thus, the capacity of 

200 MW of the network transmission lines is more than enough to transfer the required 

amount of electricity without creating congestion. As a result, the RT ELMPs are the same 

among the four power buses. However, since price premium is applied in the real-time 

market, the RT clearing prices in the low wind generation scenario are higher compared 

to the DA prices reaching up to 303.9 $/MWh at time period 𝑡17. Equivalently, in the high 

wind generation scenario, as expected, the marginal prices in the RT market are lower 

than the DA market.   
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Figure 3.12: Day-ahead electricity market clearing price, under network congestion. 

 

 

Figure 3.13: Real-time electricity market clearing price, under network congestion. 
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technologies in the case of network congestion. Figure 3.14 illustrates the RT electricity 

dispatch of D-CAES both in an uncongested and a congested power network. As is the case 

with all four storage systems, D-CAES provides less charging downward reserves under 

network congestion and thus their operating cost is significantly decreased. Furthermore, 

its provision of discharging upward reserves is also decreased. However, the significantly 

increased RT ELMPs under congestion compensate for the reduced upward reserve 

activation and even raise the system’s income compared to the non-congestion case. In 

particular, as illustrated by Figure 3.13 the provision of discharging upward reserves 

mainly concerns the low wind generation scenario 𝜔2 and as such the D-CAES is 

compensated at exceptionally high clearing prices. Comparing Figure 3.11 and Figure 

3.15, it is evident that the PHS, AA-CAES, D-CAES and Li-ion battery systems benefit from 

the power network congestion and rising electricity clearing prices. This results in a large 

increase in their overall expected profits, by 10,699.6 $, 509.4 $, 32,351.3 $ and 3,802.9 

$, for each technology respectively. 

 

 

Figure 3.14: D-CAES high and low wind real-time electricity dispatch. 

 



Chapter 3  

96 
 

 

Figure 3.15: Day-ahead and overall profits for electricity storage systems under power 

network congestion. 

3.4.4 Impact of wind power generation volatility 

This case study (Case 3) investigates how the wind power generation volatility 

affects the profitability of energy storage systems in a coupled electricity and natural gas 

market, while the settlement of the uncongested case in Subsection 3.4.2 is considered. 

However, in this case, three wind energy scenarios for the real-time market are examined, 

in order to provide a more detailed analysis. In particular, a high, a medium and a low 

wind production scenario are considered, with equal probability of realization, 0.33 each. 

The expected wind power production is 181.5 MW, with three progressively increasing 

values of expected standard deviation σ estimated at 5.05 %, 35.86 % and 52.24 %, 

respectively. 

The outcomes presented in Figure 3.16, show that storage systems seem to benefit 

on a great extent from the unstable wind production. More specifically, the increment of 

the standard deviation leads to a significant raise in the requirements for scheduled 

energy. As a result, the storage technologies provide higher amounts of discharging 

energy, therefore notably increasing their profitability in the day-ahead market. In fact, 

the financial gains of the storage systems in the day-ahead trading floor, are able to cover 

any losses that arise during the activation of their downward reserves in the real-time 

market and thus the overall profits also show a continuous upward trend. Moreover, as 
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shown in Figure 3.16, the increasing wind power volatility, combined with the raised 

expected profits of the four electricity storage systems, leads to lower social welfare as 

the standard deviation escalates, at 8,415,236 $, 8,312,432 $ and 8,241,873 $, 

respectively. 

 

Figure 3.16: Impact of wind generation volatility on storage systems profits and social 

welfare. 

3.5 Computational issues 

The proposed MILP has been solved using CPLEX/GAMS 32.1.0 on an Intel Core i7-

9700 processor at 3.00 GHz and 32 GB RAM. The computational requirements of the 

model were considered particularly promising, since despite the increased network 

sophistication and the substantial number of variables, the algorithm reaches optimal 

solution in a fairly short time. More specifically, the CPU time required to solve the 

uncongested power network case is 5.25 seconds, while for Case 2, the corresponding 

time equals 8.5 seconds. However, the increased number of wind generation scenarios in 

Case 3, leads to a CPU time escalation, since the model solution for the three standard 

deviation values requires 10.5, 10.9 and 10.4 seconds, respectively.  
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3.6 Conclusions 

In this work, a stochastic MILP model is developed to investigate the financial gains 

and optimal dispatch of various energy storage technologies (PHS, AA-CAES, D-CAES and 

Li-ion battery) in a coupled electricity and natural gas market, under perfect competition. 

The model considering energy-only markets, co-optimizes the market clearing procedure 

of the day-ahead and real-time trading floors, aiming at social welfare maximization, 

while the stochasticity is introduced into the problem via a set of plausible wind power 

production scenarios. The proposed optimization framework is applied to an integrated 

energy system, consisting of a transmission constrained modified 24-bus IEEE Reliability 

Test System and a single-node natural gas network.  

The solution of the problem derives electricity and natural gas marginal prices, 

optimal (dis)charging dispatch and expected profits for each energy storage technology. 

A specific analysis is carried out on the operation of the diabatic CAES system, which 

participates in both systems, either as producer or as a demand load. Furthermore, all 

four energy storage systems benefit from power transmission line congestions and high 

wind power volatility thus experiencing significant profit increase compared with the 

uncongested power network case, as a result of the electricity prices escalation. In 

particular, the overall profit increases by 18.2 %, 6.5 %, 84.4 % and 89 % for PHS, AA-

CAES, D-CAES and Li-ion battery, respectively. Finally, a substantial decrease by 3.1% in 

social welfare is realized in the congested power network case. Similarly, the social 

welfare is decreased up to 2.54 % in the high wind power generation volatility scenario. 
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Nomenclature 

 

A. Indices and sets 

𝑖 Index of conventional power plants  

𝑗 Index of wind generating units 

𝑠 Index of electricity storage units 

ℎ Index of Hydro-pump storage systems (ℎ ⊂ 𝑠) 

𝑐𝑎 Index of AA-CAES systems (𝑐𝑎 ⊂ 𝑠) 

𝑐𝑑  Index of D-CAES systems (𝑐𝑑 ⊂ 𝑠) 

𝑙𝑖 Index of Li-ion batteries (𝑙𝑖 ⊂ 𝑠) 

𝑘 Index of natural gas generating units 

𝑑 Index of demands 

𝑡, 휃 Indices of time periods 

𝑛, 𝑚 Indices of electricity buses 

𝑟 Indices of natural gas nodes 

𝜔 Index of wind generation scenarios 

𝐼𝛼𝛮 Set of indices of conventional power plants located at bus n 

𝐽𝑎𝑁 Set of indices of wind generating units located at bus n 

𝐷𝑎𝑁 Set of indices of electricity demands located at bus n 

𝑆𝛼𝛮 Set of indices of electricity storage units located at bus n 

𝑁𝑎𝑀 Set of buses n connected with bus m 

𝐶𝑑𝛼𝑅 Set of indices of D-CAES systems located at node r 

𝐾𝑎𝑅 Set of natural gas generating units located at node r 

𝐷𝑎𝑅 Set of indices of natural gas demands located at node r 

B. Acronyms - Superscripts 

𝐸𝐿 Electricity 

𝑁𝐺 Natural gas 

𝑐ℎ Charging mode of storage system s 

𝑑𝑖𝑠 Discharging mode of storage system s 

𝑖𝑛𝑗 Injecting air mode of CAES system  

𝑟𝑒𝑙 Releasing air mode of CAES system 
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C. Parameters 

𝑂𝑖 Cost offer for conventional power plant i ($/MWh) 

𝑂𝑘 Cost offer for natural gas generating unit k ($/kcf)  

𝑂𝑠 Cost offer for electricity storage system s ($/MWh) 

𝑈𝑑  Utility of demand d ($/MWh) 

𝑃𝑖  Maximum capacity of conventional power plant i (MW) 

𝑊𝑗  Maximum capacity of wind generating unit j (MW) 

𝐺𝑠 Maximum (dis)charging capacity of storage system s (MW) 

𝐺𝑠 Minimum (dis)charging capacity of storage system s (MW) 

𝐸𝑋𝑃𝑐𝑑
 Maximum capacity of electricity produced by natural gas (MW) 

𝐸𝑋𝑃𝑐𝑑
 Minimum capacity of electricity produced by natural gas (MW) 

휂𝑠 (Dis)charging efficiency of storage system s 

𝐹𝑘 Maximum capacity of natural gas generating unit k (kcf) 

L𝑑,𝑡
𝐸𝐿  Load of electricity demand d at time t (MWh) 

L𝑑,𝑡
𝑁𝐺  Load of natural gas demand d at time t (kcf) 

𝑆𝑂𝐶𝑠 Maximum state-of-charge of storage system s (MW) 

𝑆𝑂𝐶𝑠 Minimum state-of-charge of storage system s (MW) 

𝑆𝑂𝐶𝑠
𝑖𝑛𝑖  Initial state-of-charge of storage system s (MW) 

𝑇𝑛,𝑚 Transmission capacity of circuit line n-m (MW) 

𝐵𝑛,𝑚  Susceptance of line n-m 

𝜋𝜔 Occurrence probability of scenarios ω 

𝑉𝑂𝐿𝐿𝑑,𝑡
𝐸𝐿  Value of lost load d at time interval t ($/MWh) 

𝑉𝑂𝐿𝐿𝑑,𝑡
𝑁𝐺  Value of lost load d at time interval t ($/kcf) 

𝑊𝑗,𝜔,𝑡
𝑅𝑇  Scenario dependent generation of wind unit j at time t (MWh) 

 

D. Variables (Day-ahead market) 

𝑝𝑖,𝑡  Energy dispatch of conventional power plant i at time t (MWh) 

↑ Upward reserve 

↓ Downward reserve 
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𝑤𝑗,𝑡  Energy dispatch of wind generating unit j at time t (MWh) 

𝑔𝑠,𝑡  Energy (dis)charged by storage system s at time t (MWh) 

𝑒𝑥𝑝𝑐𝑑,𝑡  Electricity produced by natural gas at time t (MWh) 

𝑓𝑘,𝑡  Natural gas production by generating unit k at time t (kcf) 

𝛿𝑛,𝑡  Voltage angle at bus n at time t  

𝑠𝑜𝑐𝑠,𝑡 Electricity stored for storage system s at time interval t (MWh) 

𝑥𝑠,𝑡  Binary variable for (dis)charging mode of storage system s at 

time t 

𝜆𝑛,𝑡
𝐸𝐿  Electricity locational marginal price in day-ahead market at bus 

n at time t ($/MWh) 

𝜆𝑟,𝑡
𝑁𝐺  Natural gas locational marginal price in day-ahead market at 

node r at time t ($/kcf) 

 

E. Variables (Real-time market) 

�̂�𝑖,𝜔,𝑡  Energy dispatch of conventional power plant i under scenario ω 

at time t (MWh) 

�̂�𝑗,𝜔,𝑡 Energy dispatch of wind generating unit j under scenario ω at 

time t (MWh) 

�̂�𝑠,𝜔,𝑡 Energy (dis)charged by storage system s under scenario ω at 

time t (MWh) 

𝑒𝑥�̂�𝑐𝑑,𝜔,𝑡  Electricity produced by natural gas under scenario ω at time t 

(MWh) 

𝑓𝑘,𝜔,𝑡  Natural gas production by generating unit k under scenario ω at 

time t (kcf) 

�̂�𝑛,𝜔,𝑡  Voltage angle at bus n under scenario ω at time t 

𝑤𝑗,𝜔,𝑡
𝑠𝑝

 Power spillage from wind generating unit j under scenario ω at 

time t (MWh) 

𝑙𝑑,𝜔,𝑡
𝐸𝐿,𝑠ℎ Electricity load shedding of demand dEL under scenario ω at time 

t (MWh) 

𝑙𝑑,𝜔,𝑡
𝑁𝐺,𝑠ℎ Natural gas load shedding of demand dNG under scenario ω at 

time t (kcf) 
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�̂�𝑠,𝜔,𝑡  Binary variable for (dis)charging mode of storage system s under 

scenario ω at time t  

�̂�𝑛,𝜔,𝑡
𝐸𝐿

𝜋𝜔
 

Electricity locational marginal price in real-time market at bus n 

under scenario ω at time t ($/MWh) 

�̂�𝑟,𝜔,𝑡
𝑁𝐺

𝜋𝜔
 

Natural gas locational marginal price in real-time market at node 

r under scenario ω at time t ($/kcf) 



 

 
 

Chapter 4  

 

Strategic bidding of a gas-fired unit in 

low carbon electricity and natural gas 

market 
 

This Chapter presents a bi-level optimization framework to determine the optimal 

bidding strategies for a strategic gas-fired power plant, exerting market power in 

interdependent pool-based electricity and natural gas markets, under a carbon emission 

trading scheme (CETS). The objective of the upper-level problem is to maximize the 

profits of the strategic player. In contrast, the lower-level problem involves the sequential 

clearing of day-ahead electricity and natural gas markets, taking into account carbon 

emission allowances for conventional power producers and a high penetration of wind 

power generation. The bi-level formulation is initially transformed into a Mathematical 

Program with Equilibrium Constraints (MPEC) using the Karush-Kuhn-Tucker optimality 

conditions and duality theory. Subsequently, it is further reconfigured into a mixed-

integer linear program. The proposed algorithm is implemented in a Pennsylvania-New 

Jersey-Maryland (PJM) 5-bus power grid, constrained by transmission limitations and a 

single-node natural gas network. Simulations yield electricity clearing prices embedded 

with the carbon emission trading prices and optimal bidding decisions for the strategic 

gas-fired power plant, considering potential power transmission congestions and 

increments in natural gas prices.  

4.1 Introduction 

In the midst of continuous political, economic and geostrategic challenges at a 

global level, the energy markets undoubtedly could not remain unaffected and thus 

nowadays they are experiencing a new reality, quite different from the one that had been 

established in recent years. The rapid increase in wholesale prices, the targeting of states 



Chapter 4 

104 
 

and investors at the decarbonization of the power sector through the profound 

penetration of renewable energy sources, but also the hopeful prospect of optimizing the 

coordination between the operation of electricity and natural gas markets, constitute key 

aspects that each market agent should contemplate and evaluate. 

According to the U.S. Energy Information Administration, among the sources of 

energy for electricity generation, such as coal, petroleum, nuclear and renewables, 

natural gas holds the largest share accounting for almost the 36% of the total electricity 

production in USA (U.S. Energy Information Administration, 2022), while in many 

countries in Europe this percentage exceeds 40%. Moreover, natural gas is considered a 

clean and efficient fuel, that in the long-term can adequately replace coal, oil and nuclear 

power (Levitan et al., 2014) encouraging sustainable development without sacrificing the 

orderly functioning of contemporary energy markets.  

Despite the increasing need for sectoral coordination between electricity and 

natural gas markets, particularly in renewable-based energy systems, as recognized by 

the Federal Energy Regulatory Commission (FERC) in the U.S (FERC Staff, 2015), in 

practice the two energy sectors are still cleared separately. More specifically, natural gas 

market operator (GMO) clears the market (Weigand et al., 2013), based on the gas 

demand previously determined during the electricity market clearing process, conducted 

by the national electricity market operator (NEMO). Electricity market agents including 

gas-fired power plants (GFPPs), submit their offer to the electricity market, based only 

on an estimation of the gas price, which is not necessarily identical to the cleared gas 

price.  

This Chapter proposes a novel bi-level approach to derive optimal bidding 

strategies for a price-maker gas-fired power plant, participating in sequentially cleared 

interdependent electricity and natural gas markets, considering carbon emission trading. 

It is important to emphasize that the proposed model enables the GFPP, along with its 

strategic bidding decisions, to optimally manipulate its allocated emission allowances in 

order to maximize its profit. Furthermore, contrary to the common practice of treating 

gas prices as fixed values, in the present work, gas prices are endogenously generated, 

based on the gas suppliers bidding, during the natural gas market clearing procedure. The 

proposed model also incorporates wind power generation, as one of the most growing 

sources of renewable energy in the last decade (IRENA, 2019a) and network transmission 
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constraints, giving the strategic generator the ability to acquire additional financial gains 

from power network congestions and different electricity clearing prices. 

In the above context, the main contributions of this Chapter are fourfold: 

 to provide a novel bi-level optimization framework to determine the optimal 

bidding decisions and emission allowances manipulation of a strategic gas-fired 

power plant in a pool-based market scheme, acting as a producer in the electricity 

market and as a consumer in the natural gas market.  

 to derive optimal electricity and natural gas dispatch and CETS-embedded 

electricity locational marginal prices. 

 to analyze the impact of power network congestion on electricity locational 

marginal prices and profitability of the strategic gas-fired power plant. 

 to determine the impact of natural gas price increase on the strategic gas-fired 

power plant’s capacity withholding strategies. 

4.2 Problem statement 

The proposed bi-level programming problem considers the optimal bidding 

strategies for a GFPP that has dominant position in the market and competes price-takers 

conventional and wind power producers, in interdependent pool-based electricity and 

natural gas markets. In the adopted market setup, a carbon emission trading scheme is 

also integrated, based on a cap-and-trade regulatory program. More specifically, a 

compulsory cap is set by government on overall emission permitted across the power 

industry (Rocha et al., 2015). This cap is split into allowances, each of which endorses the 

emission of one ton of carbon dioxide or related pollutants. Moreover, these allowances 

are freely allocated to power generation companies and can be traded in the carbon 

market. Thus, a Genco can either be compensated for surplus emission allowances (if the 

number of the allocated allowances is greater that its actual carbon emission) or pay for 

exceeding its corresponding approved emission limit. 

The upper-level of the proposed optimization algorithm contains strategic gas-fired 

unit’s expected profit maximization problem and relies on CETS-embedded electricity 

and natural gas clearing prices. The lower-level problem on the other hand, proposes a 

low-carbon economic dispatch model to describe the sequential clearing mechanism of 
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interdependent day-ahead electricity and natural gas markets, conducted by the market 

operator. The objective functions of the lower-level problems aim at minimizing the total 

operation costs, including bidding costs of conventional and wind power plants, natural 

gas suppliers and carbon emission trading costs. It is important to point out that, since 

the electricity and natural gas demand loads are assumed to be inelastic, social welfare 

maximization is equivalent to cost minimization for the market operation (Ordoudis et 

al., 2019). 

Considering the satisfaction of the continuity and convexity prerequisites of the 

lower-level problem, the bi-level model is reformulated to an MPEC by virtue of the KKT 

optimality conditions’ application. Subsequently, by employing the Fortuny-Amat and 

McCarl linearization methodology (Fortuny-amat et al., 1981) and strong duality 

theorem, the proposed model is further reduced into a MILP, which imposes rational 

computational requirements by commercial solvers such as GAMS/CPLEX (Brooke et al., 

1998). 

The proposed model derives optimal bids for a strategic GFPP co-optimizing 

scheduled dispatch, carbon emission allowances and estimating the day-ahead electricity 

and natural gas market prices. The main assumptions made are summarized as follows: 

i. All demand loads are inelastic except for GFPP’s gas demand. 

ii. Wind power generation is considered cost-free and emission-free. 

iii. Conversion factor of the GFPP is constant. Thus, the electricity generation of the 

GFPP has a linear interdependence with its gas consumption (Wang et al., 2018). 

iv. The carbon emission trading price is considered as a parameter for the lower-level 

problem. 

v. Gas locational marginal prices (GLMPs) are endogenously generated as dual 

variables of the natural gas balance equation. 

4.3 Mathematical framework 

The following bi-level mathematical model presented in Figure 4.1, is formulated to 

determine optimal bidding strategies for a price-maker GFPP in interdependent 

electricity and gas markets, considering a carbon emission trading scheme that 

corresponds to the cap-and-trade program. This work assumes that the hourly overall 

carbon emission allowances 𝑄𝑡  of all the related conventional power generators, varies 
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over time with the net load (total load minus wind power generation) (R. Zhang et al., 

2020), as shown in (4.1). Each conventional power generator receives its corresponding 

emission allowances 𝑄ℎ,𝑡
𝐻  as defined by (4.2), depending on its allocated factor of carbon 

emission allowances 𝛼ℎ , which can be calculated by (4.3): 

𝑄𝑡 = 휂 ∙ ( ∑ 𝐿𝑑,𝑡
𝐸 − ∑ 𝑤𝑗,𝑡

𝑗∈𝐽𝑎𝑁

)

𝑑𝐸𝐿∈𝐷𝑎𝑁

 (4.1) 

𝑄ℎ,𝑡
𝐻 = 𝛼ℎ ∙ 𝑄𝑡  (4.2) 

𝛼ℎ =
휁ℎ

∑ 휁ℎℎ
 (4.3) 

 

 

Figure 4.1: Bi-level structure of the proposed strategic bidding framework. 

4.3.1 Upper-level problem: GFPP’s expected profit maximization 

The upper-level problem maximizes the strategic GFPP’s expected profits, 

stemming from its bilateral participation in the energy markets, as electricity supplier 

and natural gas consumer and also in the cap-and-trade carbon market.  
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𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆     ∑ { ∑ 𝜆𝑛,𝑡
𝐸 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

− ∑ 𝜆𝑟,𝑡
𝑁𝐺 ∙ 𝜑𝑔 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑅

− 𝑐𝑝 ∙ (휁𝑔 ∙ 𝑣𝑔,𝑡

𝒕

− 𝑄𝑔,𝑡
𝐻 )} 

(4.4) 

In the objective function (4.4), the first term, 𝜆𝑛,𝑡
𝐸 ∙ 𝑣𝑔,𝑡 corresponds to the revenue 

emerged from selling electricity, while the second term,  𝜆𝑟,𝑡
𝑁𝐺 ∙ 𝜑𝑔 ∙ 𝑣𝑔,𝑡 , represents the 

cost of purchasing natural gas. The third term, 𝑐𝑝 ∙ (휁𝑔 ∙ 𝑣𝑔,𝑡 − 𝑄𝑔,𝑡
𝐻 ) represents the carbon 

trading cost of the GFPP, which depending on its actual and allocated carbon emissions, 

can either take positive, or negative values and thus provide financial losses or gains for 

the strategic GFPP, respectively. 

4.3.2 Lower-level problem: Electricity market clearing  

The first stage of the lower-level problem represents the low-carbon ED of the day-

ahead electricity market, carried out by the MO, and provides optimal electricity dispatch 

and CETS-embedded electricity locational marginal prices (ELMPs).  

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆     ∑ { ∑ 𝑜𝑔,𝑡 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

+ ∑ 𝐶𝑖 ∙ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

+ ∑ 𝑐𝑝 ∙ (휁𝑔 ∙ 𝑣𝑔,𝑡 − 𝑄𝑔,𝑡
𝐻 )

𝑔∈𝐺𝑎𝑁𝒕

+ ∑ 𝑐𝑝 ∙ (휁𝑖 ∙ 𝑝𝑖,𝑡 − 𝑄𝑖,𝑡
𝐻 )

𝑖∈𝐼𝑎𝑁

} 

 

(4.5) 

s.t.  

− ∑ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

− ∑ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

− ∑ 𝑤𝑗,𝑡

𝑗∈𝐽𝑎𝑁

+ ∑ 𝐿𝑑,𝑡
𝐸

𝑑𝐸𝐿∈𝐷𝑎𝑁

+ ∑ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) = 0      ∶ [𝜆𝑛,𝑡
𝐸 ]       ∀𝑛, ∀𝑡 

𝑚∈𝑁𝑎𝑀

 

 

(4.6) 

0 ≤ 𝑝𝑖,𝑡 ≤ 𝑃𝑖      ∶ [𝑎𝑖,𝑡 , 𝑎𝑖,𝑡]           ∀𝑖, ∀𝑡 (4.7) 

0 ≤ 𝑣𝑔,𝑡 ≤ 𝑉𝑔      ∶ [𝛽𝑔,𝑡 , 𝛽𝑔,𝑡]           ∀𝑔, ∀𝑡 (4.8) 

0 ≤ 𝑤𝑗,𝑡 ≤ 𝑊𝑗      ∶ [𝛾𝑗,𝑡 , 𝛾𝑗,𝑡]           ∀𝑗, ∀𝑡   (4.9) 
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−𝑄ℎ,𝑡
𝐻 + 𝛼ℎ ∙ 휂 ∙ ( ∑ 𝐿𝑑,𝑡

𝐸 − ∑ 𝑤𝑗,𝑡

𝑗∈𝐽𝑎𝑁

) = 0

𝑑𝐸𝐿∈𝐷𝑎𝑁

   ∶   [𝜌ℎ,𝑡]       ∀ℎ, ∀𝑡 (4.10) 

−𝑇𝑛,𝑚 ≤ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) ≤ 𝑇𝑛,𝑚      ∶ [𝜓𝑛,𝑚,𝑡 , 𝜓𝑛,𝑚,𝑡]            ∀(𝑛, 𝑚) ∈ 𝑁𝑎𝑀, ∀𝑡 (4.11) 

−3.14 ≤ 𝛿𝑛,𝑡 ≤ 3.14         ∀𝑛, ∀𝑡     ∶ [𝜋𝑛,𝑡 , 𝜋𝑛,𝑡] (4.12) 

𝛿𝑛1,𝑡 = 0     ∶ [휂𝑛,𝑡
𝑜 ]           ∀𝑛 = 𝑛1, ∀𝑡 (4.13) 

 

Objective function (4.5) represents the day-ahead electricity market clearing 

mechanism, minimizing the overall operation costs, including bidding and carbon 

emission trading costs of conventional power plants. It is worth mentioning that as is 

common practice, wind power generation is assumed both cost and carbon emissions 

free. Constraint (4.6) enforces the power balance at each electric bus and the 

transmission capacity limits between them. The ELMP for each bus derives as the dual 

variable of the power balance equation. Constraints (4.7) – (4.9) impose the day-ahead 

upper and lower limits of the electricity generated by non-gas-fired, gas-fired and wind 

power plants. Constraint (4.10) determines the allocated carbon emission allowances for 

each conventional plant, based on the net load. Constraint (4.11) applies capacity limits 

for transmission lines, while constraints (4.12), (4.13) limit each electric bus’s voltage 

angle range and impose bus A as power grid’s slack bus, respectively. 

4.3.3 Lower-level problem: Natural gas market clearing  

The second stage of the lower-level problem describes the natural gas economic 

dispatch conducted by the GMO and derives gas locational marginal prices (GLMPs) and 

optimal gas dispatch. 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆     ∑ { ∑ 𝐶𝑘 ∙ 𝑓𝑘,𝑡

𝑘∈𝐾𝑎𝑅

}

𝒕

 (4.14) 

s.t.  

− ∑ 𝑓𝑘,𝑡

𝑘∈𝐾𝑎𝑅

+ ∑ 𝜑𝑔 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑅

+ ∑ 𝐿𝑑,𝑡
𝑁𝐺

𝑑𝑁𝐺∈𝐷𝑎𝑅

= 0      ∶ [𝜆𝑟,𝑡
𝑁𝐺 ]       ∀𝑟, ∀𝑡 (4.15) 

𝐹𝑘 ≤ 𝑓𝑘,𝑡 ≤ 𝐹𝑘      ∶ [휀𝑘,𝑡, 휀𝑘,𝑡]            ∀𝑘, ∀𝑡 (4.16) 
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Objective function (4.14) portrays the day-ahead natural gas market clearing 

procedure by minimizing the total operation cost, including the bidding cost by the gas 

suppliers. Constraint (4.15) constitutes the natural gas balance at each node, while the 

dual variable corresponding to this equation, constitutes the GLMP of the node. 

Constraint (4.16) imposes upper and lower limits for the natural gas generation of each 

gas supplier. 

4.3.4 Solution methodology 

Considering the satisfaction of the continuity and differentiability requirements by 

the lower-level optimization problems, the Lagrangian function of each problem can be 

derived. In addition, it is important to mention that GFPP’s bidding decisions 𝑜𝑔,𝑡, are 

received as variables in the upper-level problem, while in the objective function (4.5) are 

treated as parameters by the MO. Thus, the lower-level problems 4.3.2 and 4.3.3 are linear 

and therefore convex and can be substituted by their respective KKT first order 

optimality conditions (C.1) – (C.10), recasting the bi-level formulation into a single level 

MPEC. The resulting non-linear equations (C.11) – (C.22) of the form 0 ≤ 𝑔(𝑥) ⊥ 𝜇 ≥ 0, 

are substituted by equations (C.23) – (C.46), employing the Fortuny-Amat and McCarl 

linearization technique. To derive the final form of the proposed mathematical model, 

strong duality theorem is also employed, which suggests that the objective functions of 

the equivalent primal and dual problems must be equal. All mathematical 

transformations are analytically presented in Appendix C. Thus, any inherent non-

linearities are eradicated and the MPEC model is transformed into the following equal 

MILP formulation: 
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𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆    − ∑ 𝐶𝑖 ∙ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

+ ∑ 𝑐𝑝 ∙ 𝑄𝑔,𝑡
𝐻

𝑔∈𝐺𝑎𝑁

− ∑ 𝑐𝑝 ∙ (휁𝑖 ∙ 𝑝𝑖,𝑡 − 𝑄𝜄,𝑡
𝐻 )

𝑖∈𝐼𝑎𝑁

+  ∑ 𝜆𝑛,𝑡
𝐸 ∙ 𝐿𝑑,𝑡

𝐸 + 𝜌ℎ,𝑡 ∙ 𝛼ℎ ∙ 휂 ∙ ∑ 𝐿𝑑,𝑡
𝐸

𝑑𝐸𝐿∈𝐷𝑎𝑁𝑑𝐸∈𝐷𝑎𝑁

− ∑ 𝑎𝑖,𝑡 ∙ 𝑃𝑖

𝑖∈𝐼𝑎𝑁

− ∑ 𝛾𝑗,𝑡 · 𝑊𝑗

𝑗∈𝐽𝑎𝑁

− ∑ 𝑇𝑛,𝑚 ·

𝑚∈𝑁𝑎𝑀

(𝜓𝑛,𝑚,𝑡 + 𝜓𝑛,𝑚,𝑡)

− ∑ 3.14 ·

𝑛∈𝑁𝑎𝑀

(𝜋𝑛,𝑡 + 𝜋𝑛,𝑡) − ∑ 𝐶𝑘 ∙ 𝑓𝑘,𝑡

𝑘∈𝐾𝑎𝑅

− ∑ 휀𝑘,𝑡 · 𝐹𝑘

𝑘∈𝐾𝑎𝑅

+ ∑ 𝜆𝑟,𝑡
𝑁𝐺 ∙ 𝐿𝑑,𝑡

𝑁𝐺 − ∑ 𝑐𝑝 ∙ (휁𝑔 ∙ 𝑣𝑔,𝑡 − 𝑄𝑔,𝑡
𝐻 )

𝑔∈𝐺𝑎𝑁𝑑𝑁𝐺∈𝐷𝑎𝑅

 

(4.17) 

subjected to      (C.1) – (C.10)  
 

                           (C.23) – (C.46)  

4.4 Application study 

The proposed mathematical model is applied in a modified Pennsylvania – New 

Jersey – Maryland (PJM) 5-bus power grid, sketched in Figure 4.2 and a single-bus gas 

network. The power grid consists of six non-gas-fired power plants  

(I1 – I6), the strategic gas-fired power plant (G1) located at bus D and a wind power plant. 

The electricity load is equally distributed on three load buses. Similarly, the single-node 

gas network comprises three natural gas suppliers (K1 – K3) and three gas demand loads. 

It is critical to emphasize that since the GFPP consumes gas to generate electricity, it is 

considered as the fourth gas load, the capacity of which, is not determined a priori, but 

instead, directly depends on the electricity and natural gas market clearing outcomes.  

Technical data regarding the capacity and bidding costs of electricity and natural 

gas producers are provided in Table 4.1. Furthermore, carbon emission factors for each 

conventional power plant are also presented. The non-gas-fired units are characterized 

by higher emission factor values, ranging from 0.65 –1.05 tCO2/MWh, depending on the 

fossil fuel consumed to generate electricity. However, the emission factor for the gas-fired 

power plant is noticeably lower at 0.35 tCO2/MWh, which indicates the eco-friendlier 

nature of the natural gas. The carbon emission allowance factor is set to be 0.7 tCO2/MWh, 

and the carbon emission trading price is constant at 23 $/t. Moreover, Figure 4.3 depicts 
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the hourly fluctuation of the total electricity load and the maximum wind power 

generation forecast, while maximum capacity and susceptance for each power 

transmission line, measure up to 1000 MW and 9.412, respectively. 

 

 

Figure 4.2: PJM 5-bus power grid. 

 

 𝑷𝒊 (𝑴𝑾) 𝑽𝒈(𝑴𝑾) 𝑭𝒌(𝒌𝒄𝒇) 𝑪𝒊 ($/𝑴𝑾𝒉) 𝑪𝒌 ($/𝒌𝒄𝒇) 𝜻𝒉 (𝒕𝑪𝑶𝟐/𝑴𝑾𝒉) 

𝑰𝟏 100 - - 15 - 0.65 

𝑰𝟐 110 - - 14 - 1.05 

𝑰𝟑 270 - - 30 - 1.05 

𝑰𝟒 350 - - 35 - 0.65 

𝑰𝟓 250 - - 28 - 0.85 

𝑰𝟔 250 - - 45 - 0.85 

𝑮𝟏 - 200 - - - 0.35 

𝑲𝟏 - - 1900 - 3.5 - 

𝑲𝟐 - - 1800 - 4.7 - 

𝑲𝟑 - - 780 - 5.3 - 

Table 4.1: Data for electricity and natural gas producers. 
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Figure 4.3: Forecasting load and maximum wind power generation. 

