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ARISTOTLE UNIVERSITY OF THESSALONIKI 

Abstract 
 

Faculty of Engineering 

Department of Chemical Engineering 

Doctor of Philosophy 

Modeling and Optimization 
of 3D Stem Cell 
Bioprocesses 

By Romuald GYŐRGY 

 

Clinical need for bone implants has been steadily increasing in the last 

few decades. The rising demand is partially attributed to the rise in living 

standards across the world and a corresponding increase in the percentage of 

elderly people (who are more susceptible to injury) in the general population. 

Together with the rising demand, newer medical procedures that are 

more effective and are associated with fewer risks (such as donor site morbidity) 

have been developed. Both in the past, and to continue the useful trend into the 

future, cells suitable for implantation in critical sized bone defects can be 

produced by the in-vitro expansion and osteogenic differentiation of stem cells. 

To help make such experimental processes more efficient — both in 

terms of cost, as well as the quality of the product (bone cell implant) — 

mathematical models can accelerate the model-based optimization of the 

experimental techniques used for producing the implants, and the cells contained 

within the implants themselves. 

Towards this end, this PhD thesis introduces two mathematical models 

for the osteogenic differentiation of mesenchymal stem cells in vitro. The first 

model addresses osteogenic differentiation in well-plate cultures and is 
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constructed around a population balance core that enables it to capture and 

deconvolute cell cycle heterogeneity; it also incorporates the activity of key 

intracellular metabolic pathways (i.e., glycolysis and tricarboxylic acid cycle) and 

representative osteogenic genes (Runx2 and osteonectin). The mathematical 

model is built from first-principles and obeys mass conservation laws. The key 

finding based on simulation results implies the existence of a tradeoff between 

proliferation and differentiation, predicting a delay in the onset of differentiation 

when cells are allowed to cycle faster. The simulations leading to this conclusion 

did not model energy competition and suggest that the tradeoff is intrinsic, beyond 

the constraints imposed by the limited availability of energy molecules within 

cells. 

The mathematical model is then extended to a rotating-wall bioreactor, 

whereby cells (cultured in a three-dimensional environment) are encapsulated in 

alginate-gelatin beads, introducing a multiscale description of the osteogenic 

differentiation process: from the cellular size scale, through the alginate-gelatin 

bead scale, to the bioreactor size scale. The mathematical model incorporates 

the same metabolic pathways and key genes, additionally capturing spatial 

heterogeneity within the beads. The discretized formulation of the model consists 

of 12,563 simultaneous ordinary differential equations. Predicted metabolic 

changes and gene activation (Runx2 and osteonectin) in alginate-gelatin-bead-

encapsulated cells are slightly delayed compared with well-plate cultures, result 

attributed to mass transfer limitations within the hydrogel bead. 

Global sensitivity analysis revealed that parameters related to gene 

expression (decay rates and gene transcription activation constants) carry the 

most significance and should be the focus of future parameter estimation efforts. 

Hydrogel bead size does not meaningfully impact simulation outcomes for beads 

smaller than 4 mm in diameter. An analysis of the mathematical model renders 

the outcome of the simulations qualitatively correct, within the limitations imposed 

by the reduced subset of metabolites and genes included in the model. 

The mathematical models introduced by the research showcased in this 

thesis can function as a framework for future model-based bioreactor and 

bioprocess optimization. Due to the large size of the mathematical model in terms 
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of number of equations, the multiscale model requires the use of 

high-performance computing systems to reduce the currently prohibitive time 

required to solve optimization problems on a single computer. 
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Περίληψη 
Η κλινική ανάγκη για οστικά εμφυτεύματα αυξάνεται σταθερά τις 

τελευταίες δεκαετίες. Η αυξανόμενη αυτή ζήτηση αποδίδεται εν μέρει στην άνοδο 

του βιοτικού επιπέδου παγκοσμίως και στην σημαντική αύξηση του ποσοστού 

των ηλικιωμένων (που είναι πιο επιρρεπείς σε τραυματισμούς) στον γενικό 

πληθυσμό. 

Παράλληλα με την αυξανόμενη ζήτηση, έχουν αναπτυχθεί νεότερες 

ιατρικές τεχνικές που είναι πιο αποτελεσματικές και συνδέονται με λιγότερους 

κινδύνους (όπως η νοσηρότητα του δότη). Τόσο στο παρελθόν, όσο και για να 

συνεχιστεί η χρήσιμη τάση στο μέλλον, κύτταρα κρίσιμου μεγέθους, κατάλληλα 

για εμφύτευση σε οστικά ελαττώματα, μπορούν να παραχθούν με την in vitro 

ανάπτυξη και την οστεογονική διαφοροποίηση των βλαστοκυττάρων. 

Για να γίνουν πιο αποτελεσματικές τέτοιες πειραματικές διεργασίες — 

τόσο από άποψη κόστους όσο και από άποψη ποιότητας του τελικού προϊόντος 

(εμφύτευμα οστικών κυττάρων) — μαθηματικά μοντέλα μπορούν να επιταχύνουν 

τη βελτιστοποίηση (βάσει μοντέλου) των πειραματικών τεχνικών που 

χρησιμοποιούνται τόσο για την παραγωγή των εμφυτευμάτων όσο και την 

ανάπτυξη των κυττάρων που περιέχονται στα ίδια τα εμφυτεύματα. 

Η παρούσα διατριβή προτείνει αρχικά ένα μαθηματικό μοντέλο για την 

οστεογονική διαφοροποίηση των μεσεγχυματικών βλαστοκυττάρων in vitro. Τα 

μοντέλα έχουν αναπτυχθεί γύρω από ένα πληθυσμιακό ισοζύγιο που επιτρέπει 

την λεπτομερή μοντελοποίηση της εγγενούς ετερογένειας του κυτταρικού κύκλου, 

ενσωματώνοντας τη δραστηριότητα βασικών ενδοκυτταρικών μεταβολικών οδών 

(κύκλος γλυκόλυσης και τρικαρβοξυλικού οξέος) και αντιπροσωπευτικά 

οστεογονικά γονίδια. Το μοντέλο βασίζεται σε θεμελιώδεις αρχές και ισχύοντες 

νόμους διατήρησης. Τα αποτελέσματα της προσομοίωσης των μοντέλων 

αποδεικνύουν  την ύπαρξη αντιστάθμισης μεταξύ του πολλαπλασιασμού και της 

διαφοροποίησης των κυττάρων, προβλέποντας μια καθυστέρηση στην έναρξη 

της διαφοροποίησης όταν τα κύτταρα αφήνονται να ανακυκλωθούν ταχύτερα. 

Το αρχικό μαθηματικό μοντέλο επεκτείνεται στη συνέχεια σε έναν 

βιοαντιδραστήρα περιστρεφόμενου τοιχώματος, όπου τα κύτταρα 
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ενθυλακώνονται σε σφαιρίδια αλγινικής ζελατίνης, εισάγοντας έτσι την 

δυνατότητα περιγραφής πολλαπλών κλιμάκων της διαδικασίας διαφοροποίησης: 

από την κλίμακα κυτταρικού μεγέθους, μέσω της κλίμακας σφαιριδίων αλγινικής 

ζελατίνης και τέλος στην κλίμακα μεγέθους του βιοαντιδραστήρα. Το μαθηματικό 

μοντέλο ενσωματώνει τις ίδιες μεταβολικές οδούς και βασικά γονίδια, 

καταγράφοντας επιπλέον τη χωρική ετερογένεια μέσα στα σφαιρίδια. Το 

διακριτοποιημένο μοντέλου αποτελείται από 12.563 συνήθεις διαφορικές 

εξισώσεις. Οι συγκεντρώσεις βασικών μεταβολιτών (π.χ. γλυκόζη, 

πυροσταφυλικό, γλουταμίνη, γαλακτικό) συγκρίνονται με πειραματικά δεδομένα 

από καλλιέργειες στατικών πλακών φρεατίων, αποδεικνύοντας ότι οι προβλέψεις 

του μοντέλου είναι ικανοποιητικές. Φαίνεται επίσης ότι η γονιδιακή ενεργοποίηση 

(Runx2 και οστεονεκτίνη) σε κύτταρα ενθυλακωμένα με σφαιρίδια αλγινικής 

ζελατίνης καθυστερεί ελαφρώς σε σύγκριση με καλλιέργειες σε πλακίδια . Μια 

ολική ανάλυση ευαισθησίας αποκαλύπτει ότι οι παράμετροι που σχετίζονται με 

την έκφραση των γονιδίων (ρυθμοί διάσπασης και σταθερές ενεργοποίησης 

μεταγραφής γονιδίων) έχουν τη μεγαλύτερη βαρύτητα και θα πρέπει να 

αποτελούν το επίκεντρο της μελλοντικής εκτίμησης παραμέτρων. Το μέγεθος των 

σφαιριδίων υδρογέλης δεν επηρεάζει σημαντικά τα αποτελέσματα της 

προσομοίωσης για διαμέτρους σφαιριδίων στην περιοχή 2–3 mm. 

Τα μαθηματικά μοντέλα που παρουσιάζονται σε αυτή τη διατριβή 

μπορούν να εξασφαλίσουν ένα υπολογιστικό πλαίσιο για την μελλοντική 

βελτιστοποίηση βιοαντιδραστήρων και βιοδιαδικασιών βάσει μοντέλων. Λόγω 

του μεγάλου μεγέθους τους, τα προτεινόμενα μοντέλα πολλαπλής κλίμακας 

απαιτούν τη χρήση υπολογιστικών συστημάτων υψηλής απόδοσης για τη μείωση 

του επί του παρόντος υψηλού υπολογιστικού χρόνου που απαιτείται για την 

επίλυση τέτοιων προβλημάτων βελτιστοποίησης σε έναν μόνο υπολογιστή. 

 



xv 

Acknowledgements 
I find myself at an important milestone of my life’s journey. Looking back 

upon the voyage thus far, there are countless people who have shaped me, either 

by their words, or through their actions, and sometimes by their stillness. 

To enable me to undertake the doctoral journey, first I had to be born. I 

am grateful to my parents for lending me part of their own designs and for raising 

me, alongside my extended family, including my grandparents, and my 

great-grandmother who shaped me in my early years. I am grateful to my (older) 

siblings for frequently challenging me intellectually and helping me uncover my 

interest in structured logical thinking and language semantics. 

Many teachers and educators have guided me along the way. I am 

particularly grateful to my maternal language and mathematics teachers from 

secondary school and high school, and most of all to my high-school chemistry 

teacher, Mariana Doicescu. I would like to express my gratitude and appreciation 

towards my bachelor’s and master’s degree supervisor, professor Sorin Bîldea, 

for his adaptive teaching strategy and specifically for building a friendship 

underneath our student-professor relationship. 

I am thankful for the funding offered through the European Union Horizon 

2020 research and innovation programs, under the Marie Skłodowska-Curie 

SyMBioSys ITN, grant agreement no. 675585. The financial support offered by 

the program is the pragmatic aspect that convinced me to leave my home country 

and seek international experience. I would like to thank Professor Athanasios 

Mantalaris for coordinating this European project and for setting ambitious goals 

for my own research. I am thankful to my supervisor, Professor Michael 

Geordiadis, who welcomed me into his research group and placed me on a path 

filled with challenging topics such as mathematical model formulation and 

numerical solution methods applied to systems biology and bioprocess 

optimization. Looking back on the last few years I feel pride in having 

accomplished the ambitions that I set out to achieve at the beginning of the PhD 

and recognize the vital role that my supervisor had in enabling all this. I am also 

grateful to Prof. Georgiadis for the many people that I was introduced to during 



xvi 

my years in Thessaloniki. I am thankful to Professor Margaritis Kostoglou for our 

discussions on mathematical model formulation. Stemming from insight gathered 

during these conversations, I worked relentlessly to produce a mathematical 

model that not only matches experimental data but is also built from first principles 

(balance equations) and, therefore, more robust. 

The research presented in this thesis has substantially benefited from my 

partnership with Michail Klontzas (Imperial College, London, UK), who performed 

most of the experiments that have been used in this work, from probing for 

behavior to include in the mathematical representation, to experiments used in 

the estimation of parameters and the validation of the mathematical model. I am 

also thankful for his friendship, and that of other early-stage researchers involved 

in the SyMBioSys ITN. 

I am thankful to Magda Kalaitzidou, George Nikolaidis, and Spyros 

Mastrogeorgopoulos for helping me to get settled and adapt to the Greek culture 

at the beginning of my doctoral journey. I am also grateful for meeting and 

becoming friends with Panos Karakostas, Apostolis Elekidis, and George 

Georgiadis. I was fortunate enough to be an advisor for the bachelor thesis of 

Foteini Zagklavara, who became my friend. 

In the final stages of my doctoral journey, I started teaching university 

classes in Romania, made new friendships with Ana Maria Brezoiu, and 

strengthened older ones, with Ionuț Banu; I am indebted to him for helping me 

find the surge of motivation that enabled me to complete this thesis. 

I am grateful for my fate in having met the love of my life, Teodora, more 

than a decade ago, and for having been together through these years. I am also 

thankful for my daughter who, despite having no scientific involvement in my 

thesis, contributes immensely to my life with her joyous outlook.



xvii 

Table of contents 
 

Declaration of authorship.................................................................................... iii 

Examination committee members ...................................................................... v 

Abstract .............................................................................................................. ix 

Περίληψη .......................................................................................................... xiii 

Acknowledgements ........................................................................................... xv 

Table of contents ............................................................................................. xvii 

List of figures .................................................................................................... xxi 

List of tables ..................................................................................................... xxi 

List of abbreviations ........................................................................................ xxv 

Nomenclature ................................................................................................ xxvii 

Chapter 1. Introduction ....................................................................................... 1 

1.1. Motivation and objectives ......................................................................... 1 

1.2. Stem cells ................................................................................................ 3 

1.2.1. Mathematical models for stem cell proliferation and differentiation ... 7 

1.3. Bioreactor modeling ................................................................................. 9 

1.4. Global (parameter) sensitivity analysis ................................................... 11 

1.4.1. A brief history of sensitivity analysis research ................................. 12 

1.4.2. High-dimensional model representation .......................................... 13 

1.5. Thesis overview ..................................................................................... 14 

Chapter 2. Mathematical modeling of the osteogenic differentiation of 

mesenchymal stem cells in well-plate culture ................................................... 17 

2.1. Mathematical model formulation ............................................................ 18 

2.1.1. Assumptions .................................................................................... 18 

2.1.2. Structure of the mathematical model ............................................... 19 

2.1.3. Balance equations for intracellular metabolism ............................... 21 

2.1.4. Balance equations for gene expression .......................................... 26 

2.1.5. Population balance equations for the cellular division cycle and cell 

differentiation ............................................................................................. 28 

2.1.6. Building the transition function ........................................................ 34 

2.2. Simulation results ................................................................................... 36 

2.2.1. Parameter estimation ...................................................................... 37 

2.2.2. Global sensitivity analysis ............................................................... 38 



xviii 

2.2.3. Effects of cell cycle duration of the metabolism and differentiation of 

UCB MSCs ................................................................................................ 40 

2.2.4. Population balance modeling incorporating metabolism and genetic 

switches, deconvoluted heterogeneity of differentiating populations ......... 42 

Chapter 3. Mathematical modeling of the osteogenic differentiation of 

mesenchymal stem cells in a rotating-wall bioreactor ...................................... 51 

3.1. Mathematical model formulation ............................................................ 52 

3.1.1. Assumptions .................................................................................... 53 

3.1.2. Balance equations for intracellular metabolism ............................... 53 

3.1.3. Balance equations for gene expression .......................................... 54 

3.1.4. Population balance equations for the cellular division cycle and cell 

differentiation ............................................................................................. 55 

3.1.5. Mass balance at the alginate-gelatin bead and bioreactor scales ... 60 

3.2. Solution methodology ............................................................................. 63 

3.2.1. Parameter estimation ...................................................................... 66 

3.3. Simulation results ................................................................................... 67 

3.3.1. Metabolism ...................................................................................... 67 

3.3.2. Gene expression ............................................................................. 70 

3.3.3. Cell counts and density distribution ................................................. 71 

3.3.4. Sensitivity analysis .......................................................................... 73 

3.3.5. Discussion ....................................................................................... 75 

3.4. Mathematical model validity assessment ............................................... 77 

3.4.1. Model response to initial cell density variations ............................... 77 

3.4.2. Model response to nutrient concentration variations ....................... 83 

3.4.3. Model response to increasing lactate concentrations in the culture 

medium ..................................................................................................... 88 

3.4.4. Model response to dexamethasone concentration variations .......... 92 

3.4.5. Model response to alginate-gelatin bead diameter variations ......... 97 

Chapter 4. Conclusions and Directions for future work .................................. 103 

4.1. Conclusions.......................................................................................... 103 

4.2. Original contributions ........................................................................... 104 

4.3. Recommendations for future directions ................................................ 105 

Bibliography .................................................................................................... 107 

Research output ............................................................................................. 119 