4.4.1 Uncongested power network 

Based on the above details, the proposed optimization framework is solved 

assuming an uncongested power network, using GAMS/CPLEX. The strategic GFPP exerts 

market power and manipulates the day-ahead prices to obtain maximum profits. 

According to Figure 4.3, at time period 𝑡5 the wind power generation forecast ranges in 

particularly high levels, while the total electricity demand load is the lowest for the entire 

daily horizon, accounting for only 655.5 MW. Due to its zero marginal cost, wind farm is 

fully dispatched and generates 345.5 MWh, while the remaining 310 MW are covered by 

the conventional power generators. More specifically, the non-gas-fired power plants 

with the lower marginal costs (𝐼1, 𝐼2) provide a total 210 MWh of electricity, operating at 

their maximum capacity. Then the strategic GFPP contributes the additional 100 MWh of 

electricity, bidding at 28 $/MWh, which is equivalent to the marginal cost of 𝐼5 and thus 

it manages to exclude producer 𝐼5 from the auction and set the ELMP. 

An antidiametric scene takes place in time period 𝑡11, where the total electricity 

consumption almost doubles to 1285 MW and the wind power plant generates only 72 

MWh. The combination of high demand with low wind power production, allows more 

expensive generators to enter the market, in order to ensure that demand is met, hence 

the clearing price is settled higher. This also happens in this particular case, where all the 
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non-gas-fired power plants are fully dispatched to produce the required 1080 MWh, 

except for the expensive unit 𝐼6 that is banished by the strategic GFPP, which offers 133 

MWh at a price of 45 $/MWh. ELMPs for the entire daily horizon are analytically 

presented in Figure 4.4. Since the power network is uncongested, there is only one 

electricity clearing price for each time period, which is common to all buses.  

Regarding the GLMP, it is cleared at 3.7 $/kcf for time period 𝑡5 and at 4.7 $/kcf for 

time period 𝑡11. The reason behind this increase in natural gas price lies in the increased 

gas demand for the time period 𝑡11, resulting in more expensive gas suppliers entering 

the market. Despite the fact that the increased gas price, could discourage the strategic 

GFPP from purchasing gas in time period 𝑡11, it is clear that the high ELMP can completely 

absorb the production cost increment and incentivize the strategic GFPP to produce 

additional 33 MWh, compared to when the gas price is low. 

The obtained CETS-embedded ELMPs during the 24-hour horizon, also depicted in 

Figure 4.4, are calculated by accounting for the emission cost of the conventional power 

generators in the carbon market. More specifically, the total bidding cost coefficient for 

each electricity producer increases by 𝑐𝑝 ∙ 휁ℎ , except for the wind power generator, which 

as previously mentioned is emission-free. Hence, the value of CETS-embedded ELMPs is 

higher compared to the normal ELMPs. Figure 4.5 illustrates the electricity dispatch 𝑣𝑔,𝑡  

and strategic bids 𝑜𝑔,𝑡  for the GFPP. Note that these bids are not CETS-embedded i.e., they 

do not contain the 𝑐𝑝 ∙ 휁ℎ term, which for the GFPP accounts for 8.05 $. If this term is 

added, the strategic bids are equivalent to the CET-ELMPs depicted in Figure 4.4, which 

shows the significant impact of the GFPP in the formation of electricity clearing prices. 

 It is important to emphasize that along with the reformulation of the electricity 

generators’ cost offers, the priority according to which they are nominated to dispatch 

energy by the MO, has also changed. In particular, in the normal case, 𝐼2 is the producer 

with the lowest cost offer at 14 $/MWh, while the next closest is 𝐼1, bidding at 15 $/MWh. 

However, since power plant 𝐼2 is more carbon-intensive with a higher carbon emission 

factor compared to power plant 𝐼1, it ends up having a higher CETS-embedded bidding 

cost (38.15 $/MWh, while 𝐼1 bids at 29.95 $/MWh) and is therefore dispatched after 𝐼1, 

according to the merit-order.  

The above is coherently confirmed by the market clearing outcomes in the time 

period 𝑡4, where the net load is 325.5 MW. According to the merit-order, power plant 𝐼1 

and then 𝐼2, produce electricity at their maximum capacity, while the GFPP generates 
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only 115.5 MWh of electricity and sets the CETS-embedded ELMP, by strategically 

bidding at 47.55 $/MWh and excluding 𝐼5 from entering the market. With the 

aforementioned capacity withholding strategy, the GFPP raises the clearing price by 

lowering its electricity production and manages to maximize its profit for the specific 

time period. However, this strategy does not always guarantee financial benefits.  

During the time period 𝑡5 where the net load is 310 MW, 𝐼1 is fully dispatched, while 

𝐼2 is the marginal producer generating only 41 MWh of electricity and setting the ELMP 

at its CETS-embedded bidding cost of 38.15 $/MWh. The strategic GFPP generates 169 

MWh and bids at the cost of 𝐼2. This results in gaining 2655 $ for time period 𝑡5. On the 

contrary, in case the GFPP would withhold its capacity at 100 MWh to act as the marginal 

producer and raise the price at 47.55 $/MWh, it would make a lower profit of 2643 $. This 

is attributed to the fact that the price increase could not compensate for its substantial 

electricity production decrease. Therefore, the proposed model provides the optimal 

bidding strategy for the profit maximization of the GFPP, depending on the circumstances 

that arise. 

 

  

Figure 4.4: Comparison of CETS-embedded ELMPs and ELMPs. 
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Figure 4.5: Electricity dispatch and strategic bids for the GFPP. 

 

In the calculation of the profits for the conventional power plants, carbon emission 

allowances trading, which is directly linked to the amount of electricity production, also 

plays a key role. Figure 4.6 illustrates the difference (in tons of CO2) between the cost-free 

carbon allowances provided to the strategic GFPP by the government and the actual 

amount of carbon emissions it emits, based on its electricity production. Positive values 

indicate the amount of carbon allowances (in CO2 tons) granted to the producer, but not 

employed. These allowances constitute a source of income for the electricity producer, 

who trades them at a price of 23 $ each.  

On the other hand, the negative values denote the extra carbon allowances that the 

GFPP decides it is worth paying for, in order to generate the desired amount of electricity. 

As depicted in Figure 4.6, the GFPP strategically decides to pay the extra emission 

allowances cost, for every hour of the daily horizon, since the CETS-embedded ELMPs are 

significantly higher, compared to the carbon trading price. Furthermore, the hourly 

fluctuation of the difference between allocated and actual emissions follows the 

equivalent fluctuation of the overall net load. Thus, for the time periods 𝑡17 − 𝑡19, where 

electricity demand is high and wind power generation is low (corresponding to high net 

load), the strategic GFPP receives a higher number of allocated emission allowances, that 

almost cover the carbon emissions generated due to its electricity provision.   
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Figure 4.6: Hourly difference between allocated and actual carbon emission allowances 

for the strategic GFPP. 

4.4.2 Congested power network 

In the previous uncongested network case, the maximum power flow through each 

line is 2000 MW. If the capacity of lines A – B and D – E is reduced to 400 and 300 MW 

respectively, the power network becomes congested, resulting in different CETS-

embedded ELMPs, as shown in Figure 4.7. It is observed that in the first four nodes the 

strategic GFPP manages to obtain significant economic benefits, by exerting market 

power and manipulating the electricity clearing prices. In particular, during periods of 

the day when electricity demand is high and wind power generation is low (𝑡11, 𝑡16, 𝑡20), 

the strategic GFPP acts as a marginal producer at all four nodes, setting the price at 

particularly high levels. Especially in bus D, where the strategic producer is installed, a 

price cap at 158.05 $ needs to be applied, so as to restrict the bids of the GFPP and prevent 

excessive speculation. Bus E is the only bus that is not affected by the GFPP’s bidding 

strategy. Zero-cost wind power generation seems to be the reason for the existence of 

low CETS-embedded ELMPs, since the wind farm, which is located at this bus, generates 

electricity at its maximum capacity and covers the largest percentage of the required 

demand load, while the ELMP is determined by the bids of the marginal producers 𝐼4, 𝐼5. 
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Furthermore, for the first time, the non-gas-fired power plant 𝐼6 also enters the market 

during the high net load periods 𝑡11, 𝑡20, generating 274.2 MWh of electricity in total. 

It is significant to point out that under the congested power network case, due to 

the reduced transmission lines’ capacity, the GFPP for the entire daily horizon generates 

241 MWh less, compared to the uncongested network case, as shown in Table 4.2. This 

reduction in the GFPP’s electricity production though, has a direct impact on the 

management of its allocated carbon emissions allowances. Αs comprehensively depicted 

in Figure 4.6, the strategic GFPP at time period 𝑡20, chooses to exchange its unexploited 

30.5 carbon emission allowances (in tons of CO2). It produces only 63.5 MWh of electricity 

and gain additional 701 $ from carbon emission trading. So, despite its electricity 

production decrease and the imposition of a cap on the clearing price, the strategic GFPP, 

by manipulating electricity prices and optimally handling the allocated emission 

allowances, manages to arbitrage under conditions of congestion and increase its daily 

expected profits by 26,338.43 $, as illustrated by Table 4.2.  

 

  𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 (𝑴𝑾𝒉) 𝑷𝒓𝒐𝒇𝒊𝒕 ($) 

𝑼𝒏𝒄𝒐𝒏𝒈𝒆𝒔𝒕𝒆𝒅 𝒑𝒐𝒘𝒆𝒓 𝒏𝒆𝒕𝒘𝒐𝒓𝒌 4,394 122,005.53 

𝑪𝒐𝒏𝒈𝒆𝒔𝒕𝒆𝒅 𝒑𝒐𝒘𝒆𝒓 𝒏𝒆𝒕𝒘𝒐𝒓𝒌 4,153 148,343.96 

Table 4.2: Strategic GFPP’s electricity generation and expected profits. 

 

Figure 4.7: CETS-embedded ELMPs for the congested network. 
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4.4.3 Natural gas price increase 

In this case, the influence of natural gas price increase on the electricity market 

outcomes and the optimal bidding and dispatching decisions of the strategic GFPP, is 

investigated. More specifically, four extra cases considering the increment of gas 

suppliers’ bidding costs in the natural gas market by 50%, 100%, 150% and 200% 

respectively, are studied. As suppliers’ bidding costs rise, given the gas market clearing 

mechanism already described, it is natural that the GLMPs increase as well (Table 4.3), 

thus the strategic GFPP chooses to withhold its production in order not to face financial 

deficits. As shown in Figure 4.8, this becomes particularly evident in Case 4, where the 

GFPP generates only 353 MWh throughout the 24-hour period. 

Figure 4.9 indicates the hourly CETS-embedded ELMPs for each case scenario. The 

GFPP exerts market power and acts as the marginal electricity producer for the majority 

of the 24 time periods, in all four cases. However, in order to offset its augmented 

production costs resulting from the gas price increase, the GFPP strategically bids at 

higher prices. In particular, for the time period 𝑡11, instead of offering its electricity at 

54.15 $/MWh as in the base case scenario, the increased GLMPs force the GFPP to bid at 

64.55 $/MWh, which is the marginal cost of the expensive producer 𝑖6. This is also its 

ceiling bid in conditions of an uncongested network, since if the GFPP offers its electricity 

at a higher price, it will not be dispatched by the MO. 

Furthermore, it should be noted that for time periods such as 𝑡13, 𝑡15, 𝑡16, 𝑡23, 

where, as shown in Figure 4.9, an increase in the ELMP is observed only for Case 4. For 

these specific periods, in Cases 1-3, the GFPP consistently provides some amount of 

electricity, albeit decreasing, at a price of 49.95 $/MWh, which is also the cost offer of the 

marginal producer 𝑖4. In Case 4, the GFPP strategically decides to withhold its production, 

due to the fact that the GLMP rises at such extent (10.5 $/kcf) that it is no longer profitable 

for it to generate electricity. Hence, in order for the supply to meet the required electricity 

demand, producer 𝑖3 enters the market, bidding at its marginal cost and thus setting the 

price at 54.15 $/MWh. Figure 4.8 illustrates the significant profit losses that the gas-fired 

power plant experiences with the increase in the natural gas prices, which, considering 

the dramatic decrease of its electricity production, is judged to be perfectly reasonable.   
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 𝑰𝒏𝒄𝒓𝒆𝒂𝒔𝒆 𝑵𝒂𝒕𝒖𝒓𝒂𝒍 𝒈𝒂𝒔 𝒑𝒓𝒊𝒄𝒆 ($/𝒌𝒄𝒇) 

𝑩𝒂𝒔𝒆 𝑪𝒂𝒔𝒆 𝟎% 3.5 – 4.7 

𝑪𝒂𝒔𝒆 𝟏 50% 5.3 – 7 

𝑪𝒂𝒔𝒆 𝟐 100% 7 

𝑪𝒂𝒔𝒆 𝟑 150% 8.8 

𝑪𝒂𝒔𝒆 𝟒 200% 10.5 

Table 4.3: GLMPs under a gas price increase. 

 

 

Figure 4.8: Electricity generation and profits for strategic GFPP under a gas price 

increase. 
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Figure 4.9: CETS-embedded ELMPs under a gas price increase. 

4.5 Computational issues 

The resulting MILP is solved using GAMS/CPLEX 39.3.0, on an Intel Core i7-7700 

processor at 3.60 GHz, with 16 GB RAM. The computational time depends on the 

sophistication of the power and natural gas networks, as well as the number of market 

participants. The average CPU time for the uncongested power network case is 3.5 s, 

while for the congested power network case, 5 s. The determination of big-Ms’ value is 

also firmly associated with the efficiency of the computational process, since the under- 

or overestimation of their value can lead to a numerically inadequate or an unrestricted 

problem, respectively. In this work, after implementing a series of trials, the value of Ms 

was established at 104.  
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4.6 Conclusions 

This work proposes a bi-level mathematical approach to derive optimal bidding 

strategies for a strategic GFPP participating in interdependent pool-based electricity and 

natural gas markets, under a carbon emission trading scheme. The model considers a 

sequential clearing mechanism, conducted by the MO to minimize total cost under high 

wind power penetration and is applied to a PJM 5-bus transmission constrained power 

grid and a single node gas network. 

The problem solution derives CETS-embedded ELMPs and GLMPs as dual variables 

of the lower-level problems and strategic bidding decisions for the GFPP in the day-ahead 

market. Furthermore, the model provides information on the optimal correlation of the 

carbon emission allowances nominated to the GFPP with its electricity/natural gas 

generation/consumption, in order to maximize its expected profits. The effects of power 

network congestion on the electricity clearing prices and the profitability of the gas-fired 

power plant are also investigated. The raised CETS-ELMPs, compared to the uncongested 

network case, create more arbitrage opportunities for the strategic GFPP, thereby 

acquiring significant economic benefits. Finally, the ever-increasing natural gas prices 

lead the gas-fired power plant to a strategic gradual withholding of its power generation 

since the resulting electricity prices do not seem capable of counterbalancing its 

increased production costs. 
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Nomenclature 

 

A. Indices and sets 

𝑖 Index for non-gas-fired power plants  

𝑔 Index for strategic gas-fired power plants 

ℎ Index for conventional power plants 𝑖 ∪ 𝑔 

𝑗 Index for wind power plant 

𝑘 Index for natural gas suppliers 

𝑑 Index for demand loads 

𝑡 Index for time periods 

𝑛, 𝑚 Indices for power buses 

𝑟 Index of natural gas node 

𝐼𝛼𝛮 Set of indices for non-gas fired power plants located at bus n 

𝐽𝑎𝑁 Set of indices for wind power plants located at bus n 

𝐺𝛼𝑁 Set of indices for strategic gas-fired power plants located at bus n 

𝐷𝑎𝑁 Set of indices for electricity demands located at bus n 

𝑁𝑎𝑀 Set of buses n connected with bus m 

𝐺𝛼𝑅 Set of indices for strategic gas-fired power plants located at node r 

𝐾𝑎𝑅 Set of indices for natural gas suppliers located at node r 

𝐷𝑎𝑅 Set of indices for natural gas demands located at node r 

 

B. Acronyms - Superscripts 

𝐸 Electricity 

𝑁𝐺 Natural gas 

 

C. Parameters 

𝐶𝑖  Cost offer of non-gas-fired power plant i ($/MWh) 

𝐶𝑘 Cost offer of natural gas supplier k ($/kcf)  

𝑃𝑖  Maximum capacity of non-gas-fired power plant i (MW) 

𝑉𝑔 Maximum capacity of strategic gas-fired power plant g (MW) 
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𝑊𝑗  Maximum capacity of wind generating unit j (MW) 

𝐹𝑘 Maximum capacity of natural gas supplier k (kcf) 

L𝑑,𝑡
𝐸  Load of electricity demand d at time t (MWh) 

L𝑑,𝑡
𝑁𝐺  Load of natural gas demand d at time t (kcf) 

𝑇𝑛,𝑚 Transmission capacity of circuit line n-m (MW) 

𝐵𝑛,𝑚  Susceptance of line n-m 

𝜑𝑔 Gas-electricity conversion factor of strategic GFPP g (kcf/MWh) 

휂 Carbon emission allowance factor (tCO2/MW) 

휁ℎ Carbon emission factor for conventional power plant h (tCO2/MW) 

𝛼ℎ Allocated factor for carbon emission allowances for conventional power 

plant h 

𝑐𝑝 Carbon emission trading price ($/tCO2) 

 

D. Primal Variables  

𝑝𝑖,𝑡  Electricity generation of non-gas-fired power plant i at time t (MWh) 

𝑣𝑔,𝑡  Electricity generation of strategic gas-fired power plant g at time t 

(MWh) 

𝑜𝑔,𝑡  Strategic electricity offers for gas-fired power plant g ($/MWh) 

𝑓𝑘,𝑡  Natural gas production by supplier k at time t (kcf) 

𝛿𝑛,𝑡  Voltage angle at bus n at time t  

𝑄𝑡  Overall allocated carbon emission allowances 

𝑄ℎ,𝑡
𝐻  Allocated carbon emission allowances for conventional power plant h  

 

E. Dual Variables 

𝜆𝑛,𝑡
𝐸  Electricity locational marginal price at bus n at time t ($/MWh)  

𝜆𝑟,𝑡
𝑁𝐺  Natural gas locational marginal price at node r at time t ($/kcf) 

𝑎𝑖,𝑡 Upper and lower electricity output of non-gas-fired power plant i at 

time t 

𝛽𝑔,𝑡 Upper and lower electricity output of gas-fired power plant g at time t 

𝛾𝑗,𝑡 Upper and lower electricity output of wind power plant j at time t 
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휀𝑘,𝑡 Upper and lower gas output of natural gas supplier k at time t 

𝜌ℎ,𝑡 Carbon emission allowances 

𝜓𝑛,𝑚,𝑡  Transmission capacity of line n-m at time t 

𝜋𝑛,𝑡 Upper and lower bound of the voltage angle 𝛿𝑛,𝑡  at bus n 

휂𝑛,𝑡
𝑜  Voltage angle at bus A 

 



 

 
 

Chapter 5  

 

Trading strategy of a renewable 

energy aggregator in electricity and 

green certificates markets 
 

5.1 Introduction 

Climate change and the security of energy supply are becoming increasingly crucial 

challenges that impact markets, regulations, policies, and investments on a global scale 

(Olabi & Abdelkareem, 2022). Renewable energy (RE) plays a pivotal role in the shift 

toward a low-carbon economy, contributing to greenhouse gas emission mitigation, 

reducing reliance on fossil fuels, fostering industrial development, diversifying the 

generation portfolio, and alleviating poverty (Gielen et al., 2019). Global trends indicate 

a substantial growth in renewables, constituting 40% of the global installed power 

capacity, as reported by the International Renewable Energy Agency (IRENA, 2021). 

Projections suggest that by 2050, renewable sources will account for approximately two-

thirds of the total energy supply (Larsson, 2009). Consequently, the examination of the 

involvement and functioning of renewable assets in contemporary energy and 

derivatives markets emerges as a fundamental area of research. 

This Chapter proposes a novel bi-level modelling approach to determine the 

optimal trading strategy for a price-maker renewable aggregator, participating in 

sequentially cleared interconnected electricity and green certificates markets. Contrary 

to the mathematical methodology adopted by reference (Guo et al., 2020), which 

endorses the estimation of the certificates clearing price based on two parameters of the 

inverse price function, the proposed model considers an hourly pool-based green 

certificates market clearing mechanism. This mechanism is perfectly aligned to the 

electricity market clearing procedure and endogenously generates realistic green 

certificates prices as dual variables of the problem. It is also important to emphasize, that 



Chapter 5  

127 
 

a single Market Operator is considered for both markets, thus enhancing their 

synchronization and information exchange. Furthermore, to the best of authors’ 

knowledge it is the first time that the concept of available green certificates, also named 

as “state of available certificates” (SOAC) is introduced. This concept allows for the 

renewable aggregators to optimally decide either to store their available for issuance 

certificates or to sell them, depending on the market conditions and possible arbitrage 

opportunities. Finally, this work considers wind and solar energy, as they are the two 

most popular renewable energy sources worldwide and the ones with the highest 

capacity expansion, according to IRENA (International Renewable Energy Agency, 2023). 

Considering the above context, the main contributions of this work are fourfold: 

i. to develop a novel bi-level optimization model to derive the optimal trading 

decisions for a strategic renewable aggregator in a joint pool-based electricity and 

green certificates market scheme.  

ii. to successfully link and coordinate the operation of electricity and green certificates 

markets.  

iii. to analyze the impact of power network congestion on electricity and green 

certificates prices and the strategic renewable aggregator’s profitability. 

iv. to assess the applicability of the proposed methodology to a real-life 24-bus power 

system. 

5.2 Problem statement 

The proposed bi-level optimization framework analyzes the optimal trading 

strategies for a renewable aggregator that has dominant position and exerts market 

power in pool-based electricity and green certificates markets. Following the example of 

the majority of the US states and other environmentally aware countries, this work 

adopts an RPS policy. More specifically, the regulatory authority of each state sets a 

specific RPS target which declares the fraction of the load serving entities’ retail 

electricity that is obligatory to derive exclusively from renewable energy sources. It is 

important to emphasize that the LSE is not obligated to possess its own RES assets to 

cover its required electricity demand fraction. Instead, the LSE can purchase electricity 

from a single or several qualified renewable energy producers, until the overall quantity 
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of the purchased energy meets the RPS threshold. If the LSE is not able to meet the 

requirements of this policy, a non-compliance penalty, called Alternative Compliance 

Penalty (ACP) is imposed. 

The upper-level of the proposed modelling approach contains renewable 

aggregator’s expected profit maximization problem and relies on electricity and green 

certificates dispatch and clearing prices which comprise lower-level decisions. On the 

other hand, in the lower-level problem an economic dispatch model is considered, where 

a single entity, called Market Operator (MO), administers the sequential clearing 

mechanism of day-ahead electricity and green certificates markets. The lower-level 

objective functions aim at minimizing the overall operation costs, including electricity 

offering costs of conventional and renewable power plants and green certificates trading 

costs. It is significant to emphasize that, since the electricity demand loads are assumed 

to be inelastic, social welfare maximization is equal to cost minimization for the market 

operation (Ordoudis et al., 2019). 

Considering the continuity and convexity of the lower-level problems, they can be 

replaced by their respective KKT first order optimality conditions, recasting the bi-level 

model into a single level MPEC. Subsequently, by employing the Fortuny-Amat and 

McCarl linearization technique, strong duality theory and binary expansion the model is 

further transformed into a MILP with reduced computational requirements, that can be 

handled by commercial solvers such as GAMS/CPLEX (Brooke et al., 1998). 

This work determines optimal bids for a strategic renewable aggregator with mixed 

wind and solar portfolio, co-optimizing scheduled energy dispatch, green certificates 

trading and estimating the day-ahead electricity and certificates market prices. The main 

assumptions made are summarized as follows: 

i. Electricity demand loads are inelastic, thus social welfare maximization is 

equivalent to market operation cost minimization. 

ii. Network losses and reactive power are excluded (Tsimopoulos & Georgiadis, 

2019a). 

iii. Renewable power generation is considered cost-free. 

iv. Tradable green certificates market is assumed to be cleared by the electricity 

Market Operator (Guo et al., 2020). 

v. A uniform price clearing auction mechanism is adopted for both electricity and 

green certificates markets. 
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vi. Electricity and green certificates marginal prices are endogenously generated as 

dual variables of the lower-level problems. 

 

 

Figure 5.1: Bi-level structure of the proposed strategic bidding framework. 

5.3 Bi-level model formulation 

The following bi-level algorithm presented in Figure 5.1, is formulated to derive 

the optimal trading strategies for a price-maker renewable energy aggregator in 

interdependent electricity and green certificates markets. This work assumes that the 

clearing of the electricity and green certificates market is performed sequentially by the 

same market entity on an hourly basis, while a uniform pricing scheme is also adopted. 

Εach MWh of energy produced by RESs in the electricity market corresponds to a single 

certificate, thus the interconnection of the two markets is deeply enhanced and the 

slightest change in the electricity market can have a significant impact on the green 

certificates market as well. Based on the above framework and operation of the markets, 

the strategic renewable aggregator determines its optimal strategy, by submitting the 

appropriate sell prices and quantities in order to maximize its profits. 
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5.3.1 Upper-level problem: GFPP’s expected profit maximization 

The upper-level problem aims at maximizing the strategic renewable aggregator’s 

expected profits, originating from its participation in the electricity and green certificates 

markets.  

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆     ∑ { ∑ 𝜆𝑛,𝑡
𝐸𝐿 ∙ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

+ ∑ 𝜆𝑡
𝐺𝐶 ∙ 𝑞𝑠,𝑡

↑

𝑠∈𝑆𝑎𝑁

}

𝒕

 (5.1) 

𝑆𝑂𝐴𝐶𝑠,𝑡  =  ∑ 𝑓𝑠,𝑡

𝑡

𝜃

− ∑ 𝑞𝑠,𝑡
↑

𝑡−1

𝜃

           ∀𝑠, ∀𝑡 (5.2) 

𝑆𝑂𝐴𝐶𝑛𝑠,𝑡  =  ∑ 𝑤𝑛𝑠,𝑡

𝑡

𝜃

− ∑ 𝑟𝑛𝑠,𝑡
↑

𝑡−1

𝜃

           ∀𝑛𝑠, ∀𝑡 (5.3) 

 

In the objective function (5.1), the term, 𝜆𝑛,𝑡
𝐸𝐿 ∙ 𝑓𝑠,𝑡 corresponds to the revenue 

obtained by selling its power production, while the second term,  𝜆𝑡
𝐺𝐶 ∙ 𝑞𝑠,𝑡

↑  represents the 

revenue from providing green certificates to the load serving entities. Since the marginal 

cost of renewable power generation, as already mentioned in the Assumptions section, is 

considered almost zero, the issuance of tradable green certificates is also cost-free and 

no cost terms are added to the objective function. Constraints (5.2) and (5.3) represent 

the state of available certificates for the strategic and non-strategic renewable energy 

assets of the market. This is the first that such a constraint is introduced and enables the 

aggregators to “store” their available certificates to subsequent time periods and 

optimally “activate” them in the right time, that will bring the highest possible profits. 

5.3.2 Lower-level problem: Electricity market clearing  

The first stage of the lower-level problem represents the clearing procedure of the 

day-ahead electricity market, performed by the MO, and determines optimal energy 

dispatch and electricity locational marginal prices (ELMPs).  
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𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆     ∑ { ∑ 𝑂𝑠,𝑡
𝐸𝐿 ∙ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

+ ∑ 𝐶𝑖 ∙ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

}

𝒕

 (5.4) 

s.t.  

− ∑ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

− ∑ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

− ∑ 𝑤𝑛𝑠,𝑡

𝑛𝑠∈𝑁𝑆𝑎𝑁

+ ∑ 𝐿𝑑,𝑡
𝐸𝐿

𝑑𝐸𝐿∈𝐷𝑎𝑁

+ ∑ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) = 0       ∶ [𝜆𝑛,𝑡
𝐸𝐿 ]       ∀𝑛, ∀𝑡 

𝑚∈𝑁𝑎𝑀

 

 

(5.5) 

0 ≤ 𝑝𝑖,𝑡 ≤ 𝑃𝑖      ∶ [𝑎𝑖,𝑡 , 𝑎𝑖,𝑡]           ∀𝑖, ∀𝑡 (5.6) 

0 ≤ 𝑓𝑠,𝑡 ≤ 𝐹𝑠      ∶ [𝛾𝑠,𝑡 , 𝛾𝑠,𝑡]           ∀𝑠, ∀𝑡   (5.7) 

0 ≤ 𝑤𝑛𝑠,𝑡 ≤ 𝑊𝑛𝑠      ∶ [휃𝑛𝑠,𝑡, 휃𝑛𝑠,𝑡]           ∀𝑛𝑠, ∀𝑡 (5.8) 

−𝑇𝑛,𝑚 ≤ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) ≤ 𝑇𝑛,𝑚      ∶ [𝜓𝑛,𝑚,𝑡 , 𝜓𝑛,𝑚,𝑡]            ∀(𝑛, 𝑚) ∈ 𝑁𝑎𝑀, ∀𝑡 (5.9) 

−3.14 ≤ 𝛿𝑛,𝑡 ≤ 3.14       ∶ [𝜋𝑛,𝑡 , 𝜋𝑛,𝑡]            ∀𝑛, ∀𝑡 (5.10) 

𝛿𝑛1,𝑡 = 0     ∶ [휂𝑛,𝑡
𝑜 ]           ∀𝑛 = 𝑛1, ∀𝑡 (5.11) 

 

Objective function (5.4) represents the economic dispatch of the day-ahead 

electricity market, minimizing the total market operational costs i.e., the bidding strategy 

of the price-maker renewable aggregator and the cost offers of the conventional 

producers. The term for the price-taker renewable aggregator is not included in the 

objective function, since its marginal cost is almost zero. It is worth mentioning that the 

bid for the strategic aggregator is a decision variable that will be optimally determined to 

maximize its expected profits. Constraint (5.5) enforces the energy balance at each power 

bus and the transmission capacity bounds among them. The electricity clearing price for 

each power bus derives as the dual variable of the equivalent energy balance equation. 

Constraints (5.6) – (5.8) impose the day-ahead upper and lower boundaries for the power 

generated by conventional, strategic and non-strategic renewable producers, 

respectively. Constraint (5.9) imposes capacity limits for the electricity transmission 

lines, while constraints (5.10) and (5.11) limit power buses’ voltage angle range and 

establish bus A as the slack bus of the power network, respectively. 
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5.3.3 Lower-level problem: Green certificates market clearing  

In the second stage of the lower-level problem, the MO conducts the clearing of the 

green certificates market and determines the prices and the optimal management of the 

certificates. 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆     ∑ { ∑ 𝛰𝑠,𝑡
𝐺𝐶 ∙ 𝑞𝑠,𝑡

↑

𝑠∈𝑆𝑎𝑁

+ ∑ 𝐶𝑛𝑠,𝑡
𝐺𝐶 ∙ 𝑟𝑛𝑠,𝑡

↑

𝑛𝑠∈𝑁𝑆𝑎𝑁

+ ∑ 𝜆𝐴𝐶𝑃 ∙ 𝐴𝐶𝑃𝑑,𝑡

𝑑𝐸𝐿∈𝐷𝑎𝑁

}

𝒕

 (5.12) 

s.t.  

− ∑ 𝑞𝑠,𝑡
↑

𝑠∈𝑆𝑎𝑁

− ∑ 𝑟𝑛𝑠,𝑡
↑

𝑛𝑠∈𝑁𝑆𝑎𝑁

− ∑ 𝐴𝐶𝑃𝑑,𝑡

𝑑𝐸𝐿∈𝐷𝑎𝑁

+ ∑ 𝑅𝑃𝑆 ∙ 𝐿𝑑,𝑡
𝐸𝐿

𝑑𝐸𝐿∈𝐷𝑎𝑁

= 0      

∶ [𝜆𝑡
𝐺𝐶]       ∀𝑡 

(5.13) 

0 ≤ 𝑞𝑠,𝑡
↑ ≤ 𝑆𝑂𝐴𝐶𝑠,𝑡      ∶ [휀𝑠,𝑡, 휀𝑠,𝑡]           ∀𝑠, ∀𝑡 (5.14) 

0 ≤ 𝑟𝑛𝑠,𝑡
↑ ≤ 𝑆𝑂𝐴𝐶𝑛𝑠,𝑡      ∶ [𝜅𝑛𝑠,𝑡 , 𝜅𝑛𝑠,𝑡]            ∀𝑛𝑠, ∀𝑡 (5.15) 

0 ≤ 𝐴𝐶𝑃𝑑,𝑡 ≤ 𝑅𝑃𝑆 ∙ 𝐿𝑑,𝑡
𝐸𝐿      ∶ [휁𝑑,𝑡 , 휁𝑑,𝑡]           ∀𝑑, ∀𝑡 (5.16) 

 

Objective function (5.12) portrays the day-ahead green certificates market clearing 

mechanism by minimizing the total operation cost. The first two terms represent the bids 

by the strategic and non-strategic renewable asset, respectively, while the third term 

corresponds to the possible penalty to the LSEs, in case of not complying with the RPS 

requirements. Constraint (5.13) describes the green certificates balance, which applied 

universally for the whole power system, contrary to the electricity balance equation that 

applies for each bus individually. It is important to emphasize that the dual variable 

corresponding to this equation constitutes the universal certificates clearing price. 