Appendix A. Estimation results for the important parameters of the well plate 

model and their confidence intervals .............................................................. 121 



xix 

Appendix B. Convergence of sensitivity analysis for well-plate parameters 122 

Appendix C. Statistical significance of experimental measurements for gene 

expression during osteogenesis in well plates................................................ 123 

Appendix D. Convergence of sensitivity analysis for bioreactor parameters 124 

 





xxi 

List of figures 
Figure 2.1. Visual representation of the structure of the mathematical model at 

the cellular scale: intracellular metabolism, gene expression, and cell division 

cycle ................................................................................................................. 20 

Figure 2.2. Visual representation of the structure of the mathematical model at 

the cell population level (scale): cell cycle heterogeneity and the osteogenic 

differentiation route ........................................................................................... 21 

Figure 2.3. Conceptual model of intracellular metabolism ................................ 22 

Figure 2.4. Cellular division cycle and its component phases .......................... 28 

Figure 2.5. Global sensitivity analysis results. .................................................. 39 

Figure 2.6. Impact of cell growth parameters of mesenchymal stem cells and 

pre-osteoblasts on the differentiation onset time .............................................. 42 

Figure 2.7. Average intracellular metabolite concentrations during the 

osteogenic differentiation process of mesenchymal stem cells ........................ 43 

Figure 2.8. Average gene expression levels during the osteogenic differentiation 

process of mesenchymal stem cells ................................................................. 44 

Figure 2.9. Differentiation fraction throughout the osteogenic differentiation 

process ............................................................................................................. 45 

Figure 2.10. Partial and total cell counts during the osteogenic differentiation 

process of mesenchymal stem cells ................................................................. 46 

Figure 3.1. Average intracellular metabolite levels during osteogenic 

differentiation of MSCs ..................................................................................... 69 

Figure 3.2. Culture medium metabolite levels during osteogenic differentiation of 

MSCs ............................................................................................................... 70 

Figure 3.3. Average relative expression of genes during osteogenic 

differentiation of MSCs ..................................................................................... 71 

Figure 3.4. Averaged cell counts during osteogenic differentiation of MSCs .... 72 

Figure 3.5. Calculated radial cell density distribution in the alginate gelatin bead 

at day 21........................................................................................................... 73 

Figure 3.6. Global sensitivity analysis results: sensitivity indices for total cell 

count and osteoblasts fraction .......................................................................... 74 

Figure 3.7. The response of intracellular metabolism to initial cell density 

variations .......................................................................................................... 79 

Figure 3.8. The response of extracellular metabolite levels to initial cell density 

variations .......................................................................................................... 80 

Figure 3.9. The response of relative gene expression to initial cell density 

variations .......................................................................................................... 81 



xxii 

Figure 3.10. The response of total cell population per alginate-gelatin bead to 

initial cell density variations .............................................................................. 81 

Figure 3.11. The response of the radial cell density distribution at day 21 to 

initial cell density variations .............................................................................. 82 

Figure 3.12. Response of intracellular metabolism to variations in nutrient 

concentration in the culture medium ................................................................. 84 

Figure 3.13. The response of extracellular metabolite levels to variations in 

nutrient concentration in the culture medium .................................................... 85 

Figure 3.14. The response of relative gene expression to variations in nutrient 

concentration in the culture medium ................................................................. 86 

Figure 3.15. The response of total cell population per alginate-gelatin bead to 

variations in nutrient concentration in the culture medium ................................ 86 

Figure 3.16. The response of the radial cell density distribution at day 21 to 

variations in nutrient concentration in the culture medium ................................ 87 

Figure 3.17. Response of intracellular metabolism to variations in lactate 

concentration in the culture medium ................................................................. 88 

Figure 3.18. Response of extracellular metabolite levels to variations in lactate 

concentration in the culture medium ................................................................. 89 

Figure 3.19. Response of relative gene expression to variations in lactate 

concentration in the culture medium ................................................................. 90 

Figure 3.20. Response of total cell population per alginate-gelatin bead to 

variations in lactate concentration in the culture medium ................................. 90 

Figure 3.21. Response of the radial cell density distribution at day 21 to 

variations in lactate concentration in the culture medium ................................. 91 

Figure 3.22. Response of intracellular metabolism to variations in 

dexamethasone concentration in the culture medium ...................................... 93 

Figure 3.23. Response of extracellular metabolite levels to variations in 

dexamethasone concentration in the culture medium ...................................... 94 

Figure 3.24. Response of relative gene expression to variations in 

dexamethasone concentration in the culture medium ...................................... 95 

Figure 3.25. Response of total cell population per alginate-gelatin bead to 

variations in dexamethasone concentration in the culture medium .................. 95 

Figure 3.26. Response of the radial cell density distribution at day 21 to 

variations in dexamethasone concentration in the culture medium .................. 97 

Figure 3.27. Response of intracellular metabolism to variations in 

alginate-gelatin bead diameter ......................................................................... 98 

Figure 3.28. Response of extracellular metabolite levels to variations in 

alginate-gelatin bead diameter ......................................................................... 99 



xxiii 

Figure 3.29. Response of relative gene expression to variations in 

alginate-gelatin bead diameter ....................................................................... 100 

Figure 3.30. Response of total cell population per alginate-gelatin bead to 

variations in alginate-gelatin bead diameter ................................................... 100 

Figure 3.31. Response of the radial cell density distribution at day 21 to 

variations in alginate-gelatin bead diameter ................................................... 101 

Figure B.1. Convergence plot of global sensitivity analysis for well-plate 

parameters, when the analyzed response is the total cell count .................... 122 

Figure B.2. Convergence plot of global sensitivity analysis for well-plate 

parameters, when the analyzed response is the osteoblast-only cell count ... 122 

Figure C.1. Experimental measurements for Runx2 expression during 

osteogenesis of mesenchymal stem cells in well-plate cultures, with statistical 

significance markers ....................................................................................... 123 

Figure C.2. Experimental measurements for osteonectin expression during 

osteogenesis of mesenchymal stem cells in well-plate cultures, with statistical 

significance markers ....................................................................................... 123 

Figure D.1. Convergence plot of global sensitivity analysis for bioreactor 

parameters ..................................................................................................... 124 

Figure D.2. Convergence plot for global sensitivity analysis showing only the 

last 4,000 iterations (out of 14,000 in total) .................................................... 125 



xxiv 

List of tables 
Table 2.1. Nominal values of model parameters for the process of osteogenic 

differentiation in well-plate cultures .................................................................. 37 

Table 2.2. Parameters that are fixed throughout the simulation and are not 

subject to global sensitivity analysis ................................................................. 38 

Table 2.3. Significant parameters of the mathematical model, as identified using 

global sensitivity analysis ................................................................................. 40 

Table 3.1. Diffusion coefficient values used by the mathematical model .......... 66 

Table A.1. Estimated values of the important parameters that were identified 

using global sensitivity analysis and their confidence intervals ...................... 121 



xxv 

List of abbreviations 
ATP adenosine triphosphate 

DNA deoxyribonucleic acid 

mRNA messenger RNA 

MSC mesenchymal stem cell 

NADH nicotinamide adenine dinucleotide (and hydrogen) 

OBC osteoblast 

PBE population balance equation 

PBM population balance model 

PRE pre-osteoblast 

RHS right-hand side 

RNA ribonucleic acid 

TCA cycle tricarboxylic acid cycle, also known as the Krebs or citric acid cycle 

TGF transforming growth factor 

UCB umbilical cord blood 





xxvii 

Nomenclature 
Latin letters 

𝐴𝐺𝑖
(𝑇𝑌𝑃)

 [dimensionless] – RNA transcription activator level for gene 𝑖 (Runx2, or 

osteonectin) in cells at differentiation state 𝑇𝑌𝑃 
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glutamine) inside the alginate-gelatin bead 

𝐶𝑃𝐷𝐺 [dimensionless] – cumulative probability distribution function indicating the 

fraction of cells which differentiate while traversing phase G, before reaching 

growth coordinate 𝑥 (given by the argument of the function) 

𝐶𝑅𝑖 [pmol/L] – intracellular concentration of the metabolite that plays the role of 

the reactant in the 𝑖th intracellular reaction; 𝑖 ranges between 1 and 9 

𝐷𝑒𝑥𝑐𝑒𝑙𝑙 [nmol/L] – intracellular dexamethasone concentration 

𝐷𝑒𝑥𝑐𝑢𝑙𝑡𝑢𝑟𝑒 [nmol/L] – dexamethasone concentration in the culture medium 

𝐷𝑒𝑥𝑏𝑒𝑎𝑑(𝑟, 𝑡) [nmol/L] – dexamethasone concentration in the alginate-gelatin 

bead at radial position 𝑟 (and time 𝑡) 

𝐷𝑖𝑛
(𝑇𝑌𝑃)

 [cell/L/day] – growth-coordinate-dependent differentiation rate of cells into 

differentiation state 𝑇𝑌𝑃 (from the preceding state); 𝐷𝑖𝑛
(𝑇𝑌𝑃) = 𝐷𝑜𝑢𝑡

(𝑇𝑌𝑃−1)
 

𝐷𝑜𝑢𝑡
(𝑇𝑌𝑃)

 [cell/L/day] – growth-coordinate-dependent differentiation rate into the next 

state after differentiation state 𝑇𝑌𝑃; 𝐷𝑜𝑢𝑡
(𝑇𝑌𝑃) = 𝐷𝑖𝑛

(𝑇𝑌𝑃+1)
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𝒟𝑚 [dm²/day] – mass diffusion coefficient of metabolite 𝑚 (glucose, lactate, or 

glutamine) in water 

𝑑𝑥𝑝 [dimensionless] – differentiation exponent 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝜋
(𝑇𝑌𝑃)

 [day] – duration of phase 𝜋 (G, S, or M) for cells at differentiation 

state 𝑇𝑌𝑃 (MSC, PRE, or OBC) 

𝐸𝑚
(𝑇𝑌𝑃)

 [L/pmol] – conversion factor relating the production of energy cofactor 𝑚 

(ATP or NADH) to the duration of phase G for cells at differentiation state 𝑇𝑌𝑃 

𝑓𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃)

 [dimensionless] – fraction of cells that are leaving state 𝑇𝑌𝑃 while 

traversing phase G by differentiating into (phase G of) the next state, before 

they can transition to the synthesis phase (of the current state 𝑇𝑌𝑃) 

𝐹𝐼𝑁 [L/day] – culture medium perfusion flowrate 

𝐹𝑚 [pmol/dm²/day] – molar flux density vector for metabolite 𝑚 (glucose, lactate, 

or glutamine) inside the alginate-gelatin bead 

𝐹𝑚,𝑟 [pmol/dm²/day] – radial component of molar flux for metabolite 𝑚 inside the 

alginate-gelatin bead, in the radial direction, oriented from the center toward 

the outer surface of the bead 

𝐺𝑖
(𝑇𝑌𝑃)

 [dimensionless] – relative expression level of gene 𝑖 (Runx2 or 

osteonectin) in cells at differentiation state 𝑇𝑌𝑃 

𝐺𝑘𝑒𝑦
(𝑇𝑌𝑃)

 [dimensionless] – relative expression of the gene that controls 

differentiation from differentiation state 𝑇𝑌𝑃; 𝐺𝑘𝑒𝑦 = 𝑅𝑢𝑛𝑥2 for mesenchymal 

stem cells and 𝐺𝑘𝑒𝑦 = 𝑜𝑠𝑡𝑒𝑜𝑛𝑒𝑐𝑡𝑖𝑛 for pre-osteoblasts 

𝑖 [dimensionless] – counter variable ranging from 1 up to the number of variables 

of the specified category (8 intracellular metabolites, 2 genes, 9 intracellular 

metabolic reactions, 3 cross-membrane transport flows, etc.) 

𝑘𝑏𝑒𝑎𝑑,𝑚 [dm/day] – mass transport coefficient for transfer of metabolite 𝑚 between 

the culture medium and the (surface of the) alginate-gelatin bead 

𝑘𝑐𝑎𝑡,𝑖 [day⁻¹] – kinetic constant for intracellular reaction 𝑖; 𝑖 ∈ 1,9̅̅ ̅̅  
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𝑘𝑑𝑒𝑐𝑎𝑦 [day⁻¹] – RNA decay rate 

𝑘𝐷𝑁𝐴,𝑖 [dimensionless] – DNA binding constant for the RNA transcription of gene 

𝑖 (Runx2 or osteonectin) 

𝑘𝐸,𝑖
(𝑇𝑌𝑃)

 [L/day] – cross-membrane transport coefficient for the enzyme connected 

with flowrate 𝑖 for cells at differentiation state 𝑇𝑌𝑃; see also: 𝑇𝑅𝑎𝑡𝑒𝑖
(𝑇𝑌𝑃)

; 𝑖 ∈ 1,3̅̅ ̅̅  

𝑘𝑇,𝑖 [pmol/L] – transport inhibition constant for cross-membrane transport flowrate 

𝑖; 𝑖 ∈ 1,3̅̅ ̅̅  

𝑘𝑡𝑟𝑎𝑛𝑠,𝑖 [day⁻¹] – RNA transcription rate for gene 𝑖 (Runx2 or osteonectin); 𝑖 ∈ 1,2̅̅ ̅̅  

𝑀𝑚
(𝑇𝑌𝑃)

 [pmol/L] – intracellular concentration of intracellular metabolite (or energy 

cofactor) 𝑚 in cells at differentiation state 𝑇𝑌𝑃 

𝑀𝑇𝑖
(𝑇𝑌𝑃)

 [pmol/L] – intracellular concentration of metabolite transported across the 

cell membrane by flowrate 𝑖 

𝑁𝑏𝑒𝑎𝑑 [dimensionless] – number of (alginate-gelatin) beads inside the perfusion 

reactor 

𝑁𝑅 [dimensionless] – number of intracellular metabolic reactions included in the 

mathematical description of osteogenesis (𝑁𝑅 = 9) 

𝑁𝑇 [dimensionless] – number of cross-membrane transport reactions included in 

the mathematical description of osteogenesis (𝑁𝑇 = 3) 

𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)

 [cell/L] – total count of cells at differentiation state 𝑇𝑌𝑃 

𝑛𝑡𝑟𝑎𝑛𝑠 [dimensionless] – RNA transcription exponent 

𝑁𝜋
(𝑇𝑌𝑃)

 [cell/L] – cell count distribution of cells at differentiation state 𝑇𝑌𝑃 that are 

currently traversing the 𝜋 cell division cycle phase 

𝑃𝑛𝑜𝑟𝑚(𝑥, 𝜇, 𝜎) [dimensionless] – cumulative normal probability function, 

parameterized by the mean value 𝜇 and standard deviation 𝜎; the symbol 𝜇 is 

used here for the mean value of the distribution and has the meaning of phase 

traversal rate elsewhere in the thesis (see 𝜇𝜋
(𝑇𝑌𝑃)

) 
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𝑃𝜋(𝑥) [dimensionless] – cumulative probability of transition to the subsequent 

phase in the cell cycle; 𝜋 ∈ {𝐺,𝑀} 

𝑟 [dm] – radial coordinate inside the alginate-gelatin bead sphere 

𝑅𝑏𝑒𝑎𝑑 [dm] – outer radius of spherical alginate-gelatin beads 

𝑅𝑒 [dimensionless] – Reynolds number 

𝑅𝑅𝑎𝑡𝑒𝑖
(𝑇𝑌𝑃)

 [pmol/L/day] – rate of intracellular metabolic reaction 𝑖 for cells at 

differentiation state 𝑇𝑌𝑃 

𝑅𝑉𝐷𝑒𝑥 [pmol/L/day] – net volumetric equivalent generation rate for 

dexamethasone inside the hydrogel bead 

𝑅𝑉𝑚 [pmol/L/day] – net volumetric equivalent generation rate for metabolite 𝑚 

inside the hydrogel bead (for glucose, lactate, and glutamine) 

𝑆𝑐𝑚 [dimensionless] – Schmidt number, for extracellular metabolite 𝑚 

𝑆ℎ𝑚 [dimensionless] – Sherwood number, for extracellular metabolite 𝑚 

𝑆𝑇𝑂𝐼𝐶𝑚,𝑖 [dimensionless] – stoichiometric coefficient of metabolite 𝑚 for 

intracellular metabolic reaction (or cross-membrane transport) 𝑖 

𝑡 [day] – time 

𝑇𝜋,𝑖𝑛
(𝑇𝑌𝑃)

 [day⁻¹] – transition rate into phase 𝜋, for cells at differentiation state 𝑇𝑌𝑃 

𝑇𝜋,𝑜𝑢𝑡
(𝑇𝑌𝑃)

 [day⁻¹] – distributed transition rate (onto the next phase in the cell cycle) 

for cells at differentiation state 𝑇𝑌𝑃 that are traversing phase 𝜋 

𝑇𝑅𝑎𝑡𝑒𝑖
(𝑇𝑌𝑃)