Constraints (5.14), (5.15) ensure that the number of green certificates the strategic and 

non-strategic renewable aggregators can provide each time period, cannot exceed the 

number of available certificates they already own. Finally, constraint (5.16) imposes 

upper and lower limits for the green certificates mismatch of each LSE. 
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5.3.4 Solution methodology 

Considering the fact that the continuity and differentiability standards of the lower-

level optimization problems are satisfied, their equivalent Lagrangian functions can be 

employed to recast them into unconstrained problems. In addition, it is important to 

mention that while the strategic aggregator’s bidding decisions 𝑂𝑠,𝑡
𝐸𝐿 , 𝛰𝑠,𝑡

𝐺𝐶  in electricity and 

certificates markets are considered prime variables, they are encountered as parameters 

by the MO, rendering the lower-level objective functions (5.4), (5.12) linear and therefore 

convex. Thus, the lower-level problems 5.3.2 and 5.3.3 can be replaced by their respective 

KKT first order optimality conditions (D.1) – (D.6), (D.11) – (D.20) and (D.7) – (D.10), 

(D.21) – (D.26)  transforming the bi-level model into the following single level non-linear 

MPEC. 

The resulting non-linear equations (D.11) – (D.26) of the form 0 ≤ 𝑔(𝑥) ⊥ 𝜇 ≥ 0, 

are substituted by equations (D.27) – (D.58), implementing the Fortuny-Amat and McCarl 

linearization technique (Fortuny-amat et al., 1981). Furthermore, the remaining non-

linearities are eradicated by applying strong duality theory to the lower-level problems 

and binary expansion method. The analytical development of all the mathematical 

transformations is presented in Appendix D. Hence, the non-linear MPEC formulation is 

recast into the following equivalent MILP model: 

 

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆     ∑ {− ∑ 𝐶𝑛𝑠
𝐸𝐿 ∙ 𝑤𝑛𝑠,𝑡

𝑛𝑠∈𝑁𝑆𝑎𝑁

− ∑ 𝐶𝑖 ∙ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

+ ∑ 𝜆𝑛,𝑡
𝐸𝐿 ∙ 𝐿𝑑,𝑡

𝐸𝐿

𝑑𝐸∈𝐷𝑎𝑁𝒕

− ∑ 𝑎𝑖,𝑡 ∙ 𝑃𝑖

𝑖∈𝐼𝑎𝑁

− ∑ 𝛾𝑠,𝑡 · 𝐹𝑠,𝑡

𝑠∈𝑆𝑎𝑁

 − ∑ 휃𝑛𝑠,𝑡 ∙ 𝑊𝑛𝑠,𝑡

𝑛𝑠∈𝑁𝑆𝑎𝑁

− ∑ 𝑇𝑛,𝑚 ·

𝑚∈𝑁𝑎𝑀

(𝜓𝑛,𝑚,𝑡 + 𝜓𝑛,𝑚,𝑡) − ∑ 3.14 ·

𝑛∈𝑁𝑎𝑀

(𝜋𝑛,𝑡 + 𝜋𝑛,𝑡)

− ∑ 𝐶𝑛𝑠,𝑡
𝐺𝐶 ∙ 𝑟𝑛𝑠,𝑡

↑

𝑛𝑠∈𝑁𝑆𝑎𝑁

− ∑ 𝜆𝐴𝐶𝑃 ∙ 𝐴𝐶𝑃𝑑,𝑡

𝑑𝐸𝐿∈𝐷𝑎𝑁

+  ∑ 𝜆𝑡
𝐺𝐶 ∙ 𝑅𝑃𝑆 ∙ 𝐿𝑑,𝑡

𝐸𝐿

𝑑𝐸𝐿∈𝐷𝑎𝑁

− ∑ 𝜅𝑛𝑠,𝑡 · 𝑤𝑛𝑠,𝑡

𝑛𝑠∈𝑁𝑆𝑎𝑁

− ∑ 휁𝑑,𝑡 · 𝑅𝑃𝑆 ∙ 𝐿𝑑,𝑡
𝐸𝐿

𝑑∈𝐷𝑎𝑁

} 

 

 

 

(D.72) 
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subject to:        (2) – (3)  

                         (D.1) – (D.10)  

                         (D.27) – (D.58)  

                         (D.73) – (A.78)  

5.4 Application study 

The proposed optimization framework is applied in a modified Pennsylvania – New 

Jersey – Maryland (PJM) 5-bus power network, sketched in Figure 5.2. The power 

network consists of six conventional power plants  

(I1 – I6), the strategic renewables aggregator’s wind S1 and solar S2 power plants, the 

non-strategic renewables aggregator’s wind and solar power plants NS1 and NS2 and 

three Load Serving Entities at buses A, C, D. The electricity demand load is equally 

distributed on the three LSEs.  

Technical data considering the capacity and bidding costs of power producers and 

the issuance/costs of green certificates by the renewable energy plants, are provided in 

Table 5.1. It is significant to point out that the capacities/costs of the corresponding 

renewable energy assets are equal, both for the strategic and the non-strategic 

aggregators in order to conduct a balanced comparison regarding their overall operation 

and expected profits. Furthermore, the marginal cost of the power production for all the 

renewable plants is assumed to be almost zero and the bidding decisions of the strategic 

renewable aggregator are considered decision variables both for electricity (𝑂𝑠,𝑡
𝐸𝐿) and 

green certificates (𝛰𝑠,𝑡
𝐺𝐶) markets. The overall electricity demand across the power 

network is depicted by the green line with the triangle markers in Figure 5.3. The ACP 

rate applied on green certificates mismatches of the LSEs is determined at 25 $, while the 

hourly RPS compliance imposed to the LSEs by the state regulator is set at 45%. Finally, 

the maximum capacity and susceptance for each power transmission line measure up to 

1,000 MW and 9.412, respectively. 
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Figure 5.2: PJM 5-bus power network. 

 

 

 𝑷𝒊 (𝑴𝑾) 𝑭𝒔(𝑴𝑾) 𝑾𝒏𝒔(𝑴𝑾) 𝑪 ($/𝑴𝑾𝒉) 𝑪 ($/𝒄𝒆𝒓𝒕𝒊𝒇𝒊𝒄𝒂𝒕𝒆) 

𝑰𝟏 310 - - 160 - 

𝑰𝟐 280 - - 150 - 

𝑰𝟑 110 - - 95 - 

𝑰𝟒 185 - - 80 - 

𝑰𝟓 150 - - 108 - 

𝑰𝟔 200 - - 135 - 

𝑺𝟏 - 150 - decision variable decision variable 

𝑺𝟐 - 20-130 - decision variable decision variable 

𝑵𝑺𝟏 - - 150 ≈ 0 18 

𝑵𝑺𝟐 - - 20-130 ≈ 0 20 

Table 5.1: Data for power producers. 
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Figure 5.3: Power producers’ dispatch and LSEs’ power demand. 

5.4.1 Uncongested power network 

Based on the above framework, the proposed optimization algorithm is solved 

considering an uncongested power network, using GAMS/CPLEX. The strategic 

renewable aggregator exerts market power and manipulates the electricity and green 

certificates prices to maximize its profits. Figure 5.3 shows the energy mix for the whole 

24-hour horizon. Due to their zero marginal cost, wind farms are fully dispatched and 

generate 300 MWh combined, on an hourly basis. On the other side, solar parks generate 

electricity only between 7 a.m. and 7 p.m., reaching their maximum capacity during the 

midday hours when solar radiation is more intense. The remaining energy required to 

meet the overall electricity demand is covered by conventional producers which burn 

fossil fuels, such as fuel and natural gas to produce electricity. According to the merit 

order, the producer I1 which has the highest marginal cost does not participate to the mix 

in any time of the day, while producer I2 with the second highest cost dispatches 

electricity only at 7 p.m. and 8 p.m. when the demand is high and the availability of solar 

energy is significantly limited. As for the comparison between the strategic and the non-

strategic aggregators, their overall electricity dispatch is almost equal, providing 4,800 

and 4,830 MWhs daily, respectively. 
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The fluctuation of electricity and green certificates clearing prices across the time 

horizon is illustrated in Figure 5.4. By placing Figures 5.3 and 5.4 side by side, it is obvious 

that high electricity prices are strongly correlated to the levels of power demand and RES 

production. In particular, between 8 p.m. and 9 p.m., when domestic power consumption 

is increased and no solar energy production is available, more expensive conventional 

producers enter the market and set the prices at a daily high of 150 $/MWh. In contrast 

to the non-strategic aggregator that bids at its zero marginal cost, the strategic one 

determines its own bidding strategies (𝑂𝑠,𝑡
𝐸𝐿 ) and operates as a price-maker, since these 

bids coincide with the electricity clearing prices. In particular, at 5 p.m., instead of 

operating its wind farm at maximum capacity and providing 150 MWh, the strategic 

player withholds its production at 135 MWh. This way the conventional producer I5 is 

fully dispatched, generating 150 MWh and the strategic aggregator can elevate its bid to 

135 $/MWh outplacing producer I6, instead of bidding at 108 $/MWh in case of not 

having withheld its production. Hence, by adopting the proposed mathematical approach, 

the strategic aggregator can manipulate the prices and earn additional 2,025 $ (18,225 $ 

instead of 16,200 $) solely from one hour’s transactions. Another great example of the 

strategic behavior of the aggregator is illustrated at time period 11. This time the 

aggregator withholds the production of its solar park, at 125 MWh instead of 130 MWh, 

so that the conventional producer I4 can be fully dispatched by providing these extra 5 

MWh. This way the strategic aggregator can set the price at 108 $/MWh instead of 95 

$/MWh. In other words, the price-maker aggregator sacrifices 5 MWh of its potential 

production in order to raise the price by 13 $/MWh and gain extra 1,150 $.  
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Figure 5.4: Electricity and green certificates clearing prices. 

 

Figure 5.4 also depicts green certificates clearing prices, which are equal to the 

price-maker aggregator’s optimal bids. As shown in this figure, at 9 a.m. the strategic 

aggregator offers only 86 certificates issued from the operation of its wind farm and solar 

park combined, at just under 20 $, in order to deter the provision of certificates by the 

non-strategic solar park. At 1 a.m. and 3 a.m. – 4 a.m. the highest certificates clearing 

prices are observed, equal to 25 $ which corresponds to the ACP rate. During these hours 

one or more LSEs decide that it is more beneficial to be charged with the ACP rate at 25 $ 

for a fraction of their certificates’ demand, instead of buying them from the RES 

producers, as illustrated by Figure 5.5 and Figure 5.6. The reason behind this 

phenomenon lies in the lack of solar energy production during these hours. Since the non-

strategic wind park provides almost all of its available certificates, the strategic 

aggregator is the only available certificates provider left and can excessively speculate, 

offering its certificates at the price of 30 $, which is the cap set by the regulatory authority. 

Faced with this prospect, the LSEs prefer to pay the compliance penalty forcing the 

strategic aggregator to lower its bids also at 25 $ in order to be competitive.  
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Figure 5.5: Green certificates trading by strategic renewable aggregator. 

 

 

Figure 5.6: Green certificates trading by non-strategic renewable aggregator. 

 

Figure 5.5 and Figure 5.6 depict the green certificates provision for the strategic and 

non-strategic renewable aggregators, respectively. The strategic player offers certificates 

derived both from its wind and solar assets and almost completely outplaces the non-

strategic player’s solar park participation in the certificates market. Only at 7 p.m. the 

non-strategic aggregator manages to offer a quota of its certificates originating from solar 

energy, mostly due to the high electricity load at this hour which also leads to high 

demand for certificates, according to the RPS policy. Overall, the strategic player 

undertakes to provide a daily amount of 4,788 certificates, while the non-strategic one 
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only 3,784. This noteworthy divergence constitutes the key reason behind the 

considerable difference between the overall profits of the two players, as shown in Table 

5.2. While. the non-strategic aggregator has slightly higher profits from its participation 

to the electricity market, the strategic aggregator exerting power in the markets by 

strategically submitting its bids, manages to obtain significantly higher daily overall 

profits. Based on the above results, it is confirmed that the proposed algorithm can be 

characterized as completely effective, as among players with identical assets, it ensures 

significant financial benefits to the strategic one that will adopt it.  

 

Profits ($) Strategic aggregator 
Non-strategic 

aggregator 

Electricity 567,665 571,580 

Green certificates 86,961 73,736 

Overall 654,626 645,316 

Table 5.2: Profits of strategic and non-strategic renewable aggregators. 

       As already mentioned, this work introduces for the first time the mechanism of 

the state of available certificates, that indicates the number of certificates that each 

aggregator could potentially issue each hour of the day. Figure 5.7 and Figure 5.8 illustrate 

the SOAC for the strategic and non-strategic aggregator, respectively. From these two 

figures, it is obvious that the basic difference between the strategies of the two players 

lies in the fact that the price-maker aggregator chooses to sell the vast majority of its 

available certificates by the end of the time horizon of the application study. On the other 

hand, the trading strategy of the price-taker aggregator results in almost all the solar 

energy certificates remaining unsold. Selling the majority of the certificates until the end 

of the time horizon instead of keeping them for the next day, brings higher profits to the 

RES aggregator, since there is no certain forecast of the next day’s price. Although the 

proposed algorithm does not include a special mathematical constraint that ensures the 

above strategy, in the general framework of providing the optimal trading plan for the 

price-maker aggregator, the algorithm automatically suggests this strategy.  
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Figure 5.7: Hourly available tradable green certificates of the strategic renewable 

aggregator. 

 

 

Figure 5.8: Hourly available tradable green certificates of the non-strategic renewable 

aggregator. 

 

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G
re

e
n

 c
er

ti
fi

ca
te

s

Time (h)

Strategic wind Strategic solar

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G
re

e
n

 c
er

ti
fi

ca
te

s

Time (h)

Non-strategic wind Non-strategic solar



Chapter 5  

142 
 

5.4.2 Congested power network 

In the former uncongested power network case, the maximum electricity flow 

through each transmission line is 800 MW. If the capacity of lines A – D, B – C and D – E is 

reduced to 150 MW respectively, the power network becomes congested and is separated 

into two distinct sub-areas. The first sub-area includes buses A, B, E, where the assets of 

non-strategic aggregator are located and the second sub-area contains the renewable 

assets of the strategic aggregator at buses C, D. Power network congestion leads to 

different electricity LMPs for the most hours of the day, as shown in Figure 5.9. The 

strategic aggregator manages to exert market power and manipulate the electricity 

clearing prices. In particular, during the hours of the day when electricity demand is high 

and solar power generation is low (7 p.m. – 8 p.m.), the strategic player acts as a marginal 

producer in the second sub-area, setting the price at extremely high levels. Specifically in 

bus C, where the wind farm of the strategic aggregator is installed, a price cap of 290 

$/MWh needs to be applied by the regulatory authority, in order to restrict the bids of 

the RES aggregator and limit the excessive speculation. Bus E is the least affected bus by 

the strategic aggregator’s participation, since the two conventional units as well as the 

non-strategic aggregator’s zero-cost wind farm that are installed, provide considerable 

amounts of low-cost power. Moreover, for the first time, the expensive conventional 

power plant 𝐼1 enters the market during the high net load hours 7 p.m. – 8 p.m., 

generating 140 MWh of electricity overall. 

 

Figure 5.9: Electricity and green certificates clearing prices under power network 

congestion. 
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Comparing Figure 5.4 to Figure 5.9 it can be seen that the green certificates clearing 

prices are the same in both the uncongested and congested power network cases and are 

not directly affected by the changes that occur in the electricity market. However, as 

shown in Table 5.3, the provision of green certificates for the strategic aggregator differs 

between the two cases. In particular, the aggregator issues 96 certificates less under 

network congestion, a fact that is undoubtedly related to the lower production of 

electricity compared to the uncongested case. The non-strategic RES aggregator on the 

other hand, provides the exact same amount of power and certificates in both cases.  

However, despite its slightly limited participation in electricity and green 

certificates markets under network congestion, the strategic player manages to vastly 

increase its overall expected profits by 168,000 $ compared to the uncongested case, as 

comprehensively illustrated by Table 5.4. This significant rise is solely due to the inflated 

electricity prices mentioned earlier, since the profits of strategic aggregator from issuing 

green certificates remain almost the same. An antidiametric scenario takes place 

regarding the non-strategic aggregator, who barely manages to benefit from network 

congestion by augmenting its profitability by almost 4,000 $ on a daily basis. Similar to 

the previous case study, under power network congestion, the strategic aggregator who 

has adopted the proposed mathematical approach manages to reap undeniably greater 

financial benefits compared to the non-strategic player. 

 

Aggregator 
Uncongested power network Congested power network 

Electricity (MWh) Certificates Electricity (MWh) Certificates 

Strategic  4,800 4,788 4,704 4,692 

Non-strategic 4,830 3,784 4,830 3,784 

Table 5.3: Renewable aggregators’ overall electricity generation and certificates 

trading. 

Profits ($) Strategic aggregator 
Non-strategic 

aggregator 

Electricity 737,246 576,620 

Green certificates 85,323 72,978 

Overall 822,569 649,598 

Table 5.4: Profits of strategic and non-strategic renewable aggregators under power 

network congestion. 
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5.4.3 Modified IEEE-24 bus power network 

 

Figure 5.10: Modified IEEE 24-bus power network. 
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The proposed model is applied to a modified IEEE 24-bus reliability test system 

(RTS) (Figure 5.10). The total electricity demand depicted with the green line in Figure 

5.11 is shared among seventeen LSEs with different loads. The power network is 

conceivably divided into two sub-areas which are connected by the transmission lines 3 

– 24, 9 – 11, 9 – 12, 10 – 11, 10 – 12. As with the PJM 5-bus case, the lower sub-area 

contains the renewable assets S1 and S2 of the strategic aggregator, while in the upper 

sub-area the assets NS1 and NS2 of the non-strategic player are installed. The capacities 

of the renewable power plants are higher compared to the base case study; however, both 

the strategic and non-strategic players own identical assets so that the comparison 

between them remains valid. In addition, there are now ten conventional producers 

across the power network.  

As shown in Figure 5.11, the zero-cost wind farms and solar parks operate at their 

maximum capacity according to the merit order and the remaining required energy is 

provided by the conventional power producers. Due to their high marginal cost, 

producers I1 and I2 do not participate in the energy mix for any time of the day. The 

electricity and green certificates clearing price for the uncongested and congested power 

networks are depicted in Figure 5.12 and Figure 5.13, respectively. Under power network 

congestion, it is observed that at the power buses where the renewable assets of the 

strategic aggregator are installed, the electricity LMPs are the highest across the whole 

grid. As in the 5-bus case, the strategic aggregator manages to arbitrage and sells its 

power output at much higher prices compared to the non-strategic player, within the 

framework of course set by the regulatory authority. Especially, for high electricity 

demand hours 4 p.m. – 8 p.m. the prices reach up to 161 $/MWh for the power bus where 

its solar park is installed.  
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Figure 5.11: Power producers’ dispatch and LSEs’ power demand in the IEEE 24-bus 

power network. 

 

Figure 5.12: Electricity and green certificates clearing prices in the uncongested IEEE 

24-bus power network. 
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Figure 5.13: Electricity and green certificates clearing prices in the congested IEEE 24-

bus power network. 

Comparing the profitability of the two aggregators, for the uncongested power 

network case the strategic aggregator earnings have a slight lead, as shown by Table 5.5. 

While its electricity dispatch is less than the non-strategic player’s, the strategic player 

manages to issue almost 1000 green certificates more (Table 5.6) by placing strategic bids 

and completely displacing the non-strategic player’s solar certificates. The same pattern 

in green certificates market is repeated also in the case of network congestion. In fact, the 

power output of the strategic player is almost 70 MWh less. However, due to the 

significant high clearing prices that the strategic player achieves by exerting market 

power, manages to dramatically increase its profits by almost 70,000 $ (Table 5.7) over 

its rival player. 

 

Profits ($) Strategic aggregator 
Non-strategic 

aggregator 

Electricity 752,740 760,110 

Green certificates 116,778 102,760 

Overall 869,518 862,870 

Table 5.5: Profits of strategic and non-strategic renewable aggregators in the 

uncongested IEEE 24-bus power network. 
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Aggregator 
Uncongested power network Congested power network 

Electricity (MWh) Certificates Electricity (MWh) Certificates 

Strategic  4,800 4,788 4,704 4,692 

Non-strategic 4,830 3,784 4,830 3,784 

Table 5.6: Renewable aggregators’ overall electricity generation and certificates 

trading in the IEEE 24-bus power network. 

 

Profits ($) Strategic aggregator 
Non-strategic 

aggregator 

Electricity 819,264 765,013 

Green certificates 117,823 102,683 

Overall 937,087 867,696 

Table 5.7: Profits of strategic and non-strategic renewable aggregators in the congested 

IEEE 24-bus power network. 

5.5 Computational issues 

The resulting MILP is solved using GAMS/CPLEX 39.3.0, on an Intel Core i7-7700 

processor at 3.60 GHz, with 16 GB RAM. The computational time highly depends on the 

power network sophistication and the number of market players. The average CPU time 

for the uncongested power network case is 3 seconds, while for the congested power 

network case, 297 seconds are required in order to reach the problem’s optimal solution. 

For the IEEE 24-bus case, the CPU time is estimated at 37 and 315 seconds for the 

uncongested and congested power network cases, respectively. The selection of the 

appropriate big-Ms’ value is firmly associated with the efficacy of the computational 

procedure, since the over- or underestimation of their value, can result either in an 

unrestricted or in a numerically sparce problem. After executing a series of trials, the 

value of big-Ms was determined at 104.  
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5.6 Conclusions 

This chapter proposes a bi-level mathematical approach to determine the optimal 

trading scheme for a strategic renewable aggregator owning a wind farm and a solar park 

in interdependent pool-based electricity and green certificates markets. The algorithmic 

procedure included the upper-level model that aims at maximizing the profits of the 

strategic player and the lower-level problems that describe the sequential clearing 

mechanism, managed by the same MO in to minimize total operating market costs. The 

proposed model is first applied to a PJM 5-bus transmission constrained power grid and 

then to a modified IEEE 24-bus in order to illustrate its efficiency in a realistic energy 

market framework. 

The problem solution determines the electricity and green certificates clearing 

prices as the dual variables of the two lower-level problems and the optimal trading plan 

for the strategic renewable aggregator in the day-ahead market. In addition, the proposed 

approach provides valuable information on the optimal management of the green 

certificates that each RES aggregator issues, in correlation with its power output, in order 

to maximize its expected profits. The impact of power network congestion on the clearing 

prices and the profitability of the strategic aggregator are also investigated. The raised 

prices, compared to the uncongested power network case, create additional arbitrage 

prospects for the strategic player, therefore acquiring considerably higher financial 

benefits. Finally, the proposed co-optimized approach for the participation of the 

strategic renewable aggregator in both energy and derivative markets brings increased 

revenues by at least 10%, compared to its participation only in the energy market. 
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Nomenclature 

 

F. Indices and sets 

𝑖 Index for conventional power plants  

𝑠 Index for strategic renewable units 

𝑛𝑠 Index for non-strategic renewable units 

𝑑 Index for LSEs 

𝑡 Index for time periods 

𝑛, 𝑚 Indices for power buses 

𝐼𝛼𝛮 Set of indices for conventional power plants located at bus n 

𝑆𝑎𝑁 Set of indices for strategic renewable units located at bus n 

𝑁𝑆𝑎𝑁 Set of indices for non-strategic renewable units located at bus n 

𝐷𝑎𝑁 Set of indices for LSE d located at bus n 

𝑁𝑎𝑀 Set of buses n connected with bus m 

 

G. Acronyms – Superscripts 

𝐸𝐿 Electricity 

𝐺𝐶 Green certificate 

𝐴𝐶𝑃 Alternative compliance penalty 

𝐿𝑆𝐸 Load serving entity 

𝑅𝑃𝑆 Renewable energy portfolio standard 

 

H. Parameters 

𝐶𝑖  Offering price of conventional power plant i ($/MWh) 

𝐶𝑛𝑠 Offering price of non-strategic renewable units ($/MWh) 

𝜆𝐴𝐶𝑃  ACP rate applied on green certificates mismatch of LSE d 

𝑅𝑃𝑆 RPS compliance imposed of LSE d by state regulator 

𝑃𝑖  Maximum capacity of conventional power plant i (MW) 

𝐹𝑠 Maximum capacity of strategic renewable unit s (MW) 

𝑊𝑛𝑠 Maximum capacity of non-strategic renewable unit ns (MW) 
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𝐿𝑑,𝑡
𝐸𝐿  Demand load of LSE d at time t (MWh) 

𝑇𝑛,𝑚 Transmission capacity of circuit line n-m (MW) 

𝐵𝑛,𝑚  Susceptance of line n-m 

 

I. Primal Variables  

𝑂𝑠,𝑡
𝐸𝐿  Strategic electricity offering price of renewable unit s ($/MWh) 

𝛰𝑠,𝑡
𝐺𝐶  Green certificate offering price of renewable unit s ($/certificate) 

𝑝𝑖,𝑡  Electricity generation of conventional power plant i at time t (MWh) 

𝑓𝑠,𝑡 Electricity generation of strategic renewable unit s at time t (MWh) 

𝑤𝑛𝑠,𝑡  
Electricity generation of non-strategic renewable unit ns at time t 

(MWh) 

𝑞𝑠,𝑡
↑  Green certificates supplied to the market by strategic renewable unit s at 

time t 

𝑟𝑛𝑠,𝑡
↑  Green certificates supplied to the market by non-strategic renewable 

unit ns at time t 

𝑆𝑂𝐴𝐶𝑠,𝑡  State of available green certificates for the strategic renewable unit s at 

time t 

𝑆𝑂𝐴𝐶𝑛𝑠,𝑡  State of available green certificates for the non-strategic renewable unit 

ns at time t 

𝐴𝐶𝑃𝑑,𝑡  Green certificates mismatch of LSE d at time t 

𝛿𝑛,𝑡  Voltage angle at bus n at time t  

 

J. Dual Variables 

𝜆𝑛,𝑡
𝐸𝐿  Electricity locational marginal price at bus n at time t ($/MWh)  

𝜆𝑡
𝐺𝐶  Green certificates clearing price at time t ($/certificate) 

𝑎𝑖,𝑡 Upper and lower electricity output of conventional power plant i at time 

t 

𝛾𝑠,𝑡 Upper and lower electricity output of strategic renewable unit s at time t 

휃𝑛𝑠,𝑡  Upper and lower electricity output of non-strategic renewable unit ns at 

time t 



Chapter 5  

152 
 

휀𝑠,𝑡  Upper and lower green certificates issuance of strategic renewable unit 

s at time t 

𝜅𝑛𝑠,𝑡  Upper and lower green certificates issuance of non-strategic renewable 

unit ns at time t 

휁𝑑,𝑡  Upper and lower green certificates demand for LSE d at time t 

𝜓𝑛,𝑚,𝑡  Transmission capacity of line n-m at time t 

𝜋𝑛,𝑡 Upper and lower bound of the voltage angle 𝛿𝑛,𝑡  at bus n 

휂𝑛,𝑡
𝑜  Voltage angle at bus A 

 

 

 

 

 

 

 

 

 

 



 

 
 

Chapter 6 

Conclusions and Future Research 

6.1 Conclusions 

The objective of this thesis has been to develop optimization-based techniques to 

investigate the strategic participation of various types of power producers and 

incorporate sustainability policies such as carbon emission allowances and green 

certificates trading in contemporary energy markets. Applying the research output of this 

thesis in real-life cases is expected to have a significant economic and environmental 

impact. 

Chapter 2 presents a game based on the leader-follower Stackelberg hypothesis and 

proposed a bi-level mathematical framework aiming at deriving optimal strategies for 

offering/bidding by a strategic Energy Storage System (ESS) agent in a pool-based joint 

energy and reserves market. The model takes into account a sequential clearing process 

involving a day-ahead market for joint energy and reserve, as well as a real-time market 

for energy, both overseen by the Market Operator (MO). Uncertainty is introduced during 

the balancing stage through plausible wind power generation scenarios. Applying this 

model to a 6-bus transmission-constrained network, local marginal prices are derived as 

dual variables for the lower-level problems, determining optimal energy dispatch 

(charging/discharging) and reserve provisions for the ESS agent. The algorithm results 

in higher clearing prices compared to cost optimization. Additionally, the impact of 

potential network transmission congestions on ESS operation and expected profit is 

examined. Specifically, the ESS agent benefits from line congestions, experiencing a 

significant profit increase compared to uncongested scenarios. In conclusion, the model 

offers valuable insights for formulating policies that energy storage agents should adopt 

to leverage potential increases in wind generation capacity and achieve a lucrative profit 

boost. 

In Chapter 3, a probabilistic Mixed-Integer Linear Programming (MILP) model is 

created to examine the financial benefits and optimal utilization of different energy 

storage technologies (Pumped Hydro Storage - PHS, Adiabatic Air-Compressed Energy 
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Storage - AA-CAES, Diabatic Compressed Air Energy Storage - D-CAES, and Lithium-Ion 

Battery) within an interconnected electricity and natural gas market operating under 

conditions of perfect competition. The model, designed for energy-only markets, 

simultaneously optimizes the market clearing process for both day-ahead and real-time 

trading platforms with the goal of maximizing social welfare. Stochasticity is introduced 

through a set of plausible scenarios for wind power production. The optimization 

framework is applied to an integrated energy system, comprising a transmission-

constrained modified 24-bus IEEE Reliability Test System and a single-node natural gas 

network. The solution to the problem provides marginal prices for electricity and natural 

gas, optimal dispatch for (discharging) charging, and expected profits for each energy 

storage technology. A specific analysis is conducted on the operation of the diabatic CAES 

system, which participates in both systems as either a producer or a demand load. 

Additionally, all four energy storage systems benefit from power transmission line 

congestion and high wind power volatility, leading to a significant increase in profits 

compared to the case of an uncongested power network due to escalating electricity 

prices.  

The next Chapter introduces a bi-level mathematical framework aiming at 

formulating optimal bidding strategies for a strategically positioned Gas-Fired Power 

Plant (GFPP) involved in interconnected markets for electricity and natural gas, operating 

within the context of a carbon emission trading scheme (CETS). The proposed model 

takes into account a sequential clearing process overseen by the Market Operator (MO), 

which seeks to minimize overall costs amidst high wind power integration. The 

application of this model is demonstrated on a PJM 5-bus transmission-constrained 

power grid and a singular-node gas network. The solution to the problem involves the 

derivation of CETS-embedded Electricity Locational Marginal Prices (ELMPs) and Gas 

Locational Marginal Prices (GLMPs) as dual variables for the lower-level problems. 

Additionally, strategic bidding decisions for the GFPP in the day-ahead market are 

obtained. The model furnishes insights into the optimal alignment of carbon emission 

allowances allocated to the GFPP with its electricity and natural gas 

generation/consumption, with the goal of maximizing expected profits. An examination 

of the impact of power network congestion on electricity clearing prices and the 

profitability of the gas-fired power plant is also conducted. In comparison to the scenario 

with an uncongested network, the increased CETS-ELMPs create more opportunities for 
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arbitrage for the strategic GFPP, resulting in substantial economic advantages. Lastly, the 

continual rise in natural gas prices prompts the gas-fired power plant to strategically 

curtail its power generation, as the ensuing electricity prices do not adequately offset the 

increased production costs. 

The final Chapter 5 introduces a bi-level mathematical strategy to identify the most 

effective trading plan for a strategic renewable aggregator that owns both a wind farm 

and a solar park, operating within interconnected pool-based electricity and green 

certificates markets. The algorithmic process encompasses an upper-level model focused 

on maximizing the strategic player's profits, along with lower-level problems detailing 

the sequential clearing mechanism. These lower-level problems are managed by the same 

multi-objective optimization (MO) to minimize overall operating market costs. To 

showcase its effectiveness in a practical energy market context, the proposed model is 

initially applied to a PJM 5-bus transmission-constrained power grid and subsequently to 

a modified IEEE 24-bus. The solution to the problem determines the clearing prices for 

electricity and green certificates as the dual variables of the two lower-level problems, 

along with the optimal trading strategy for the strategic renewable aggregator in the day-

ahead market. Furthermore, the proposed approach furnishes valuable insights into the 

optimal management of green certificates issued by each Renewable Energy Source (RES) 

aggregator, correlating with its power output to maximize expected profits. The study 

also explores the impact of power network congestion on clearing prices and the 

profitability of the strategic aggregator. Elevated prices resulting from network 

congestion, compared to an uncongested power network scenario, create additional 

arbitrage opportunities for the strategic player, leading to significantly higher financial 

gains. Ultimately, the co-optimized approach for the strategic renewable aggregator's 

participation in both energy and derivative markets is shown to yield increased revenues 

of at least 10% compared to its exclusive participation in the energy market. 
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6.2 Main Contributions of this work 

In summary, the main contributions of this thesis have been: 

 A novel bi-level complementarity model to analyse the inter-relationships between 

the ESS’s optimal bidding and offering strategies, participating in a jointly cleared 

energy and reserve day-ahead pool, as well as in real-time pool, under network 

transmission constraints. Numerical simulations provide the market outcomes of 

transmission lines congestions and variable levels of wind power generation 

insertion and the measure of their influence on ESS agent’s (dis)charging decision 

strategies.   

 The development of a stochastic MILP market-clearing model to determine optimal 

dispatch and analyze expected profits of PHS, AA-CAES, D-CAES and Li-ion battery 

systems in a coupled electricity and natural gas market, under perfect competition. 

The proposed modelling for the diabatic CAES system’s operation in both markets 

is of great interest, since it acts bilaterally as power producers and gas consumer. 

 A bi-level optimization framework to determine the optimal bidding decisions and 

emission allowances manipulation of a strategic gas-fired power plant in a pool-

based market scheme, acting as a producer in the electricity market and as a 

consumer in the natural gas market. This model derives the optimal electricity and 

natural gas dispatch and CETS-embedded electricity locational marginal prices and 

analyzes the impact of power network congestion on electricity locational marginal 

prices and profitability of the strategic gas-fired power plant. 

 A novel bi-level mathematical model to derive the optimal trading decisions for a 

strategic renewable aggregator in a joint pool-based electricity and green 

certificates market scheme and to successfully link and coordinate the operation of 

the two markets. The proposed approach also analyzes the impact of power 

network congestion on electricity and green certificates prices and the strategic 

renewable aggregator’s profitability in a real-life 24-bus power system. 
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6.3 Recommendations for future research 

A range of subjects requiring further investigation has been revealed in the course 

of this work. More specifically, future research directions could focus on: 

 The development of an algorithm studying the strategic behavior of an agent with a 

mixed generation portfolio (i.e., conventional, wind and electricity storage) in a 

joint energy and reserve market. Extensions could also integrate detailed technical 

parameters of storage and electricity generators or other types of renewables with 

a representative and realistic set of scenarios. In that case, due to the increased 

complexity of the optimization problem, special solution techniques 

(decomposition algorithms) should be investigated. 

 A bi-level optimization algorithm in the form of equilibrium problem with 

equilibrium constraints (EPEC) to investigate the optimal bidding strategies for the 

above storage systems that act strategically in an imperfect coupled electricity and 

natural gas market. A possible future extension of the model may also incorporate 

a carbon emission trading scheme, to compare the diabatic CAES system which 

emits carbon pollutants when burning natural gas, with the rest carbon-free storage 

technologies. 

 An optimization framework, investigating the strategic behaviour of a market agent 

with a mixed generation portfolio (gas-fired power plant combined with wind 

farm), in a CETS-embedded joint electricity and natural gas market scheme. 

Extensions could also incorporate the natural gas network expansion, in order to 

study GFPP’s demeanour, acting as strategic gas consumer in multiple nodes. 

 An equilibrium problem with equilibrium constraints (EPEC) that will investigate 

the arbitrage opportunities of two or more strategic aggregators in electricity and 

green certificates market. A possible future extension of the model may also 

incorporate the examination of significant investment opportunities for the 

strategic aggregator and the possible expansion of its assets and activity in the 

market. 
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Appendix Α 
 

Mathematical Transformations for Chapter 2 

 

The KKT optimality conditions of the lower-level day-ahead problem 2.2.2 are 

described by equations (A.1)-(A.50): 

𝑂𝑠,𝑡
𝑑𝑖𝑠 −  𝜆𝑛,𝑡

𝐷𝐴 + 𝛾𝑠,𝑡
𝑑𝑖𝑠,𝑚𝑎𝑥 − 𝛾𝑠,𝑡

𝑑𝑖𝑠,𝑚𝑖𝑛 − 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓ = 0    ∀𝑠, ∀𝑡 (A.1) 

−𝑂𝑠,𝑡
𝑐ℎ +  𝜆𝑛,𝑡

𝐷𝐴 + 𝛾𝑠,𝑡
𝑐ℎ,𝑚𝑎𝑥 − 𝛾𝑠,𝑡

𝑐ℎ,𝑚𝑖𝑛 − 𝛾𝑠,𝑡
𝑐ℎ,↑ = 0    ∀𝑠, ∀𝑡 (A.2) 

𝑐𝑖,𝑡 −  𝜆𝑛,𝑡
𝐷𝐴 + 𝑎𝑖,𝑡

𝑚𝑎𝑥 − 𝑎𝑖,𝑡
𝑚𝑖𝑛 + 𝑎𝑖,𝑡

↑ − 𝑎𝑖,𝑡
↓ = 0    ∀𝑖, ∀𝑡 (A.3) 

−𝑢𝑑,𝑡 +  𝜆𝑛,𝑡
𝐷𝐴 + 𝛽𝑑,𝑡

𝑚𝑎𝑥 − 𝛽𝑑,𝑡
𝑚𝑖𝑛 + 𝛽𝑑,𝑡

↓ − 𝛽𝑑,𝑡
↑ = 0    ∀𝑑, ∀𝑡 (A.4) 

𝑂𝑠,𝑡
𝑑𝑖𝑠,↑ −  𝜆𝑡

↑ + 𝛾𝑠,𝑡
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 − 𝛾𝑠,𝑡

𝑑𝑖𝑠,↑,𝑚𝑖𝑛 = 0    ∀𝑠, ∀𝑡 (A.5) 

𝑂𝑠,𝑡
𝑑𝑖𝑠,↓ −  𝜆𝑡

↓ + 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 − 𝛾𝑠,𝑡

𝑑𝑖𝑠,↓,𝑚𝑖𝑛 + 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓ = 0    ∀𝑠, ∀𝑡 (A.6) 

𝑂𝑠,𝑡
𝑐ℎ,↑ −  𝜆𝑡

↑ + 𝛾𝑠,𝑡
𝑐ℎ,↑,𝑚𝑎𝑥 − 𝛾𝑠,𝑡

𝑐ℎ,↑,𝑚𝑖𝑛 + 𝛾𝑠,𝑡
𝑐ℎ,↑ = 0    ∀𝑠, ∀𝑡 (A.7) 

𝑂𝑠,𝑡
𝑐ℎ,↓ −  𝜆𝑡

↓ + 𝛾𝑠,𝑡
𝑐ℎ,↓,𝑚𝑎𝑥 − 𝛾𝑠,𝑡

𝑐ℎ,↓,𝑚𝑖𝑛 = 0    ∀𝑠, ∀𝑡 (A.8) 

𝑐𝑖,𝑡
𝑟𝑒𝑠 −  𝜆𝑡

↑ + 𝛼𝑖,𝑡
↑,𝑚𝑎𝑥 − 𝛼𝑖,𝑡

↑,𝑚𝑖𝑛 + 𝛼𝑖,𝑡
↑ = 0    ∀𝑖, ∀𝑡 (A.9) 

𝑐𝑖,𝑡
𝑟𝑒𝑠 −  𝜆𝑡

↓ + 𝛼𝑖,𝑡
↓,𝑚𝑎𝑥 − 𝛼𝑖,𝑡

↓,𝑚𝑖𝑛 + 𝛼𝑖,𝑡
↓ = 0    ∀𝑖, ∀𝑡 (A.10) 

𝑢𝑑,𝑡
𝑟𝑒𝑠 −  𝜆𝑡

↑ + 𝛽𝑑,𝑡
↑,𝑚𝑎𝑥 − 𝛽𝑑,𝑡

↑,𝑚𝑖𝑛 + 𝛽𝑑,𝑡
↑ = 0    ∀𝑑, ∀𝑡 (A.11) 

𝑢𝑑,𝑡
𝑟𝑒𝑠 −  𝜆𝑡

↓ + 𝛽𝑑,𝑡
↓,𝑚𝑎𝑥 − 𝛽𝑑,𝑡

↓,𝑚𝑖𝑛 + 𝛽𝑑,𝑡
↓ = 0    ∀𝑑, ∀𝑡 (A.12) 

−𝜆𝑛,𝑡
𝐷𝐴 + 휀𝑗,𝑡

𝑚𝑎𝑥 − 휀𝑗,𝑡
𝑚𝑖𝑛 = 0   ∀𝑗, ∀𝑡 (A.13) 

∑ 𝐵𝑛,𝑚 ∙ (𝜆𝑛,𝑡
𝐷𝐴−𝜆𝑚,𝑡

𝐷𝐴 ) +

𝑚∈𝑁𝑎𝑀

∑ 𝐵𝑛,𝑚 ∙ (휁𝑛,𝑚,𝑡
𝑚𝑎𝑥 −휁𝑚,𝑛,𝑡

𝑚𝑎𝑥 ) − 

𝑚∈𝑁𝑎𝑀

∑ 𝐵𝑛,𝑚

𝑚∈𝑁𝑎𝑀

∙ (휁𝑛,𝑚,𝑡
𝑚𝑖𝑛 −휁𝑚,𝑛,𝑡

𝑚𝑖𝑛 ) + 휁̃𝑛,𝑡
𝑚𝑎𝑥 − 휁̃𝑛,𝑡

𝑚𝑖𝑛 + 휁𝑛1,𝑡
∘ = 0   ∀𝑛, ∀𝑡 

(A.14) 

0 ≤ 𝑃𝑖,𝑡
𝐷𝐴⟘𝑎𝑖,𝑡

𝑚𝑖𝑛 ≥ 0    ∀𝑖, ∀𝑡 (A.15) 

0 ≤ (𝑃𝑖
𝑚𝑎𝑥 − 𝑃𝑖,𝑡

𝐷𝐴)⟘𝑎𝑖,𝑡
𝑚𝑎𝑥 ≥ 0    ∀𝑖, ∀𝑡 (A.16) 

0 ≤ 𝐿𝑑,𝑡
𝐷𝐴⟘𝛽𝑑,𝑡

𝑚𝑖𝑛 ≥ 0    ∀𝑑, ∀𝑡 (A.17) 

0 ≤ (𝐿𝑑,𝑡
𝑚𝑎𝑥 − 𝐿𝑑,𝑡

𝐷𝐴)⟘𝛽𝑑,𝑡
𝑚𝑎𝑥 ≥ 0    ∀𝑑, ∀𝑡 (A.18) 

0 ≤ 𝐺𝑠,𝑡
𝐷𝐴,𝑐ℎ⟘𝛾𝑠,𝑡

𝑐ℎ,𝑚𝑖𝑛 ≥ 0    ∀𝑠, ∀𝑡 (A.19) 

0 ≤ (�̅�𝑠,𝑡
𝑐ℎ − 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ)⟘𝛾𝑠,𝑡
𝑐ℎ,𝑚𝑎𝑥 ≥ 0    ∀𝑠, ∀𝑡 (A.20) 
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0 ≤ 𝐺𝑠,𝑡
𝐷𝐴,𝑑𝑖𝑠⟘𝛾𝑠,𝑡

𝑑𝑖𝑠,𝑚𝑖𝑛 ≥ 0    ∀𝑠, ∀𝑡 (A.21) 

0 ≤ (�̅�𝑠,𝑡
𝑑𝑖𝑠 − 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠)⟘𝛾𝑠,𝑡
𝑑𝑖𝑠,𝑚𝑎𝑥 ≥ 0    ∀𝑠, ∀𝑡 (A.22) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑐ℎ,↑⟘𝛾𝑠,𝑡

𝑐ℎ,↑,𝑚𝑖𝑛 ≥ 0    ∀𝑠, ∀𝑡 (A.23) 

0 ≤ (𝑟�̅�𝑠,𝑡
𝑐ℎ,↑ − 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑)⟘𝛾𝑠,𝑡
𝑐ℎ,↑,𝑚𝑎𝑥 ≥ 0    ∀𝑠, ∀𝑡 (A.24) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑐ℎ,↓⟘𝛾𝑠,𝑡

𝑐ℎ,↓,𝑚𝑖𝑛 ≥ 0    ∀𝑠, ∀𝑡 (A.25) 

0 ≤ (𝑟�̅�𝑠,𝑡
𝑐ℎ,↓ − 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓)⟘𝛾𝑠,𝑡
𝑐ℎ,↓,𝑚𝑎𝑥 ≥ 0    ∀𝑠, ∀𝑡 (A.26) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↑⟘𝛾𝑠,𝑡

𝑑𝑖𝑠,↑,𝑚𝑖𝑛 ≥ 0    ∀𝑠, ∀𝑡 (A.27) 

0 ≤ (𝑟�̅�𝑠,𝑡
𝑑𝑖𝑠,↑ − 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑)⟘𝛾𝑠,𝑡
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 ≥ 0    ∀𝑠, ∀𝑡 (A.28) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↓⟘𝛾𝑠,𝑡

𝑑𝑖𝑠,↓,𝑚𝑖𝑛 ≥ 0    ∀𝑠, ∀𝑡 (A.29) 

0 ≤ (𝑟�̅�𝑠,𝑡
𝑑𝑖𝑠,↓ − 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓)⟘𝛾𝑠,𝑡
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 ≥ 0    ∀𝑠, ∀𝑡 (A.30) 

0 ≤ (𝐺𝑠,𝑡
𝐷𝐴,𝑐ℎ − 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑)⟘𝛾𝑠,𝑡
𝑐ℎ,↑ ≥ 0    ∀𝑠, ∀𝑡 (A.31) 

0 ≤ (𝐺𝑠,𝑡
𝐷𝐴,𝑑𝑖𝑠 − 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓)⟘𝛾𝑠,𝑡
𝑑𝑖𝑠,↓ ≥ 0    ∀𝑠, ∀𝑡 (A.32) 

0 ≤ 𝑟𝑝𝑐𝑖,𝑡
↑ ⟘𝛼𝑖,𝑡

↑,𝑚𝑖𝑛 ≥ 0    ∀𝑖, ∀𝑡 (A.33) 

0 ≤ (𝑅𝐶𝑐𝑖
↑,𝑚𝑎𝑥 − 𝑟𝑝𝑐𝑖,𝑡

↑ )⟘𝛼𝑖,𝑡
↑,𝑚𝑎𝑥 ≥ 0    ∀𝑖, ∀𝑡 (A.34) 

0 ≤ 𝑟𝑝𝑐𝑖,𝑡
↓ ⟘𝛼𝑖,𝑡

↓,𝑚𝑖𝑛 ≥ 0    ∀𝑖, ∀𝑡 (A.35) 

0 ≤ (𝑅𝐶𝑐𝑖
↓,𝑚𝑎𝑥 − 𝑟𝑝𝑐𝑖,𝑡

↓ )⟘𝛼𝑖,𝑡
↓,𝑚𝑎𝑥 ≥ 0    ∀𝑖, ∀𝑡 (A.36) 

0 ≤ (𝑃𝑖
𝑚𝑎𝑥 − 𝑃𝑖,𝑡

𝐷𝐴 − 𝑟𝑝𝑐𝑖,𝑡
↑ )⟘𝛼𝑖,𝑡

↑ ≥ 0    ∀𝑖, ∀𝑡 (A.37) 

0 ≤ (𝑃𝑖,𝑡
𝐷𝐴 − 𝑟𝑝𝑐𝑖,𝑡

↓ )⟘𝛼𝑖,𝑡
↓ ≥ 0    ∀𝑖, ∀𝑡 (A.38) 

0 ≤ 𝑟𝑝𝑑𝑑,𝑡
↑ ⟘𝛽𝑑,𝑡

↑,𝑚𝑖𝑛 ≥ 0    ∀𝑑, ∀𝑡 (A.39) 

0 ≤ (𝑅𝐶𝑑𝑑,𝑡
↑,𝑚𝑎𝑥 − 𝑟𝑝𝑑𝑑,𝑡

↑ )⟘𝛽𝑑,𝑡
↑,𝑚𝑎𝑥 ≥ 0    ∀𝑑, ∀𝑡 (A.40) 

0 ≤ 𝑟𝑝𝑑𝑑,𝑡
↓ ⟘𝛽𝑑,𝑡

↓,𝑚𝑖𝑛 ≥ 0    ∀𝑑, ∀𝑡 (A.41) 

0 ≤ (𝑅𝐶𝑑𝑑,𝑡
↓,𝑚𝑎𝑥 − 𝑟𝑝𝑑𝑑,𝑡

↓ )⟘𝛽𝑑,𝑡
↓,𝑚𝑎𝑥 ≥ 0    ∀𝑖, ∀𝑡 (A.42) 

0 ≤ (𝐿𝑑,𝑡
𝑚𝑎𝑥 − 𝐿𝑑,𝑡

𝐷𝐴 − 𝑟𝑝𝑑𝑑,𝑡
↓ )⟘𝛽𝑑,𝑡

↓ ≥ 0    ∀𝑑, ∀𝑡 (A.43) 

0 ≤ (𝐿𝑑,𝑡
𝐷𝐴 − 𝑟𝑝𝑑𝑑,𝑡

↑ )⟘𝛽𝑑,𝑡
↑ ≥ 0    ∀𝑑, ∀𝑡 (A.44) 

0 ≤ 𝑊𝑗,𝑡
𝐷𝐴⟘휀𝑗,𝑡

𝑚𝑖𝑛 ≥ 0    ∀𝑖, ∀𝑡 (A.45) 

0 ≤ (𝑊𝑗,𝑡
𝑚𝑎𝑥 − 𝑊𝑗,𝑡

𝐷𝐴)⟘휀𝑗,𝑡
𝑚𝑎𝑥 ≥ 0    ∀𝑖, ∀ (A.46) 

0 ≤ (𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡
∘ − 𝛿𝑚,𝑡

∘ ) + 𝑇𝑛,𝑚
𝑚𝑎𝑥)⟘휁𝑛,𝑚,𝑡

𝑚𝑖𝑛 ≥ 0   ∀𝑛, ∀𝑚 ∈ 𝑁𝑎𝑀, ∀𝑡 (A.47) 
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0 ≤ (𝑇𝑛,𝑚
𝑚𝑎𝑥 − 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡

∘ − 𝛿𝑚,𝑡
∘ )) ⟘휁𝑛,𝑚,𝑡

𝑚𝑎𝑥 ≥ 0   ∀𝑛, ∀𝑚 ∈ 𝑁𝑎𝑀, ∀𝑡 (A.48) 

0 ≤ (𝛿𝑛,𝑡
∘ + 𝜋)⟘휁̃𝑛,𝑡

𝑚𝑖𝑛 ≥ 0   ∀𝑛, ∀𝑡 (A.49) 

0 ≤ (𝜋 − 𝛿𝑛,𝑡
∘ )⟘휁̃𝑛,𝑡

𝑚𝑎𝑥 ≥ 0   ∀𝑛, ∀𝑡 (A.50) 

 

The KKT optimality conditions of the lower-level real-time problem 2.2.3 are 

described by equations (A.51)-(A.85): 

𝑂𝑠,𝑡
𝑑𝑖𝑠 −  𝜆𝑛,𝑡,𝜔

𝑅𝑇 + 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 − 𝜈𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑,𝑚𝑖𝑛 = 0    ∀𝑠, ∀𝑡, ∀𝜔 (A.51) 

−𝑂𝑠,𝑡
𝑑𝑖𝑠 +  𝜆𝑛,𝑡,𝜔

𝑅𝑇 + 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 − 𝜈𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓,𝑚𝑖𝑛 = 0    ∀𝑠, ∀𝑡, ∀𝜔 (A.52) 

𝑂𝑠,𝑡
𝑐ℎ −  𝜆𝑛,𝑡,𝜔

𝑅𝑇 + 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↑,𝑚𝑎𝑥 − 𝜈𝑠,𝑡,𝜔

𝑐ℎ,↑,𝑚𝑖𝑛 = 0    ∀𝑠, ∀𝑡, ∀𝜔 (A.53) 

−𝑂𝑠,𝑡
𝑐ℎ +  𝜆𝑛,𝑡,𝜔

𝑅𝑇 + 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↓,𝑚𝑎𝑥 − 𝜈𝑠,𝑡,𝜔

𝑐ℎ,↓,𝑚𝑖𝑛 = 0    ∀𝑠, ∀𝑡, ∀𝜔 (A.54) 

𝑐𝑖,𝑡 −  𝜆𝑛,𝑡,𝜔
𝑅𝑇 + 휃𝑖,𝑡,𝜔

↑,𝑚𝑎𝑥 − 휃𝑖,𝑡,𝜔
↑,𝑚𝑖𝑛 = 0    ∀𝑖, ∀𝑡, ∀𝜔 (A.55) 

−𝑐𝑖,𝑡 +  𝜆𝑛,𝑡,𝜔
𝑅𝑇 + 휃𝑖,𝑡,𝜔

↓,𝑚𝑎𝑥 − 휃𝑖,𝑡,𝜔
↓,𝑚𝑖𝑛 = 0    ∀𝑖, ∀𝑡, ∀𝜔 (A.56) 

𝑢𝑑,𝑡 −  𝜆𝑛,𝑡,𝜔
𝑅𝑇 + 𝜇𝑑,𝑡,𝜔

↑,𝑚𝑎𝑥 − 𝜇𝑑,𝑡,𝜔
↑,𝑚𝑖𝑛 = 0    ∀𝑑, ∀𝑡, ∀𝜔 (A.57) 

−𝑢𝑑,𝑡 +  𝜆𝑛,𝑡,𝜔
𝑅𝑇 + 𝜇𝑑,𝑡,𝜔

↓,𝑚𝑎𝑥 − 𝜇𝑑,𝑡,𝜔
↓,𝑚𝑖𝑛 = 0    ∀𝑑, ∀𝑡, ∀𝜔 (A.58) 

𝑉𝑂𝐿𝐿𝑑,𝑡 +  𝜆𝑛,𝑡,𝜔
𝑅𝑇 + 𝜇𝑑,𝑡,𝜔

𝑚𝑎𝑥 − 𝜇𝑑,𝑡,𝜔
𝑚𝑖𝑛 = 0    ∀𝑑, ∀𝑡, ∀𝜔 (A.59) 

𝜆𝑛,𝑡,𝜔
𝑅𝑇 + 𝜉𝑗,𝑡,𝜔

𝑚𝑎𝑥 − 𝜉𝑗,𝑡,𝜔
𝑚𝑖𝑛 = 0    ∀𝑗, ∀𝑡, ∀𝜔 (A.60) 

− ∑ 𝐵𝑛,𝑚 ∙ (𝜆𝑛,𝑡,𝜔
𝑅𝑇 −𝜆𝑚,𝑡,𝜔

𝑅𝑇 ) +

𝑚∈𝑁𝑎𝑀

∑ 𝐵𝑛,𝑚 ∙ (𝜑𝑛,𝑚,𝑡,𝜔
𝑚𝑎𝑥 −𝜑𝑚,𝑛,𝑡,𝜔

𝑚𝑎𝑥 ) − 

𝑚∈𝑁𝑎𝑀

∑ 𝐵𝑛,𝑚

𝑚∈𝑁𝑎𝑀

∙ (𝜑𝑛,𝑚,𝑡,𝜔
𝑚𝑖𝑛 −𝜑𝑚,𝑛,𝑡,𝜔

𝑚𝑖𝑛 ) + �̃�𝑛,𝑡,𝜔
𝑚𝑎𝑥 − �̃�𝑛,𝑡,𝜔

𝑚𝑖𝑛 + 𝜑𝑛1,𝑡,𝜔
∘ = 0   ∀𝑛, ∀𝑡, ∀𝜔 

(A.61) 

0 ≤ 𝑟𝑎𝑐𝑖,𝑡,𝜔
↑ ⟘휃𝑖,𝑡,𝜔

↑,𝑚𝑖𝑛 ≥ 0    ∀𝑖, ∀𝑡, ∀𝜔 (A.62) 

0 ≤ (𝑟𝑝𝑐𝑖,𝑡
↑ − 𝑟𝑎𝑐𝑖,𝑡,𝜔

↑ )⟘휃𝑖,𝑡,𝜔
↑,𝑚𝑎𝑥 ≥ 0    ∀𝑖, ∀𝑡, ∀𝜔 (A.63) 

0 ≤ 𝑟𝑎𝑐𝑖,𝑡,𝜔
↓ ⟘휃𝑖,𝑡,𝜔

↓,𝑚𝑖𝑛 ≥ 0    ∀𝑖, ∀𝑡, ∀𝜔 (A.64) 

0 ≤ (𝑟𝑝𝑐𝑖,𝑡
↓ − 𝑟𝑎𝑐𝑖,𝑡,𝜔

↓ )⟘휃𝑖,𝑡,𝜔
↓,𝑚𝑎𝑥 ≥ 0    ∀𝑖, ∀𝑡, ∀𝜔 (A.65) 

0 ≤ 𝑟𝑎𝑑𝑑,𝑡,𝜔
↑ ⟘𝜇𝑑,𝑡,𝜔

↑,𝑚𝑖𝑛 ≥ 0    ∀𝑑, ∀𝑡, ∀𝜔 (A.66) 

0 ≤ (𝑟𝑝𝑑𝑑,𝑡
↑ − 𝑟𝑎𝑑𝑑,𝑡,𝜔

↑ )⟘𝜇𝑑,𝑡,𝜔
↑,𝑚𝑎𝑥 ≥ 0    ∀𝑑, ∀𝑡, ∀𝜔 (A.67) 

0 ≤ 𝑟𝑎𝑑𝑑,𝑡,𝜔
↓ ⟘𝜇𝑑,𝑡,𝜔

↓,𝑚𝑖𝑛 ≥ 0    ∀𝑑, ∀𝑡, ∀𝜔 (A.68) 

0 ≤ (𝑟𝑝𝑑𝑑,𝑡
↓ − 𝑟𝑎𝑑𝑑,𝑡,𝜔

↓ )⟘𝜇𝑑,𝑡,𝜔
↓,𝑚𝑎𝑥 ≥ 0    ∀𝑑, ∀𝑡, ∀𝜔 (A.69) 

0 ≤ 𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑⟘𝜈𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑,𝑚𝑖𝑛 ≥ 0    ∀𝑠, ∀𝑡, ∀𝜔 (A.70) 

0 ≤ (𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↑ − 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑)⟘𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 ≥ 0    ∀𝑠, ∀𝑡, ∀𝜔 (A.71) 
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0 ≤ 𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓⟘𝜈𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓,𝑚𝑖𝑛 ≥ 0    ∀𝑠, ∀𝑡, ∀𝜔 (A.72) 

0 ≤ (𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↓ − 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓)⟘𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 ≥ 0    ∀𝑠, ∀𝑡, ∀𝜔 (A.73) 

0 ≤ 𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↑ ⟘𝜈𝑠,𝑡,𝜔

𝑐ℎ,↑,𝑚𝑖𝑛 ≥ 0    ∀𝑠, ∀𝑡, ∀𝜔 (A.74) 

0 ≤ (𝑟𝑝𝑠,𝑡
𝑐ℎ,↑ − 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑ )⟘𝜈𝑠,𝑡,𝜔
𝑐ℎ,↑,𝑚𝑎𝑥 ≥ 0    ∀𝑠, ∀𝑡, ∀𝜔 (A.75) 

0 ≤ 𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↓ ⟘𝜈𝑠,𝑡,𝜔

𝑐ℎ,↓,𝑚𝑖𝑛 ≥ 0    ∀𝑠, ∀𝑡, ∀𝜔 (A.76) 

0 ≤ (𝑟𝑝𝑠,𝑡
𝑐ℎ,↓ − 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ )⟘𝜈𝑠,𝑡,𝜔
𝑐ℎ,↓,𝑚𝑎𝑥 ≥ 0    ∀𝑠, ∀𝑡, ∀𝜔 (A.77) 

0 ≤ 𝐿𝑑,𝑡,𝜔
𝑠ℎ ⟘𝜇𝑑,𝑡,𝜔

𝑚𝑖𝑛 ≥ 0    ∀𝑑, ∀𝑡, ∀𝜔 (A.78) 

0 ≤ (𝐿𝑑,𝑡
𝐷𝐴 − 𝐿𝑑,𝑡,𝜔

𝑠ℎ )⟘𝜇𝑑,𝑡,𝜔
𝑚𝑎𝑥 ≥ 0    ∀𝑑, ∀𝑡, ∀𝜔 (A.79) 

0 ≤ 𝑊𝑗,𝑡,𝜔
𝑠𝑝

⟘𝜉𝑗,𝑡,𝜔
𝑚𝑖𝑛 ≥ 0    ∀𝑗, ∀𝑡, ∀𝜔 (A.80) 

0 ≤ (𝑊𝑗,𝑡,𝜔
𝑅𝑇 − 𝑊𝑗,𝑡,𝜔

𝑠𝑝
)⟘𝜉𝑗,𝑡,𝜔

𝑚𝛼𝜒
≥ 0    ∀𝑗, ∀𝑡, ∀𝜔 (A.81) 

0 ≤ (𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡,𝜔 − 𝛿𝑚,𝑡,𝜔) + 𝑇𝑛,𝑚
𝑚𝑎𝑥)⟘𝜑𝑛,𝑚,𝑡,𝜔

𝑚𝑖𝑛 ≥ 0   ∀𝑛, ∀𝑚 ∈ 𝑁𝑎𝑀, ∀𝑡, ∀𝜔 (A.82) 

0 ≤ (𝑇𝑛,𝑚
𝑚𝑎𝑥 − 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡,𝜔 − 𝛿𝑚,𝑡,𝜔)) ⟘𝜑𝑛,𝑚,𝑡,𝜔

𝑚𝑎𝑥 ≥ 0   ∀𝑛, ∀𝑚 ∈ 𝑁𝑎𝑀, ∀𝑡, ∀𝜔 (A.83) 

0 ≤ (𝛿𝑛,𝑡,𝜔 + 𝜋)⟘�̃�𝑛,𝑡,𝜔
𝑚𝑖𝑛 ≥ 0   ∀𝑛, ∀𝑡, ∀𝜔 (A.84) 

0 ≤ (𝜋 − 𝛿𝑛,𝑡,𝜔)⟘�̃�𝑛,𝑡,𝜔
𝑚𝑎𝑥 ≥ 0   ∀𝑛, ∀𝑡, ∀𝜔 (A.85) 

 

The nonlinearities arisen in the above KKT complementarity conditions are 

eradicated using the Fortuny-Amat and McCarl big-M linearization approach, which 

entails the introduction of a set of binary variables σ. 