 [pmol/day] – cross-membrane transport flowrate 𝑖 for cells at 

differentiation state 𝑇𝑌𝑃 

𝑇𝑌𝑃 [dimensionless] – one of the three differentiation states considered by the 

mathematical model: mesenchymal stem cell (MSC=1), pre-osteoblast 

(PRE=2), or osteoblast (OBC=3) 

𝑉𝑐𝑒𝑙𝑙 [L] – average cell volume 
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𝑉𝑅 [L] – volume of culture medium inside the containing vessel (e.g., a well plate 

or a bioreactor) 

𝑥 [dimensionless] – cell cycle phase coordinate 

𝑥𝑚𝑎𝑥,𝜋 [dimensionless] – upper bound of the phase coordinate domain for cell 

cycle phase 𝜋 

𝑥𝑚𝑖𝑛,𝜋 [dimensionless] – lower bound of the phase coordinate domain for cell 

cycle phase 𝜋 

𝑥𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝜋 [dimensionless] – average value of the phase coordinate at transition 

into the next cell cycle phase from phase 𝜋; applicable only to phases G and 

M 

Greek letters 

𝛿(𝑥1, 𝑥2) [dimensionless] – Kronecker delta function; takes the value 1 if the two 

arguments are equal and 0 otherwise 

𝜃𝜋
(𝑇𝑌𝑃)

 [day⁻¹] – cell death rate for cells at differentiation state 𝑇𝑌𝑃 while traversing 

growth phase 𝜋 

𝜆𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 [L/day] – permeability coefficient for the mass transport of 

dexamethasone through the cell membrane 

𝜇𝜋
(𝑇𝑌𝑃)

 [day⁻¹] – cell cycle traversal rate for cells at differentiation state 𝑇𝑌𝑃, while 

traversing growth phase 𝜋 

𝜋 [dimensionless] – subscript; one of the three cell cycle phases described by the 

mathematical model: phase G (𝜋 = 1), phase S (𝜋 = 2), or phase M (𝜋 = 3) 

– ratio between the length of the circumference and the diameter of a circle; 

the meaning of the symbol 𝜋 should be clear based on the context in which it 

appears 

𝜔𝑖 [day⁻¹] – base expression rate of gene 𝑖 in mesenchymal stem cells 
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Chapter 1. Introduction 

1.1. Motivation and objectives 
Currently, there is a continuously increasing clinical demand for bone 

implants for a wide variety of surgical procedures for bone loss alleviation, most 

often involving bone tissue in the head and limbs. In grafting procedures, 

autografts are preferable to allografts as they mitigate the risk of disease 

transmission, but they do have shortcomings such as limited availability and 

donor site morbidity. Available synthetic graft substitutes generally lack 

osteoinductive or osteogenic properties [1]. There is currently no system that can 

mimic all the biological functions of autografts, clinical practice uses composite 

grafts combining scaffolding with biological elements that stimulate cell 

differentiation and osteogenesis [2]. As the incidence of bone disorders continues 

to increase, bone tissue engineering may provide a viable alternative to 

conventional grafts [3] by combining stem cells, biomaterial scaffolds, and 

biologically active growth factors to make bone grafts readily available [4]. 

Meeting these increasingly high demands can be achieved with the use of stem 

cells that can be differentiated in vitro towards the osteogenic lineage, aiming to 

produce cells suitable for implantation in critical-size bone defects. High-quality 

engineered grafts require efficient osteogenic differentiation of stem cells, 

ensuring extracellular matrix protein secretion and successful integration with the 

patients’ own tissue. In the specialized field of osteogenic stem cell differentiation, 

mesenchymal stem cells (MSCs) are the predominant focus of cellular research 

efforts, owing to their high osteogenic differentiation capacity and availability from 

multiple cell sources of fetal and adult origin, including umbilical cord blood, which 

present increased proliferative capacity and immunomodulatory properties. [5–

7]. 

During osteogenesis stem cell cultures consist of heterogeneous 

populations at various stages of differentiation and in different cell cycle growth 

phases. Most experimental techniques measure population-aggregated values, 

masking cell-to-cell variability and overlooking the heterogeneous nature of the 

cell culture. A comprehensive understanding of the evolution of the different 

coexisting cell populations during the osteogenic differentiation process can 
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support culture and reactor level optimization by providing a necessary 

instrument in the production of high-quality bone constructs [8]. Furthermore, 

bioreactor phenomena inherently occur at multiple scales simultaneously. Since 

more details are available during simulation, multiscale mathematical models 

describing the bioreactor at all relevant geometric scales support superior 

bioprocess control precision, potentially leading to improved stem cell products 

that are better suited to clinical applications for the treatment of bone defects and 

injuries. 

To sum up in a single sentence, the main goal of the thesis is to develop 

and implement a mathematical model to capture heterogeneity across many 

scales in biosystems using population balance modelling. In service of the main 

goal, the following objectives should be achieved: 

• The formulation of a mathematical description of a single cell cycle phase 

to describe the traversal of representative growth stages within the larger 

function of cellular duplication, using population balances. When faced 

with multiple options for the design of the mathematical model, 

formulations where the parameters or variables carry biological or physical 

significance should be preferred. 

• Inclusion of “ports” in the implementation of the mathematical model for 

cell cycle phases, which allows for cell cycle phases to connect and form 

the cell cycle without requiring correction factors between adjacent cell 

cycle phases to account for differences in phase duration, traversal rate, 

or numerical discretization scheme. 

• The formulation of a reduced mathematical model for intracellular 

metabolism supported by in-vitro experimental results. 

• A biologically accurate connection between the intracellular and 

extracellular compartments, allowing for metabolite transport across the 

cell membrane. The model should account for factors promoting and 

inhibiting the transport process. 
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• The formulation of a mathematical model to describe gene expression, 

considering the biological mechanism giving the order in which the genes 

are activated; the gene expression model should be connected to at least 

one exogenous signal that triggers and maintains the gene expression 

chain. 

• Connection of the description of cell proliferation and differentiation, gene 

expression and intracellular metabolism with bioreactor scale mass 

transport phenomena, incorporating any intermediate scales into the 

model. 

1.2. Stem cells 
Complex multicellular organisms are generally comprised of a plethora 

of cell types performing various functions within the host organism. Cell types and 

their differences can be thoroughly characterized by referring to their shape, cell 

structure, function, gene expression, and biochemical composition. These cell 

types are referred to as differentiated or specialized cells and develop from less 

differentiated or undifferentiated counterparts (i.e., stem cells) by means of a 

tightly regulated complex process, known as cellular differentiation [9]. 

Stem cells are functionally unspecialized cells that must possess two key 

capabilities: self-renewal, and multipotency. The proliferative (self-renewal) 

capability constitutes the main difference between stem cells and their more 

differentiated progeny and is the mechanism enabling stem cells to maintain their 

population size throughout the lifetime of the organism they reside within. 

Multipotency is the ability of stem cells to differentiate into multiple types of more 

specialized cells and is the reason why stem cells are the focus of many medical 

research teams around the world [10]. 

Evidence for the existence of stem cells dates to 1961, when it was 

observed that cell colonies were forming in the spleen of previously irradiated 

mice after being intravenously injected with bone marrow cells [11]. This 

experiment revealed the existence of hematopoietic stem cells and suggested 

that bone marrow transplantation could be used for the clinical treatment of blood 

formation disorders [12]. 
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Stem cell populations are generally heterogeneous in terms of their 

shape and intracellular biochemical composition; cells may shift between different 

metastable states, possibly enabling stem cells to react to differentiation stimuli 

while simultaneously maintaining population numbers, depending on their state 

[13]. 

The results of some experimental tests for stemness depend on the 

response of the cells to specific environmental signals; one drawback of the 

resulting dynamic description of stemness is its unequivocal connection to a 

unique cell population, stemming from its dependence on environmental 

conditions [9]. Other approaches focus on the detection of certain stem cell 

markers that are specific to each cell type [14,15]. 

While all cell types found in living multicellular organisms are derived from 

embryonic stem cells, which exist during the early stages of life, adult (tissue) 

stem cells, which exist throughout the entire lifetime of the organism can only 

differentiate into a limited number of cell types. Adult stem cells are responsible 

for the maintenance and recovery after injury for the tissues they reside within [9]. 

Among the relatively large number of different kinds (of stem cells), 

pluripotent stem cells are those that can differentiate into cell types of any tissue 

of the body. There are two types of pluripotent stem cells recognized in publicly 

available scientific literature: embryonic stem cells (ESC) and induced pluripotent 

stem cells (iPSC). ESCs originate in the inner cell mass of embryos and can be 

cultured as pluripotent stem cells in vitro [16]. Alternatively, iPSCs can be 

obtained from adult cells by induced de-differentiation (or reprogramming of the 

cell) [17,18]. Both experimental techniques produce stem cells that can 

differentiate into all three germ layers (endoderm, mesoderm, and exoderm) and 

are also capable of undergoing unlimited cellular divisions [12]. Following the 

discovery of iPSCs, significant research efforts have focused on techniques to 

isolate and characterize them [19]. After they were first derived (in mice) in 1981 

[20], pluripotent stem cells have enriched humanity’s understanding of essential 

areas of cellular biology and have provided the means to develop and test 

medical hypotheses and cell-based therapies [21]. 
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Another important and widely researched type [22] is the hematopoietic 

stem cell (HSC), which can differentiate into any cell type from the blood cell 

lineage, such as: red blood cells, white blood cells, or thrombocytes [23]. 

Hematopoietic stem cells (HSCs), also referred to as blood stem cells, are found 

in the bone marrow, peripheral blood, and umbilical cord blood (UCB). HSCs are 

one of the essential cell sources in stem cell biology and are also used in the 

clinical treatment of blood cancers and regenerative diseases including 

non-hematopoietic tissue regeneration (e.g., liver disease treatment). Despite 

their low numbers and relative rarity, hematopoietic stem cells are very active in 

the human body, producing about one trillion cells per day to maintain 

homeostasis [24]. Although bone marrow transplants have been successful at 

treating various hematopoietic deficiencies, significant immunological barriers 

affecting allogeneic blood stem cell transplants still exist; past and future research 

efforts focus on creating protocols for effective hematopoietic stem cell 

manipulation (such as genome editing) [25]. Currently, research on the 

transplantation of hematopoietic stem cells is still very active, with novel 

strategies for isolation, expansion, and implantation are continuously being 

developed [26]. 

While generally undesirable within the living body of individuals, cancer 

stem cells (CSCs) are also an important research topic; discovering markers that 

signal the existence of these cells [27] and using them in clinical settings to screen 

for known cancer types can be very impactful for patients, making it possible to 

treat the disease with diminished suffering of the individual or, in some cases, 

prevent their death (which would likely occur in the absence of early cancer 

detection). The existence of CSCs was first documented in leukemia, and in many 

other cancers since then [28], particularly in solid and blood cancers. Cancer 

stem cells have been proven to possess sustained self-renewal capacity and 

have been associated with cell proliferation and tumor growth. It is hypothesized 

that exposure to chemotherapy or radiotherapy may induce “stemness” in 

cancerous tissue cells, making tumors resistant to treatment [29]. The fact that 

CSCs generally constitute only a small fraction of the cell population within tumors 

[30] can make the cancer more difficult to treat, sometimes causing relapses even 

when the tumor has been physically removed from the patient [29]. 
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Stem cells also play an important role in the production of monoclonal 

antibodies for a large variety of applications, such as in the treatment of leukemia 

[31]. Monoclonal antibodies can also be used to treat tumors by targeting key 

regulators of cancerous stem cells using a modeling framework to characterize 

the cells and specific molecules involved in the process; the approach shows 

promising results both in reducing the size as well as slowing the growth of the 

tumor [32]. In modeling the production of monoclonal antibodies, it is important to 

have access to a complete and accurate mathematical description the stem cell 

line that produces the antibodies facilitating the optimization of culture conditions 

and the produced antibodies, guiding experiment design, and potentially reducing 

the associated experimental costs and time-to-market [33]. Mathematical models 

that include the binding of antibodies to their targets are being developed, aiming 

to produce antibodies that target multiple receptors, which may mitigate the 

resistance to medication that some cancers acquire during clinical treatment [34]. 

More monoclonal antibodies are sanctioned for disease treatment every year, as 

their efficacy and safety increase. Biosimilar products promise to make the 

treatment of various diseases more accessible and affordable in the coming years 

[35]. Monoclonal antibodies have also been used in the COVID-19 pandemic [36] 

(which has affected a large part of the world in recent years), because one of their 

key advantages, particularly important during the sanitary crisis, is that treatments 

can be developed, manufactured, tested, and approved faster than in the case of 

vaccines or antimicrobials [37]. 

Mesenchymal stem cells (MSCs) are one of the major stem cell types. 

The first description of MSCs is attributed to a 1966 article, characterizing them 

as “a population of adherent, colony-forming, fibroblast-like cells able to undergo 

osteogenic differentiation” [38]; in addition to the osteogenic lineage, MSCs can 

also differentiate into muscle and cartilage cells, among several other types [39]. 

MSCs are stromal cells that can self-renew and differentiate into multiple cell 

lineages, and can be sourced from multiple tissues, the most practical for 

experimental and clinical applications being umbilical cord and menses blood, fat 

tissue and bone marrow. Although the highly complex mechanisms for MSC 

differentiation and mobilization present significant challenges for the research 

community, their multipotency makes them attractive for clinical applications [40]. 
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In addition, MSCs possess anti-inflammatory and immune-modulatory properties, 

providing the greatest focus of human MSCs in clinical testing; in-vitro cultures 

suggest even broader applications with many clinical trials investigating medical 

applications of MSCs. Although the current understanding of mesenchymal stem 

cells is rooted in a strong scientific foundation, important details are not 

completely understood, such as intercellular and intracellular signaling [41]. 

Important phenotypic modifications mark the osteogenic differentiation 

route. One of the characteristic changes in mesenchymal stem cell physiology 

during osteogenesis is the shift of metabolic energy production from glycolysis to 

oxidative phosphorylation [42–46]. In addition to the metabolic changes that 

occur during osteogenic differentiation, a study of umbilical cord blood 

mesenchymal stem cells in laboratory conditions showed that metabolic activity 

is high during the first week of differentiation and decreases to an oxidative state 

analogous to that of osteoblasts during the second and third weeks [44]. The 

acquisition of the osteoblast phenotype is accompanied by changes in gene 

expression, including the Runt related transcription factor-2 (Runx2), expressed 

during the first few days of differentiation, and bone extracellular matrix-related 

genes that are expressed later in the differentiation process, such as osteocalcin, 

osteonectin and bone sialoprotein [47]. The transition from an undifferentiated 

proliferative phenotype to a differentiated one is linked to a gradual lengthening 

of the cell division cycle [48]. 

1.2.1. Mathematical models for stem cell proliferation 

and differentiation 

Research into the dynamics of the cellular division cycle promises to have 

notable clinical impact, especially when informed by and coupled with the large 

amounts of biological data that are becoming accessible with recent technological 

advances [9]. Mathematical models for cell growth can be implemented and 

solved in a deterministic or stochastic manner. While some processes are 

inherently stochastic in nature [49], simulating large stochastic models is less 

feasible, due to the exponentially larger associated simulation duration of the 

larger models (in terms of the number of equations in the mathematical 

description); furthermore, when the process involves many stochastic 
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components (particles, cells, etc.) the average stochastic run is well represented 

by the equivalent deterministic solution. 

Common mathematical formulations that describe cellular division and 

the cell cycle to various degrees of accuracy are (ordered from simple to 

complex): ordinary differential equations (ODE), delay differential equations 

(DDE), and population balance equations (PBE). Of the three listed approaches, 

ODEs are the simplest to implement and verify; DDEs improv the description of 

cultures where heterogeneity is important and are most suited if the delays (i.e., 

cell cycle phase durations) are constant; PBEs are the most flexible option, 

correctly describing the distribution of cells within cell cycle phases and allowing 

for non-uniform growth, death, and transition events over the modelled cell cycle 

phase. 

The cell cycle and stem cell proliferation are commonly described using 

ordinary differential equations (ODEs). An ODE-based model was applied to 

examine the lifespan and senescent behavior of periosteum derived progenitor 

cells, concluding that early-passage cells may be suitable for different 

applications than late-passage cells [50]. A mathematical model of MSC 

chondrogenesis was developed to investigate the effects of endogenous and 

exogenous transforming growth factor beta (TGF-β) on the chondrogenic 

differentiation of mesenchymal stem cells [51]. 

Although they are the simplest mathematical option for dynamic 

simulations, ordinary differential equations also have some shortcomings, 

particularly under cyclic or varying conditions; since each ODE only calculates 

one number (usually the total cell population of a compartment), it lacks a 

description of the cell density profile along the growth coordinate for that 

compartment. To address this issue, delay differential equations have been used 

in scientific publications in various fields, from leukemia chemotherapy [52] to 

mathematical modeling of HIV-AIDS [53]. 

The importance of cell cycle heterogeneity has been acknowledged in 

applications such as chemical cancer treatment [54]. Population balance models 

are used in a variety of scientific fields and are particularly valuable in applications 

with large numbers of entities that are distributed over a continuum of possible 
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states. Wu et al. used population balance models to study cell aggregation in 

stirred-suspension bioreactor cultures and identified the effect of cluster size on 

cellular oxygen availability and risk of hypoxia [55]. Bartolini et al. researched 

stem cell cycle dynamics and proliferation in suspension bioreactors by means of 

population balance equations; their results infer the existence of a non-trivial 

optimum cell concentration in suspension cultures [56]. More recently, Banerjee 

et al. constructed a mechanistic model for the agglomeration of Chinese hamster 

ovary cells in acoustic standing waves in which population balances were used 

to predict the particle size distribution and evaluate the cell separation efficiency 

of the technique [57]. Seidel and Eibl modelled oxygen supply in aerobic cultures 

and used population balances as one of the possible mathematical descriptions 

for bubble coalescence and breakup [58]; even without a direct description of the 

cells, the information provided by such a model can be very relevant for aerobic 

cell cultures by enabling the calculation of oxygen transfer rates from the gas 

phase into the aqueous phase. 

1.2.1.1. Differentiation of stem cells 

Stem cell differentiation phenomena are integrated in mathematical 

models by allocating each modelled cell type its own compartment and including 

additional differentiation-rate-related terms to the proliferation equations to track 

the number of cells transitioning between compartments [59]. If differentiation is 

modelled as a mitotic event, then differentiation can occur either by symmetric or 

asymmetric division; symmetric division produces two differentiated cells, while 

asymmetric division produces one differentiated cell and one stem cell. Targeted 

studies suggest that stem cell division is generally symmetric [60,61]. On the 

other hand, cell differentiation can also occur during the cell cycle, allowing for 

multiple cellular divisions before terminal differentiation at one end, or for 

successive differentiations across multiple compartments (or differentiation 

milestones) before undergoing mitosis at the other end [10]. 

1.3. Bioreactor modeling 
Bioreactors are widely used for various applications, from general 

large-scale fermenters to micro-bioreactors that are used for more specific 
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purposes, including the culturing of mammalian stem cells in three-dimensional 

scaffolds [62]. 

The development of models that mimic the in-vivo environment can be 

technically challenging; for example, differentiation into and maintenance of 

cartilage tissue, requires high hydrostatic pressures to be applied at various 

strengths to resemble regular daily activity of the tissue, and poses the additional 

problem of mass-transfer-limited gas bubble removal from the culture medium 

and scaffolds [63]. 

Accurate models approach bioreactor modeling from a mechanistic point 

of view, carefully choosing the phenomena to be described mathematically (e.g., 

temperature, metabolite concentrations, and pH) and ignoring less relevant 

aspects of the problem, based on insight and key assumptions [64]. 

Computer implementations of mathematical models can enhance 

description of fluid flow and cell dynamics and can help improve the geometry of 

scaffolds and aid in the design of experiments. Mathematical models also have 

their limitations, stemming from their simplification of reality and the validity of 

underlying assumptions. To ensure they are applicable, models should always 

be tested and validated if possible [65]. 

Mathematical models have been used to study oxygen mass transport 

limitations in biopharmaceutical processes, based on calculation of the mass 

transfer coefficient of oxygen and experimental measurement of the gas bubble 

size distribution; computational fluid dynamics simulations are presented as a 

viable alternative for improving the accuracy of empirical correlations while at the 

same time providing detailed cost-effective characterization of prototypes [66]. 

With recent advances in computing power a new level of model fidelity 

has emerged, termed “digital twin”, a highly detailed and accurate computer 

representation of a real process or device that has access to real-time process 

data. The virtual model can use a combination of simulation, machine learning 

and reasoning to generate valuable insight that is applicable to the original 

physical system [67]. The “digital twin” approach is slowly being adopted by the 

biochemical engineering industry and integrated into the design bioprocesses, 
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such as the in-vitro expansion of human mesenchymal stem cells, where the 

expansion process and cultivation methods are coupled with computational fluid 

dynamics (CFD) for modeling growth kinetics and local bioreactor characteristics 

(as opposed to averaged, global ones). CFD models and simulations are valuable 

tools with many applications including the determination of parameters that are 

difficult to determine experimentally [68]. 

A series of recent publications tackle computational fluid dynamics (CFD) 

and recognize the importance of multiscale mathematical descriptions for 

bioprocesses. Flow conditions (hydrodynamics) play a crucial role in chemical 

processes, due to their influence on sheer stresses, and mass and heat transfer. 

To enable the application of CFD models for practical bioengineering 

applications, their results require experimental validation; ultimately, such 

multiscale models support the use of digital twins for high performance and high 

accuracy process control [69]. A critical step of process development is the 

scale-up of laboratory-scale models; a scale-up methodology coupled with CFD 

and integrating cellular physiology could guide the development of future 

bioprocess designs [70]. In addition to the combination of biological models and 

CFD, data-driven modeling (i.e., machine learning) also has the potential to 

accelerate and improve the development of digital twins that can guide the 

selection between biological models and aid scale-up calculations for 

fermentation and other bioprocesses [71]. Computational fluid dynamics are 

increasingly being used in tissue engineering applications, as computing power 

becomes more accessible and practical simulation knowledge spreads among 

researchers. For example, using fluid dynamics calculations, a recent study found 

that, in the case of a rotary bioreactor for esophagus tissue engineering, 

moderate perfusion and rotation speeds are appropriate experimental conditions 

for culture [72]. 

1.4. Global (parameter) sensitivity analysis 
Global analysis techniques aim to assess the impact of the uncertainty 

(often conveyed using confidence intervals) in the values of the parameters of the 

model onto the prediction of the model, and to apportion the observed variance 

to each of the parameters subjected to the (global sensitivity) assessment. The 
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term sensitivity implies the (direct or indirect) use of derivatives, while the term 

global reveals that the result of the analysis is mediated over the entire parameter 

space. While local sensitivities are employed to identify the important parameters 

when using nominal values, global sensitivities reveal the important parameters 

when their values are allowed to vary in a specified parameter space [73] (i.e., 

when there is inherent associated uncertainty in the nominal values of a model’s 

parameters). 

Sensitivity analysis can impactfully aid the modeling process at many 

stages of (its) development, such as identification, calibration, and verification; 

for example, sensitivity analysis can reveal if parts of the model can be lumped, 

kept at fixed values, or even completely removed, without affecting the outcome 

of the model. Although sensitivity analysis is very powerful and can potentially 

yield notable results in terms of model simplification or parameter identification, 

the analysis should only be applied to carefully selected outputs with clear 

meaning or purpose within the model; in this manner, the time required to perform 

the calculations is kept low, and the sensitivity analysis is more transparent [74]. 

1.4.1. A brief history of sensitivity analysis research 

In 1995 two highly cited authors in the field of global sensitivity analysis 

(Sobol I. and Saltelli A.) introduced the method of rank transformation to calculate 

(first-order or main effect) sensitivity indices [75]. The methodology was further 

improved with the introduction of a technique allowing for the calculation of the 

“fractional contribution of the input parameters to the variance of the model 

prediction” and total effect sensitivity indices whose values capture synergetic 

interaction effects between each parameter and all the others, using rank 

transformation to boost the reproducibility of the approach [76]. 

Although the sensitivity analysis technique is very powerful, it was not 

immediately performed as routine practice, with many publications still using 

one-factor-at-a-time (OAT) analyses in 2005. Variance-based measures (and 

others) are described as easy to implement and capable of overcoming OAT 

shortcomings. Rigorously defining the concept of factor importance, renders the 

result of the analysis (i.e., the ranking of the factors) unambiguous [77]. 
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Global sensitivity analysis (GSA) is still an active research field. While 

GSA is mainly used to study the effects of uncertainty in the values of the inputs 

on the outputs of a model, GSA can also aid with variable selection in regression 

models, by applying a measure of global sensitivity to a model-fit criterion, in 

effect ranking the possible regression variables by importance; Becker et al. 

recently presented and demonstrated a method for model selection based on 

global sensitivity analysis [78]. 

1.4.2. High-dimensional model representation 

The mathematical models presented in this thesis have been subjected 

to global sensitivity analysis using the GUI-HDMR software tool [79]; the tool 

offers a tried-and-tested method that has been used in the sensitivity analysis of 

multiple mathematical models at the Biological Systems Engineering Laboratory 

at Imperial College London [80]. Before the analysis, an uncertainty interval is 

chosen for each input (i.e., all the parameters of a mathematical model, or a 

subset). Then, many sets of parameter values are generated for the selected 

inputs using the Sobol sequence [81,82], and the base simulation is repeated for 

each set of parameter values. When performing sensitivity analysis, it is crucial 

to cover as much as possible of the domain of interest for the parameters. The 

naïve rectangular grid approach becomes unfeasible for large numbers of factors 

(input parameters), since the total number of simulations to be carried out 

increases exponentially (with the number of factors). The Sobol sequence 

generates points that belong to a quasi-random point set which fills space in an 

efficient and highly uniform manner. 

Based on the table of inputs and corresponding outputs obtained by 

repeated simulations, the GUI-HDMR software tool then computes first-order 

sensitivity indices 𝑆𝑖
(1)

 and second-order contributions 𝑆𝑖,𝑗
(2)

 for each of the model 

outputs (denoted by the subscript index 𝑖 or 𝑗). The total sensitivity index for any 

of the given outputs is calculated using equation (1.1). Parameters with a total 

sensitivity index above the threshold value of 0.1 [83] were deemed significant 

(i.e., the design of future parameter estimation efforts should prioritize the 

refinement of these parameters’ values). 
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𝑇𝑆𝐼𝑖 = 𝑆𝑖
(1) +∑𝑆𝑖,𝑗

(2)

𝑖≠𝑗

 (1.1) 

1.5. Thesis overview 
The thesis has the following overall structure: 

Chapter 2 tackles the development and implementation of a 

mathematical model for the osteogenic differentiation of mesenchymal stem cells 

cultured in well plates. The model is built from first principles, and the modeling 

approach relies on balance equations for all conserved quantities, from 

population balances modeling the traversal of cell division cycle phases, to mass 

balances for intracellular and extracellular metabolism and gene expression. 

Simulation results match experimental measurements for cell counts, metabolic 

and gene expression levels, confirming the model is appropriate. Sensitivity 

analysis reveals that the parameters carrying the most significance for the model 

are directly involved in the differentiation and proliferation behaviors of the cells. 

An uncertainty analysis of the effects of cell cycle duration reveals that there may 

be inherent trade-offs between proliferation and differentiation even if the two 

aspects of stem cell dynamics were not competing for energy resources. 

Chapter 3 extends the mathematical model formulated in Chapter 2 by 

supplementing it with a description of the alginate-gelatin beads that stem cells 

are encapsulated in and of the bioreactor where the osteogenic differentiation 

process is carried out. This inclusion corresponds to a multiscale approach for 

bioreactor modeling, as it includes phenomena from the cellular, to the 

alginate-gelatin bead, and bioreactor scales. Although the multiscale approach is 

not a novel idea, mathematical models that implement it are scarce, because of 

the associated difficulties in the model formulation and solution stages. The 

results of the mathematical models from Chapter 2 and Chapter 3 are compared, 

highlighting both the similarities and the differences in their predictions. Chapter 3 

concludes with an analysis designed to check the output of the mathematical 

model under various biologically meaningful scenarios, rendering the model 

adequate and its predictions qualitatively accurate from the biological point of 

view. 



15 

Chapter 4 summarizes the main results of the mathematical models 

presented in this thesis and their significance and suggests possible directions to 

complement osteogenic differentiation research.
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Chapter 2. Mathematical modeling 

of the osteogenic differentiation 

of mesenchymal stem cells in 

well-plate culture 
This chapter introduces a mathematical model for the in-vitro osteogenic 

differentiation of mesenchymal stem cells (MSCs). In the experiments supporting 

the development of the mathematical model, MSCs derived from umbilical cord 

blood (UCB) were isolated [44] and subsequently differentiated in well plates over 

a 21-day period. The process of MSCs isolation began with cord blood dilution 

and extraction of the mononuclear cells by density gradient centrifugation; cells 

were then washed with phosphate-buffered saline and suspended in a culture 

medium comprised of 89% αMEM GlutaMax-I [84], 10% fetal bovine serum, and 

1% penicillin/streptomycin. The cells were then seeded in tissue culture flasks 

and incubated for two days at 37°C, 21% oxygen, and 5% CO2. Non-adherent 

cells were then discarded, and culture continued until confluence, subculturing 

adherent MSCs until passage 5. For the 21-day osteogenic process, the same 

basal culture medium was used, supplemented with 10 mmol/L 

β-glycerophosphate, 50 mg/L ascorbic acid 2-phosphate, and dexamethasone to 

initiate osteogenic induction. 

During osteogenesis, the concentrations of intracellular metabolites (that 

are included in the mathematical description) were determined based on 

published metabolomics data [44] by GC-MS analysis (gas chromatograph 

coupled to a mass spectrometer). Peak areas reported by the analysis were 

converted to concentration values (in pmol/L) by normalizing with ribitol 

concentration, which was used as an internal standard. 

For gene expression measurements, RNA was extracted from the cells 

and quantified using real-time qRT-PCR (quantitative reverse transcription 

polymerase chain reaction): 5 minutes of reverse transcription at 42°C, followed 

by 3 minutes of enzyme inactivation at 95°C, and 40 cycles of 3-second 

denaturation at 95°C and 30 seconds of annealing at 62°C using a StepOne Plus 
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qRT-PCR instrument. After extraction, the expression of Runx2 and osteonectin 

was measured by mRNA quantification using specific primers; the measurements 

were then normalized using RPL13a (ribosomal protein L13 antibody) as a 

housekeeping gene and expressed as relative mRNA levels. 

Total cell counts were measured indirectly, by washing the cells with 

phosphate-buffered saline (PBS) and incubated overnight in a quantification 

buffer: 1 mmol/L EDTA, 10 mmol/L Tris, 0.1% Triton-X, and 0.1 mg/mL 

Proteinase K. After diluting the resulting DNA solution 1:10 using PBS, 100 µL of 

each sample were incubated in darkness with PicoGreen working solution. The 

fluorescence of the solution was measured using a fluorescence reader at 

485 nm / 530 nm excitation/emission; finally, cell numbers were calculated based 

on a custom-made standard curve. 

All measurements (intracellular metabolite concentration, relative gene 

expression levels, and total cell counts) were carried out on samples obtained at 

days 0, 7, 14, and 21 of the osteogenic differentiation process [85]. 

2.1. Mathematical model formulation 
2.1.1. Assumptions 

The following statements were assumed to be true during the 

development of the mathematical model: 

• To divide, the cells must traverse three consecutive growth stages (i.e., 

cell cycle phases). Cell division occurs at the end of the last cell cycle 

phase (i.e., mitosis). 

• Cell growth is directly proportional to the rate of energy currency 

production (ATP and NADH molecules) for each cell type (i.e., 

differentiation state). 

• Three differentiation states are considered. Mesenchymal stem cells may 

differentiate into pre-osteoblasts, which may differentiate into osteoblasts, 

in turn. Differentiation in the opposite direction is considered negligible in 

the presence of dexamethasone (the osteogenic differentiation agent). 
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Differentiation states cannot be skipped, but cells may quickly differentiate 

further, reaching the terminal point (i.e., osteoblast state). 

• The differentiation behavior is controlled by a key gene for each cell type. 

Gene expression of the two selected genes described by the model are 

enhanced by the presence of dexamethasone in the culture medium. 

Dexamethasone may be transferred across the cell membrane, regarded 

as a permeable barrier (together with the nuclear membrane). 

• Cellular behaviors (metabolism, gene expression, growth, and 

differentiation) only depend on their current (intracellular) state. Cells have 

no memory of previous (intracellular and extracellular) environmental 

conditions. Cells react to changes in their environment instantaneously — 

while it takes time for their behavior to shift to the one matching their new 

state, there is no lag in beginning the state transition. 

• Transport across the cell membrane obeys conservation of mass (e.g., for 

glucose, glutamine, lactate, and dexamethasone), contributing to the 

decrease in the transported component in the source compartment and to 

the increase of the same component in the destination compartment. Cells 

also obey the mass conservation law when they differentiate: no mass is 

created or destroyed during differentiation and the transition of metabolism 

and gene expression towards a new steady state requires time, influencing 

population-averaged measured concentration values during this process. 

2.1.2. Structure of the mathematical model 

The core component of the mathematical model consists of a concise 

description of intracellular metabolic and genetic activities coupled to cell growth 

(Figure 2.1) and differentiation (Figure 2.2). 8 metabolites from key pathways 

(glycolysis, oxidative phosphorylation, and glutaminolysis) that showed 

significant changes during osteogenesis [44] are included in the model. Four of 

the modelled intracellular metabolic reactions produce cofactors serving as 

energy currency in the cell [86,87]. Intracellular cofactor levels (ATP and NADH) 

were not explicitly modeled because of their intricate interactions with many other 

metabolic pathways that are nonessential to the analysis in this study; instead, 



20 

the production rates of energy cofactors are correlated with the traversal (growth) 

rate of cells during the Gap 1 (phase “G” in the mathematical model) cell cycle 

phase by means of a proportionality constant. 