Linearization of complementarity conditions (A.15)-(A.50) is established through 

their reformulation into the equations (A.86)-(A.158): 

0 ≤ 𝑃𝑖,𝑡
𝐷𝐴 ≤ 𝑀𝑃1 ∙ 𝜎𝑖,𝑡

1       ∀𝑖, ∀𝑡 (A.86) 

0 ≤ 𝛼𝑖,𝑡
𝑚𝑖𝑛 ≤ 𝑀𝑀1 ∙ (1 − 𝜎𝑖,𝑡

1 )      ∀𝑖, ∀𝑡 (A.87) 

0 ≤ 𝑃𝑖
𝑚𝑎𝑥 − 𝑃𝑖,𝑡

𝐷𝐴 ≤ 𝑀𝑃2 ∙ 𝜎𝑖,𝑡
2       ∀𝑖, ∀𝑡 (A.88) 

0 ≤ 𝛼𝑖,𝑡
𝑚𝑎𝑥 ≤ 𝑀𝑀2 ∙ (1 − 𝜎𝑖,𝑡

2 )      ∀𝑖, ∀𝑡 (A.89) 

0 ≤ 𝐿𝑑,𝑡
𝐷𝐴 ≤ 𝑀𝑃3 ∙ 𝜎𝑑,𝑡

3       ∀𝑑, ∀𝑡 (A.90) 

0 ≤ 𝛽𝑑,𝑡
𝑚𝑖𝑛 ≤ 𝑀𝑀3 ∙ (1 − 𝜎𝑑,𝑡

3 )      ∀𝑑, ∀𝑡 (A.91) 

0 ≤ 𝐿𝑑,𝑡
𝑚𝑎𝑥 − 𝐿𝑑,𝑡

𝐷𝐴 ≤ 𝑀𝑃4 ∙ 𝜎𝑑,𝑡
4       ∀𝑑, ∀𝑡 (A.92) 

0 ≤ 𝛽𝑑,𝑡
𝑚𝑎𝑥 ≤ 𝑀𝑀4 ∙ (1 − 𝜎𝑑,𝑡

4 )      ∀𝑑, ∀𝑡 (A.93) 
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0 ≤ 𝐺𝑠,𝑡
𝐷𝐴,𝑐ℎ ≤ 𝑀𝑃5 ∙ 𝜎𝑠,𝑡

5       ∀𝑠, ∀𝑡 (A.94) 

0 ≤ 𝛾𝑠,𝑡
𝑐ℎ,𝑚𝑖𝑛 ≤ 𝑀𝑀5 ∙ (1 − 𝜎𝑠,𝑡

5 )      ∀𝑠, ∀𝑡 (A.95) 

0 ≤ �̅�𝑠,𝑡
𝑐ℎ−𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ ≤ 𝑀𝑃6 ∙ 𝜎𝑠,𝑡
6       ∀𝑠, ∀𝑡 (A.96) 

0 ≤ 𝛾𝑠,𝑡
𝑐ℎ,𝑚𝑎𝑥 ≤ 𝑀𝑀6 ∙ (1 − 𝜎𝑠,𝑡

6 )      ∀𝑠, ∀𝑡 (A.97) 

0 ≤ 𝐺𝑠,𝑡
𝐷𝐴,𝑑𝑖𝑠 ≤ 𝑀𝑃7 ∙ 𝜎𝑠,𝑡

7       ∀𝑠, ∀𝑡 (A.98) 

0 ≤ 𝛾𝑠,𝑡
𝑑𝑖𝑠,𝑚𝑖𝑛 ≤ 𝑀𝑀7 ∙ (1 − 𝜎𝑠,𝑡

7 )      ∀𝑠, ∀𝑡 (A.99) 

0 ≤ �̅�𝑠,𝑡
𝑑𝑖𝑠−𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠 ≤ 𝑀𝑃8 ∙ 𝜎𝑠,𝑡
8       ∀𝑠, ∀𝑡 (A.100) 

0 ≤ 𝛾𝑠,𝑡
𝑑𝑖𝑠,𝑚𝑎𝑥 ≤ 𝑀𝑀8 ∙ (1 − 𝜎𝑠,𝑡

8 )      ∀𝑠, ∀𝑡 (A.101) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑐ℎ,↑ ≤ 𝑀𝑃9 ∙ 𝜎𝑠,𝑡

9       ∀𝑠, ∀𝑡 (A.102) 

0 ≤ 𝛾𝑠,𝑡
𝑐ℎ,↑,𝑚𝑖𝑛 ≤ 𝑀𝑀9 ∙ (1 − 𝜎𝑠,𝑡

9 )      ∀𝑠, ∀𝑡 (A.103) 

0 ≤ 𝑟�̅�𝑠,𝑡
𝑐ℎ,↑−𝑟𝑝𝑠,𝑡

𝑐ℎ,↑ ≤ 𝑀𝑃10 ∙ 𝜎𝑠,𝑡
10      ∀𝑠, ∀𝑡 (A.104) 

0 ≤ 𝛾𝑠,𝑡
𝑐ℎ,↑,𝑚𝑎𝑥 ≤ 𝑀𝑀10 ∙ (1 − 𝜎𝑠,𝑡

10)      ∀𝑠, ∀𝑡 (A.105) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑐ℎ,↓ ≤ 𝑀𝑃11 ∙ 𝜎𝑠,𝑡

11      ∀𝑠, ∀𝑡 (A.106) 

0 ≤ 𝛾𝑠,𝑡
𝑐ℎ,↓,𝑚𝑖𝑛 ≤ 𝑀𝑀11 ∙ (1 − 𝜎𝑠,𝑡

11)      ∀𝑠, ∀𝑡 (A.107) 

0 ≤ 𝑟�̅�𝑠,𝑡
𝑐ℎ,↓−𝑟𝑝𝑠,𝑡

𝑐ℎ,↓ ≤ 𝑀𝑃12 ∙ 𝜎𝑠,𝑡
12      ∀𝑠, ∀𝑡 (A.108) 

0 ≤ 𝛾𝑠,𝑡
𝑐ℎ,↓,𝑚𝑎𝑥 ≤ 𝑀𝑀12 ∙ (1 − 𝜎𝑠,𝑡

12)      ∀𝑠, ∀𝑡 (A.109) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↑ ≤ 𝑀𝑃13 ∙ 𝜎𝑠,𝑡

13      ∀𝑠, ∀𝑡 (A.110) 

0 ≤ 𝛾𝑠,𝑡
𝑑𝑖𝑠,↑,𝑚𝑖𝑛 ≤ 𝑀𝑀13 ∙ (1 − 𝜎𝑠,𝑡

13)      ∀𝑠, ∀𝑡 (A.111) 

0 ≤ 𝑟�̅�𝑠,𝑡
𝑑𝑖𝑠,↑−𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑ ≤ 𝑀𝑃14 ∙ 𝜎𝑠,𝑡
14       ∀𝑠, ∀𝑡 (A.112) 

0 ≤ 𝛾𝑠,𝑡
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 ≤ 𝑀𝑀14 ∙ (1 − 𝜎𝑠,𝑡

14)      ∀𝑠, ∀𝑡 (A.113) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↓ ≤ 𝑀𝑃15 ∙ 𝜎𝑠,𝑡

15      ∀𝑠, ∀𝑡 (A.114) 

0 ≤ 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓,𝑚𝑖𝑛 ≤ 𝑀𝑀15 ∙ (1 − 𝜎𝑠,𝑡

15)      ∀𝑠, ∀𝑡 (A.115) 

0 ≤ 𝑟�̅�𝑠,𝑡
𝑑𝑖𝑠,↓−𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓ ≤ 𝑀𝑃16 ∙ 𝜎𝑠,𝑡
16       ∀𝑠, ∀𝑡 (A.116) 

0 ≤ 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 ≤ 𝑀𝑀16 ∙ (1 − 𝜎𝑠,𝑡

16)      ∀𝑠, ∀𝑡 (A.117) 

0 ≤ 𝐺𝑠,𝑡
𝐷𝐴,𝑐ℎ − 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑ ≤ 𝑀𝑃17 ∙ 𝜎𝑠,𝑡
17       ∀𝑠, ∀𝑡 (A.118) 

0 ≤ 𝛾𝑠,𝑡
𝑐ℎ,↑ ≤ 𝑀𝑀17 ∙ (1 − 𝜎𝑠,𝑡

17)      ∀𝑠, ∀𝑡 (A.119) 

0 ≤ 𝐺𝑠,𝑡
𝐷𝐴,𝑑𝑖𝑠 − 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓ ≤ 𝑀𝑃18 ∙ 𝜎𝑠,𝑡
18      ∀𝑠, ∀𝑡 (A.120) 
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0 ≤ 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓ ≤ 𝑀𝑀18 ∙ (1 − 𝜎𝑠,𝑡

18)      ∀𝑠, ∀𝑡 (A.121) 

0 ≤ 𝑟𝑝𝑐𝑖,𝑡
↑ ≤ 𝑀𝑃19 ∙ 𝜎𝑖,𝑡

19       ∀𝑖, ∀𝑡 (A.122) 

0 ≤ 𝛼𝑖,𝑡
↑,𝑚𝑖𝑛 ≤ 𝑀𝑀19 ∙ (1 − 𝜎𝑖,𝑡

19)      ∀𝑖, ∀𝑡 (A.123) 

0 ≤ 𝑅𝐶𝑐𝑖
↑,𝑚𝑎𝑥 − 𝑟𝑝𝑐𝑖,𝑡

↑ ≤ 𝑀𝑃20 ∙ 𝜎𝑖,𝑡
20      ∀𝑖, ∀𝑡 (A.124) 

0 ≤ 𝛼𝑖,𝑡
↑,𝑚𝑎𝑥 ≤ 𝑀𝑀20 ∙ (1 − 𝜎𝑖,𝑡

20)      ∀𝑖, ∀𝑡 (A.125) 

0 ≤ 𝑟𝑝𝑐𝑖,𝑡
↓ ≤ 𝑀𝑃21 ∙ 𝜎𝑖,𝑡

21       ∀𝑖, ∀𝑡 (A.126) 

0 ≤ 𝛼𝑖,𝑡
↓,𝑚𝑖𝑛 ≤ 𝑀𝑀21 ∙ (1 − 𝜎𝑖,𝑡

21)      ∀𝑖, ∀𝑡 (A.127) 

0 ≤ 𝑅𝐶𝑐𝑖
↓,𝑚𝑎𝑥 − 𝑟𝑝𝑐𝑖,𝑡

↓ ≤ 𝑀𝑃22 ∙ 𝜎𝑖,𝑡
22      ∀𝑖, ∀𝑡 (A.128) 

0 ≤ 𝛼𝑖,𝑡
↓,𝑚𝑎𝑥 ≤ 𝑀𝑀22 ∙ (1 − 𝜎𝑖,𝑡

22)      ∀𝑖, ∀𝑡 (A.129) 

0 ≤ 𝑃𝑖
𝑚𝑎𝑥 − 𝑃𝑖,𝑡

𝐷𝐴 − 𝑟𝑝𝑐𝑖,𝑡
↑ ≤ 𝑀𝑃23 ∙ 𝜎𝑖,𝑡

23       ∀𝑖, ∀𝑡 (A.130) 

0 ≤ 𝛼𝑖,𝑡
↑ ≤ 𝑀𝑀23 ∙ (1 − 𝜎𝑖,𝑡

23)      ∀𝑖, ∀𝑡 (A.131) 

0 ≤ 𝑃𝑖,𝑡
𝐷𝐴 − 𝑟𝑝𝑐𝑖,𝑡

↑ ≤ 𝑀𝑃24 ∙ 𝜎𝑖,𝑡
24       ∀𝑖, ∀𝑡 (A.132) 

0 ≤ 𝛼𝑖,𝑡
↓ ≤ 𝑀𝑀24 ∙ (1 − 𝜎𝑖,𝑡

24)      ∀𝑖, ∀𝑡 (A.134) 

0 ≤ 𝑟𝑝𝑑𝑑,𝑡
↑ ≤ 𝑀𝑃25 ∙ 𝜎𝑑,𝑡

25      ∀𝑑, ∀𝑡 (A.135) 

0 ≤ 𝛽𝑑,𝑡
↑,𝑚𝑖𝑛 ≤ 𝑀𝑀25 ∙ (1 − 𝜎𝑑,𝑡

25)      ∀𝑑, ∀𝑡 (A.136) 

0 ≤ 𝑅𝐶𝑑𝑑,𝑡
↑,𝑚𝑎𝑥 − 𝑟𝑝𝑑𝑑,𝑡

↑ ≤ 𝑀𝑃26 ∙ 𝜎𝑑,𝑡
26      ∀𝑑, ∀𝑡 (A.137) 

0 ≤ 𝛽𝑑,𝑡
↓,𝑚𝑖𝑛 ≤ 𝑀𝑀26 ∙ (1 − 𝜎𝑑,𝑡

26)      ∀𝑑, ∀𝑡 (A.138) 

0 ≤ 𝑟𝑝𝑑𝑑,𝑡
↓ ≤ 𝑀𝑃27 ∙ 𝜎𝑑,𝑡

27      ∀𝑑, ∀𝑡 (A.139) 

0 ≤ 𝛽𝑑,𝑡
↓,𝑚𝑖𝑛 ≤ 𝑀𝑀27 ∙ (1 − 𝜎𝑑,𝑡

27)      ∀𝑑, ∀𝑡 (A.140) 

0 ≤ 𝑅𝐶𝑑𝑑,𝑡
↓,𝑚𝑎𝑥 − 𝑟𝑝𝑑𝑑,𝑡

↓ ≤ 𝑀𝑃28 ∙ 𝜎𝑑,𝑡
28      ∀𝑑, ∀𝑡 (A.141) 

0 ≤ 𝛽𝑑,𝑡
↓,𝑚𝑎𝑥 ≤ 𝑀𝑀28 ∙ (1 − 𝜎𝑑,𝑡

28)      ∀𝑑, ∀𝑡 (A.142) 

0 ≤ 𝐿𝑑,𝑡
𝑚𝑎𝑥 − 𝐿𝑑,𝑡

𝐷𝐴 − 𝑟𝑝𝑑𝑑,𝑡
↓ ≤ 𝑀𝑃29 ∙ 𝜎𝑑,𝑡

29       ∀𝑑, ∀𝑡 (A.143) 

0 ≤ 𝛽𝑑,𝑡
↓ ≤ 𝑀𝑀29 ∙ (1 − 𝜎𝑑,𝑡

29)      ∀𝑑, ∀𝑡 (A.144) 

0 ≤ 𝐿𝑑,𝑡
𝐷𝐴 − 𝑟𝑝𝑑𝑑,𝑡

↑ ≤ 𝑀𝑃30 ∙ 𝜎𝑑,𝑡
30      ∀𝑑, ∀𝑡 (A.145) 

0 ≤ 𝛽𝑑,𝑡
↑ ≤ 𝑀𝑀30 ∙ (1 − 𝜎𝑑,𝑡

30)      ∀𝑑, ∀𝑡 (A.146) 

0 ≤ 𝑊𝑗,𝑡
𝐷𝐴 ≤ 𝑀𝑃31 ∙ 𝜎𝑗,𝑡

31       ∀𝑗, ∀𝑡 (A.147) 

0 ≤ 휀𝑗,𝑡
𝑚𝑖𝑛 ≤ 𝑀𝑀31 ∙ (1 − 𝜎𝑗,𝑡

31)      ∀𝑗, ∀𝑡 (A.148) 
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0 ≤ 𝑊𝑗,𝑡
𝑚𝑎𝑥 − 𝑊𝑗,𝑡

𝐷𝐴 ≤ 𝑀𝑃32 ∙ 𝜎𝑗,𝑡
32      ∀𝑗, ∀𝑡 (A.149) 

0 ≤ 휀𝑗,𝑡
𝑚𝑎𝑥 ≤ 𝑀𝑀32 ∙ (1 − 𝜎𝑗,𝑡

32)      ∀𝑗, ∀𝑡 (A.150) 

0 ≤ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡
∘ − 𝛿𝑚,𝑡

∘ ) + 𝑇𝑛,𝑚
𝑚𝑎𝑥 ≤ 𝑀𝑃33 ∙ 𝜎𝑛,𝑚,𝑡

33       ∀𝑛, ∀𝑚, ∀𝑡 (A.151) 

0 ≤ 휁𝑛,𝑚,𝑡
𝑚𝑖𝑛 ≤ 𝑀𝑀33 ∙ (1 − 𝜎𝑛,𝑚,𝑡

33 )      ∀𝑛, ∀𝑚, ∀𝑡 (A.152) 

0 ≤ 𝑇𝑛,𝑚
𝑚𝑎𝑥 − 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡

∘ − 𝛿𝑚,𝑡
∘ ) ≤ 𝑀𝑃34 ∙ 𝜎𝑛,𝑚,𝑡

34       ∀𝑛, ∀𝑚, ∀𝑡 (A.153) 

0 ≤ 휁𝑛,𝑚,𝑡
𝑚𝑎𝑥 ≤ 𝑀𝑀34 ∙ (1 − 𝜎𝑛,𝑚,𝑡

34 )      ∀𝑛, ∀𝑚, ∀𝑡 (A.154) 

0 ≤ 𝛿𝑛,𝑡
∘ + 𝜋 ≤ 𝑀𝑃35 ∙ 𝜎𝑛,𝑡

35      ∀𝑛, ∀𝑡 (A.155) 

0 ≤ 휁̃𝑛,𝑡
𝑚𝑖𝑛 ≤ 𝑀𝑀35 ∙ (1 − 𝜎𝑛,𝑡

35)      ∀𝑛, ∀𝑡 (A.156) 

0 ≤ 𝜋 − 𝛿𝑛,𝑡
∘ ≤ 𝑀𝑃36 ∙ 𝜎𝑛,𝑡

36      ∀𝑛, ∀𝑡 (A.157) 

0 ≤ 휁̃𝑛,𝑡
𝑚𝑎𝑥 ≤ 𝑀𝑀36 ∙ (1 − 𝜎𝑛,𝑡

36)      ∀𝑛, ∀𝑡 (A.158) 

 

Linearization of complementarity conditions (A.62)-(A.85) is established through 

their reformulation into the equations (A.159)-(A.206): 

0 ≤ 𝑟𝑎𝑐𝑖,𝑡,𝜔
↑ ≤ 𝑀𝑃37 ∙ 𝜎𝑖,𝑡,𝜔

37       ∀𝑖, ∀𝑡, ∀𝜔 (A.159) 

0 ≤ 휃𝑖,𝑡,𝜔
↑,𝑚𝑖𝑛 ≤ 𝑀𝑀37 ∙ (1 − 𝜎𝑖,𝑡,𝜔

37 )      ∀𝑖, ∀𝑡, ∀𝜔 (A.160) 

0 ≤ 𝑟𝑝𝑐𝑖,𝑡
↑ − 𝑟𝑎𝑐𝑖,𝑡,𝜔

↑ ≤ 𝑀𝑃38 ∙ 𝜎𝑖,𝑡,𝜔
38       ∀𝑖, ∀𝑡, ∀𝜔 (A.161) 

0 ≤ 휃𝑖,𝑡,𝜔
↑,𝑚𝑎𝑥 ≤ 𝑀𝑀38 ∙ (1 − 𝜎𝑖,𝑡,𝜔

38 )      ∀𝑖, ∀𝑡, ∀𝜔 (A.162) 

0 ≤ 𝑟𝑎𝑐𝑖,𝑡,𝜔
↓ ≤ 𝑀𝑃39 ∙ 𝜎𝑖,𝑡,𝜔

39       ∀𝑖, ∀𝑡, ∀𝜔 (A.163) 

0 ≤ 휃𝑖,𝑡,𝜔
↓,𝑚𝑖𝑛 ≤ 𝑀𝑀39 ∙ (1 − 𝜎𝑖,𝑡,𝜔

39 )      ∀𝑖, ∀𝑡, ∀𝜔 (A.164) 

0 ≤ 𝑟𝑝𝑐𝑖,𝑡
↓ − 𝑟𝑎𝑐𝑖,𝑡,𝜔

↓ ≤ 𝑀𝑃40 ∙ 𝜎𝑖,𝑡,𝜔
40       ∀𝑖, ∀𝑡, ∀𝜔 (A.165) 

0 ≤ 휃𝑖,𝑡,𝜔
↓,𝑚𝑎𝑥 ≤ 𝑀𝑀40 ∙ (1 − 𝜎𝑖,𝑡,𝜔

40 )      ∀𝑖, ∀𝑡, ∀𝜔 (A.166) 

0 ≤ 𝑟𝑎𝑑𝑑,𝑡,𝜔
↑ ≤ 𝑀𝑃41 ∙ 𝜎𝑑,𝑡,𝜔

41       ∀𝑑, ∀𝑡, ∀𝜔 (A.167) 

0 ≤ 𝜇𝑑,𝑡,𝜔
↑,𝑚𝑖𝑛 ≤ 𝑀𝑀41 ∙ (1 − 𝜎𝑑,𝑡,𝜔

41 )      ∀𝑑, ∀𝑡, ∀𝜔 (A.168) 

0 ≤ 𝑟𝑝𝑑𝑑,𝑡
↑ − 𝑟𝑎𝑑𝑑,𝑡,𝜔

↑ ≤ 𝑀𝑃42 ∙ 𝜎𝑑,𝑡,𝜔
42       ∀𝑑, ∀𝑡, ∀𝜔 (A.169) 

0 ≤ 𝜇𝑑,𝑡,𝜔
↑,𝑚𝑎𝑥 ≤ 𝑀𝑀42 ∙ (1 − 𝜎𝑑,𝑡,𝜔

42 )      ∀𝑑, ∀𝑡, ∀𝜔 (A.170) 

0 ≤ 𝑟𝑎𝑑𝑑,𝑡,𝜔
↓ ≤ 𝑀𝑃43 ∙ 𝜎𝑑,𝑡,𝜔

43       ∀𝑑, ∀𝑡, ∀𝜔 (A.171) 

0 ≤ 𝜇𝑑,𝑡,𝜔
↓,𝑚𝑖𝑛 ≤ 𝑀𝑀43 ∙ (1 − 𝜎𝑑,𝑡,𝜔

43 )      ∀𝑑, ∀𝑡, ∀𝜔 (A.172) 
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0 ≤ 𝑟𝑝𝑑𝑑,𝑡
↓ − 𝑟𝑎𝑑𝑑,𝑡,𝜔

↓ ≤ 𝑀𝑃44 ∙ 𝜎𝑑,𝑡,𝜔
44       ∀𝑑, ∀𝑡, ∀𝜔 (A.173) 

0 ≤ 𝜇𝑑,𝑡,𝜔
↓,𝑚𝑎𝑥 ≤ 𝑀𝑀44 ∙ (1 − 𝜎𝑑,𝑡,𝜔

44 )      ∀𝑑, ∀𝑡, ∀𝜔 (A.174) 

0 ≤ 𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑ ≤ 𝑀𝑃45 ∙ 𝜎𝑠,𝑡,𝜔

45       ∀𝑠, ∀𝑡, ∀𝜔 (A.175) 

0 ≤ 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑,𝑚𝑖𝑛 ≤ 𝑀𝑀45 ∙ (1 − 𝜎𝑠,𝑡,𝜔

45 )      ∀𝑠, ∀𝑡, ∀𝜔 (A.176) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↑ − 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑ ≤ 𝑀𝑃46 ∙ 𝜎𝑠,𝑡,𝜔
46       ∀𝑠, ∀𝑡, ∀𝜔 (A.177) 

0 ≤ 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 ≤ 𝑀𝑀46 ∙ (1 − 𝜎𝑠,𝑡,𝜔

46 )      ∀𝑠, ∀𝑡, ∀𝜔 (A.178) 

0 ≤ 𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓ ≤ 𝑀𝑃47 ∙ 𝜎𝑠,𝑡,𝜔

47       ∀𝑠, ∀𝑡, ∀𝜔 (A.179) 

0 ≤ 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓,𝑚𝑖𝑛 ≤ 𝑀𝑀47 ∙ (1 − 𝜎𝑠,𝑡,𝜔

47 )      ∀𝑠, ∀𝑡, ∀𝜔 (A.180) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↓ − 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓ ≤ 𝑀𝑃48 ∙ 𝜎𝑠,𝑡,𝜔
48       ∀𝑠, ∀𝑡, ∀𝜔 (A.181) 

0 ≤ 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 ≤ 𝑀𝑀48 ∙ (1 − 𝜎𝑠,𝑡,𝜔

48 )      ∀𝑠, ∀𝑡, ∀𝜔 (A.182) 

0 ≤ 𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↑ ≤ 𝑀𝑃49 ∙ 𝜎𝑠,𝑡,𝜔

49       ∀𝑠, ∀𝑡, ∀𝜔 (A.183) 

0 ≤ 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↑,𝑚𝑖𝑛 ≤ 𝑀𝑀49 ∙ (1 − 𝜎𝑠,𝑡,𝜔

49 )      ∀𝑠, ∀𝑡, ∀𝜔 (A.184) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑐ℎ,↑ − 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑ ≤ 𝑀𝑃50 ∙ 𝜎𝑠,𝑡,𝜔
50       ∀𝑠, ∀𝑡, ∀𝜔 (A.185) 

0 ≤ 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↑,𝑚𝑎𝑥 ≤ 𝑀𝑀50 ∙ (1 − 𝜎𝑠,𝑡,𝜔

50 )      ∀𝑠, ∀𝑡, ∀𝜔 (A.186) 

0 ≤ 𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↓ ≤ 𝑀𝑃51 ∙ 𝜎𝑠,𝑡,𝜔

51       ∀𝑠, ∀𝑡, ∀𝜔 (A.187) 

0 ≤ 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↓,𝑚𝑖𝑛 ≤ 𝑀𝑀51 ∙ (1 − 𝜎𝑠,𝑡,𝜔

51 )      ∀𝑠, ∀𝑡, ∀𝜔 (A.188) 

0 ≤ 𝑟𝑝𝑠,𝑡
𝑐ℎ,↓ − 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ ≤ 𝑀𝑃52 ∙ 𝜎𝑠,𝑡,𝜔
52       ∀𝑠, ∀𝑡, ∀𝜔 (A.189) 

0 ≤ 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↓,𝑚𝑎𝑥 ≤ 𝑀𝑀52 ∙ (1 − 𝜎𝑠,𝑡,𝜔

52 )      ∀𝑠, ∀𝑡, ∀𝜔 (A.190) 

0 ≤ 𝐿𝑑,𝑡,𝜔
𝑠ℎ ≤ 𝑀𝑃53 ∙ 𝜎𝑑,𝑡,𝜔

53       ∀𝑑, ∀𝑡, ∀𝜔 (A.191) 

0 ≤ 𝜇𝑑,𝑡,𝜔
𝑚𝑖𝑛 ≤ 𝑀𝑀53 ∙ (1 − 𝜎𝑑,𝑡,𝜔

53 )      ∀𝑑, ∀𝑡, ∀𝜔 (A.192) 

0 ≤ 𝐿𝑑,𝑡
𝐷𝐴 − 𝐿𝑑,𝑡,𝜔

𝑠ℎ ≤ 𝑀𝑃54 ∙ 𝜎𝑑,𝑡,𝜔
54       ∀𝑑, ∀𝑡, ∀𝜔 (A.193) 

0 ≤ 𝜇𝑑,𝑡,𝜔
𝑚𝑎𝑥 ≤ 𝑀𝑀54 ∙ (1 − 𝜎𝑑,𝑡,𝜔

54 )      ∀𝑑, ∀𝑡, ∀𝜔 (A.194) 

0 ≤ 𝑊𝑗,𝑡,𝜔
𝑠𝑝

≤ 𝑀𝑃55 ∙ 𝜎𝑗,𝑡,𝜔
55       ∀𝑗, ∀𝑡, ∀𝜔 (A.195) 

0 ≤ 𝜉𝑗,𝑡,𝜔
𝑚𝑖𝑛 ≤ 𝑀𝑃55 ∙ (1 − 𝜎𝑗,𝑡,𝜔

55 )      ∀𝑗, ∀𝑡, ∀𝜔 (A.196) 

0 ≤ 𝑊𝑗,𝑡,𝜔
𝑅𝑇 − 𝑊𝑗,𝑡,𝜔

𝑠𝑝
≤ 𝑀𝑃56 ∙ 𝜎𝑗,𝑡,𝜔

56       ∀𝑗, ∀𝑡, ∀𝜔 (A.197) 

0 ≤ 𝜉𝑗,𝑡,𝜔
𝑚𝑎𝑥 ≤ 𝑀𝑃56 ∙ (1 − 𝜎𝑗,𝑡,𝜔

56 )      ∀𝑗, ∀𝑡, ∀𝜔 (A.198) 

0 ≤ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡,𝜔 − 𝛿𝑚,𝑡,𝜔) + 𝑇𝑛,𝑚
𝑚𝑎𝑥 ≤ 𝑀𝑃57 ∙ 𝜎𝑛,𝑚,𝑡,𝜔

33       ∀𝑛, ∀𝑚, ∀𝑡, ∀𝜔 (A.199) 



                                                                                                                                                    Appendix A 

187 
 

0 ≤ 𝜑𝑛,𝑚,𝑡,𝜔
𝑚𝑖𝑛 ≤ 𝑀𝑀57 ∙ (1 − 𝜎𝑛,𝑚,𝑡,𝜔

57 )      ∀𝑛, ∀𝑚, ∀𝑡, ∀𝜔 (A.200) 

0 ≤ 𝑇𝑛,𝑚
𝑚𝑎𝑥 − 𝐵𝑛,𝑚(𝛿𝑛,𝑡,𝜔 − 𝛿𝑚,𝑡,𝜔) ≤ 𝑀𝑃58 ∙ 𝜎𝑛,𝑚,𝑡,𝜔

58       ∀𝑛, ∀𝑚, ∀𝑡, ∀𝜔 (A.201) 

0 ≤ 𝜑𝑛,𝑚,𝑡,𝜔
𝑚𝑎𝑥 ≤ 𝑀𝑀58 ∙ (1 − 𝜎𝑛,𝑚,𝑡,𝜔

58 )      ∀𝑛, ∀𝑚, ∀𝑡, ∀𝜔 (A.202) 

0 ≤ 𝛿𝑛,𝑡,𝜔 + 𝜋 ≤ 𝑀𝑃59 ∙ 𝜎𝑛,𝑡,𝜔
59       ∀𝑛, ∀𝑡, ∀𝜔 (A.203) 

0 ≤ �̃�𝑛,𝑡,𝜔
𝑚𝑖𝑛 ≤ 𝑀𝑀59 ∙ (1 − 𝜎𝑛,𝑡,𝜔

59 )      ∀𝑛, ∀𝑡, ∀𝜔 (A.204) 

0 ≤ 𝜋 − 𝛿𝑛,𝑡,𝜔 ≤ 𝑀𝑃60 ∙ 𝜎𝑛,𝑡,𝜔
60       ∀𝑛, ∀𝑡, ∀𝜔 (A.205) 

0 ≤ �̃�𝑛,𝑡,𝜔
𝑚𝑎𝑥 ≤ 𝑀𝑀60 ∙ (1 − 𝜎𝑛,𝑡,𝜔

60 )      ∀𝑛, ∀𝑡, ∀𝜔 (A.206) 

 

In this section, strong duality theorem is applied to the day-ahead ISO’s optimization 

problem, which practically guarantees the equality of objective function’s value to the 

corresponding value of its dual problem’s objective function: 

− ∑(𝑂𝑠,𝑡
𝑐ℎ ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ − 𝑂𝑠,𝑡
𝑑𝑖𝑠 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠) − ∑ 𝑢𝑑,𝑡 ∙ 𝐿𝑑,𝑡
𝐷𝐴

𝑑

+ ∑ 𝑐𝑖,𝑡 ∙ 𝑃𝑖,𝑡
𝐷𝐴

𝑖𝑠

+ ∑(𝑂𝑠,𝑡
𝑐ℎ,↑ ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑ + 𝑂𝑠,𝑡
𝑐ℎ,↓ ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓ + 𝑂𝑠,𝑡
𝑑𝑖𝑠,↑ ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑ + 𝑂𝑠,𝑡
𝑑𝑖𝑠,↓

𝑠

∙ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↓) + ∑ 𝑐𝑖,𝑡

𝑟𝑒𝑠 ∙ (𝑟𝑝𝑐𝑖,𝑡
↑ + 𝑟𝑝𝑐𝑖,𝑡

↓ )

𝑖

+ ∑ 𝑢𝑑,𝑡
𝑟𝑒𝑠 ∙ (𝑟𝑝𝑑𝑑,𝑡

↑ + 𝑟𝑝𝑑𝑑,𝑡
↓ )

𝑑

= − ∑(𝛾𝑠,𝑡
𝑐ℎ,𝑚𝑎𝑥 ∙ �̅�𝑠,𝑡

𝑐ℎ + 𝛾𝑠,𝑡
𝑑𝑖𝑠,𝑚𝑎𝑥 ∙ �̅�𝑠,𝑡

𝑑𝑖𝑠 + 𝛾𝑠,𝑡
𝑐ℎ,↑,𝑚𝑎𝑥 ∙ 𝑟�̅�𝑠,𝑡

𝑐ℎ,↑

𝑠

+ 𝛾𝑠,𝑡
𝑐ℎ,↓,𝑚𝑎𝑥 ∙ 𝑟�̅�𝑠,𝑡

𝑐ℎ,↓ + 𝛾𝑠,𝑡
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 ∙ 𝑟�̅�𝑠,𝑡

𝑑𝑖𝑠,↑ + 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 ∙ 𝑟�̅�𝑠,𝑡

𝑑𝑖𝑠,↓)

+ 𝛺𝑡
𝐷𝐴     ∀ (A.207) 

𝛺𝑡
𝐷𝐴 = − ∑ 𝛽𝑑,𝑡

𝑚𝑎𝑥 ∙ 𝐿𝑑,𝑡
𝑚𝑎𝑥

𝑑

− ∑ 𝑎𝑖,𝑡
𝑚𝑎𝑥 ∙ 𝑃𝑖

𝑚𝑎𝑥

𝑖

− ∑ 𝛽𝑑,𝑡
↑,𝑚𝑎𝑥 ∙ 𝑅𝐶𝑑𝑑,𝑡

↑,𝑚𝑎𝑥

𝑑

− ∑ 𝛽𝑑,𝑡
↓,𝑚𝑎𝑥 ∙ 𝑅𝐶𝑑𝑑,𝑡

↓,𝑚𝑎𝑥

𝑑

− ∑ 𝛼𝑖,𝑡
↑,𝑚𝑎𝑥 ∙ 𝑅𝐶𝑐𝑖

↑,𝑚𝑎𝑥

𝑖

− ∑ 𝛼𝑖,𝑡
↓,𝑚𝑎𝑥 ∙ 𝑅𝐶𝑐𝑖

↓,𝑚𝑎𝑥

𝑖

− ∑ 𝛽𝑑,𝑡
↓ ∙ 𝐿𝑑,𝑡

𝑚𝑎𝑥

𝑑

− ∑ 𝑎𝑖,𝑡
↑ ∙ 𝑃𝑖

𝑚𝑎𝑥

𝑖

− ∑ 휀𝑗,𝑡
𝑚𝑎𝑥 ∙ 𝑊𝑗,𝑡

𝑚𝑎𝑥

𝑗

− ∑ 𝑇𝑛,𝑚
𝑚𝑎𝑥 ∙ (휁𝑛,𝑚,𝑡

𝑚𝑖𝑛 + 휁𝑛,𝑚,𝑡
𝑚𝑎𝑥 )

𝑛,𝑚∈𝑁𝑎𝑀

− ∑ 𝜋 ∙ (휁̃𝑛,𝑡
𝑚𝑖𝑛 + 휁̃𝑛,𝑡

𝑚𝑎𝑥)

𝑛

+ 𝜆𝑡
↑ ∙ 𝑅𝑡

↑ + 𝜆𝑡
↓ ∙ 𝑅𝑡

↓      ∀𝑡 
(A.208) 

 

Using (A.20), (A.22), (A.24), (A.26), (A.28), (A.30) the following equations emerge:  

𝛾𝑠,𝑡
𝑐ℎ,𝑚𝑎𝑥 ∙ �̅�𝑠,𝑡

𝑐ℎ = 𝛾𝑠,𝑡
𝑐ℎ,𝑚𝑎𝑥 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ   ∀𝑠, ∀𝑡 (A.209) 
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𝛾𝑠,𝑡
𝑑𝑖𝑠,𝑚𝑎𝑥 ∙ �̅�𝑠,𝑡

𝑑𝑖𝑠 = 𝛾𝑠,𝑡
𝑑𝑖𝑠,𝑚𝑎𝑥 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠    ∀𝑠, ∀𝑡 (A.210) 

𝛾𝑠,𝑡
𝑐ℎ,↑,𝑚𝑎𝑥 ∙ 𝑟�̅�𝑠,𝑡

𝑐ℎ,↑ = 𝛾𝑠,𝑡
𝑐ℎ,↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑   ∀𝑠, ∀𝑡 (A.211) 

𝛾𝑠,𝑡
𝑐ℎ,↓,𝑚𝑎𝑥 ∙ 𝑟�̅�𝑠,𝑡

𝑐ℎ,↓ = 𝛾𝑠,𝑡
𝑐ℎ,↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓   ∀𝑠, ∀𝑡 (A.212) 

𝛾𝑠,𝑡
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 ∙ 𝑟�̅�𝑠,𝑡

𝑑𝑖𝑠,↑ = 𝛾𝑠,𝑡
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑   ∀𝑠, ∀𝑡 (A.213) 