Figure 2.1 indicates the progression order for the cell cycle phases, as 

well as the experimentally determined duration for phases “S” (DNA synthesis) 

and “M” (lumped Gap 2 and mitosis) [85]; phase “G” represents the lumped Gap 0 

and Gap 1 cell cycle phases. The differentiation agent (dexamethasone) crosses 

the cellular membrane, then the nuclear membrane, and indirectly activates the 

expression of Runt-related transcription factor 2 (Runx2) through a series of 

steps; in turn, Runx2 triggers a chain of genetic activity leading to the expression 

of osteogenic genes, such as osteonectin [88]. The mathematical model 

concisely represents the transcription of Runx2 and osteonectin genes as 

single-step interactions with their activators (dexamethasone and Runx2, 

respectively). 

 
Figure 2.1. Visual representation of the structure of the mathematical model at the 

cellular scale: intracellular metabolism, gene expression, and cell division cycle. [89] 

The osteogenic differentiation route of MSCs (Figure 2.2) is marked by 

three distinct milestones: the initial state (mesenchymal stem cells, labeled 

“MSC”), one intermediary state (pre-osteoblasts, labeled “PRE”), and the final 

state (osteoblast cells, labeled “OBC”). The placeholder “TYP” (used in Figure 2.1 

and elsewhere throughout the mathematical model) represents any of the 
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differentiation states, as the mathematical description applies to each of them. 

Differentiation is restricted to phase G, as the objective of the cell shifts toward 

cell cycle completion and cellular division once the cell enters phase S (when 

DNA strain duplication occurs). Differentiation rates are controlled by the levels 

of gene expression of the two modelled genes: Runx2 level in MSC cells controls 

their differentiation into PRE, while osteonectin in PRE cells controls their 

differentiation into osteoblasts (OBC); OBCs are the terminal point of 

differentiation. The values of constant entities of the mathematical model (i.e., 

parameters) are given in Table 2.1 below. 

 
Figure 2.2. Visual representation of the structure of the mathematical model at the cell 

population level (scale): cell cycle heterogeneity and the osteogenic differentiation 
route; G=lumped Gap 0 and Gap 1; S=DNA synthesis phase; M=lumped Gap 2 and 
mitosis; MSC=mesenchymal stem cell; PRE=pre-osteoblast; OBC=osteoblast [89] 

2.1.3. Balance equations for intracellular metabolism 

Intracellular metabolic activity is succinctly characterized using the two 

most important pathways for the osteogenic differentiation of MSCs: glycolysis 

and oxidative phosphorylation [43,46]. A total of 8 experimentally measurable 

metabolites that showed significant concentration changes over the course of the 

differentiation process [44] are included in the mathematical model: glucose, 

pyruvate, lactate, citrate, iso-citrate, succinate, fumarate, and glutamine. The 

concentration levels of these metabolites are potentially different between cellular 

differentiation states and can also depend on time; the well plated cells are 

considered spatially homogeneous. 

Figure 2.3 depicts the 8 metabolites that are part of the mathematical 

description of MSCs during osteogenic differentiation, as well as the chain of 
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metabolic reactions they are involved in. The figure also shows the production of 

energy-related cofactors (ATP and NADH) by some of the metabolic reactions. 

The yellow background represents the cell, while its dotted border represents the 

cell membrane. Three of the metabolites can be transported across the cell 

membrane, represented by dashed arrows indicating the direction of transport. 

Fumarate is involved as a reactant in two metabolic reactions: the first one is part 

of the TCA cycle and contributes to the production of citrate, while the second 

one contributes to the generation of other metabolites that were not included in 

the mathematical model. Although all the metabolites included in the 

mathematical description are involved in other intracellular reactions from several 

different metabolic pathways, only one such reaction was included, to allow the 

TCA cycle to reach a steady state within the framework of the current 

mathematical model — otherwise, metabolite levels withing the TCA cycle 

(involving citrate, iso-citrate, succinate, and fumarate) would continuously 

increase without bounds, which is not biologically accurate. 

 
Figure 2.3. Conceptual model of intracellular metabolism 

The molar balance for each intracellular metabolite is expressed by 

equation (2.1) for MSC cells. The net accumulation rate of each metabolite 𝑚 is 

influenced by intracellular reactions and cross-membrane metabolic transport: 

the first term on the right-hand side (RHS) accounts for the contribution of 
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intracellular metabolic reactions (weighted by their respective stoichiometric 

coefficients), while the second RHS term accounts for metabolite transport across 

the cell membrane (only for glucose, lactate, and glutamine; the other metabolites 

do not cross the cell membrane as shown in Figure 2.3). 

𝜕𝑀𝑚
(𝑀𝑆𝐶)(𝑡)

𝜕𝑡
=∑ (𝑆𝑇𝑂𝐼𝐶𝑚,𝑖 ⋅ 𝑅𝑅𝑎𝑡𝑒𝑖

(𝑀𝑆𝐶)(𝑡))
𝑁𝑅

𝑖=1

+∑ (𝑆𝑇𝑂𝐼𝐶𝑚,𝑗+𝑁𝑅 ⋅
𝑇𝑅𝑎𝑡𝑒𝑗

(𝑀𝑆𝐶)(𝑡)

𝑉𝑐𝑒𝑙𝑙
)

𝑁𝑇

𝑗=1
 

(2.1) 

The impact of each intracellular (𝑅𝑅𝑎𝑡𝑒𝑖) or cross-membrane (𝑇𝑅𝑎𝑡𝑒𝑖) 

reaction is coded by the stoichiometric matrix, 𝑆𝑇𝑂𝐼𝐶, which encodes the 

connection between intracellular metabolites and the enzymatic reactions they 

are involved in (the stoichiometric coefficient is negative for reactants and positive 

for products). The stoichiometric matrix is shown in equation (2.2). Each column 

corresponds to one of the reactions encompassed by the mathematical model: 

columns labelled 𝑅1 through 𝑅9 correspond to intracellular enzymatic reaction 

rates and are combined with the 𝑅𝑅𝑎𝑡𝑒𝑖
(𝑇𝑌𝑃)

 variable(s) from equations (2.1) and 

(2.3), and columns labeled 𝑇1 through 𝑇3 correspond to cross-membrane 

transport rates and are combined with the 𝑇𝑅𝑎𝑡𝑒𝑖
(𝑇𝑌𝑃)

 variables. The rows of the 

stoichiometric matrix correspond to metabolites and cofactors, whose names 

have been omitted from the equation to conserve horizontal space on the page, 

in the following order: glucose (row 1), pyruvate (row 2), lactate (row 3), citrate 

(row 4), iso-citrate (row 5), succinate (row 6), fumarate (row 7), glutamine 

(row 8), ATP (row 9) and NADH (row 10). ATP stands for adenosine triphosphate, 

and NADH stands for nicotinamide adenine dinucleotide (and hydrogen). An 

alternative approach may use yields to link metabolites to reaction rates instead 

of stoichiometric coefficients. 
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𝑆𝑇𝑂𝐼𝐶 =

(

 
 
 
 
 
 
 
 

 𝑅1  𝑅2  𝑅3  𝑅4  𝑅5  𝑅6  𝑅7  𝑅8  𝑅9  𝑇1  𝑇2  𝑇3
−1 +0 +0 +0 +0 +0 +0 +0 +0 +1 +0 +00
+2 −1 +0 −1 +0 +0 +0 +0 +0 +0 +0 +00
+0 +1 +0 +0 +0 +0 +0 +0 +0 +0 −1 +00
+0 +0 +0 +1 −1 +0 +0 +1 +0 +0 +0 +00
+0 +0 +0 +0 +1 −1 +0 +0 +0 +0 +0 +00
+0 +0 +1 +0 +0 +1 −1 +0 +0 +0 +0 +00
+0 +0 +0 +0 +0 +0 +1 −1 −1 +0 +0 +00
+0 +0 −1 +0 +0 +0 +0 +0 +0 +0 +0 +10
+2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +00
+2 +0 +0 +1 +0 +2 +0 +1 +0 +0 +0 +00)

 
 
 
 
 
 
 
 

 (2.2) 

Equation (2.3) introduces the intracellular metabolite molar balance for 

PRE and OBC cells. It contains an additional RHS term, which accounts for 

differences in the (intracellular) metabolite levels between cells at neighboring 

differentiation states as the cells undergo differentiation. The necessity for this 

additional term arises from the fact that when cells differentiate (or change state, 

in the mathematical model) they do not instantaneously shift their intracellular 

metabolism and genetic activity to new levels but do so gradually while obeying 

the mass conservation law. E.g., when cells differentiate from MSC to become 

members of the PRE state, they also diminish the measured average metabolic 

activity level for the PRE type because MSC metabolism is lower than that of 

PRE; the metabolic levels then recover, as the newly added cells adjust their 

behavior and match PRE characteristics. 

𝜕𝑀𝑚
(𝑇𝑌𝑃)(𝑡)

𝜕𝑡
=∑ (𝑆𝑇𝑂𝐼𝐶𝑚,𝑖 ⋅ 𝑅𝑅𝑎𝑡𝑒𝑖

(𝑇𝑌𝑃)(𝑡))
𝑁𝑅

𝑖=1

+∑ (𝑆𝑇𝑂𝐼𝐶𝑚,𝑗+𝑁𝑅 ⋅
𝑇𝑅𝑎𝑡𝑒𝑗

(𝑇𝑌𝑃)(𝑡)

𝑉𝑐𝑒𝑙𝑙
)

𝑁𝑇

𝑗=1

+
∫ 𝐷𝑜𝑢𝑡

(𝑇𝑌𝑃−1)(𝑥, 𝑡) 𝑑𝑥
𝑥𝑚𝑎𝑥,𝐺
𝑥𝑚𝑖𝑛,𝐺

𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)

⋅ (𝑀𝑚
(𝑇𝑌𝑃)(𝑡) − 𝑀𝑚

(𝑇𝑌𝑃−1)(𝑡)) 

(2.3) 

When constructing the molar balance equation (2.3) in this way, the 

mathematical model accounts for the combined effect of adding both the volume 

of the new cells as well as their intracellular substance amounts to the existing 

population of cells of type (or differentiation state) “TYP”. The integral of 𝐷𝑜𝑢𝑡(𝑥, 𝑡) 
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in the last RHS term corresponds to the instantaneous rate at which cells are 

differentiating into state TYP, while 𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)

 represents the total number of cells at 

differentiation state TYP, as given by equation (2.13). In this context, TYP can be 

seen as a numeric value, where MSC=1, PRE=2, and OBC=3. The last term of 

equation (2.3) might be easier to understand by analogy with the mass balance 

for a continuous stirred tank reactor (CSTR) model in which the integral of the 

𝐷𝑜𝑢𝑡(𝑥, 𝑡) variable corresponds to the inlet flowrate of the CSTR, while 𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)

 

corresponds to its volume. See chapter 2.1.5 for more information about the 

variable 𝐷𝑜𝑢𝑡(𝑥, 𝑡) and parameters 𝑥𝑚𝑖𝑛,𝐺 and 𝑥𝑚𝑎𝑥,𝐺. 

Intracellular reaction rates are described by first-order kinetics, equation 

(2.4). Although Monod kinetics would provide more flexibility and precision to the 

mathematical model, they would also require additional parameters to be 

determined from (currently) insufficient experimental data. 

𝑅𝑅𝑎𝑡𝑒𝑖
(𝑇𝑌𝑃)(𝑡) = 𝑘𝑐𝑎𝑡,𝑖 ⋅ 𝐶𝑅𝑖(𝑡) (2.4) 

Cross-membrane flowrates are described using equation (2.5), which 

corresponds to product-inhibited enzymatic transport and was obtained under the 

pseudo-steady state hypothesis for the transport enzyme concentration on the 

cell membrane, while allowing each differentiation state to manifest different 

transport enzyme levels, 𝑘𝐸,𝑖
(𝑇𝑌𝑃)

, in the cell membrane. 

𝑇𝑅𝑎𝑡𝑒𝑖
(𝑇𝑌𝑃)(𝑡) =

𝑘𝐸,𝑖
(𝑇𝑌𝑃) ⋅ 𝐶𝑀𝑖,𝑜𝑢𝑡(𝑡) ⋅ 𝑘𝑇,𝑖

𝑘𝑇,𝑖 +𝑀𝑇𝑖
(𝑇𝑌𝑃)(𝑡)

 (2.5) 

Transport of nutrients and waste products across the cell membrane also 

affects the culture medium of the cells (the effect is complementary to that of the 

intracellular compartment). Equation (2.6) illustrates the molar balance of 

extracellular metabolites in the culture medium. The equation pertains to the three 

metabolites that cross the cell membrane (𝑚 is either glucose, lactate, or 

glutamine); the index 𝑗(𝑚) on the right-hand side (RHS) of the equation depends 

on the metabolite being transported across the membrane: 𝑗 = 1 for glucose, 𝑗 =
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2 for lactate, and 𝑗 = 3 for glutamine. The negative sign in front of the RHS 

summation operator specifies the direction of metabolite transfer and is required 

because the entries of the 𝑆𝑇𝑂𝐼𝐶 matrix are written using the intracellular 

compartment as reference (i.e., any transport that increases the intracellular 

metabolite amount contributes to a decrease in the amount of the same 

metabolite in the culture medium). 

𝑑(𝑉𝑅 ⋅ 𝐶𝐶𝑚(𝑡))

𝑑𝑡
= − ∑ (𝑆𝑇𝑂𝐼𝐶𝑚,𝑗(𝑚)+𝑁𝑅 ⋅ 𝑇𝑅𝑎𝑡𝑒𝑗(𝑚)

(𝑇𝑌𝑃)(𝑡) ⋅ 𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)(𝑡))

∀ 𝑇𝑌𝑃

 (2.6) 

2.1.4. Balance equations for gene expression 

Gene expression is time-dependent and differentiation-state specific. 

The first term on the right-hand side (RHS) of equation (2.7), 𝜔𝑖, corresponds to 

the base expression of each gene (𝑖) in the undifferentiated MSC state. The 

second term corresponds to RNA transcription rate activated by the binding of 

transcription activator 𝐴𝐺𝑖
(𝑇𝑌𝑃)

 to the promoter region of the expressed gene; (the 

level of) dexamethasone promotes the transcription of Runx2, which, in turn, 

promotes the expression of osteonectin. Reference values for RNA transcription 

rates in humans range between 1000 and 2400 nucleotides per minute [90]; due 

to the relative sizes of the two genes expressed in terms of number of nucleotides 

that encode them in the DNA [91,92], the values of the maximum transition rate 

are different for each of the two genes (parameter 𝑘𝑡𝑟𝑎𝑛𝑠,𝑖 from Table 2.1). The 

third term corresponds to the natural decay of intracellular mRNA modelled as a 

first-order rate; the value of the decay rate constant (𝑘𝑑𝑒𝑐𝑎𝑦) is calculated based 

on a median value of mRNA half-life of 9 hours [93]. 

𝜕𝐺𝑖
(𝑇𝑌𝑃)(𝑡)

𝜕𝑡
= 𝜔𝑖 +

𝑘𝑡𝑟𝑎𝑛𝑠,𝑖 ⋅ 𝐴𝐺𝑖
(𝑇𝑌𝑃)𝑛𝑡𝑟𝑎𝑛𝑠

𝐴𝐺𝑖
(𝑇𝑌𝑃)𝑛𝑡𝑟𝑎𝑛𝑠 + 𝑘𝐷𝑁𝐴,𝑖

𝑛𝑡𝑟𝑎𝑛𝑠
− 𝑘𝑑𝑒𝑐𝑎𝑦 ⋅ 𝐺𝑖

(𝑇𝑌𝑃)(𝑡)

+
∫ 𝐷𝑜𝑢𝑡

(𝑇𝑌𝑃−1)(𝑥, 𝑡) 𝑑𝑥
𝑥𝑚𝑎𝑥,𝐺
𝑥𝑚𝑖𝑛,𝐺

𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)

⋅ (𝐺𝑖
(𝑇𝑌𝑃)(𝑡) − 𝐺𝑖

(𝑇𝑌𝑃−1)(𝑡)) 

(2.7) 

The last RHS term of equation (2.7) accounts for differences in gene 

expression levels between cells as they change their differentiation state; it is part 
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of the molar balance equation only for cells at states PRE and MSC; alternatively, 

its value is null for cells at differentiation state MSC. The integral of the 

differentiation rate, 𝐷𝑜𝑢𝑡
(𝑇𝑌𝑃−1)

, calculates the rate at which cells are differentiating 

between states (i.e., between MSC and PRE, or between PRE and OBC); 𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)

 

represents the total number of cells at differentiation state “TYP”, as defined in 

equation (2.13). The intracellular metabolism section discusses this term of the 

balance equation more extensively. 

Mesenchymal stem cells (MSCs) only express osteonectin at their basal 

level and will begin the differentiation process before increasing the relative 

expression of osteogenic genes. As the reduced model for gene expression 

shown in (2.7) does not include any parameters to capture this behavior, the 

value of the activator for the transcription of osteonectin is fixed at the initial value 

of the relative expression of Runx2 to prevent the model from predicting an 

immediate increase in osteonectin expression: 𝐴𝐺,𝑜𝑠𝑡𝑒𝑜𝑛𝑒𝑐𝑡𝑖𝑛
(𝑀𝑆𝐶) = 𝐺𝑅𝑢𝑛𝑥2

(𝑀𝑆𝐶)(𝑡 = 0) 

instetad of 𝐴𝐺,𝑜𝑠𝑡𝑒𝑜𝑛𝑒𝑐𝑡𝑖𝑛
(𝑇𝑌𝑃) = 𝐺𝑅𝑢𝑛𝑥2

(𝑇𝑌𝑃) (𝑡) used elsewhere. 

The differentiation agent that activates the expression of Runx2 

(dexamethasone) is also modelled, using two molar balance equations (one for 

each compartment: intracellular and extracellular). The cross-membrane 

transport rate of dexamethasone is modelled using the linear transport rate 

equation (2.8). The membrane permeability 𝜆𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 acts as a partial mass 

transfer coefficient for dexamethasone. The molar balance for the extracellular 

compartment aggregates the transport rates from all the cells in the culture 

medium, as shown in equation (2.9). 

𝑑

𝑑𝑡
(𝑉𝑐𝑒𝑙𝑙 ⋅ 𝐷𝑒𝑥𝑐𝑒𝑙𝑙(𝑡)) = 𝜆𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 ⋅ (𝐷𝑒𝑥𝑐𝑢𝑙𝑡𝑢𝑟𝑒(𝑡) − 𝐷𝑒𝑥𝑐𝑒𝑙𝑙(𝑡)) (2.8) 

𝑑

𝑑𝑡
(𝑉𝑅 ⋅ 𝐷𝑒𝑥𝑐𝑢𝑙𝑡𝑢𝑟𝑒(𝑡))

= 𝜆𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 ⋅ (𝐷𝑒𝑥𝑐𝑒𝑙𝑙(𝑡) − 𝐷𝑒𝑥𝑐𝑢𝑙𝑡𝑢𝑟𝑒(𝑡)) ⋅∑𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)(𝑡)

𝑇𝑌𝑃

 

(2.9) 
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2.1.5. Population balance equations for the cellular 

division cycle and cell differentiation 

The cell division cycle is described in terms of its main phases: Gap 0 

(G0) and Gap 1 (G1) are lumped into a single phase (phase “G”), DNA synthesis 

is modelled as a single growth stage (phase “S”), and Gap 2 (G2) and mitosis are 

also lumped (phase “M”). Phases G0 and G1 were lumped because of the 

experimental difficulty in distinguishing between them, while phases G2 and 

mitosis were lumped due to the relatively short duration of mitosis compared to 

G2 and practicality in managing the complexity of the mathematical model 

wherever possible. The order of progression through the growth phases used in 

the mathematical model, G–S–M (Figure 2.2 and Figure 2.4), is a mirror image 

of the biological succession (gap 1, synthesis, gap 2, and mitosis) [94]. 

 
Figure 2.4. Cellular division cycle and its component phases, as represented in the 

mathematical model 

The independent variables are the growth coordinate (𝑥) and time (𝑡). 

The cells enter each cellular-division-cycle phase at the lowest growth coordinate 

for that phase (i.e., 𝑥𝑚𝑖𝑛,𝐺, 𝑥𝑚𝑖𝑛,𝑆, and 𝑥𝑚𝑖𝑛,𝑀). As cells traverse each cell cycle 

phase, the growth coordinate increases, up to the point when they transition to 

the next phase of the cell cycle. Even though the growth coordinate corresponds 

to different biochemical components in each cell cycle phase (cyclin E for phase 

G, DNA content for phase S, and cyclin B for phase M [94]), the mathematical 
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model uses a singular distribution domain (𝑥) to represent the growth coordinate 

regardless of cell cycle phase, as the objective of the model is to capture the 

growth cycle phase traversal behavior (which is conceptually the same for all 

phases) and ignore the details of the specific cyclins of each phase. Each cell 

cycle phase functions in the same way for all three differentiation states included 

in the mathematical model (MSC, PRE, and OBC) since cell cycle phases are not 

specific to just one cell type and are universally valid for the eukaryote class [94]. 

Equation (2.10) applies to phase G, while it is traversed by cells 

undergoing division. Terms on the left-hand side of the equation represent, in 

order: the temporal derivative of the cell count distribution, progression rate in 

traversing the current growth phase, death rate, and transition rate. The 

right-hand side of the equation includes the boundary condition, as well as 

differentiation rates (cells that become the current type are treated as inflow, while 

cells that are differentiating further are regarded as outflow). The RHS boundary 

condition ensures that cells start phase G from the beginning; mathematically, all 

incoming cells, 𝑇𝐺,𝑖𝑛
(𝑇𝑌𝑃)(𝑡), are added to the cell cycle phase at the lowest phase 

coordinate, 𝑥𝑚𝑖𝑛,𝐺, which is the only value of the (first) argument 𝑥 at which the 

Kronecker delta function (𝛿𝐾) is equal to 1; 𝛿𝐾 has the value 0 for all other values 

of 𝑥 and the inflow 𝑇𝐺,𝑖𝑛
(𝑇𝑌𝑃)(𝑡) does not contribute to the equation. The independent 

variable 𝑥 corresponds to the intracellular amount of cyclin E (protein), expressed 

as a percentage in terms of the highest experimentally determined value, ranging 

between 0 and 100. 

𝜕𝑁𝐺
(𝑇𝑌𝑃)(𝑥, 𝑡)

𝜕𝑡
+
𝜕[𝜇𝐺

(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅ 𝑁𝐺
(𝑇𝑌𝑃)(𝑥, 𝑡)]

𝜕𝑥
+ 𝜃𝐺

(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅ 𝑁𝐺
(𝑇𝑌𝑃)(𝑥, 𝑡)

+ 𝑇𝐺,𝑜𝑢𝑡
(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅ 𝑁𝐺

(𝑇𝑌𝑃)(𝑥, 𝑡)

= 𝛿𝐾(𝑥, 𝑥𝑚𝑖𝑛,𝐺) ⋅ 𝑇𝐺,𝑖𝑛
(𝑇𝑌𝑃)(𝑡) + 𝐷𝑜𝑢𝑡

(𝑇𝑌𝑃−1)(𝑥, 𝑡) − 𝐷𝑜𝑢𝑡
(𝑇𝑌𝑃)(𝑥, 𝑡) 

(2.10) 

The equation for the DNA synthesis phase (labeled “S”) follows a similar 

approach to phase G, keeping only the relevant terms: time derivative of the cell 

count distribution, phase progression rate, death rate, and the boundary condition 

(on the RHS). Since the main objective of the cell during phase S is DNA code 
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duplication [94], neither transition nor differentiation are part of equation (2.11). 

The independent variable 𝑥 corresponds to the count of intracellular DNA content 

and ranges between 1 (copy of DNA) and 2 (copies of DNA code). 

𝜕𝑁𝑆
(𝑇𝑌𝑃)(𝑥, 𝑡)

𝜕𝑡
+
𝜕[𝜇𝑆

(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅ 𝑁𝑆
(𝑇𝑌𝑃)(𝑥, 𝑡)]

𝜕𝑥
+ 𝜃𝑆

(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅ 𝑁𝑆
(𝑇𝑌𝑃)(𝑥, 𝑡)

= 𝛿𝐾(𝑥, 𝑥𝑚𝑖𝑛,𝑆) ⋅ 𝑇𝑆,𝑖𝑛
(𝑇𝑌𝑃)(𝑡) 

(2.11) 

The final phase of the cell division cycle, phase M, has an almost identical 

behavior with that of phase G, except for cellular differentiation, which does not 

occur during mitosis, considering that the main objective of the cell during phase 

M is the preparation for and execution of cellular division. Phase M includes terms 

for the time derivative of the cell count distribution, phase traversal rate, death 

rate, transition rate, and RHS boundary condition, as shown in equation (2.12). 

The independent variable 𝑥 corresponds to the intracellular amount of cyclin B 

(protein), expressed as a percentage in terms of the highest experimentally 

determined value, ranging between 20 and 100; the lowest value (𝑥𝑚𝑖𝑛,𝑀) is not 

zero because cells start to produce cyclin B even before completing the synthesis 

phase. 

𝜕𝑁𝑀
(𝑇𝑌𝑃)(𝑥, 𝑡)

𝜕𝑡
+
𝜕[𝜇𝑀

(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅ 𝑁𝑀
(𝑇𝑌𝑃)(𝑥, 𝑡)]

𝜕𝑥
+ 𝜃𝑀

(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅ 𝑁𝑀
(𝑇𝑌𝑃)(𝑥, 𝑡)

+ 𝑇𝑀,𝑜𝑢𝑡
(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅ 𝑁𝑀

(𝑇𝑌𝑃)(𝑥, 𝑡) = 𝛿𝐾(𝑥, 𝑥𝑚𝑖𝑛,𝑀) ⋅ 𝑇𝑀,𝑖𝑛
(𝑇𝑌𝑃)(𝑡) 

(2.12) 

The total cell count of cells at each differentiation state TYP is obtained 

by summing up the cell counts for each growth phase (only from cells that also 

have the corresponding differentiation state), as shown in equation (2.13). 

𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)(𝑡) = ∫ 𝑁𝐺

(𝑇𝑌𝑃)(𝑥, 𝑡) 𝑑𝑥
𝑥𝑚𝑎𝑥,𝐺

𝑥𝑚𝑖𝑛,𝐺

+∫ 𝑁𝑆
(𝑇𝑌𝑃)(𝑥, 𝑡) 𝑑𝑥

𝑥𝑚𝑎𝑥,𝑆

𝑥𝑚𝑖𝑛,𝑆

+∫ 𝑁𝑀
(𝑇𝑌𝑃)(𝑥, 𝑡) 𝑑𝑥

𝑥𝑚𝑎𝑥,𝑀

𝑥𝑚𝑖𝑛,𝑀

 

(2.13) 
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The duration of phase G is correlated (separately for each differentiation 

state, TYP) with the production rate of energy cofactors, as per equation (2.14). 

The production rate of each cofactor (given as the partial temporal derivative) is 

calculated as per equation (2.1); although they are distinct model entities, the 

parameters that connect cofactor production to phase G duration are correlated 

𝐸𝑁𝐴𝐷𝐻
(𝑇𝑌𝑃) = 2.5 ⋅ 𝐸𝐴𝑇𝑃

(𝑇𝑌𝑃)
, given that NADH is processed via the electron transport 

chain to produce more ATP [95]. Equation (2.14) was derived considering that a 

fixed percentage of the energy cofactors generated by the cells are used for cell 

cycle traversal, for each cell type (𝑇𝑌𝑃). Instead of connecting the energy 

cofactors with the traversal rate of phase G — variable 𝜇𝐺
(𝑇𝑌𝑃)(𝑥, 𝑡) from equation 

(2.10) — which partially depends on the choice for the bounds of the phase 

coordinate domain (𝑥𝑚𝑖𝑛,𝐺 and 𝑥𝑚𝑎𝑥,𝐺), energy cofactors were connected with the 

duration variable, which is independent of the bounds of the phase coordinate 

domain and its biological significance is easier to grasp. The relationship between 

the duration of a phase and its traversal rate is given by equation (2.31). 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐺
(𝑇𝑌𝑃)(𝑡) =

1

𝐸𝐴𝑇𝑃
(𝑇𝑌𝑃) ⋅

𝜕𝑀𝐴𝑇𝑃
(𝑇𝑌𝑃)(𝑡)
𝜕𝑡

+ 𝐸𝑁𝐴𝐷𝐻
(𝑇𝑌𝑃) ⋅

𝜕𝑀𝑁𝐴𝐷𝐻
(𝑇𝑌𝑃)(𝑡)
𝜕𝑡

 
(2.14) 

Transition rates between growth phases, which are used in the boundary 

conditions of equations (2.10), (2.11), and (2.12), ensure cell cycle progression 

by transferring cells from each growth cycle phase to the following one. Equation 

(2.15) gives the transition rate into phase G: the total rate is aggregated from the 

phase-coordinate-distributed transition rate from phase M; the number 2 

multiplying the integral on the right-hand side accounts for cellular division / 

duplication during mitosis. 

𝑇𝐺,𝑖𝑛
(𝑇𝑌𝑃)(𝑡) = 2 ⋅ ∫ 𝑇𝑀,𝑜𝑢𝑡

(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅ 𝑁𝑀
(𝑇𝑌𝑃)(𝑥, 𝑡) 𝑑𝑥

𝑥𝑚𝑎𝑥,𝑀

𝑥𝑚𝑖𝑛,𝑀

 (2.15) 

Equation (2.16) shows the transition rate into the DNA synthesis phase 

(labeled “S”) as the aggregated phase-coordinate-distributed transition rate from 

phase G. 
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𝑇𝑆,𝑖𝑛
(𝑇𝑌𝑃)(𝑡) = ∫ 𝑇𝐺,𝑜𝑢𝑡

(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅ 𝑁𝐺
(𝑇𝑌𝑃)(𝑥, 𝑡) 𝑑𝑥

𝑥𝑚𝑎𝑥,𝐺

𝑥𝑚𝑖𝑛,𝐺

 (2.16) 

Equation (2.17) presents the transition rate from phase S into phase M. 

Phase transition is not distributed in this case, because of the requirement that 

DNA must be properly duplicated before progressing; furthermore, once the DNA 

content has been copied, the synthesis phase ends, and transition occurs at a 

single point rather than as a distribution around a mean value. 

𝑇𝑀,𝑖𝑛
(𝑇𝑌𝑃)(𝑡) = 𝜇𝑆

(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅ 𝑁𝑆
(𝑇𝑌𝑃)(𝑥𝑚𝑎𝑥,𝑆, 𝑡) (2.17) 

The cell cycle transition rate for phase M follows equation (2.18): cells 

shift to the subsequent phase (G) in the division cycle around a threshold value 

of the phase coordinate; this behavior is modeled by means of the normal 

probability distribution for the transition rate, with phase-specific values for the 

mean and variance parameters. 

𝑇𝑀,𝑜𝑢𝑡
(𝑇𝑌𝑃)(𝑥, 𝑡) =

𝜇𝑀
(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅

𝑑𝑃𝑀(𝑥)
𝑑𝑥

1 − 𝑃𝑀(𝑥)
 (2.18) 

The cell cycle transition rate for phase G is modeled by a more 

complicated formulation (2.19), which encompasses the possibility for cells to 

leave phase G either by transitioning to phase S or by differentiating (into type 

𝑇𝑌𝑃 + 1). Note that when no differentiation occurs (and the differentiation fraction 

𝑓𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃)

 is null) equation (2.19) can be reduced to expression used for phase M 

given by equation (2.18); when no transition occurs (at unit differentiation 

fraction), the expression for the transition rate evaluates to zero. 

𝑇𝐺,𝑜𝑢𝑡
(𝑇𝑌𝑃)(𝑥, 𝑡) =

𝜇𝐺
(𝑇𝑌𝑃)(𝑥, 𝑡) ⋅ (1 − 𝑓𝑑𝑖𝑓𝑓

(𝑇𝑌𝑃)) ⋅
𝑑𝑃𝐺(𝑥)
𝑑𝑥

1 − 𝑓𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃) ⋅ 𝐶𝑃𝐷𝐺(𝑥) − (1 − 𝑓𝑑𝑖𝑓𝑓

(𝑇𝑌𝑃)) ⋅ 𝑃𝐺(𝑥)
 (2.19) 
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Cells in phase G also undergo differentiation, at a rate given by equation 

(2.20). Note that when no differentiation occurs, the expression evaluates to zero, 

and reaches its maximum value for unit differentiation fraction, 𝑓𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃)

. 

𝐷𝑜𝑢𝑡
(𝑇𝑌𝑃)(𝑥, 𝑡) =

𝜇𝐺
(𝑇𝑌𝑃) ⋅ 𝑓𝑑𝑖𝑓𝑓

(𝑇𝑌𝑃) ⋅
𝑑𝐶𝑃𝐷𝐺(𝑥)

𝑑𝑥
⋅ 𝑁𝐺

(𝑇𝑌𝑃)(𝑥, 𝑡)

1 − 𝑓𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃) ⋅ 𝐶𝑃𝐷𝐺(𝑥) − (1 − 𝑓𝑑𝑖𝑓𝑓

(𝑇𝑌𝑃)) ⋅ 𝑃𝐺(𝑥)
 (2.20) 

The equations for cell cycle phase transition rates employ the use of 

phase-coordinate-dependent transition probability functions: 𝑃𝐺(𝑥) for transition 

from phase G to phase S, and 𝑃𝑀(𝑥) for transition between phase M and phase 

G. Both functions are defined in terms of the normal cumulative probability 

function (2.21). Equation (2.22) expresses the cumulative probability of transition 

for cells traversing phase G, while equation (2.23) conveys the transition 

probability for phase M. 