𝛾𝑠,𝑡
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 ∙ 𝑟�̅�𝑠,𝑡

𝑑𝑖𝑠,↓ = 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓   ∀𝑠, ∀𝑡 (A.214) 

 

Introducing (A.209)-(A.214) to (A.207) results in: 

∑[(−𝑂𝑠,𝑡
𝑐ℎ + 𝛾𝑠,𝑡

𝑐ℎ,𝑚𝑎𝑥) ∙ 𝐺𝑠,𝑡
𝐷𝐴,𝑐ℎ + (𝑂𝑠,𝑡

𝑑𝑖𝑠 + 𝛾𝑠,𝑡
𝑑𝑖𝑠,𝑚𝑎𝑥) ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠

𝑠

+ (𝑂𝑠,𝑡
𝑐ℎ,↑ + 𝛾𝑠,𝑡

𝑐ℎ,↑,𝑚𝑎𝑥) ∙ 𝑟𝑝𝑠,𝑡
𝑐ℎ,↑ + (𝑂𝑠,𝑡

𝑐ℎ,↓ + 𝛾𝑠,𝑡
𝑐ℎ,↓,𝑚𝑎𝑥) ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓

+ (𝑂𝑠,𝑡
𝑑𝑖𝑠,↑ + 𝛾𝑠,𝑡

𝑑𝑖𝑠,↑,𝑚𝑎𝑥) ∙ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↑ + (𝑂𝑠,𝑡

𝑑𝑖𝑠,↓ + 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓,𝑚𝑎𝑥) ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓]

= ∑ 𝑢𝑑,𝑡 ∙ 𝐿𝑑,𝑡
𝐷𝐴

𝑑

− ∑ 𝑐𝑖,𝑡 ∙ 𝑃𝑖,𝑡
𝐷𝐴

𝑑

− ∑ 𝑐𝑖,𝑡
𝑟𝑒𝑠 ∙ (𝑟𝑝𝑐𝑖,𝑡

↑ + 𝑟𝑝𝑐𝑖,𝑡
↓ )

𝑑

− ∑ 𝑢𝑑,𝑡
𝑟𝑒𝑠 ∙ (𝑟𝑝𝑑𝑑,𝑡

↑ + 𝑟𝑝𝑑𝑑,𝑡
↓ )

𝑑

+ 𝛺𝑡
𝐷𝐴    ∀𝑡 

(A.215) 
 

Using (A.1), (A.2), (A.5)-(A.8) and implementing the appropriate adaptations the 

following equations occur:  

𝜆𝑛,𝑡
𝐷𝐴 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠 = 𝑂𝑠,𝑡
𝑑𝑖𝑠 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠 + 𝛾𝑠,𝑡
𝑑𝑖𝑠,𝑚𝑎𝑥 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠 − 𝛾𝑠,𝑡
𝑑𝑖𝑠,𝑚𝑖𝑛 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠 − 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓  

∙ 𝐺𝑠,𝑡
𝐷𝐴,𝑑𝑖𝑠   ∀𝑠, ∀𝑡 

(A.216) 

𝜆𝑛,𝑡
𝐷𝐴 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ = 𝑂𝑠,𝑡
𝑐ℎ ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ − 𝛾𝑠,𝑡
𝑐ℎ,𝑚𝑎𝑥 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ + 𝛾𝑠,𝑡
𝑐ℎ,𝑚𝑖𝑛 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ + 𝛾𝑠,𝑡
𝑐ℎ,↑

∙ 𝐺𝑠,𝑡
𝐷𝐴,𝑐ℎ   ∀𝑠, ∀𝑡 

(A.217) 

𝜆𝑡
↑ ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑ = 𝑂𝑠,𝑡
𝑑𝑖𝑠,↑ ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑ + 𝛾𝑠,𝑡
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑ − 𝛾𝑠,𝑡
𝑑𝑖𝑠,↑,𝑚𝑖𝑛 ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑   ∀𝑠, ∀𝑡 (A.218) 

𝜆𝑡
↓ ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓ = 𝑂𝑠,𝑡
𝑑𝑖𝑠,↓ ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓ + 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓ − 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓,𝑚𝑖𝑛 ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓ + 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓

∙ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↓   ∀𝑠, ∀𝑡 

(A.219) 

𝜆𝑡
↑ ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑ = 𝑂𝑠,𝑡
𝑐ℎ,↑ ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑ + 𝛾𝑠,𝑡
𝑐ℎ,↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑ − 𝛾𝑠,𝑡
𝑐ℎ,↑,𝑚𝑖𝑛 ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑ + 𝛾𝑠,𝑡
𝑐ℎ,↑  

∙ 𝑟𝑝𝑠,𝑡
𝑐ℎ,↑  ∀𝑠, ∀𝑡 

(A.220) 

𝜆𝑡
↓ ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓ = 𝑂𝑠,𝑡
𝑐ℎ,↓ ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓ + 𝛾𝑠,𝑡
𝑐ℎ,↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓ − 𝛾𝑠,𝑡
𝑐ℎ,↓,𝑚𝑖𝑛  ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓  ∀𝑠, ∀𝑡 (A.221) 

 

From (A.19), (A.21), (A.23), (A.25), (A.27), (A.29), (A.31), (A.32): 

𝛾𝑠,𝑡
𝑐ℎ,𝑚𝑖𝑛 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ = 0   ∀𝑠, ∀𝑡 (A.222) 



                                                                                                                                                    Appendix A 

189 
 

𝛾𝑠,𝑡
𝑑𝑖𝑠,𝑚𝑖𝑛 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠 = 0   ∀𝑠, ∀𝑡 (A.223) 

𝛾𝑠,𝑡
𝑑𝑖𝑠,↑,𝑚𝑖𝑛 ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑ = 0   ∀𝑠, ∀𝑡 (A.224) 

𝛾𝑠,𝑡
𝑑𝑖𝑠,↓,𝑚𝑖𝑛 ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓ = 0   ∀𝑠, ∀𝑡 (A.225) 

𝛾𝑠,𝑡
𝑐ℎ,↑,𝑚𝑖𝑛 ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑ = 0   ∀𝑠, ∀𝑡 (A.226) 

𝛾𝑠,𝑡
𝑐ℎ,↓,𝑚𝑖𝑛 ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓ = 0   ∀𝑠, ∀𝑡 (A.227) 

𝛾𝑠,𝑡
𝑑𝑖𝑠,↓ ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠 = 𝛾𝑠,𝑡
𝑑𝑖𝑠,↓ ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓   ∀𝑠, ∀𝑡 (A.228) 

𝛾𝑠,𝑡
𝑐ℎ,↑ ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ = 𝛾𝑠,𝑡
𝑐ℎ,↑ ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑   ∀𝑠, ∀𝑡 (A.229) 

 

Substituting (A.216)-(A.229) to (A.215) yields: 

− ∑(𝜆𝑛,𝑡
𝐷𝐴 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ − 𝜆𝑛,𝑡
𝐷𝐴 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠 − 𝜆𝑡
↑ ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑ − 𝜆𝑡
↓ ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓ − 𝜆𝑡
↑ ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑ − 𝜆𝑡
↓

𝑠

∙ 𝑟𝑝𝑠,𝑡
𝑑𝑖𝑠,↓)

= + ∑ 𝑢𝑑,𝑡 ∙ 𝐿𝑑,𝑡
𝐷𝐴

𝑑

− ∑ 𝑐𝑖,𝑡 ∙ 𝑃𝑖,𝑡
𝐷𝐴

𝑖

−  ∑ 𝑐𝑖,𝑡
𝑟𝑒𝑠 ∙ (𝑟𝑝𝑐𝑖,𝑡

↑ + 𝑟𝑝𝑐𝑖,𝑡
↓ )

𝑖

− ∑ 𝑢𝑑,𝑡
𝑟𝑒𝑠 ∙ (𝑟𝑝𝑑𝑑,𝑡

↑ + 𝑟𝑝𝑑𝑑,𝑡
↓ )

𝑑

+ 𝛺𝑡
𝐷𝐴     ∀𝑡 

(A.230) 
 

Strong duality theorem is also applied to the real-time ISO’s optimization problem, 

for the same purposes as above i.e., generate a linear equivalent for the nonlinear 

balancing variables of the objective function (1). Therefore, the strong duality theorem 

for equation (45) is presented below: 

∑ 𝑉𝑂𝐿𝐿𝑑,𝑡 ∙ 𝐿𝑑,𝑡,𝜔
𝑠ℎ

𝑑

+ ∑ 𝑐𝑖,𝑡 ∙ (𝑟𝑎𝑐𝑖,𝑡,𝜔
↑ + 𝑟𝑎𝑐𝑖,𝑡,𝜔

↓ )

𝑖

+ ∑ 𝑂𝑠,𝑡
𝑑𝑖𝑠 ∙ (𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑ + 𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓)

𝑠

+ ∑ 𝑂𝑠,𝑡
𝑐ℎ ∙ (𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑ + 𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↓ )

𝑠

+ ∑ 𝑢𝑑,𝑡 ∙ (𝑟𝑎𝑑𝑑,𝑡,𝜔
↑ + 𝑟𝑎𝑑𝑑,𝑡,𝜔

↓ )

𝑑

= − ∑(𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑ + 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓ + 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑

𝑠

+ 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓) + 𝛺𝑡,𝜔
𝑅𝑇     ∀𝑡, ∀𝜔 (A.231) 
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𝛺𝑡,𝜔
𝑅𝑇 = − ∑(휃𝑖,𝑡,𝜔

↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑐𝑖,𝑡
↑ + 휃𝑖,𝑡,𝜔

↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑐𝑖,𝑡
↓ )

𝑖

− ∑(𝜇𝑑,𝑡,𝜔
↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑑𝑑,𝑡

↑ + 𝜇𝑑,𝑡,𝜔
↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑑𝑑,𝑡

↓ + 𝜇𝑑,𝑡,𝜔
𝑚𝑎𝑥 ∙ 𝐿𝑑,𝑡

𝐷𝐴)

𝑑

− ∑ 𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ (𝑊𝑗,𝑡,𝜔

𝑅𝑇 − 𝑊𝑗,𝑡
𝐷𝐴)

𝑗∈𝐽𝑎𝑁,𝑛

+ ∑ 𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝐵𝑛,𝑚 ∙ (−𝛿𝑛,𝑡

∘ +𝛿𝑚,𝑡
∘ )

𝑛,𝑚∈𝑁𝑎𝑀

− ∑ 𝜉𝑗,𝑡,𝜔
𝑚𝑎𝑥 ∙ 𝑊𝑗,𝑡,𝜔

𝑅𝑇

𝑗

− ∑ 𝛵𝑛,𝑚
𝑚𝑎𝑥 ∙ (𝜑𝑛,𝑚,𝑡,𝜔

𝑚𝑖𝑛 + 𝜑𝑛,𝑚,𝑡,𝜔
𝑚𝑎𝑥 )

𝑛,𝑚∈𝑁𝑎𝑀,𝜔

− ∑ 𝜋 ∙ (�̃�𝑛,𝑡,𝜔
𝑚𝑖𝑛 + �̃�𝑛,𝑡,𝜔

𝑚𝑎𝑥 )

𝑛,𝜔

     ∀𝑡, ∀𝜔     
(A.232) 

 

Using (A.71), (A.73), (A.75), (A.77) the following equations emerge:  

𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↑ = 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑     ∀𝑠, ∀𝑡, ∀𝜔 (A.233) 

𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑑𝑖𝑠,↓ = 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓     ∀𝑠, ∀𝑡, ∀𝜔 (A.234) 

𝜈𝑠,𝑡,𝜔
𝑐ℎ,↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↑ = 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↑,𝑚𝑎𝑥 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑      ∀𝑠, ∀𝑡, ∀𝜔 (A.235) 

𝜈𝑠,𝑡,𝜔
𝑐ℎ,↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑠,𝑡

𝑐ℎ,↓ = 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↓,𝑚𝑎𝑥 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓      ∀𝑠, ∀𝑡, ∀𝜔 (A.236) 

 

Introducing (A.233)-(A.236) to (A.231) results in: 

∑[(𝑂𝑠,𝑡
𝑑𝑖𝑠 + 𝜈𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑,𝑚𝑎𝑥) ∙ 𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑ − (𝑂𝑠,𝑡

𝑑𝑖𝑠 − 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓,𝑚𝑎𝑥) ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓

𝑠

+ (𝑂𝑠,𝑡
𝑐ℎ + 𝜈𝑠,𝑡,𝜔

𝑐ℎ,↑,𝑚𝑎𝑥) ∙ 𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↑ − (𝑂𝑠,𝑡

𝑐ℎ − 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↓,𝑚𝑎𝑥) ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ ]

= − ∑ 𝑉𝑂𝐿𝐿𝑑,𝑡 ∙ 𝐿𝑑,𝑡,𝜔
𝑠ℎ

𝑑

− ∑ 𝑐𝑖,𝑡 ∙

𝑖

(𝑟𝑎𝑐𝑖,𝑡,𝜔
↑ − 𝑟𝑎𝑐𝑖,𝑡,𝜔

↓ )

−  ∑ 𝑢𝑑,𝑡 ∙

𝑑

(𝑟𝑎𝑑𝑑,𝑡,𝜔
↑ − 𝑟𝑎𝑑𝑑,𝑡,𝜔

↓ ) + 𝛺𝑡,𝜔
𝑅𝑇      ∀𝑡, ∀𝜔 

(A.237) 
 

Using (A.51)-(A.54) and implementing the appropriate adaptations the following 

equations occur:  

𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑ = 𝑂𝑠,𝑡
𝑑𝑖𝑠 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑ + 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑,𝑚𝑎𝑥 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑ − 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑,𝑚𝑖𝑛

∙ 𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑    ∀𝑠, ∀𝑡, ∀𝜔 

(A.238) 

𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓ = 𝑂𝑠,𝑡
𝑑𝑖𝑠 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓ − 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓,𝑚𝑎𝑥 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓ + 𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓,𝑚𝑖𝑛

∙ 𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓    ∀𝑠, ∀𝑡, ∀𝜔 

(A.239) 
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𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑ = 𝑂𝑠,𝑡
𝑐ℎ ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑ + 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↑,𝑚𝑎𝑥 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑ − 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↑,𝑚𝑖𝑛 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑     ∀𝑠, ∀𝑡, ∀𝜔 (A.240) 

𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ = 𝑂𝑠,𝑡
𝑐ℎ ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ − 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↓,𝑚𝑎𝑥 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ + 𝜈𝑠,𝑡,𝜔
𝑐ℎ,↓,𝑚𝑖𝑛 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓     ∀𝑠, ∀𝑡, ∀𝜔 (A.241) 

 

Furthermore from (A.70), (A.72), (A.74) and (A.76): 

𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑,𝑚𝑖𝑛 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑ = 0       ∀𝑠, ∀𝑡, ∀𝜔 (A.242) 

𝜈𝑠,𝑡,𝜔
𝑑𝑖𝑠,↓,𝑚𝑖𝑛 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓ = 0     ∀𝑠, ∀𝑡, ∀𝜔 (A.243) 

𝜈𝑠,𝑡,𝜔
𝑐ℎ,↑,𝑚𝑖𝑛 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑ = 0     ∀𝑠, ∀𝑡, ∀𝜔 (A.244) 

𝜈𝑠,𝑡,𝜔
𝑐ℎ,↓,𝑚𝑖𝑛 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ = 0     ∀𝑠, ∀𝑡, ∀𝜔 (A.245) 

 

Using equations (A.238)-(A.245) to simplify equation (A.237): 

∑(𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↑ − 𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓ + 𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑ − 𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↓ )

𝑠

= − ∑ 𝑉𝑂𝐿𝐿𝑑,𝑡 ∙ 𝐿𝑑,𝑡,𝜔
𝑠ℎ

𝑑

− ∑ 𝑐𝑖,𝑡 ∙ (𝑟𝑎𝑐𝑖,𝑡,𝜔
↑ − 𝑟𝑎𝑐𝑖,𝑡,𝜔

↓ )

𝑖

− ∑ 𝑢𝑑,𝑡 ∙ (𝑟𝑎𝑑𝑑,𝑡,𝜔
↑ − 𝑟𝑎𝑑𝑑,𝑡,𝜔

↓ )

𝑑

+ 𝛺𝑡,𝜔
𝑅𝑇     ∀𝑡, ∀𝜔 

(A.246) 
 

The nonlinear objective function (1) can now be reformulated into the equivalent 

form, through the application of equations (A.230) and (A.246) as follows: 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆    ∑ ∑ [(𝑐𝑠
𝑐ℎ ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑐ℎ + 𝑐𝑠
𝑑𝑖𝑠 ∙ 𝐺𝑠,𝑡

𝐷𝐴,𝑑𝑖𝑠) − ∑ 𝑢𝑑,𝑡 ∙ 𝐿𝑑,𝑡
𝐷𝐴

𝑑𝑠𝑡

+ ∑ 𝑐𝑖,𝑡 ∙ 𝑃𝑖,𝑡
𝐷𝐴

𝑖

+ ∑ 𝑐𝑖,𝑡
𝑟𝑒𝑠 ∙ (𝑟𝑝𝑐𝑖,𝑡

↑ + 𝑟𝑝𝑐𝑖,𝑡
↓ )

𝑖

+ ∑ 𝑢𝑑,𝑡
𝑟𝑒𝑠 ∙ (𝑟𝑝𝑑𝑑,𝑡

↑ + 𝑟𝑝𝑑𝑑,𝑡
↓ )

𝑑

− 𝛺𝑡
𝐷𝐴

+ ∑ 𝜋𝜔

𝜔

∙ [−𝑐𝑠
𝑐ℎ ∙ (𝑟𝑎𝑠,𝑡,𝜔

𝑐ℎ,↑ − 𝑟𝑎𝑠,𝑡,𝜔
𝑐ℎ,↓ ) + 𝑐𝑠

𝑑𝑖𝑠 ∙ (𝑟𝑎𝑠,𝑡,𝜔
𝑑𝑖𝑠,↑ − 𝑟𝑎𝑠,𝑡,𝜔

𝑑𝑖𝑠,↓)

+ ∑ 𝑉𝑂𝐿𝐿𝑑,𝑡 ∙ 𝐿𝑑,𝑡,𝜔
𝑠ℎ

𝑑

+ ∑ 𝑐𝑖,𝑡 ∙ (𝑟𝑎𝑐𝑖,𝑡,𝜔
↑ − 𝑟𝑎𝑐𝑖,𝑡,𝜔

↓ )

𝑖

+ ∑ 𝑢𝑑,𝑡 ∙ (𝑟𝑎𝑑𝑑,𝑡,𝜔
↑ − 𝑟𝑎𝑑𝑑,𝑡,𝜔

↓ )

𝑑

− 𝛺𝑡,𝜔
𝑅𝑇 ]] 

(A.247) 
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Despite the fact that, the majority of the nonlinearities is eradicated via the above 

displayed methodologies, some bilinear terms still remain in the equation (A.232) and 

consist of primal day-ahead and dual real-time variables, such as: 

휃𝑖,𝑡,𝜔
↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑐𝑖,𝑡

↑  , 휃𝑖,𝑡,𝜔
↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑐𝑖,𝑡

↓  

𝜇𝑑,𝑡,𝜔
↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑑𝑑,𝑡

↑  , 𝜇𝑑,𝑡,𝜔
↓,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑑𝑑,𝑡

↓  , 𝜇𝑑,𝑡,𝜔
𝑚𝑎𝑥 ∙ 𝐿𝑑,𝑡

𝐷𝐴  

𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝑊𝑗,𝑡

𝐷𝐴  , 𝜆𝑛,𝑡,𝜔
𝑅𝑇 ∙ 𝛿𝑛,𝑡

∘  

 

In order to linearize these terms, a binary expansion method is implemented, which 

necessitates the introduction of auxiliary variables, such as binary and continuous 

variables 𝑦𝑖,𝑡,𝜔,𝑒𝑥
↑  and 𝑧𝑖,𝑡,𝜔,𝑒𝑥

↑  respectively, as well as a set of big-M constants. Next, an 

application of this method is attempted involving the bilinear term 휃𝑖,𝑡,𝜔
↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑐𝑖,𝑡

↑  : 

 

휃𝑖,𝑡,𝜔
↑,𝑚𝑎𝑥 ∙ 𝑟𝑝𝑐𝑖,𝑡

↑ = ∑ 𝑧𝑖,𝑡,𝜔,𝑒𝑥
↑ ∙ 𝑟𝑝𝑐̈ 𝑖,𝑡,𝑒𝑥

↑

𝑒𝑥

  ∀𝑖, ∀𝑡, ∀ (A.248) 

 

Continuous variables 𝑟𝑝𝑐𝑖,𝑡
↑  are approximated through a set of discrete values {𝑟𝑝𝑐̈ 𝑖,𝑡,𝑒𝑥

↑  ,

𝑒𝑥 = 1 … 𝐸𝑋}, acting as parameters and bounded by the [0, 𝑅𝐶𝑐𝑖
↑,𝑚𝑎𝑥] interval. 

 

0 ≤ 휃𝑖,𝑡,𝜔
↑,𝑚𝑎𝑥 − 𝑧𝑖,𝑡,𝜔,𝑒𝑥

↑ ≤ 𝛭1 ∙ (1 − 𝑦𝑖,𝑡,𝜔,𝑒𝑥
↑ )    ∀𝑖, ∀𝑡, ∀𝜔, ∀𝑒𝑥 

 
(A.249) 

0 ≤ 𝑧𝑖,𝑡,𝜔,𝑒𝑥
↑ ≤ 𝛭1 ∙ 𝑦𝑖,𝑡,𝜔,𝑒𝑥

↑     ∀𝑖, ∀𝑡, ∀𝜔, ∀𝑒𝑥 

 
(A.250) 

 

The following equation identifies the closest discrete value 𝑟𝑝𝑐̈ 𝑖,𝑡,𝑒𝑥
↑  to the 𝑟𝑝𝑐𝑖,𝑡

↑  variable: 

𝑟𝑝𝑐𝑖,𝑡
↑ −

𝛥
𝑟𝑝𝑖,𝑡

↑

2
≤ ∑ 𝑦𝑖,𝑡,𝜔,𝑒𝑥

↑ ∙ 𝑟𝑝𝑐̈ 𝑖,𝑡,𝑒𝑥
↑

𝑒𝑥

≤ 𝑟𝑝𝑐𝑖,𝑡
↑ +

𝛥
𝑟𝑝𝑖,𝑡

↑

2
    ∀𝑖, ∀𝑡, ∀𝜔 

 

(A.251) 

Where: 

𝛥
𝑟𝑝𝑐𝑖,𝑡

↑ =
𝑅𝐶𝑐𝑖

↑,𝑚𝑎𝑥

𝐸𝑋
    ∀𝑖, ∀𝑡 

 

(A.252) 

∑ 𝑦𝑖,𝑡,𝜔,𝑒𝑥
↑ = 1     ∀𝑖, ∀𝑡, ∀𝜔

𝑒𝑥

 

 

(A.253) 
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The aforementioned algorithm is applied to the summation of the remaining nonlinear 

terms, rendering equation (A.247) linear and computationally viable. 

 

 

 

 

 

 

 

 



 

 
 

Appendix Β 

 

Additional data and results for Chapter 2 

In this section, useful data and results of this work are presented, in order to avoid an extended illustration of raw information in 

the main body, which may hinder manuscript’s legibility. 

 

i. Data 

 

Units 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 𝒕𝟏𝟏 𝒕𝟏𝟐 𝒕𝟏𝟑 𝒕𝟏𝟒 𝒕𝟏𝟓 𝒕𝟏𝟔 𝒕𝟏𝟕 𝒕𝟏𝟖 𝒕𝟏𝟗 𝒕𝟐𝟎 𝒕𝟐𝟏 𝒕𝟐𝟐 𝒕𝟐𝟑 𝒕𝟐𝟒 

𝒊𝟏 12 12 12 12 12 12 12 12 16 12 12 12 12 18 12 12 18 12 12 12 16 16 12 12 

𝒊𝟐 17 17 17 17 17 17 17 17 39 17 17 17 17 48 30 30 48 17 17 17 39 39 17 17 

𝒊𝟑 15 15 15 15 15 15 15 15 31 15 15 15 15 35 23 23 35 15 15 15 31 31 15 15 

𝒊𝟒 14 14 14 14 14 14 14 14 27 14 14 14 14 30 20 20 30 14 14 14 27 27 14 14 

𝒊𝟓 16 16 16 16 16 16 16 16 35 16 16 16 16 41 26 26 41 16 16 16 35 35 16 16 

𝒊𝟔 13 13 13 13 13 13 13 13 19 13 13 13 13 25 16 16 25 13 13 13 19 19 13 13 

Table Β.1: Marginal energy cost offers for conventional generators. 
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Units 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 𝒕𝟏𝟏 𝒕𝟏𝟐 𝒕𝟏𝟑 𝒕𝟏𝟒 𝒕𝟏𝟓 𝒕𝟏𝟔 𝒕𝟏𝟕 𝒕𝟏𝟖 𝒕𝟏𝟗 𝒕𝟐𝟎 𝒕𝟐𝟏 𝒕𝟐𝟐 𝒕𝟐𝟑 𝒕𝟐𝟒 

𝒅𝟏 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 

𝒅𝟐 80 80 80 90 80 80 80 80 80 90 80 80 80 80 80 90 80 80 80 80 80 90 80 80 

𝒅𝟑 80 80 90 75 90 90 80 80 90 75 90 90 80 80 90 75 90 90 80 80 90 75 90 90 

𝒅𝟒 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 

𝒅𝟓 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 

Table Β.2: Maximum energy capacity for demand loads. 

 

Units 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 𝒕𝟏𝟎 𝒕𝟏𝟏 𝒕𝟏𝟐 𝒕𝟏𝟑 𝒕𝟏𝟒 𝒕𝟏𝟓 𝒕𝟏𝟔 𝒕𝟏𝟕 𝒕𝟏𝟖 𝒕𝟏𝟗 𝒕𝟐𝟎 𝒕𝟐𝟏 𝒕𝟐𝟐 𝒕𝟐𝟑 𝒕𝟐𝟒 

𝒅𝟏 5 5.5 4.5 5 5 5 5 5.5 4.5 5 5 5 5 5.5 4.5 5 5 5 5 5.5 4.5 5 5 5 

𝒅𝟐 8 7.5 8.5 9 8 8 8 7.5 8.5 9 8 8 8 7.5 8.5 9 8 8 8 7.5 8.5 9 8 8 

𝒅𝟑 8 7 8.5 7.5 9 7 8 7 8.5 7.5 9 7 8 7 8.5 7.5 9 7 8 7 8.5 7.5 9 7 

𝒅𝟒 5 4.5 6 5.5 4.5 5.5 5 4.5 6 5.5 4.5 5.5 5 4.5 6 5.5 4.5 5.5 5 4.5 6 5.5 4.5 5.5 

𝒅𝟓 6.5 6 4.5 5 5.5 4 6.5 6 4.5 5 5.5 4 6.5 6 4.5 5 5.5 4 6.5 6 4.5 5 5.5 4 

Table Β.3: Maximum upward/downward reserve capacity for demand loads. 
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ii. Results  

 Uncongested network 

Day-ahead Market Reserve Market 

Hr. 
𝐺𝑠1,𝑡

𝐷𝐴,𝑐ℎ 

(𝑀𝑊ℎ) 

𝐺𝑠1,𝑡
𝐷𝐴,𝑑𝑖𝑠  

(𝑀𝑊ℎ) 

𝑂𝑠1,𝑡
𝑐ℎ  

(€
/𝑀𝑊ℎ) 

𝑂𝑠1,𝑡
𝑑𝑖𝑠  

(€
/𝑀𝑊ℎ) 

𝑟𝑝𝑠1,𝑡
𝑐ℎ,↓ 

(𝑀𝑊) 

𝑟𝑝𝑠1,𝑡
𝑐ℎ,↑ 

(𝑀𝑊) 

𝑂𝑠1,𝑡
𝑐ℎ,↓ 

(€
/𝑀𝑊ℎ) 

𝑂𝑠1,𝑡
𝑐ℎ,↑ 

(€
/𝑀𝑊ℎ) 

𝑟𝑝𝑠1,𝑡
𝑑𝑖𝑠,↓ 

(𝑀𝑊) 

𝑟𝑝𝑠1,𝑡
𝑑𝑖𝑠,↑ 

(𝑀𝑊) 

𝑂𝑠1,𝑡
𝑑𝑖𝑠,↓ 

(€/
𝑀𝑊ℎ) 

𝑂𝑠1,𝑡
𝑑𝑖𝑠,↑ 

(€
/𝑀𝑊ℎ) 

1 4.14  200  2.82 4.14 6 5     
2          12  5 
3 6.2  200  7 6.2 7 5.5     
4          11.75  5 
5          11.75  5 
6          11.75  5 
7 4.31  200  12 3.83 6 5.5     
8          9.83  5 
9  3.31  31     3.31 8.85 5 5 

10          11.85  5 
11 5.2  200  12 5.2 6 5     
12          11.95  5 
13 4.3  200  8.54 1.74 6 5     
14  8.3  35     8.3 3.7 5 5 
15  0.7  24     0.7 2.63 5 5 
16  9.62  24     9.62 0.75 5.5 5.5 
17  5.36  35     5.36  5  
18 7.69  200  6.75 7.69 6 5     
19 4.3  200  8.3 4 6 5     
20 4.3  200  9 2.04 6 5.5     
21  2.9  31     2.9 11.75 5 5 
22  12  31     12 12 5 5 
23 6.2  200  11 6.2 6 5     
24 6.2  200  12 6.2 6 5     

Table Β.4: Results for storage system 𝑠1, in the joint energy and reserve day-ahead market. 

 

 



                                                                                                                                                    Appendix B 

197 
 

 Balancing Market 

Hr. 
𝑟𝑎𝑠1,𝑡,𝜔1

𝑐ℎ,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔2
𝑐ℎ,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔1
𝑐ℎ,↑  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔2
𝑐ℎ,↑  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔1
𝑑𝑖𝑠,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔2
𝑑𝑖𝑠,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔1
𝑑𝑖𝑠,↑  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔2
𝑑𝑖𝑠,↑  

(𝑀𝑊ℎ) 

𝜆𝑛,𝑡,𝜔1
𝑅𝛵  

(€
/𝑀𝑊ℎ) 

𝜆𝑛,𝑡,𝜔2
𝑅𝛵  

(€
/𝑀𝑊ℎ) 

1 2.82   4.14     16 200 
2        12 16 200 
3 7   6.2     16 200 
4        11.55 16 200 
5        11.75 16 200 
6        11.75 16 200 
7 12   3.83     16 200 
8        9.83 16 200 
9     3.31   8.85 35 35 

10        9.52 16 200 
11 5.12   5.2     16 200 
12        11.95 16 200 
13 8.54   1.74     16 200 
14     8.3   3.7 41 41 
15     0.7   2.63 20 20 
16     9   0.75 26 26 
17     5.36    41 41 
18   7.69 7.69     14 200 
19 8.3   4     16 200 
20 9   2.04     16 200 
21     2.25   11.75 35 35 
22     2.22   12 35 35 
23   6.2 6.2     16 200 
24   6.2 6.2     16 200 

Table Β.5: Results for storage system 𝑠1 in the balancing market. 
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 Day-Ahead Market Reserve Market 

Hr. 
𝐺𝑠2,𝑡

𝐷𝐴,𝑐ℎ 

(𝑀𝑊ℎ) 

𝐺𝑠2,𝑡
𝐷𝐴,𝑑𝑖𝑠  

(𝑀𝑊ℎ) 

𝑂𝑠2,𝑡
𝑐ℎ  

(€/𝑀𝑊ℎ) 
𝑂𝑠2,𝑡

𝑑𝑖𝑠  

(€/𝑀𝑊ℎ) 
𝑟𝑝𝑠2,𝑡

𝑐ℎ,↓ 

(𝑀𝑊) 

𝑟𝑝𝑠2,𝑡
𝑐ℎ,↑ 

(𝑀𝑊) 

𝑂𝑠2,𝑡
𝑐ℎ,↓ 

(€/𝑀𝑊ℎ) 

𝑂𝑠2,𝑡
𝑐ℎ,↑ 

(€/𝑀𝑊ℎ) 

𝑟𝑝𝑠2,𝑡
𝑑𝑖𝑠,↓ 

(𝑀𝑊) 

𝑟𝑝𝑠2,𝑡
𝑑𝑖𝑠,↑ 

(𝑀𝑊) 

𝑂𝑠2,𝑡
𝑑𝑖𝑠,↓ 

(€/𝑀𝑊ℎ) 

𝑂𝑠2,𝑡
𝑑𝑖𝑠,↑ 

(€/𝑀𝑊ℎ) 
1 -9.1  200  8.18 9.1 5 5     
2 -9.55  200  10 9.55 6 5     
3          10  5 
4 -10  200  10 10 6 5     
5  4.25  15     4.25 10 5 5 
6  0.5  15     0.5 10 5 5 
7 -9.72  200  4 9.72 6 5.5     
8 -9.72  200  10 9.72 6 5.5     
9          10  5 

10 -10  200  10 10 6 5     
11    15      10  5 
12  6.55       6.55 10 5 5 
13 -9.72  200  2.46 9.72 6 5     
14  3.52  35     3.52 10 5 5 
15 -7.72  200  10 7.72 7 5.5     
16  0.03  24     0.03 10 5 5.5 
17  9.4  35     9.4 9 5 7 
18 -7.56  200  0 7.56 6 5     
19 -9.72  200  4.72 9.72 6 5     
20 -9.72  200  7.5 9.72 6 5.5     
21          10  5 
22  2  31     2 9.75 5 5 
23          9.75  5 
24          9.75  5 

Table Β.6: Results for storage system 𝑠2, in the joint energy and reserve day-ahead market. 
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 Balancing Market 

Hr. 
𝑟𝑎𝑠2,𝑡,𝜔1

𝑐ℎ,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔2
𝑐ℎ,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔1
𝑐ℎ,↑  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔2
𝑐ℎ,↑  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔1
𝑑𝑖𝑠,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔2
𝑑𝑖𝑠,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔1
𝑑𝑖𝑠,↑  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔2
𝑑𝑖𝑠,↑  

(𝑀𝑊ℎ) 
1    9.1     
2    9.55     
3        10 
4    10     
5     2.25   10 
6     0.44   10 
7    9.72     
8    9.72     
9     3.31   10 

10 9.52   10     
11        10 
12     3.64   10 
13    9.72     
14        10 
15    7.72     
16        10 
17        9 
18    7.76     
19    9.72     
20    9.72     
21        10 
22     0.03   9.75 
23        9.75 
24        9.75 

Table Β.7: Results for storage system 𝑠2 in the balancing market. 
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 𝑷𝒊,𝒕
𝑫𝑨 (𝑴𝑾𝒉) 𝒓𝒑𝒄𝒊,𝒕

↓ , 𝒓𝒑𝒄𝒊,𝒕
↑   (𝑴𝑾) 

Hr i1 i2 i3 i4 i5 i6 i1 i2 i3 i4 i5 i6 

1 80 0 39.25 75 9 100 0, 0 0, 0 0, 0 0, 0 9, 6.75 0, 0 

2 80 0 39.81 75 4.74 100 0, 0 0, 0 0, 0 7.26, 0 4.74, 0.45 0, 0 

3 80 0 42.2 75 9 100 0, 0 0, 0.8 0, 0 10, 0 9, 9 0, 0 

4 80 0 42.5 75 7.5 100 0, 0 0, 0 0, 0 4.5, 0 7.5, 0.45 0, 0 

5 80 0 31.75 75 9 100 0, 0 0, 0 0.3, 0 10, 0 9, 2.25 0.45, 0 

6 80 0 35.5 75 9 100 0, 0 0, 0 4.5, 0 10, 0 9, 2.25 0, 0 

7 80 0 40 75 9 100 0, 0 0, 2.45 0, 0 0, 0 9, 9 0, 0 

8 80 0 40 75 4.7 100 0, 0 0, 0 0, 0 5.3, 0 4.7, 0.45 0, 0 

9 80 0 41.7 75 0 100 8, 0 0, 0 0.3, 0 10, 0 0, 3.15 0.39, 0 

10 80 0 42.5 75 7.5 100 0, 0 0, 0 0, 0 7.5, 0 7.5, 3.15 0, 0 

11 80 0 42.2 75 8 100 0, 0 0, 0 0, 0 0, 0 8, 4.8 0, 0 

12 80 0 29.45 75 9 100 0, 0 0, 0 0, 0 10, 0 9, 4.05 0.45, 0 

13 80 0 40 75 9 100 0, 0 0, 0 0, 0 0, 0 9, 8.54 0, 0 

14 80 0 23.2 75 0 100 0, 0 0, 0 0, 0 10, 0 0, 8.3 0.18, 0 

15 80 0 52 75 0 100 0.06, 0 0, 6.65 0.3, 0 10, 0 0, 9 4.95, 0 

16 80 0 30.35 75 0 100 0.4, 0 0, 5.25 4.5, 0 10, 0 0, 9 0.45, 0 

17 80 0 30.25 75 0 100 0.23, 0 0, 7 0, 0 10, 0 0, 9 0, 0 

18 80 0 51.7 75 8.55 100 0, 0 0, 0 0, 0 6.7, 0 8.55, 6.75 0, 0 

19 80 0 40 75 9 100 0, 0 0, 0 0, 0 0, 0 9, 8.28 0, 0 

20 80 0 40 75 9 100 0, 0 0, 5.25 0, 0 0.5, 0 9, 9 0, 0 

21 80 0 42.1 75 0 100 6, 0 0, 0 5.1, 0 10, 0 0, 2.25 0, 0 

22 80 0 26 75 0 100 0, 0 0, 0 0, 0 10, 0 0, 2.25 0, 0 

23 80 0 42.2 75 9 100 0, 0 0, 0 0, 0 0, 0 9, 4.05 0, 0 

24 80 0 42.2 75 9 100 0, 0 0, 0 0, 0 3, 0 9, 8.55 0, 0 

Table Β.8: Results for conventional generators in the joint energy and reserve day-ahead market. 
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𝒓𝒂𝒄𝒊,𝒕,𝝎
↓ , 𝒓𝒂𝒄𝒊,𝒕,𝝎

↑  (𝑴𝑾𝒉) 

Hr i1 i2 i3 i4 i5 i6 

1 0, 0 0, 0 0, 0 0, 0 -3.9, 6.75 0, 0 

2 0, 0 0, 0 0, 0 0, 0 0, 0.45 0, 0 

3 0, 0 0, 0.8 0, 0 0, 0 -2, 9 0, 0 

4 0, 0 0, 0 0, 0 0, 0 -0.92, 0.45 0, 0 

5 0, 0 0, 0 0, 0 0, 0 2.25, 2.25 0, 0 

6 0, 0 0, 0 0, 0 0, 0 0.44, 2.25 0, 0 

7 0, 0 0, 2.45 0, 0 0, 0 9, 9 0, 0 

8 0, 0 0, 0 0, 0 0, 0 0, 0.45 0, 0 

9 0, 0 0, 0 0, 0 0, 0 2.9, 3.15 0, 0 

10 0, 0 0, 0 0, 0 0, 0 -0.48, 3.15 0, 0 

11 0, 0 0, 0 0, 0 0, 0 -4.88, 4.8 0, 0 

12 0, 0 0, 0 0, 0 0, 0 -0.4, 4.05 0, 0 

13 0, 0 0, 0 0, 0 0, 0 8.54, 8.54 0, 0 

14 0, 0 0, 0 0, 0 0, 0 8.3, 8.3 0, 0 

15 0, 0 0, 6.65 0, 0 -6.72, 0 0, 9 0, 0 

16 0, 0 0, 5.25 0, 0 0, 0 9, 9 0, 0 

17 0, 0 0, 7 0, 0 0, 0 5.36, 9 0, 0 

18 0, 0 0, 0 0, 0 -6.7, 0 -8.55, 6.75 0, 0 

19 0, 0 0, 0 0, 0 0, 0 8.3, 8.3 0, 0 

20 0, 0 0, 5.25 0, 0 0, 0 9, 9 0, 0 

21 0, 0 0, 0 0, 0 0, 0 2.25, 2.25 0, 0 

22 0, 0 0, 0 0, 0 0, 0 2.25, 2.25 0, 0 

23 0, 0 0, 0 0, 0 0, 0 -9, 4.05 0, 0 

24 0, 0 0, 0 0, 0 0, 0 -9, 8.55 0, 0 

Table Β.9: Results for conventional generators in the balancing market. 
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 Congested network 

 Day-Ahead Market Reserve Market 

Hr. 
𝐺𝑠1,𝑡

𝐷𝐴,𝑐ℎ 

(𝑀𝑊ℎ) 

𝐺𝑠1,𝑡
𝐷𝐴,𝑑𝑖𝑠  

(𝑀𝑊ℎ) 

𝑂𝑠1,𝑡
𝑐ℎ  

(€/𝑀𝑊ℎ) 

𝑂𝑠1,𝑡
𝑑𝑖𝑠  

(€/𝑀𝑊ℎ) 
𝑟𝑝𝑠1,𝑡

𝑐ℎ,↓ 

(𝑀𝑊) 

𝑟𝑝𝑠1,𝑡
𝑐ℎ,↑ 

(𝑀𝑊) 

𝑂𝑠1,𝑡
𝑐ℎ,↓ 

(€/𝑀𝑊ℎ) 

𝑂𝑠1,𝑡
𝑐ℎ,↑ 

(€/𝑀𝑊ℎ) 

𝑟𝑝𝑠1,𝑡
𝑑𝑖𝑠,↓ 

(𝑀𝑊) 

𝑟𝑝𝑠1,𝑡
𝑑𝑖𝑠,↑ 

(𝑀𝑊) 

𝑂𝑠1,𝑡
𝑑𝑖𝑠,↓ 

(€/𝑀𝑊ℎ) 

𝑂𝑠1,𝑡
𝑑𝑖𝑠,↑ 

(€/𝑀𝑊ℎ) 
1 9.55  200  11 9.55 5.5 5     
2 11.5    12 11.55 5.5 5     
3 12  200  10 12 6 5     
4 12    5.2 12 5.5 5     
5  6.7  16     6.7 12 5 5 
6 12    10.2 12 5.5 5     
7 12  200  9.35 12 5.5 5     
8 12    12 12 5 5     
9  12  33.7     12 11.55 5 5 

10 12    9.35 12 5.5 5     
11 9.55  200  11 9.55 5.5 5     
12 11.05    9.2 11.05 5.5 5     
13 9.55  200  9.55 9.55 5 5     
14  13.9  37     12 12 6 5 
15 11.05  200  12 11.05 5 5     
16 43.12  200  6 11.2 5.5 5.5     
17  7.4  37     7.4 12 6 5 
18 12  200  6 12 6 5     
19   200       12  5 
20 9.25  200  12 9.25 5.5 5     
21  19.855  33.7     12 12 6 5 
22  5  33.7     5 12 7 5 
23 12  200  9.95 12 5.5 5     
24  6.94  16     6.94 12 6  

Table Β.10: Results for storage system 𝑠1, in the joint energy and reserve day-ahead market. 
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 Balancing Market 

Hr. 
𝑟𝑎𝑠1,𝑡,𝜔1

𝑐ℎ,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔2
𝑐ℎ,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔1
𝑐ℎ,↑  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔2
𝑐ℎ,↑  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔1
𝑑𝑖𝑠,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔2
𝑑𝑖𝑠,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔1
𝑑𝑖𝑠,↑  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠1,𝑡,𝜔2
𝑑𝑖𝑠,↑  

(𝑀𝑊ℎ) 
1   9 9.55     
2   9.29 11.55     
3   12 12     
4 5.2   12     
5     6.7   12 
6   12 12     
7   2.36 12     
8    12     
9     12   11.55 

10 9.35   12     
11   9 9.55     
12   9.88 11.05     
13 0.45   9.55     
14       1.61 12 
15   9 11.05     
16 6   11.2     
17        12 
18   12 12     
19        12 
20   2.25 9.25     
21     11.3   12 
22     5   12 
23   9.88 12     
24     3.15   12 

Table Β.11: Results for storage system 𝑠1 in the balancing market. 
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 Day-Ahead Market Reserve Market 

Hr. 
𝐺𝑠2,𝑡

𝐷𝐴,𝑐ℎ 

(𝑀𝑊ℎ) 

𝐺𝑠2,𝑡
𝐷𝐴,𝑑𝑖𝑠  

(𝑀𝑊ℎ) 

𝑂𝑠2,𝑡
𝑐ℎ  

(€/𝑀𝑊ℎ) 
𝑂𝑠2,𝑡

𝑑𝑖𝑠  

(€/𝑀𝑊ℎ) 
𝑟𝑝𝑠2,𝑡

𝑐ℎ,↓ 

(𝑀𝑊) 

𝑟𝑝𝑠2,𝑡
𝑐ℎ,↑ 

(𝑀𝑊) 

𝑂𝑠2,𝑡
𝑐ℎ,↓ 

(€/𝑀𝑊ℎ) 

𝑂𝑠2,𝑡
𝑐ℎ,↑ 

(€/𝑀𝑊ℎ) 

𝑟𝑝𝑠2,𝑡
𝑑𝑖𝑠,↓ 

(𝑀𝑊) 

𝑟𝑝𝑠2,𝑡
𝑑𝑖𝑠,↑ 

(𝑀𝑊) 

𝑂𝑠2,𝑡
𝑑𝑖𝑠,↓ 

(€/𝑀𝑊ℎ) 

𝑂𝑠2,𝑡
𝑑𝑖𝑠,↑ 

(€/𝑀𝑊ℎ) 
1 10.5  200   10  5     
2  0.65  22     0.65 10 5.5 5 
3          9.95  5 
4     7.79  5.5      
5 9.75  200  8.29 9.75 5.5 5     
6  0.25  24     0.25 9.75 5.5 5 
7          9.85  5 
8 15.4  200  8 8 5 5     
9  10  50     10 10 6 5 

10          9.85  5 
11 25.75  200   10  5     
12  6.75  24     6.75 10 5.5 5 
13 14.7  200  10 10 5 5     
14  5.16  50     5.16 10 5 5 
15  11.15  44     5 10 5 5 
16     10  5.5      
17 8.95  200   8.95  5     
18          10  5 
19 21.97  200  6 10 6 5     
20  5  22     5 10 5.5 5 
21  11.45  50     10 3.45 6 5 
22 4.18  200   3.45  5     
23          1.25  5 
24          8.85  5 

Table Β.12: Results for storage system 𝑠2, in the joint energy and reserve day-ahead market. 
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 Balancing Market 

Hr. 
𝑟𝑎𝑠2,𝑡,𝜔1

𝑐ℎ,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔2
𝑐ℎ,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔1
𝑐ℎ,↑  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔2
𝑐ℎ,↑  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔1
𝑑𝑖𝑠,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔2
𝑑𝑖𝑠,↓  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔1
𝑑𝑖𝑠,↑  

(𝑀𝑊ℎ) 

𝑟𝑎𝑠2,𝑡,𝜔2
𝑑𝑖𝑠,↑  

(𝑀𝑊ℎ) 
1    10     
2       0.06 10 
3       1.17 9.95 
4         
5   4.46 9.75     
6       0.76 9.75 
7         
8    8     
9        10 

10         
11    10     
12       0.18 10 
13 10   10     
14       3.23 10 
15        10 
16         
17    8.95     
18       1.17 10 
19    10     
20        10 
21       1.33 3.45 
22    3.45     
23       0.18 1.25 
24        8.85 

Table Β.13: Results for storage system 𝑠2 in the balancing market.  
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 𝑷𝒊,𝒕
𝑫𝑨 (𝑴𝑾𝒉) 𝒓𝒑𝒄𝒊,𝒕

↓  , 𝒓𝒑𝒄𝒊,𝒕
↑   (𝑴𝑾) 

Hr i1 i2 i3 i4 i5 i6 i1 i2 i3 i4 i5 i6 
1 80 18.65 3.65 75 22.25 100 0, 0 0, 0 0, 0 0, 0 -9, 0.45 0, 0 
2 80 17.05 5.95 75 22.9 100 0, 0 -0.35, 0, 0 0, 0 -9, 0.45 0, 0 
3 80 10.63 15.63 75 20.74 100 0, 0 -7, 0 0, 0 0, 0 -9, 0.45 0, 0 
4 80 4.95 19.95 75 27.09 100 0, 0 0, 1 0, 0 0, 0 -9, 9 0, 0 
5 80 5.31 10.31 75 12.67 100 0, 0 0, 0 0, 0 0, 0 -9, 2.25 0, 0 
6 80 8.28 13.28 75 25.43 100 0, 0 -4.55, 0 0, 0 0, 0 -9, 2.25 0, 0 
7 80 18.33 3.33 75 25.33 100 0, 0 -6.65, 0 0, 0 0, 0 -9, 3.15 0, 0 
8 80 18.65 3.65 75 24.7 100 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 
9 80 0 20.43 75 0 100 0, 0 0, 0 0, 0 0, 0 0, 0.45 0, 0 

10 80 8.78 23.78 75 19.44 100 0, 0 -6.65, 0 0, 0 0, 0 -9, 3.15 0, 0 
11 80 5.31 10.31 75 28.92 100 0, 0 0, 0 0, 0 0, 0 -9, 0.45 0, 0 
12 80 8.28 13.28 75 24.5 100 0, 0 -1.05, 0 0, 0 0, 0 -9, 4.95 0, 0 
13 80 18.65 3.65 75 22.25 100 0, 0 0, 0 0, 0 0, 0 -0.45, 0.45 0, 0 
14 80 0 15.94 75 0 100 0, 0 0, 0 0, 0 -4.84, 0 0, 0 0, 0 
15 80 0 11.92 75 32.97 100 0, 0 0, 0 0, 0 0, 0 -9, 4.95 0, 0 
16 80 3.33 18.33 75 61.45 100 0, 0 0, 5.25 0, 0 0, 0 -9, 8.55 0, 0 
17 80 0 24.37 75 0 100 -7.6, 0 0, 0 0, 0 -10, 0 0, 4.05 0, 0 
18 80 10.63 15.63 75 20.74 100 0, 0 -7, 0 0, 0 0, 0 -9, 0 0, 0 
19 80 18.33 3.33 75 13.33 100 0, 0 -7, 0 0, 0 0, 0 -9, 0 0, 0 
20 80 0 15 75 24.25 100 0, 0 0, 0 0, 0 0, 0 -9, 6.75 0, 0 
21 80 0 13.7 75 0 100 0, 0 0, 0 0, 0 -2, 0 0, 8.55 0, 0 
22 80 0 24.43 75 9 100 0, 0 0, 0 0, 0 -10, 0 -9, 8.55 0, 0 
23 80 5.31 10.31 75 31.37 100 0, 0 -1.05, 0 0, 0 0, 0 -9, 6.75 0, 0 
24 80 7 12 75 9.06 100 0, 0 -7, 0 0, 0 -1.06, 0 -9, 3.15 0, 0 

Table B.14: Results for conventional generators in the joint energy and reserve day-ahead market. 
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 Wind power generation increment scenarios 

 

Wind 
Percentage 

∑ 𝑷𝒊,𝒕
𝑫𝑨

𝒊,𝒕

 ∑ 𝒓𝒑𝒄𝒊,𝒕
↓

𝒊,𝒕

 ∑ 𝒓𝒑𝒄𝒊,𝒕
↑

𝒊,𝒕

 ∑ 𝒓𝒂𝒄𝒊,𝒕,𝝎𝟏
↓

𝒊,𝒕

 ∑ 𝒓𝒂𝒄𝒊,𝒕,𝝎𝟐
↓

𝒊,𝒕

 ∑ 𝒓𝒂𝒄𝒊,𝒕,𝝎𝟏
↑

𝒊,𝒕

 ∑ 𝒓𝒂𝒄𝒊,𝒕,𝝎𝟐
↑

𝒊,𝒕

 

12.17% 7186.9 321.3 158.2 52.9 - 98.2 158.2 

16.53% 6644.8 528.2 143.8 171.3 - 0.5 71.9 

19.2% 6183.6 373.8 68.1 196 - - 68.1 

Table Β.15: Energy dispatch (MWh) and reserve provisions (MW) for conventional generators, under wind generation increment Cases 

1,2,3. 

 

 
𝑮𝒔𝟏,𝒕𝟏

𝑫𝑨,𝒄𝒉 

(𝑴𝑾𝒉) 

𝒓𝒑𝒔𝟏,𝒕𝟏
𝒄𝒉,↓  

(𝑴𝑾) 

𝒓𝒑𝒔𝟏,𝒕𝟏
𝒄𝒉,↑  

(𝑴𝑾) 

𝒓𝒂𝒔𝟏,𝒕𝟏,𝝎𝟏
𝒄𝒉,↓  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟏,𝒕𝟏,𝝎𝟐
𝒄𝒉,↓  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟏,𝒕𝟏,𝝎𝟏
𝒄𝒉,↑  

(𝑴𝑾𝒉) 

𝒓𝒂𝒔𝟏,𝒕𝟏,𝝎𝟐
𝒄𝒉,↑  

(𝑴𝑾𝒉) 

𝝀𝒏,𝒕𝟏
𝑫𝑨  

(€/𝑴𝑾𝒉) 

𝝀𝒏,𝒕𝟏,𝝎𝟏
𝑹𝜯  

(€/𝑴𝑾𝒉) 

𝝀𝒏,𝒕𝟏,𝝎𝟐
𝑹𝜯  

(€/𝑴𝑾𝒉) 

Wind 12.17% 4.14 2.82 4.14 2.82 - - 4.14 15 16 200 

Wind 16.53% 12 10.5 12 - - 9.5 12 15 14 200 

Wind 19.2% 12.65 4.15 12.65 - - 8.3 12.65 14 14 200 

Table B.16: Energy dispatch and reserve procurements of storage system 𝑠1, during time period 1, under three wind generation cases. 

 



 

 
 

Appendix C 

 

Mathematical Transformations for Chapter 4 

 

KKT equality conditions of the lower-level problem (4.5) – (4.13): 

𝑜𝑔,𝑡 + 𝑐𝑝 ∙ 휁𝑔 − 𝜆𝑛,𝑡
𝐸 + 𝛽𝑔,𝑡 − 𝛽𝑔,𝑡 = 0           ∀𝑔, ∀𝑡 (C.1) 

𝐶𝑖 + 𝑐𝑝 ∙ 휁𝑖 − 𝜆𝑛,𝑡
𝐸 + 𝛼𝑖,𝑡 − 𝛼𝑖,𝑡 = 0           ∀𝑖, ∀𝑡 (C.2) 

−𝜆𝑛,𝑡
𝐸 − ∑ 𝛼ℎ ∙ 휂 ∙ 𝜌ℎ,𝑡

ℎ

+ 𝛾𝑗,𝑡 − 𝛾𝑗,𝑡 = 0           ∀𝑗, ∀𝑡 (C.3) 

𝑐𝑝 + 𝜌ℎ,𝑡 = 0       ∀ℎ, ∀𝑡  (C.4) 

∑ 𝐵𝑛,𝑚 ∙ (𝜆𝑛,𝑡
𝐸 − 𝜆𝑚,𝑡

𝐸 )

𝑚∈𝑁𝑎𝑀

+ ∑ 𝐵𝑛,𝑚 ∙ (𝜓𝑛,𝑚,𝑡 − 𝜓𝑚,𝑛,𝑡)

𝑚∈𝑁𝑎𝑀

− ∑ 𝐵𝑛,𝑚 ∙ (𝜓𝑛,𝑚,𝑡 − 𝜓𝑚,𝑛,𝑡)

𝑚∈𝑁𝑎𝑀

+ 𝜋𝑛,𝑡 − 𝜋𝑛,𝑡 + 휂𝑛,𝑡
𝑜

= 0          ∀𝑛, ∀𝑡 (C.5) 

− ∑ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

− ∑ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

− ∑ 𝑤𝑗,𝑡

𝑗∈𝐽𝑎𝑁

+ ∑ 𝐿𝑑,𝑡
𝐸

𝑑𝐸𝐿∈𝐷𝑎𝑁

+ ∑ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) = 0      ∶ [𝜆𝑛,𝑡
𝐸 ]       ∀𝑛, ∀𝑡 

𝑚∈𝑁𝑎𝑀

 
(C.6) 

𝑄ℎ,𝑡
𝐻 = 𝛼ℎ ∙ 휂 ∙ ( ∑ 𝐿𝑑,𝑡

𝐸 − ∑ 𝑤𝑗,𝑡

𝑗∈𝐽𝑎𝑁

) 

𝑑𝐸𝐿∈𝐷𝑎𝑁

   ∶   [𝜌ℎ,𝑡]       ∀ℎ, ∀𝑡 (C.7) 

𝛿𝑛1,𝑡 = 0     ∶ [휂𝑛,𝑡
𝑜 ]           ∀𝑛 = 𝑛1, ∀𝑡 (C.8) 

 

 

KKT equality conditions of the lower-level problem (4.14) – (4.16): 

𝐶𝑘 − 𝜆𝑟,𝑡
𝑁𝐺 + 휀𝑘,𝑡 − 휀𝑘,𝑡 = 0           ∀𝑘, ∀𝑡 (C.9) 

− ∑ 𝑓𝑘,𝑡

𝑘∈𝐾𝑎𝑅

+ ∑ 𝜑𝑔 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑅

+ ∑ 𝐿𝑑,𝑡
𝑁𝐺

𝑑𝑁𝐺∈𝐷𝑎𝑅

= 0      ∶ [𝜆𝑟,𝑡
𝑁𝐺 ]       ∀𝑟, ∀𝑡 (C.10) 
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KKT complementarity conditions of the lower-level problems: 

0 ≤  𝑝𝑖,𝑡 ⊥ 𝑎𝑖,𝑡 ≥ 0           ∀𝑖, ∀𝑡 (C.11) 

0 ≤  𝑃𝑖 − 𝑝𝑖,𝑡 ⊥ 𝑎𝑖,𝑡 ≥ 0           ∀𝑖, ∀𝑡 (C.12) 

0 ≤  𝑣𝑔,𝑡 ⊥ 𝛽𝑔,𝑡 ≥ 0           ∀𝑔, ∀𝑡 (C.13) 

0 ≤  𝑉𝑔  − 𝑣𝑔,𝑡 ⊥ 𝛽𝑔,𝑡 ≥ 0           ∀𝑖, ∀𝑡 (C.14) 

0 ≤  𝑤𝑗,𝑡 ⊥ 𝛾𝑗,𝑡 ≥ 0           ∀𝑗, ∀𝑡 (C.15) 

0 ≤  𝑊𝑗 − 𝑤𝑗,𝑡 ⊥ 𝛾𝑗,𝑡 ≥ 0           ∀𝑗, ∀𝑡 (C.16) 

0 ≤  𝑓𝑘,𝑡 ⊥ 휀𝑘,𝑡 ≥ 0           ∀𝑘, ∀𝑡 (C.17) 

0 ≤  𝐹𝑘 − 𝑓𝑘,𝑡 ⊥ 휀𝑘,𝑡 ≥ 0           ∀𝑘, ∀𝑡 (C.18) 

0 ≤  𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) + 𝑇𝑛,𝑚 ⊥ 𝜓𝑛,𝑚,𝑡 ≥ 0           ∀𝑛, ∀𝑚, ∀𝑡 (C.19) 

0 ≤  𝑇𝑛,𝑚 − 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) ⊥ 𝜓𝑛,𝑚,𝑡 ≥ 0           ∀𝑛, ∀𝑚, ∀𝑡 (C.20) 

0 ≤  𝛿𝑛,𝑡 + 3.14 ⊥ 𝜋𝑛,𝑡 ≥ 0           ∀𝑛, ∀𝑡 (C.21) 

0 ≤  3.14 − 𝛿𝑛,𝑡 ⊥ 𝜋𝑛,𝑡 ≥ 0           ∀𝑛, ∀𝑡 (C.22) 

 

The nonlinearities appearing in the above complementarity conditions are eliminated by 

employing the Fortuny-Amat and McCarl linearization process: 

0 ≤  𝑝𝑖,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑖,𝑡
1           ∀𝑖, ∀𝑡 (C.23) 

0 ≤  𝑎𝑖,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑖,𝑡
1 )           ∀𝑖, ∀𝑡 (C.24) 

0 ≤  𝑃𝑖 − 𝑝𝑖,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑖,𝑡
2          ∀𝑖, ∀𝑡 (C.25) 

0 ≤  𝑎𝑖,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑖,𝑡
2 )           ∀𝑖, ∀𝑡 (C.26) 

0 ≤  𝑣𝑔,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑔,𝑡
3            ∀𝑔, ∀𝑡 (C.27) 

0 ≤  𝛽𝑔,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑔,𝑡
3 )           ∀𝑔, ∀𝑡 (C.28) 

0 ≤  𝑉𝑔 − 𝑣𝑔,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑔,𝑡
4            ∀𝑖, ∀𝑡 (C.29) 

0 ≤  𝛽𝑔,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑔,𝑡
4 )           ∀𝑖, ∀𝑡 (C.30) 

0 ≤  𝑤𝑗,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑗,𝑡
7            ∀𝑗, ∀𝑡 (C.31) 

0 ≤  𝛾𝑗,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑗,𝑡
7 )           ∀𝑗, ∀𝑡 (C.32) 

0 ≤  𝑊𝑗,𝑡 − 𝑤𝑗,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑗,𝑡
8            ∀𝑗, ∀𝑡 (C.33) 

0 ≤  𝛾𝑗,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑗,𝑡
8 )           ∀𝑗, ∀𝑡 (C.34) 

0 ≤  𝑓𝑘,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑘,𝑡
9            ∀𝑘, ∀𝑡 (C.35) 

0 ≤  휀𝑘,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑘,𝑡
9 )          ∀𝑘, ∀𝑡 (C.36) 
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0 ≤  𝐹𝑘 − 𝑓𝑘,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑘,𝑡
10            ∀𝑘, ∀𝑡 (C.37) 

0 ≤  휀𝑘,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑘,𝑡
10 )           ∀𝑘, ∀𝑡 (C.38) 

0 ≤  𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) + 𝑇𝑛,𝑚 ≤ 𝑀𝑝𝑋 ∙ 𝑧𝑛,𝑚,𝑡
41            ∀𝑛, ∀𝑚, ∀𝑡 (C.39) 

0 ≤  𝜓𝑛,𝑚,𝑡 ≤ 𝑀𝑐𝑋 ∙ (1 − 𝑧𝑛,𝑚,𝑡
41 )           ∀𝑛, ∀𝑚, ∀𝑡 (C.40) 

0 ≤  𝑇𝑛,𝑚 − 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) ≤ 𝑀𝑝𝑋 ∙ 𝑧𝑛,𝑚,𝑡
42            ∀𝑛, ∀𝑚, ∀𝑡 (C.41) 

0 ≤  𝜓𝑛,𝑚,𝑡 ≤ 𝑀𝑐𝑋 ∙ (1 − 𝑧𝑛,𝑚,𝑡
42 )           ∀𝑛, ∀𝑚, ∀𝑡 (C.42) 

0 ≤  𝛿𝑛,𝑡 + 3.14 ≤ 𝑀𝑝𝑋 ∙ 𝑧𝑛,𝑡
45            ∀𝑛, ∀𝑡 (C.43) 

0 ≤  𝜋𝑛,𝑡 ≤ 𝑀𝑐𝑋 ∙ (1 − 𝑧𝑛,𝑡
45 )           ∀𝑛, ∀𝑡 (C.44) 

0 ≤  3.14 − 𝛿𝑛,𝑡 ≤ 𝑀𝑝𝑋 ∙ 𝑧𝑛,𝑡
46            ∀𝑛, ∀𝑡 (C.45) 

0 ≤  𝜋𝑛,𝑡 ≤ 𝑀𝑐𝑋 ∙ (1 − 𝑧𝑛,𝑡
46 )           ∀𝑛, ∀𝑡 (C.46) 

 

To eliminate the nonlinearities of the objective function (4.4), the below process is 

followed: 

The KKT equality (C.1) results in: 

𝜆𝑛,𝑡
𝐸 = 𝑜𝑔,𝑡 + 𝑐𝑝 ∙ 휁𝑔 + 𝛽𝑔,𝑡 − 𝛽𝑔,𝑡            ∀𝑔, ∀𝑡 (C.47) 

 

Multiplying by 𝑣𝑔,𝑡  gives: 

∑ 𝜆𝑛,𝑡
𝐸 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

= ∑ 𝑜𝑔,𝑡 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

+ ∑ 𝑐𝑝 ∙ 휁𝑔 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

+ ∑ 𝛽𝑔,𝑡 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

− ∑ 𝛽𝑔,𝑡 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

 

 

 

(C.48) 

 

From the KKT complementarity conditions (C.13), (C.14): 

𝛽𝑔,𝑡 ∙ 𝑣𝑔,𝑡 = 0       ∀𝑔, ∀𝑡    ⇒     ∑ 𝛽𝑔,𝑡 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

= 0 (C.49) 

𝛽𝑔,𝑡 ∙ 𝑣𝑔,𝑡 = 𝛽𝑔,𝑡 · 𝑉𝑔       ∀𝑔, ∀𝑡    ⇒     ∑ 𝛽𝑔,𝑡 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

= ∑ 𝛽𝑔,𝑡 · 𝑉𝑔

𝑔∈𝐺𝑎𝑁

 (C.50) 
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Hence (C.48) becomes: 

∑ 𝜆𝑛,𝑡
𝐸 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

= ∑ 𝑜𝑔,𝑡 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

+ ∑ 𝑐𝑝 ∙ 휁𝑔 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

+ ∑ 𝛽𝑔,𝑡 · 𝑉𝑔

𝑔∈𝐺𝑎𝑁

 (C.51) 

 

By applying the strong duality theorem for the electricity market clearing objective 

function (4.5) : 

∑ 𝑜𝑔,𝑡 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

+ ∑ 𝐶𝑖 ∙ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

+ ∑ 𝑐𝑝 ∙ (휁𝑔 ∙ 𝑣𝑔,𝑡 − 𝑄𝑔,𝑡
𝐻 )

𝑔∈𝐺𝑎𝑁

+ ∑ 𝑐𝑝 ∙ (휁𝑖 ∙ 𝑝𝑖,𝑡 − 𝑄𝑖,𝑡
𝐻 )

𝑖∈𝐼𝑎𝑁

=  ∑ 𝜆𝑛,𝑡
𝐸 ∙ 𝐿𝑑,𝑡

𝐸

𝑑𝐸∈𝐷𝑎𝑁

+ 𝜌ℎ,𝑡 ∙ 𝛼ℎ ∙ 휂 ∙ ∑ 𝐿𝑑,𝑡
𝐸 −

𝑑𝐸𝐿∈𝐷𝑎𝑁

∑ 𝑎𝑖,𝑡 ∙ 𝑃𝑖

𝑖∈𝐼𝑎𝑁

− ∑ 𝛽𝑔,𝑡 · 𝑉𝑔

𝑔∈𝐺𝑎𝑁

− ∑ 𝛾𝑗,𝑡 · 𝑊𝑗

𝑗∈𝐽𝑎𝑁

   