𝑃𝑛𝑜𝑟𝑚(𝑥, 𝜇, 𝜎) =
∫ exp (−

1
2 ⋅ (

𝑞 − 𝜇
𝜎 )

2
)𝑑𝑞

𝑥

−∞

𝜎 ⋅ √2 ⋅ 𝜋
 

(2.21) 

𝑃𝐺(𝑥) = 𝑃𝑛𝑜𝑟𝑚(𝑥, 𝑥𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝐺 , 𝜎𝐺) (2.22) 

𝑃𝑀(𝑥) = 𝑃𝑛𝑜𝑟𝑚(𝑥, 𝑥𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑀, 𝜎𝑀) (2.23) 

An additional function is employed to describe the cumulative probability 

of differentiation during the traversal of phase G by the cells; this function also 

depends on the phase coordinate and is defined by equation (2.24). The name 

of this function, CPD, stands for cumulative probability of differentiation. 

𝐶𝑃𝐷𝐺(𝑥) =
∫ 1 − 𝑃𝐺(𝑞) 𝑑𝑞
𝑥

𝑥𝑚𝑖𝑛,𝐺

∫ 1 − 𝑃𝐺(𝑞) 𝑑𝑞
𝑥𝑚𝑎𝑥,𝐺
𝑥𝑚𝑖𝑛,𝐺

 (2.24) 

The cumulative probability functions defined by equations (2.22), (2.23) 

and (2.24) convey the probability of the associated event — transition in the case 

of 𝑃𝐺 and 𝑃𝑀, and differentiation in the case of 𝐶𝑃𝐷𝐺 — to have already occurred 
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at or before the value 𝑥 of the phase coordinate argument, for each individual 

cell. At the population level, the same functions carry the meaning of fraction of 

the cells that leave the cell cycle phase they are currently traversing (either 

through transition or differentiation) at or before the phase coordinate position 

specified by the argument 𝑥. 

The differentiation fraction depends on the relative expression level of the 

key gene for each cellular differentiation state (2.25). The differentiation fraction 

of mesenchymal stem cells into pre-osteoblasts (TYP=MSC) is given by the level 

of the key gene Runx2 in MSCs, and the differentiation fraction of pre-osteoblasts 

into osteoblasts (TYP=PRE) is given by the level of osteonectin in PRE cells. 

Osteoblasts do not further differentiate; therefore, their differentiation fraction is 

zero (2.26). 

𝑓𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃) =

𝐺𝑘𝑒𝑦
(𝑇𝑌𝑃)𝑑𝑥𝑝

𝑘𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃)𝑑𝑥𝑝 + 𝐺𝑘𝑒𝑦

(𝑇𝑌𝑃)𝑑𝑥𝑝
 (2.25) 

𝑓𝑑𝑖𝑓𝑓
(𝑂𝐵𝐶) = 0 (2.26) 

2.1.6. Building the transition function 

When using a population balance model, its most important and intricate 

component is the transition function, which enables the representation of 

distributed phase-to-phase transition (around a reference or average value), the 

alternative being transition at a single point, such as in the case of the DNA 

synthesis phase. Although equations (2.18) and (2.19) have been customized to 

utilize the (cumulative) normal probability distribution, the methodology presented 

in this chapter is applicable to any probability distribution. 

To arrive at the correct form of the transition function, 𝑇𝜋,𝑜𝑢𝑡(𝑥), in terms 

of the cell cycle phase transition probability, a target scenario having a known 

population distribution was conceived: at constant inflow (transition) of cells into 

the current phase, and no cell death, the steady state cell distribution profile 

should be proportional to the complementary cumulative distribution function (for 

the probability of transition to the next cell cycle phase) — in other words, the cell 
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distribution is proportional to the fraction of cells that have not transitioned yet, at 

every point along the growth coordinate 𝑥, as stated by equation (2.27), where 

𝑁(𝑥) is the steady state cell distribution and 𝑃(𝑥) is the cumulative probability of 

transition as particularized by equation (2.22) or (2.23). 

𝑁(𝑥) = 𝑁(𝑥 = 𝑥𝑚𝑖𝑛) ⋅ (1 − 𝑃(𝑥)) (2.27) 

Replacing equation (2.27) in the population balance equation (2.12) and 

applying the assumptions above, equation (2.28) is obtained. Traversal rate, 𝜇, 

is obtained by taking a partial derivative of the growth coordinate with respect to 

time; therefore, replacing the right-hand-side of equation (2.27) in (2.28) leads to 

equations (2.29); further rearrangement leads to an equivalent form of equation 

(2.18), which is applicable for modeling transition from phase M. 

𝜕(𝜇 ⋅ 𝑁)

𝜕𝑥
+ 𝑇𝑜𝑢𝑡 ⋅ 𝑁 = 0 (2.28) 

𝜇 ⋅
𝑑[𝑁(𝑥 = 𝑥𝑚𝑖𝑛) ⋅ (1 − 𝑃(𝑥))]

𝑑𝑥
+ 𝑇𝑜𝑢𝑡 ⋅ 𝑁(𝑥 = 𝑥𝑚𝑖𝑛) ⋅ (1 − 𝑃(𝑥)) = 0 (2.29) 

Deriving the form of the transition function for phase G follows a similar 

process, with some key differences: the cumulative probability appearing in 

equation (2.27) carries the meaning of cumulative probability for each cell to leave 

the current cell cycle phase, whether that happens as a transition to phase S or 

differentiation into the following cell type as defined by equation (2.30). When 

recovering the transition function from the equation, the partial derivative in the 

numerator of equation (2.19) only keeps the contribution of transition, whereas in 

equation (2.20) only the contribution of differentiation is kept in the numerator. 

𝑃𝑒𝑣𝑒𝑛𝑡,𝐺
(𝑇𝑌𝑃) (𝑥) = 𝑓𝑑𝑖𝑓𝑓

(𝑇𝑌𝑃) ⋅ 𝐶𝑃𝐷𝐺(𝑥) − (1 − 𝑓𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃)) ⋅ 𝑃𝐺(𝑥) (2.30) 

This formulation, together with the connection between the growth rate 

𝜇𝜋
(𝑇𝑌𝑃)

 and the duration of each phase, shown in equation (2.31), has the 

advantage of allowing the modeler to set either the duration of the cell cycle 
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phase or its growth rate. Additionally, this mathematical formulation of the 

transition function (and differentiation rate) correctly reproduces observed 

doubling times for cell populations if compared with experimental measurements 

of steady population growth. 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝜋
(𝑇𝑌𝑃) ⋅ 𝜇𝜋

(𝑇𝑌𝑃) = 𝑥𝑚𝑎𝑥,𝜋 − 𝑥𝑚𝑖𝑛,𝜋 (2.31) 

2.2. Simulation results 
This chapter contains the values for the parameters of the mathematical 

model and three sections for the main results of the model: a sensitivity analysis 

to identify the most significant parameters of the model, followed by an 

uncertainty analysis regarding the connection between the rate of intracellular 

energy cofactor production and the duration of phase G, and a simulation of the 

base experimental scenario showing that the predictions of the model are 

accurate and match the available experimental data. 

The computer implementation of the mathematical model uses 

discretized versions of the equations that involve distributed variables. For 

accurate calculations, the growth coordinate for phases G and M are each 

discretized into 100 bins, while the growth coordinate of phase S is discretized 

into only 50 bins (due to its simpler form, compared to that of the other two 

phases). The number of bins per phase was chosen (in increments of 20 for 

phases G and M, and steps of 10 for phase S) to match the cell counts that would 

be observed under steady growth conditions, keeping the relative error under 1% 

after 5 complete cell cycles. 

The level of intracellular and extracellular metabolites, and relative gene 

expression variables are all vector-valued variables and require no discretization 

(since they already are discrete values). The model was coded and simulated 

using the gPROMS modelling environment [96] and is comprised of 743 algebraic 

and 785 differential equations. The base case takes about 12 seconds to run on 

a computer with a 4.20GHz Intel® Core™ i7-7700K CPU and 16 GB of RAM. 

Values for the parameters of the mathematical model are given in Table 2.1. 
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2.2.1. Parameter estimation 

All model parameters shown in Table 2.1 were estimated to fit the 

experimental data that is shown together with the prediction of the mathematical 

model in Figure 2.7, Figure 2.8, and Figure 2.10. As a first step, model 

parameters were estimated in groups, by means of least squares non-linear 

regression; parameters involved in gene expression were estimated first, 

followed by metabolism-related parameters; cell cycle parameters related to 

proliferation and differentiation were estimated last. Then, the most important 

parameters of the model, which were identified using global sensitivity analysis 

(chapter 2.2.2), were subjected to a second parameter estimation using the 

maximum likelihood objective function, as provided by the gPROMS modeling 

environment; in addition, the confidence intervals were estimated for these 

parameters are presented in Appendix A. 

Table 2.1. Nominal values of model parameters for the process of osteogenic 
differentiation in well-plate cultures 

Parameter Value Units Parameter Value Units 

𝑘𝑐𝑎𝑡,1 21.27 day⁻¹ 𝑘𝐸,2
(𝑃𝑅𝐸)

 2⋅10⁻¹⁰ L ⋅ day⁻¹ 

𝑘𝑐𝑎𝑡,2 22.66 day⁻¹ 𝑘𝐸,3
(𝑃𝑅𝐸)

 4.94⋅10⁻¹⁵ L ⋅ day⁻¹ 

𝑘𝑐𝑎𝑡,3 2.09 day⁻¹ 𝑘𝐸,1
(𝑂𝐵𝐶)

 1.25⋅10⁻¹⁸ L ⋅ day⁻¹ 

𝑘𝑐𝑎𝑡,4 19.42 day⁻¹ 𝑘𝐸,2
(𝑂𝐵𝐶)

 2⋅10⁻¹⁰ L ⋅ day⁻¹ 

𝑘𝑐𝑎𝑡,5 563.43 day⁻¹ 𝑘𝐸,3
(𝑂𝐵𝐶)

 1.59⋅10⁻¹⁷ L ⋅ day⁻¹ 

𝑘𝑐𝑎𝑡,6 1081.33 day⁻¹ 𝑘𝑇,1 1000 pmol ⋅ L⁻¹ 
𝑘𝑐𝑎𝑡,7 1334.65 day⁻¹ 𝑘𝑇,3 1000 pmol ⋅ L⁻¹ 
𝑘𝑐𝑎𝑡,8 1541.34 day⁻¹ 𝑘𝑡𝑟𝑎𝑛𝑠,𝑅𝑢𝑛𝑥2 42.2497 day⁻¹ 
𝑘𝑐𝑎𝑡,9 446.09 day⁻¹ 𝑘𝑡𝑟𝑎𝑛𝑠,𝑜𝑠𝑡𝑒𝑜𝑛𝑒𝑐𝑡𝑖𝑛 600 day⁻¹ 

𝑘𝑑𝑒𝑐𝑎𝑦 1.85 day⁻¹ 𝑘𝑑𝑖𝑓𝑓
(𝑀𝑆𝐶)

 0.19  

𝑘𝐷𝑁𝐴,𝑅𝑢𝑛𝑥2 117.0355  𝑘𝑑𝑖𝑓𝑓
(𝑀𝑆𝐶)

 35  

𝑘𝐷𝑁𝐴,𝑜𝑠𝑡𝑒𝑜𝑛𝑒𝑐𝑡𝑖𝑛 0.3953  𝐸𝐴𝑇𝑃
(𝑀𝑆𝐶)

 400 L/pmol 

𝑘𝐸,1
(𝑀𝑆𝐶)

 5.25⋅10⁻¹⁸ L ⋅ day⁻¹ 𝐸𝐴𝑇𝑃
(𝑃𝑅𝐸)

 80 L/pmol 

𝑘𝐸,2
(𝑀𝑆𝐶)

 2⋅10⁻¹⁰ L ⋅ day⁻¹ 𝜆𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 1.5⋅10–12 day⁻¹ 

𝑘𝐸,3
(𝑀𝑆𝐶)

 1.47⋅10⁻¹⁸ L ⋅ day⁻¹ 𝜔𝑅𝑢𝑛𝑥2 0.2775 day⁻¹ 

𝑘𝐸,1
(𝑃𝑅𝐸)

 8.42⋅10⁻¹⁷ L ⋅ day⁻¹ 𝜔𝑜𝑠𝑡𝑒𝑜𝑛𝑒𝑐𝑡𝑖𝑛 46.2497 day⁻¹ 

Table 2.2 shows the parameters of the model that are fixed throughout 

the simulation and are not subject to global sensitivity analysis (and their nominal 

values). 
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Table 2.2. Parameters that are fixed throughout the simulation and are not subject to 
global sensitivity analysis 

Parameter Value Units Parameter Value Units 

𝑥𝑚𝑖𝑛,𝐺 0  𝑥𝑚𝑎𝑥,𝐺 100  

𝑥𝑚𝑖𝑛,𝑆 1  𝑥𝑚𝑎𝑥,𝑆 2  

𝑥𝑚𝑖𝑛,𝑀 20  𝑥𝑚𝑎𝑥,𝑀 100  

𝑥𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝐺 70  𝑥𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑀 76  

𝑛𝑡𝑟𝑎𝑛𝑠 15  𝑑𝑥𝑝 20  

𝑉𝑐𝑒𝑙𝑙 3.5⋅10⁻¹² L 𝜃𝜋
(𝑇𝑌𝑃)

 2⋅10⁻⁵ day⁻¹ 

𝑉𝑅 55 mL 𝑘𝑇,2 1000 pmol/L 

   𝐸𝐴𝑇𝑃
(𝑂𝐵𝐶)

 3 L/pmol 

 

2.2.2. Global sensitivity analysis 

Global sensitivity analysis (GSA) was performed on the computer 

implementation of the mathematical model to identify the parameters (if any) that 

significantly influence the output of the model due to uncertainty in their nominal 

values. The analysis involves 2 responses (model outputs) and 32 factors (model 

parameters). The uncertainty interval for each GSA factor ranges between 50% 

and 150% of the nominal value of the corresponding parameter. The sets of 

parameter values used for the analysis were produced using the Sobol sequence 

[81], as implemented by the MATLAB function sobolset [82]. Next, simulation 

data were gathered by means of repeated gPROMS [96] simulations, with one 

simulation per set of values sampled form the parameter space. The model 

outputs subjected to the analysis are the total number of cells (of all types) and 

the (total) number of osteoblasts, sampled at 3.5-day intervals (every half-week) 

for the first three weeks of the differentiation process: 6 values for each response 

variable, for a total of 12 outputs. The sensitivity indices for all 12 responses were 

computed using the random sampling high-dimensional model representation 

(RS-HDMR) software package [79]. 

The factors (parameters) with the highest sensitivity index values are 

listed in Table 2.3; while each factor has 6 associated sensitivity index values 

(one per time point), the table lists only the largest one. These parameters are 

either related to cellular differentiation via gene expression, or to cell proliferation 

via intracellular metabolism. Gene expression is significantly impacted by 

parameters such as mRNA decay rate (𝑘𝑑𝑒𝑐𝑎𝑦), DNA binding constants 

(𝑘𝐷𝑁𝐴,𝑅𝑢𝑛𝑥2 and 𝑘𝐷𝑁𝐴,𝑜𝑠𝑡𝑒𝑜𝑛𝑒𝑐𝑡𝑖𝑛), base expression rate of Runx2 in MSCs (𝜔𝑅𝑢𝑛𝑥2), 
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and gene-level threshold for cellular differentiation (𝑘𝑑𝑖𝑓𝑓
(𝑀𝑆𝐶)

 and 𝑘𝑑𝑖𝑓𝑓
(𝑃𝑅𝐸)

). The 

strongest influence on intracellular metabolism is held by parameters such as 

glucose uptake rate by MSC (𝐸𝐴𝑇𝑃
(𝑀𝑆𝐶)

) and PRE (𝐸𝐴𝑇𝑃
(𝑃𝑅𝐸)

) cells, and reaction rate 

constant for the enzymatic transformation of pyruvate into lactate (𝑘𝑐𝑎𝑡,2). 

Figure 2.5 synthesizes the results of the GSA. 

 
Figure 2.5. Global sensitivity analysis results. 