− ∑ 𝑇𝑛,𝑚 ·

𝑚∈𝑁𝑎𝑀

(𝜓𝑛,𝑚,𝑡 + 𝜓𝑛,𝑚,𝑡) − ∑ 3.14 ·

𝑛∈𝑁𝑎𝑀

(𝜋𝑛,𝑡 + 𝜋𝑛,𝑡) 
(C.52) 

 

By applying the strong duality theorem for natural gas market clearing objective 

function (4.14): 

∑ 𝐶𝑘 ∙ 𝑓𝑘,𝑡

𝑘∈𝐾𝑎𝑅

=  ∑ 𝜆𝑟,𝑡
𝑁𝐺 ∙ 𝐿𝑑,𝑡

𝑁𝐺

𝑑𝑁𝐺∈𝐷𝑎𝑅

+ ∑ 𝜆𝑟,𝑡
𝑁𝐺 ∙ 𝜑𝑔 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑅

− ∑ 휀𝑘,𝑡 · 𝐹𝑘

𝑘∈𝐾𝑎𝑅

 

(C.53) 

 

Keeping the non-linear terms of the equation (C.52) on the left part: 

∑ 𝑜𝑔,𝑡 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

= − ∑ 𝐶𝑖 ∙ 𝑝𝑖,𝑡 − ∑ 𝑐𝑝 ∙ (휁𝑔 ∙ 𝑣𝑔,𝑡 − 𝑄𝑔,𝑡
𝐻 )

𝑔∈𝐺𝑎𝑁𝑖∈𝐼𝑎𝑁

− ∑ 𝑐𝑝 ∙ (휁𝑖 ∙ 𝑝𝑖,𝑡 − 𝑄𝑖,𝑡
𝐻 )

𝑖∈𝐼𝑎𝑁

+  ∑ 𝜆𝑛,𝑡
𝐸 ∙ 𝐿𝑑,𝑡

𝐸

𝑑𝐸∈𝐷𝑎𝑁

+ 𝜌ℎ,𝑡 ∙ 𝛼ℎ ∙ 휂

∙ ∑ 𝐿𝑑,𝑡
𝐸

𝑑𝐸𝐿∈𝐷𝑎𝑁

− ∑ 𝑎𝑖,𝑡 ∙ 𝑃𝑖

𝑖∈𝐼𝑎𝑁

− ∑ 𝛽𝑔,𝑡 · 𝑉𝑔

𝑔∈𝐺𝑎𝑁

− ∑ 𝛾𝑗,𝑡 · 𝑊𝑗

𝑗∈𝐽𝑎𝑁

   

− ∑ 𝑇𝑛,𝑚 ·

𝑚∈𝑁𝑎𝑀

(𝜓𝑛,𝑚,𝑡 + 𝜓𝑛,𝑚,𝑡) − ∑ 3.14 ·

𝑛∈𝑁𝑎𝑀

(𝜋𝑛,𝑡 + 𝜋𝑛,𝑡) 

 

 

 

 

(C.54) 
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Combining equations (C.51) and (C.54): 

∑ 𝜆𝑛,𝑡
𝐸 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑁

= − ∑ 𝐶𝑖 ∙ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

+ ∑ 𝑐𝑝 ∙ 𝑄𝑔,𝑡
𝐻

𝑔∈𝐺𝑎𝑁

− ∑ 𝑐𝑝 ∙ (휁𝑖 ∙ 𝑝𝑖,𝑡 − 𝑄𝜄,𝑡
𝐻 )

𝑖∈𝐼𝑎𝑁

+  ∑ 𝜆𝑛,𝑡
𝐸 ∙ 𝐿𝑑,𝑡

𝐸

𝑑𝐸∈𝐷𝑎𝑁

+ 𝜌ℎ,𝑡 ∙ 𝛼ℎ ∙ 휂 ∙ ∑ 𝐿𝑑,𝑡
𝐸

𝑑𝐸𝐿∈𝐷𝑎𝑁

− ∑ 𝑎𝑖,𝑡 ∙ 𝑃𝑖

𝑖∈𝐼𝑎𝑁

− ∑ 𝛾𝑗,𝑡 · 𝑊𝑗

𝑗∈𝐽𝑎𝑁

− ∑ 𝑇𝑛,𝑚 ·

𝑚∈𝑁𝑎𝑀

(𝜓𝑛,𝑚,𝑡 + 𝜓𝑛,𝑚,𝑡)

− ∑ 3.14 ·

𝑛∈𝑁𝑎𝑀

(𝜋𝑛,𝑡 + 𝜋𝑛,𝑡) 
(C.55) 

 

Keeping the non-linear terms of the equation (C.53) on the left part: 

∑ 𝜆𝑟,𝑡
𝑁𝐺 ∙ 𝜑𝑔 ∙ 𝑣𝑔,𝑡

𝑔∈𝐺𝑎𝑅

= ∑ 𝐶𝑘 ∙ 𝑓𝑘,𝑡

𝑘∈𝐾𝑎𝑅

+ ∑ 휀𝑘,𝑡 · 𝐹𝑘

𝑘∈𝐾𝑎𝑅

− ∑ 𝜆𝑟,𝑡
𝑁𝐺 ∙ 𝐿𝑑,𝑡

𝑁𝐺

𝑑𝑁𝐺∈𝐷𝑎𝑅

              ∀𝑟, ∀𝑡 
(C.56) 

 

Substituting the non-linear terms of the equation (4.4) for the right part of the 

equations (C.55) and (C.56), the non-linear objective function (4.4) is reduced to the 

equivalent linear expression: 

 

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆 − ∑ 𝐶𝑖 ∙ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

+ ∑ 𝑐𝑝 ∙ 𝑄𝑔,𝑡
𝐻

𝑔∈𝐺𝑎𝑁

− ∑ 𝑐𝑝 ∙ (휁𝑖 ∙ 𝑝𝑖,𝑡 − 𝑄𝜄,𝑡
𝐻 )

𝑖∈𝐼𝑎𝑁

+  ∑ 𝜆𝑛,𝑡
𝐸 ∙ 𝐿𝑑,𝑡

𝐸 + 𝜌ℎ,𝑡 ∙ 𝛼ℎ ∙ 휂 ∙ ∑ 𝐿𝑑,𝑡
𝐸

𝑑𝐸𝐿∈𝐷𝑎𝑁𝑑𝐸∈𝐷𝑎𝑁

− ∑ 𝑎𝑖,𝑡 ∙ 𝑃𝑖

𝑖∈𝐼𝑎𝑁

− ∑ 𝛾𝑗,𝑡 · 𝑊𝑗

𝑗∈𝐽𝑎𝑁

− ∑ 𝑇𝑛,𝑚 ·

𝑚∈𝑁𝑎𝑀

(𝜓𝑛,𝑚,𝑡 + 𝜓𝑛,𝑚,𝑡)

− ∑ 3.14 ·

𝑛∈𝑁𝑎𝑀

(𝜋𝑛,𝑡 + 𝜋𝑛,𝑡) − ∑ 𝐶𝑘 ∙ 𝑓𝑘,𝑡

𝑘∈𝐾𝑎𝑅

− ∑ 휀𝑘,𝑡 · 𝐹𝑘

𝑘∈𝐾𝑎𝑅

+ ∑ 𝜆𝑟,𝑡
𝑁𝐺 ∙ 𝐿𝑑,𝑡

𝑁𝐺 − ∑ 𝑐𝑝 ∙ (휁𝑔 ∙ 𝑣𝑔,𝑡 − 𝑄𝑔,𝑡
𝐻 )

𝑔∈𝐺𝑎𝑁𝑑𝑁𝐺∈𝐷𝑎𝑅

 
(C.57) 

 

 



 

 
 

Appendix D 

 

Mathematical Transformations for Chapter 5 

 

KKT equality conditions:   

𝑂𝑠,𝑡
𝐸𝐿 − 𝜆𝑛,𝑡

𝐸𝐿 + 𝛾𝑠,𝑡 − 𝛾𝑠,𝑡 = 0           ∀𝑠, ∀𝑡 (D.1) 

−𝜆𝑛,𝑡
𝐸𝐿 + 휃𝑛𝑠,𝑡 − 휃𝑛𝑠,𝑡 = 0           ∀𝑛𝑠, ∀𝑡 (D.2) 

𝐶𝑖 − 𝜆𝑛,𝑡
𝐸𝐿 + 𝑎𝑖,𝑡 − 𝑎𝑖,𝑡 = 0           ∀𝑖, ∀𝑡 (D.3) 

∑ 𝐵𝑛,𝑚 ∙ (𝜆𝑛,𝑡
𝐸𝐿 − 𝜆𝑚,𝑡

𝐸𝐿 )

𝑚∈𝑁𝑎𝑀

+ ∑ 𝐵𝑛,𝑚 ∙ (𝜓𝑛,𝑚,𝑡 − 𝜓𝑚,𝑛,𝑡)

𝑚∈𝑁𝑎𝑀

− ∑ 𝐵𝑛,𝑚 ∙ (𝜓𝑛,𝑚,𝑡 − 𝜓𝑚,𝑛,𝑡)

𝑚∈𝑁𝑎𝑀

+ 𝜋𝑛,𝑡 − 𝜋𝑛,𝑡 + 휂𝑛,𝑡
𝑜

= 0          ∀𝑛, ∀𝑡 (D.4) 

− ∑ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

− ∑ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

− ∑ 𝑤𝑛𝑠,𝑡

𝑛𝑠∈𝑁𝑆𝑎𝑁

+ ∑ 𝐿𝑑,𝑡
𝐸𝐿

𝑑𝐸𝐿∈𝐷𝑎𝑁

+ ∑ 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) = 0       ∶ [𝜆𝑛,𝑡
𝐸𝐿 ]       ∀𝑛, ∀𝑡 

𝑚∈𝑁𝑎𝑀

 

 

(D.5) 

𝛿𝑛1,𝑡 = 0         ∀𝑛 = 𝑛1, ∀𝑡 (D.6) 

𝑂𝑠,𝑡
𝐺𝐶 − 𝜆𝑡

𝐺𝐶 + 휀𝑠,𝑡 − 휀𝑠,𝑡 = 0           ∀𝑠, ∀𝑡 (D.7) 

𝐶𝑛𝑠
𝐺𝐶 − 𝜆𝑡

𝐺𝐶 + 𝜅𝑛𝑠,𝑡 − 𝜅𝑛𝑠,𝑡 = 0           ∀𝑛𝑠, ∀𝑡 (D.8) 

𝜆𝐴𝐶𝑃 − 𝜆𝑡
𝐺𝐶 + 휁𝑑,𝑡 − 휁𝑑,𝑡  = 0        ∀𝑑, ∀𝑡 (D.9) 

− ∑ 𝑞𝑠,𝑡
↑

𝑠∈𝑆𝑎𝑁

− ∑ 𝑟𝑛𝑠,𝑡
↑

𝑛𝑠∈𝑁𝑆𝑎𝑁

− ∑ 𝐴𝐶𝑃𝑑,𝑡

𝑑𝐸𝐿∈𝐷𝑎𝑁

+ ∑ 𝑅𝑃𝑆 ∙ 𝐿𝑑,𝑡
𝐸𝐿

𝑑𝐸𝐿∈𝐷𝑎𝑁

= 0      

∶ [𝜆𝑡
𝐺𝐶]       ∀𝑡 

(D.10) 

 

 

KKT complementarity conditions:   

0 ≤  𝑝𝑖,𝑡 ⊥ 𝑎𝑖,𝑡 ≥ 0           ∀𝑖, ∀𝑡 (D.11) 

0 ≤  𝑃𝑖 − 𝑝𝑖,𝑡 ⊥ 𝑎𝑖,𝑡 ≥ 0           ∀𝑖, ∀𝑡 (D.12) 

0 ≤  𝑓𝑠,𝑡 ⊥ 𝛾𝑠,𝑡 ≥ 0           ∀𝑠, ∀𝑡 (D.13) 
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0 ≤  𝐹𝑠 − 𝑓𝑠,𝑡 ⊥ 𝛾𝑠,𝑡 ≥ 0           ∀𝑠, ∀𝑡 (D.14) 

0 ≤  𝑤𝑛𝑠,𝑡 ⊥ 휃𝑛𝑠,𝑡 ≥ 0           ∀𝑛𝑠, ∀𝑡 (D.15) 

0 ≤  𝑊𝑛𝑠 − 𝑤𝑛𝑠,𝑡 ⊥ 휃𝑛𝑠,𝑡 ≥ 0           ∀𝑛𝑠, ∀𝑡 (D.16) 

0 ≤  𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) + 𝑇𝑛,𝑚 ⊥ 𝜓𝑛,𝑚,𝑡 ≥ 0           ∀𝑛, ∀𝑚, ∀𝑡 (D.17) 

0 ≤  𝑇𝑛,𝑚 − 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) ⊥ 𝜓𝑛,𝑚,𝑡 ≥ 0           ∀𝑛, ∀𝑚, ∀𝑡 (D.18) 

0 ≤  𝛿𝑛,𝑡 + 3.14 ⊥ 𝜋𝑛,𝑡 ≥ 0           ∀𝑛, ∀𝑡 (D.19) 

0 ≤  3.14 − 𝛿𝑛,𝑡 ⊥ 𝜋𝑛,𝑡 ≥ 0           ∀𝑛, ∀𝑡 (D.20) 

0 ≤  𝑞𝑠,𝑡
↑ ⊥ 휀𝑠,𝑡 ≥ 0           ∀𝑠, ∀𝑡 (D.21) 

0 ≤  𝑆𝑂𝐴𝐶𝑠,𝑡 − 𝑞𝑠,𝑡
↑ ⊥ 휀𝑠,𝑡 ≥ 0           ∀𝑠, ∀𝑡 (D.22) 

0 ≤  𝑟𝑛𝑠,𝑡
↑ ⊥ 𝜅𝑛𝑠,𝑡 ≥ 0           ∀𝑛𝑠, ∀𝑡 (D.23) 

0 ≤  𝑆𝑂𝐴𝐶𝑛𝑠,𝑡 − 𝑟𝑛𝑠,𝑡
↑ ⊥ 𝜅𝑛𝑠,𝑡 ≥ 0           ∀𝑛𝑠, ∀𝑡 (D.24) 

0 ≤  𝐴𝐶𝑃𝑑,𝑡 ⊥ 휁𝑑,𝑡 ≥ 0           ∀𝑑, ∀𝑡 (D.25) 

0 ≤  𝑅𝑃𝑆 ∙ 𝐿𝑑,𝑡
𝐸𝐿 − 𝐴𝐶𝑃𝑑,𝑡 ⊥ 휁𝑑,𝑡 ≥ 0           ∀𝑑, ∀𝑡 (D.26) 

 

The nonlinearities appearing in the KKT complementarity conditions are eliminated by 

employing the Fortuny-Amat and McCarl linearization process: 

0 ≤  𝑝𝑖,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑖,𝑡
1           ∀𝑖, ∀𝑡 (D.27) 

0 ≤  𝑎𝑖,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑖,𝑡
1 )           ∀𝑖, ∀𝑡 (D.28) 

0 ≤  𝑃𝑖 − 𝑝𝑖,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑖,𝑡
2          ∀𝑖, ∀𝑡 (D.29) 

0 ≤  𝑎𝑖,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑖,𝑡
2 )           ∀𝑖, ∀𝑡 (D.30) 

0 ≤  𝑓𝑠,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑠,𝑡
5            ∀𝑠, ∀𝑡 (D.31) 

0 ≤  𝛾𝑠,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑠,𝑡
5 )           ∀𝑠, ∀𝑡 (D.32) 

0 ≤  𝐹𝑠 − 𝑓𝑠,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑠,𝑡
6            ∀𝑠, ∀𝑡 (D.33) 

0 ≤  𝛾𝑠,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑠,𝑡
6 )           ∀𝑠, ∀𝑡 (D.34) 

0 ≤  𝑤𝑛𝑠,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑛𝑠,𝑡
7            ∀𝑛𝑠, ∀𝑡 (D.35) 

0 ≤  휃𝑛𝑠,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑛𝑠,𝑡
7 )           ∀𝑛𝑠, ∀𝑡 (D.36) 

0 ≤  𝑊𝑛𝑠 − 𝑤𝑛𝑠,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑛𝑠,𝑡
8            ∀𝑛𝑠, ∀𝑡 (D.37) 

0 ≤  휃𝑛𝑠,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑛𝑠,𝑡
8 )           ∀𝑛𝑠, ∀𝑡 (D.38) 

0 ≤  𝑞𝑠,𝑡
↑ ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑠,𝑡

9            ∀𝑠, ∀𝑡 (D.39) 

0 ≤  휀𝑠,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑠,𝑡
9 )           ∀𝑠, ∀𝑡 (D.40) 

0 ≤  𝑆𝑂𝐴𝐶𝑠,𝑡 − 𝑞𝑠,𝑡
↑ ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑠,𝑡

10           ∀𝑠, ∀𝑡 (D.41) 
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0 ≤  휀𝑠,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑠,𝑡
10)           ∀𝑠, ∀𝑡 (D.42) 

0 ≤  𝑟𝑛𝑠,𝑡
↑ ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑛𝑠,𝑡

11            ∀𝑛𝑠, ∀𝑡 (D.43) 

0 ≤  𝜅𝑛𝑠,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑛𝑠,𝑡
11 )           ∀𝑛𝑠, ∀𝑡 (D.44) 

0 ≤  𝑆𝑂𝐴𝐶𝑛𝑠,𝑡 − 𝑟𝑛𝑠,𝑡
↑ ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑛𝑠,𝑡

12            ∀𝑛𝑠, ∀𝑡 (D.45) 

0 ≤  𝜅𝑛𝑠,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑛𝑠,𝑡
12 )           ∀𝑛𝑠, ∀𝑡 (D.46) 

0 ≤  𝐴𝐶𝑃𝑑,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑑,𝑡
13            ∀𝑑, ∀𝑡 (D.47) 

0 ≤  휁𝑑,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑑,𝑡
13 )          ∀𝑑, ∀𝑡 (D.48) 

0 ≤  𝑅𝑃𝑆 ∙ 𝐿𝑑,𝑡
𝐸𝐿 − 𝐴𝐶𝑃𝑑,𝑡 ≤ 𝑀𝑝𝑃 ∙ 𝑧𝑑,𝑡

14            ∀𝑑, ∀𝑡 (D.49) 

0 ≤  휁𝑑,𝑡 ≤ 𝑀𝑐𝑃 ∙ (1 − 𝑧𝑑,𝑡
14 )           ∀𝑑, ∀𝑡 (D.50) 

0 ≤  𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) + 𝑇𝑛,𝑚 ≤ 𝑀𝑝𝑋 ∙ 𝑧𝑛,𝑚,𝑡
15            ∀𝑛, ∀𝑚, ∀𝑡 (D.51) 

0 ≤  𝜓𝑛,𝑚,𝑡 ≤ 𝑀𝑐𝑋 ∙ (1 − 𝑧𝑛,𝑚,𝑡
15 )           ∀𝑛, ∀𝑚, ∀𝑡 (D.52) 

0 ≤  𝑇𝑛,𝑚 − 𝐵𝑛,𝑚 ∙ (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) ≤ 𝑀𝑝𝑋 ∙ 𝑧𝑛,𝑚,𝑡
16            ∀𝑛, ∀𝑚, ∀𝑡 (D.53) 

0 ≤  𝜓𝑛,𝑚,𝑡 ≤ 𝑀𝑐𝑋 ∙ (1 − 𝑧𝑛,𝑚,𝑡
16 )           ∀𝑛, ∀𝑚, ∀𝑡 (D.54) 

0 ≤  𝛿𝑛,𝑡 + 3.14 ≤ 𝑀𝑝𝑋 ∙ 𝑧𝑛,𝑡
17            ∀𝑛, ∀𝑡 (D.55) 

0 ≤  𝜋𝑛,𝑡 ≤ 𝑀𝑐𝑋 ∙ (1 − 𝑧𝑛,𝑡
17 )           ∀𝑛, ∀𝑡 (D.56) 

0 ≤  3.14 − 𝛿𝑛,𝑡 ≤ 𝑀𝑝𝑋 ∙ 𝑧𝑛,𝑡
18            ∀𝑛, ∀𝑡 (D.57) 

0 ≤  𝜋𝑛,𝑡 ≤ 𝑀𝑐𝑋 ∙ (1 − 𝑧𝑛,𝑡
18 )           ∀𝑛, ∀𝑡 (D.58) 

 

The KKT equality condition (D.1) results in: 

𝜆𝑛,𝑡
𝐸𝐿 = 𝑂𝑠,𝑡

𝐸𝐿 + 𝛾𝑠,𝑡 − 𝛾𝑠,𝑡           ∀𝑠, ∀𝑡 (D.59) 

 

Multiplying by 𝑓𝑠,𝑡 gives: 

∑ 𝜆𝑛,𝑡
𝐸𝐿 ∙ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

= ∑ 𝑂𝑠,𝑡
𝐸𝐿 ∙ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

+ ∑ 𝛾𝑠,𝑡 ∙ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

− ∑ 𝛾𝑠,𝑡 ∙ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

 (D.60) 

 

From the KKT complementarity conditions (D.13), (D.14): 

𝛾𝑠,𝑡 ∙ 𝑓𝑠,𝑡 = 0       ∀𝑠, ∀𝑡    ⇒     ∑ 𝛾𝑠,𝑡 ∙ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

= 0 (D.61) 

𝛾𝑠,𝑡 ∙ 𝑓𝑠,𝑡 = 𝛾𝑠,𝑡 · 𝐹𝑠       ∀𝑠, ∀𝑡    ⇒     ∑ 𝛾𝑠,𝑡 ∙ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

= ∑ 𝛾𝑠,𝑡 ∙ 𝐹𝑠

𝑠∈𝑆𝑎𝑁

 (D.62) 
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Hence (D.59) becomes: 

∑ 𝜆𝑛,𝑡
𝐸𝐿 ∙ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

= ∑ 𝑂𝑠,𝑡
𝐸𝐿 ∙ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

+ ∑ 𝛾𝑠,𝑡 ∙ 𝐹𝑠

𝑠∈𝑆𝑎𝑁

 (D.63) 

 

The KKT equality (D.7) results in: 

𝜆𝑡
𝐺𝐶 = 𝑂𝑠,𝑡

𝐺𝐶 + 휀𝑠,𝑡 − 휀𝑠,𝑡           ∀𝑠, ∀𝑡 (D.64) 

 

Multiplying by 𝑞𝑠,𝑡
↑  gives: 

∑ 𝜆𝑡
𝐺𝐶 ∙ 𝑞𝑠,𝑡

↑

𝑠∈𝑆𝑎𝑁

= ∑ 𝑂𝑠,𝑡
𝐺𝐶 ∙ 𝑞𝑠,𝑡

↑

𝑠∈𝑆𝑎𝑁

+ ∑ 휀𝑠,𝑡 ∙ 𝑞𝑠,𝑡
↑

𝑠∈𝑆𝑎𝑁

− ∑ 휀𝑠,𝑡 ∙ 𝑞𝑠,𝑡
↑

𝑠∈𝑆𝑎𝑁

 (D.65) 

 

From the KKT complementarity conditions (D.21), (D.22): 

휀𝑠,𝑡 ∙ 𝑞𝑠,𝑡
↑ = 0       ∀𝑠, ∀𝑡    ⇒     ∑ 휀𝑠,𝑡 ∙ 𝑞𝑠,𝑡

↑

𝑠∈𝑆𝑎𝑁

= 0 (D.66) 

휀𝑠,𝑡 ∙ 𝑞𝑠,𝑡
↑ = 휀𝑠,𝑡 · 𝑆𝑂𝐴𝐶𝑠,𝑡        ∀𝑠, ∀𝑡    ⇒     ∑ 휀𝑠,𝑡 ∙ 𝑞𝑠,𝑡

↑

𝑠∈𝑆𝑎𝑁

= ∑ 휀𝑠,𝑡 · 𝑆𝑂𝐴𝐶𝑠,𝑡

𝑠∈𝑆𝑎𝑁

 (D.67) 

 

Hence (D.64) becomes: 

∑ 𝜆𝑡
𝐺𝐶 ∙ 𝑞𝑠,𝑡

↑

𝑠∈𝑆𝑎𝑁

= ∑ 𝑂𝑠,𝑡
𝐺𝐶 ∙ 𝑞𝑠,𝑡

↑

𝑠∈𝑆𝑎𝑁

+ ∑ 휀𝑠,𝑡 · 𝑆𝑂𝐴𝐶𝑠,𝑡

𝑠∈𝑆𝑎𝑁

 (D.68) 

 

By applying the strong duality theorem for the electricity market clearing objective 

function (5.4): 

∑ 𝑂𝑠,𝑡
𝐸𝐿 ∙ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

+ ∑ 𝐶𝑖 ∙ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

=  ∑ 𝜆𝑛,𝑡
𝐸𝐿 ∙ 𝐿𝑑,𝑡

𝐸𝐿

𝑑𝐸∈𝐷𝑎𝑁

− ∑ 𝑎𝑖,𝑡 ∙ 𝑃𝑖

𝑖∈𝐼𝑎𝑁

− ∑ 𝛾𝑠,𝑡 · 𝐹𝑠

𝑠∈𝑆𝑎𝑁

− ∑ 휃𝑛𝑠,𝑡 ∙ 𝑊𝑛𝑠

𝑛𝑠∈𝑁𝑆𝑎𝑁

  − ∑ 𝑇𝑛,𝑚 ·

𝑚∈𝑁𝑎𝑀

(𝜓𝑛,𝑚,𝑡 + 𝜓𝑛,𝑚,𝑡)

− ∑ 3.14 ·

𝑛∈𝑁𝑎𝑀

(𝜋𝑛,𝑡 + 𝜋𝑛,𝑡) 

 

 

(D.69) 
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By applying the strong duality theorem for green certificates market clearing objective 

function (5.12): 

∑ 𝛰𝑠,𝑡
𝐺𝐶 ∙ 𝑞𝑠,𝑡

↑

𝑠∈𝑆𝑎𝑁

+ ∑ 𝐶𝑛𝑠,𝑡
𝐺𝐶 ∙ 𝑟𝑛𝑠,𝑡

↑

𝑛𝑠∈𝑁𝑆𝑎𝑁

+ ∑ 𝜆𝐴𝐶𝑃 ∙ 𝐴𝐶𝑃𝑑,𝑡

𝑑𝐸𝐿∈𝐷𝑎𝑁

=  ∑ 𝜆𝑡
𝐺𝐶 ∙ 𝑅𝑃𝑆 ∙ 𝐿𝑑,𝑡

𝐸𝐿

𝑑𝐸𝐿∈𝐷𝑎𝑁

− ∑ 휀𝑠,𝑡 · 𝑆𝑂𝐴𝐶𝑠,𝑡

𝑠∈𝑆𝑎𝑁

− ∑ 𝜅𝑛𝑠,𝑡 · 𝑆𝑂𝐴𝐶𝑛𝑠,𝑡

𝑛𝑠∈𝑁𝑆𝑎𝑁

− ∑ 휁𝑑,𝑡 · 𝑅𝑃𝑆 ∙ 𝐿𝑑,𝑡
𝐸𝐿

𝑑∈𝐷𝑎𝑁

 

 

(D.70) 

 

Objective function (5.1) becomes: 

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆     ∑ { ∑ 𝑂𝑠,𝑡
𝐸𝐿 ∙ 𝑓𝑠,𝑡

𝑠∈𝑆𝑎𝑁

+ ∑ 𝛾𝑠,𝑡 ∙ 𝐹𝑠

𝑠∈𝑆𝑎𝑁

+ ∑ 𝑂𝑠,𝑡
𝐺𝐶 ∙ 𝑞𝑠,𝑡

↑

𝑠∈𝑆𝑎𝑁𝒕

+ ∑ 휀𝑠,𝑡 · 𝑆𝑂𝐴𝐶𝑠,𝑡

𝑠∈𝑆𝑎𝑁

} 

 

(D.71) 

 

Combining the above equations, the objective function takes the following final form: 

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆     ∑ {− ∑ 𝐶𝑖 ∙ 𝑝𝑖,𝑡

𝑖∈𝐼𝑎𝑁

+ ∑ 𝜆𝑛,𝑡
𝐸𝐿 ∙ 𝐿𝑑,𝑡

𝐸𝐿

𝑑𝐸∈𝐷𝑎𝑁

− ∑ 𝑎𝑖,𝑡 ∙ 𝑃𝑖

𝑖∈𝐼𝑎𝑁

 

𝒕

− ∑ 휃𝑛𝑠,𝑡 ∙ 𝑊𝑛𝑠,𝑡

𝑛𝑠∈𝑁𝑆𝑎𝑁

− ∑ 𝑇𝑛,𝑚 ·

𝑚∈𝑁𝑎𝑀

(𝜓𝑛,𝑚,𝑡 + 𝜓𝑛,𝑚,𝑡)

− ∑ 3.14 ·

𝑛∈𝑁𝑎𝑀

(𝜋𝑛,𝑡 + 𝜋𝑛,𝑡) − ∑ 𝐶𝑛𝑠,𝑡
𝐺𝐶 ∙ 𝑟𝑛𝑠,𝑡

↑

𝑛𝑠∈𝑁𝑆𝑎𝑁

− ∑ 𝜆𝐴𝐶𝑃 ∙ 𝐴𝐶𝑃𝑑,𝑡

𝑑𝐸𝐿∈𝐷𝑎𝑁

+  ∑ 𝜆𝑡
𝐺𝐶 ∙ 𝑅𝑃𝑆 ∙ 𝐿𝑑,𝑡

𝐸𝐿

𝑑𝐸𝐿∈𝐷𝑎𝑁

− ∑ 𝜅𝑛𝑠,𝑡 · 𝑆𝑂𝐴𝐶𝑛𝑠,𝑡

𝑛𝑠∈𝑁𝑆𝑎𝑁

− ∑ 휁𝑑,𝑡 · 𝑅𝑃𝑆 ∙ 𝐿𝑑,𝑡
𝐸𝐿

𝑑∈𝐷𝑎𝑁

} 

 

 

 

(D.72) 

 

Even though, the majority of the nonlinearities is eradicated via the above displayed 

methodologies, a bilinear term still remains and consists of a primal energy and a dual 

green certificates variable, such as: 

𝜅𝑛𝑠,𝑡 · 𝑆𝑂𝐴𝐶𝑛𝑠,𝑡  
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To linearize these terms, a binary expansion method is implemented, which 

necessitates the introduction of auxiliary variables, such as binary and continuous 

variables 𝑦𝑛𝑠,𝑡,𝑒𝑥
↑  and 𝑥𝑛𝑠,𝑡,𝑒𝑥

↑  respectively, as well as a set of big-M constants. Next, an 

application of this method is attempted involving the bilinear term  

𝜅𝑛𝑠,𝑡 · 𝑆𝑂𝐴𝐶𝑛𝑠,𝑡  : 

 

𝜅𝑛𝑠,𝑡 · 𝑆𝑂𝐴𝐶𝑛𝑠,𝑡 = ∑ 𝑥𝑛𝑠,𝑡,𝑒𝑥
↑ ∙ 𝑆𝑂𝐴𝐶̈

𝑛𝑠,𝑡,𝑒𝑥

𝑒𝑥

    ∀𝑛𝑠, ∀𝑡 (D.73) 

 

Continuous variables 𝑆𝑂𝐴𝐶𝑛𝑠,𝑡  are approximated through a set of discrete values 

{𝑆𝑂𝐴𝐶̈
𝑛𝑠,𝑡,𝑒𝑥  , 𝑒𝑥 = 1 … 𝐸𝑋}, acting as parameters and bounded by the [0, 𝑆𝑂𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅

𝑛𝑠] 

interval. 

 

0 ≤ 𝜅𝑛𝑠,𝑡 − 𝑥𝑛𝑠,𝑡,𝑒𝑥
↑ ≤ 𝛭1 ∙ (1 − 𝑦𝑛𝑠,𝑡,𝑒𝑥

↑ )    ∀𝑛𝑠, ∀𝑡, ∀𝑒𝑥 

 

(D.74) 

0 ≤ 𝑥𝑛𝑠,𝑡,𝑒𝑥
↑ ≤ 𝛭1 ∙ 𝑦𝑛𝑠,𝑡,𝑒𝑥

↑     ∀𝑛𝑠, ∀𝑡, ∀𝑒𝑥 

 

(D.75) 

 

The following equation identifies the closest discrete value �̈�𝑛𝑠,𝑡,𝑒𝑥  to the 𝑤𝑛𝑠,𝑡  variable: 

𝑆𝑂𝐴𝐶𝑛𝑠,𝑡 −
𝛥𝑆𝑂𝐴𝐶𝑛𝑠,𝑡

2
≤ ∑ 𝑦𝑛𝑠,𝑡,𝑒𝑥

↑ ∙ 𝑆𝑂𝐴𝐶̈
𝑛𝑠,𝑡,𝑒𝑥

𝑒𝑥

≤ 𝑆𝑂𝐴𝐶𝑛𝑠,𝑡 +
𝛥𝑆𝑂𝐴𝐶𝑛𝑠,𝑡

2
    ∀𝑛𝑠, ∀𝑡 

 

(D.76) 

Where: 

𝛥𝑆𝑂𝐴𝐶𝑛𝑠,𝑡
=

𝑆𝑂𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅
𝑛𝑠

𝐸𝑋
    ∀𝑛𝑠, ∀𝑡 

 
(D.77) 

∑ 𝑦𝑛𝑠,𝑡,𝑒𝑥
↑ = 1     ∀𝑛𝑠, ∀𝑡

𝑒𝑥

 

 

(D.78) 
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