Parameters with total sensitivity indices larger that the threshold (> 0.1, dashed line) 
are indicated in bold red font and are deemed significant for the respective model 

output (a: total cell count, or b: osteoblast-only count) [85] 
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Table 2.3. Significant parameters of the mathematical model, as identified using global 
sensitivity analysis; values below the threshold (0.1) are grayed out and values above 

150% of the threshold are written in bold text 

 Total sensitivity index, 𝑻𝑺𝑰𝒊 

Factor, 𝒊 
Output 1: total cell 

count 
Output 2: osteoblast count 

𝑘𝑑𝑒𝑐𝑎𝑦 0.119 0.215 

𝑘𝐷𝑁𝐴,𝑅𝑢𝑛𝑥2 0.069 0.105 

𝑘𝐷𝑁𝐴,𝑜𝑠𝑡𝑒𝑜𝑛𝑒𝑐𝑡𝑖𝑛 0.137 0.103 

𝜔𝑅𝑢𝑛𝑥2 0.142 0.087 

𝑘𝑑𝑖𝑓𝑓
(𝑀𝑆𝐶)

 0.272 0.109 

𝑘𝑑𝑖𝑓𝑓
(𝑃𝑅𝐸)

 0.093 0.108 

𝑘𝐸,1
(𝑀𝑆𝐶)

 0.115 0.060 

𝐸𝐴𝑇𝑃
(𝑀𝑆𝐶) 0.194 0.069 

𝐸𝐴𝑇𝑃
(𝑃𝑅𝐸) 0.162 0.059 

𝑘𝑐𝑎𝑡,2 0.104 0.066 

 

Sensitivity index values plotted in Figure 2.5 are the final values 

calculated by the analysis, and are based on 1,729,172 evaluations of the model, 

each using different sets of values for the 32 parameters. Convergence plots for 

the global sensitivity analysis are presented in Appendix B. 

2.2.3. Effects of cell cycle duration of the metabolism 

and differentiation of UCB MSCs 

The mathematical model was used to assess the effect of cell cycle 

duration on the temporal profiles of key variables, such as the average 

concentration of intracellular metabolites (for each cell type) and the levels of 

relative gene expression of the total cell population. This analysis was performed 

in silico, using the mathematical model presented in this chapter, whose 

prediction is compared to experimental data in chapter 2.2.4. The values for the 

two varied parameters range between (approximately) 0.1 and 10 times their 

nominal value: 𝐸𝐴𝑇𝑃
(𝑀𝑆𝐶)

 ranged between 40 and 4000, and 𝐸𝐴𝑇𝑃
(𝑃𝑅𝐸)

 ranged between 

8 and 800. 51 logarithmically distributed values were used for each of the 

parameters, for a total of 2601 simulations. 

Similar qualitative behavior is observed for all metabolites covered by the 

mathematical model (Figure 2.6a-h). A faster cellular division cycle traversal rate 

for mesenchymal stem cells (higher value of the 𝐸𝐴𝑇𝑃
(𝑀𝑆𝐶)

 model parameter), delays 
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the intracellular metabolic activity shift corresponding to the differentiation of 

MSCs into PREs (see Figure 2.6), and the delay is more pronounced when 

pre-osteoblasts have a low growth rate (low 𝐸𝐴𝑇𝑃
(𝑃𝑅𝐸)

, corresponding to a higher 

Gap 0/Gap 1 phase duration). Specifically, when using the nominal value of 

𝐸𝐴𝑇𝑃
(𝑀𝑆𝐶)

, differentiation is delayed by approximately two days (from day 8 to day 

10) if 𝐸𝐴𝑇𝑃
(𝑃𝑅𝐸)

 is below its nominal value. For higher values of 𝐸𝐴𝑇𝑃
(𝑀𝑆𝐶)

 (and low 

𝐸𝐴𝑇𝑃
(𝑃𝑅𝐸)

), the onset of differentiation is further delayed until about day 12. 

While all metabolite concentrations exhibit a similar fluctuation pattern 

(response) within the examined time frame, the importance of glycolytic activity 

is different from that of the TCA cycle throughout the differentiation process, with 

the TCA cycle accounting for roughly 87% of the total amount of energy produced 

by the cells during the 21-day differentiation process, and glycolysis accounting 

for the remaining 13%. 

Cell cycle dynamics do not affect the onset of Runx2 expression, which 

always occurs between days 6 and 7 (not shown in Figure 2.6). Interestingly, an 

increase in growth rates (or a decrease of cell cycle duration) for either MSCs or 

pre-osteoblasts leads to a delay in the expression of osteonectin (Figure 2.6i), 

suggesting the existence of an inherent tradeoff between proliferation and 

differentiation. Although this tradeoff can be explained by the limited availability 

of energy resources in the cell (allowing either one or the other to occur), the 

analysis presented in this chapter (Figure 2.6) shows that the tradeoff exists even 

when the two behaviors do not compete for the energy resources of the cell. 
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Figure 2.6. Impact of cell growth parameters of mesenchymal stem cells (EATP

(MSC)
, on the 

x-axis) and pre-osteoblasts (EATP
(PRE)

, on the y-axis) on the differentiation onset time 

(z-axis), expressed as the time point at which differentiation-specific changes occur for 
the examined variables (i.e., average intracellular metabolite concentrations and 
relative gene expression levels): a) glucose, b) pyruvate, c) lactate, d) citrate, e) 

iso-citrate, f) succinate, g) fumarate, h) glutamine, and i) osteonectin. [85] 

2.2.4. Population balance modeling incorporating 

metabolism and genetic switches, deconvoluted 

heterogeneity of differentiating populations 

The proposed mathematical model — encompassing equations 

(2.1)-(2.6) for metabolism, (2.7)-(2.9) for gene expression, and (2.10)-(2.26) for 

cell proliferation and differentiation — accurately captures the experimental 

measurements for the activity of glycolysis, TCA cycle and glutaminolysis 

throughout the entire differentiation process. In-silico simulation results indicate 

that intracellular levels of all described metabolites follow a similar trend from 

day 0 to day 21 of differentiation (Figure 2.7). Starting at a basal level between 

day 0 and day 5, the model shows a sharp concentration increase for all 

metabolites (solid black lines), reaching a maximum value around day 11, before 
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decreasing steadily until day 21. These results replicate the general trend 

observed in the experimental data (diamond symbols with vertical error bars), 

showing a global increase in the activity of glycolysis, TCA cycle and 

glutaminolysis between day 6 and day 11, followed by reduced activity of the 

same pathways at the final stages of differentiation. 

 
Figure 2.7. Average intracellular metabolite concentrations during the osteogenic 

differentiation process of mesenchymal stem cells: a) glucose, b) pyruvate, c) lactate, 
d) citrate, e) iso-citrate, f) succinate, g) fumarate, and h) glutamine. Comparison 

between the experimental values (diamond symbols with vertical error bars) and the 
prediction of the mathematical model (solid black lines) [85] 

The concentration levels at day 21 were not attributed to a distinct 

phenotype because of their high variance (the difference between measurements 

at day 7 and day 21 is not statistically significant), which could be the result of 

contamination or some irregularity in the experimental protocol. Furthermore, the 

differences between the metabolic phenotypes of the cells at day 14 and day 21 

are small [44], indicating that osteoblasts (OBC) are the terminal phenotype when 

using the given experimental protocol. Experimental data for gene expression 

also support the claim that the cell populations at day 14 and day 21 are related, 

but have different characteristics compared with day 7 populations; experimental 

measurements and their statistical significance are presented in Appendix C. 
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When the parameters of the mathematical model were calibrated based 

on experimental data, equal importance was assigned to all timepoints. The initial 

condition for intracellular metabolism sets the corresponding concentration 

variables to their steady state values (for mesenchymal stem cells), which are 

visibly different from their experimental counterparts at day 0 for some of the 

metabolites (Figure 2.7). This outcome is expected and reasonable, as 

parameter values estimated using regression techniques result in the model 

prediction fitting some of the experimental datapoints better than others, including 

those at day 0. The same discrepancy between experimental and predicted 

values at day 0 occurs for gene expression (Figure 2.8). 

 
Figure 2.8. Average gene expression levels during the osteogenic differentiation 
process of mesenchymal stem cells: a) Runx2, and b) osteonectin. Comparison 

between experimental data (black diamond symbols with vertical error bars) and the 
prediction of the mathematical model (solid black lines) [85] 

The mRNA levels of Runx2 and osteonectin are used to define early and 

late osteogenic differentiation (respectively), and, subsequently, the 

mesenchymal stem, pre-osteoblast, and osteoblast stages (Figure 2.8). 

Activation patterns are successfully captured for both genes, showing that Runx2 

levels increase early during the differentiation period (beginning at day 3) and 

reach a plateau after day 15 (Figure 2.8a); osteonectin levels rise later in the 

differentiation process, starting with day 9 and plateau toward the end of the 

process, after day 20 (Figure 2.8b). 
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Gene expression controls differentiation rates, i.e., the term 𝐷𝑜𝑢𝑡
(𝑇𝑌𝑃)(𝑥, 𝑡) 

from equation (2.10), which depends on the differentiation fraction calculated as 

per equation (2.25); the variable 𝑓𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃)

 is the only link between gene expression 

and the cell cycle (and osteogenic differentiation) in the mathematical model. 

Figure 2.9 shows the calculated differentiation fractions for MSC and PRE cells, 

as they change throughout the osteogenic differentiation process. 

 
Figure 2.9. Differentiation fraction throughout the osteogenic differentiation process, 

calculated as per equation (2.25) 

Population dynamics were captured throughout the osteogenic 

differentiation process, achieving deconvolution of population heterogeneity 

(Figure 2.10). The total population count increase at a steady growth rate during 

the first week of differentiation; the total population numbers increase sharply 

between day 7 and day 14, reaching a plateau after day 15 at approximately 

4-times higher cell count compared with the initial undifferentiated count. The 

detailed description of the cell distribution (between the differentiation states and 

cell cycle phases) is virtually impossible to reproduce experimentally because of 

associated technical challenges, financial constraints, or both. Therefore, only 

some of the results of the mathematical model are compared with the available 

experimental data: the total cell count. Simulation results show that the population 
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of undifferentiated mesenchymal stem cells (solid blue line) starts to decline at 

day 6, when osteoprogenitors first appear. The previously non-existent 

pre-osteoblast population (dashed orange line) rises at the same timepoint 

(day 6) until approximately day 12, when the terminally differentiated osteoblasts 

emerge (dash-dotted yellow line). The pre-osteoblast count decreases after 

day 12 because of their terminal differentiation to osteoblasts, while the number 

of osteoblasts rises until reaching a plateau after day 19, when their count 

virtually equals the total population. 

 
Figure 2.10. Partial and total cell counts during the osteogenic differentiation process of 

mesenchymal stem cells. Comparison between experimental measurements (black 
diamond symbols with vertical error bars) and the prediction of the mathematical model 
for the total cell count (solid black line). Partial cell counts are represented as follows: 

solid blue line for MSC count, orange dashed line for PRE count, and yellow 
dash-dotted line for OBC count. [85] 

Herein, the first comprehensive population balance model of osteogenic 

differentiation has been presented, incorporating a description of cell cycle 

dynamics, intracellular metabolism, and gene expression. In-silico results 

showed that cell cycle dynamics play a significant role in the timing of the process 

of osteogenic differentiation of mesenchymal stem cells and confirmed that the 

expression of differentiation genes plays a crucial role in the process of 
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osteogenesis. Most importantly, the proposed mathematical model captures the 

heterogeneity of cell populations during osteogenic differentiation, reproducing 

the experimentally observed cell culture behavior over the course of osteogenesis 

(Figure 2.7 to Figure 2.10). 

Stem cell culture kinetics have been previously modelled, including cell 

death and cell differentiation, assigning cells to compartments [97] based on their 

differentiation state. Herein modelling of the differentiation has been performed 

with higher fidelity and level of detail at every step of the modelling process. The 

population balance equation enables the quantification of individual population 

numbers (i.e., for each cellular differentiation state: MSC, PRE, or OBC) as well 

as cell cycle heterogeneity. Differentiation is not merely described by the model, 

but also located precisely during the G1 phase of the division cell cycle (phase G 

in the mathematical model formulation). The ability to untangle the heterogeneity 

of mesenchymal stem cell cultures during osteogenic differentiation in silico 

provides a unique capability that is not achievable with conventional in-vitro 

methods [85]. Accounting for such heterogeneity and linking it to gene expression 

and metabolism can lead to culture optimization for high quality osteogenic 

differentiation for bone tissue engineering purposes. The model can potentially 

point toward the targeted optimization of culture parameters related to 

extracellular metabolism leading to high quality osteogenic differentiation. To 

achieve targeted culture optimization mathematical modelling should be 

combined with in-vitro experimentation. Such culture optimization may be 

achieved with the use of large scale (e.g., genome scale) metabolic models. 

However, the implementation of such models is technically challenging and 

complicated since these models rely on the existence of an objective to guide 

intracellular activity and stem cell differentiation demands the use of multiple 

objective functions to account for multiple competing cell behaviors throughout 

the differentiation process. Compared with genome-scale models, the metabolic 

model described herein is computationally faster, since it monitors a lower 

number of metabolites; it also requires fewer measurements, only for the 

metabolites that are included in the mathematical model; while this mathematical 

model provides results for fewer metabolites (only 8 metabolites involved in 

glycolysis, oxidative phosphorylation, and glutaminolysis) it captures pathways 
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that were shown to be significant [98–101] for the osteogenic differentiation of 

mesenchymal stem cells. 

Population balance models have been previously used to describe stem 

cell cultures. Wu et al. [102] used population balance equations to describe the 

size of cell aggregates cultured in spinner flasks. In this work, population balance 

has been utilized in a different manner, modelling cell cycle heterogeneity as an 

uneven distribution of the cells between and within cell cycle phases. The 

mathematical model described herein considers cellular metabolism directly 

linked to cell proliferation, in contrast to Wu et al. who modelled oxygen transport 

as the limiting factor for stem cell proliferation. Bartolini et al. [103] used 

population balance equations to describe the cell division cycle and study the 

proliferation of stem cells in suspension bioreactors with a special focus on 

bioreactor dynamics and operation, rather than intracellular gene and metabolic 

activity. A similar population balance approach has been utilized to study cell 

cycle phase-specific chemical treatment of leukemia [104] describing the effect 

of cell cycle heterogeneity on healthy and leukemic subpopulations subjected to 

chemotherapy. Similar to Münzer et al. [105], the mathematical model presented 

in this chapter provides a detailed description of cell cycle heterogeneity. 

However, this model focuses on the regulation of stem cell differentiation by gene 

expression and provides a more accurate description of cellular metabolism by 

utilizing intracellular metabolic reactions instead of extracellular metabolite 

measurements which may not accurately represent intracellular metabolic 

network activity [106,107]. 

Stem cells proliferate slower during differentiation [108], directing their 

energy through other metabolic pathways than those required for optimal 

(maximum) growth. In-silico exploration by repeated computer simulations 

affords comprehensive evaluation of cell proliferation with relation to metabolism 

by linking cellular growth rate to the rate of energy production. Simulation results 

for parameter sweeps around their nominal value show that shorter cell cycle 

duration results in delayed differentiation, even though the two cellular functions 

(proliferation and differentiation) do not directly compete in terms of energy 

demand (in the mathematical model). This result suggests that, under the 

constraint of a limited time span one may have to choose between obtaining 
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either a higher number of less differentiated cells or a lower number of more 

differentiated cells. This effect can be explained by the fact that cell cycle duration 

is strongly correlated with the duration of the G0/G1 phase; consequently, shorter 

cell cycle times are translated to reduced time spent by cells in the G0/G1 phase 

and a narrower time-window when differentiation can occur. Even though short 

cell cycle times delay the differentiation process, all the characteristic metabolic 

and genetic changes that are observed when using the nominal values of the 

parameters still occur as part of the differentiation process, but they do so later. 

These changes include an increase in metabolic activity during the differentiation 

period, followed by a decrease (in metabolic activity) toward the end of 

differentiation, as well as an increase in the relative gene expression of Runx2 

followed by a rise in osteonectin levels, as an indication of successful progression 

of osteogenesis [109]. 

Global parameter sensitivity analysis was performed by simultaneously 

varying the values of all the parameters in a space ranging from 50% to 150% 

around their nominal values. Interestingly, analysis results show that the 

parameters that have the highest total sensitivity indices are directly involved in 

osteogenic gene expression, even though the mathematical connection between 

the model outputs (i.e., cell counts) and genetics first traverses the metabolic 

reaction rates and intracellular metabolite concentrations and is only indirectly 

linked with gene expression. This result is mathematically justified if we 

acknowledge that in a significant proportion of simulations the cells do not 

differentiate at all for certain choices for the parameter sets. In other words, while 

the impact of the metabolic parameters on the growth rates for individual cell 

types is bound at roughly 50% around the nominal value, the values of the 

gene-related parameters can completely change the prediction and outcome of 

the model, increasing their significance value as calculated by the global analysis 

technique and demanding the precise determination of the values of these 

parameters from carefully designed experiments. This type of result requires a 

detailed model of the gene expression during the differentiation process. Other 

published models of differentiation describe in less detail the expression of genes 

related to osteogenesis. While this chapter showcases an unstructured and 

segregated stem cell mathematical model to capture the cell-cycle culture 
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heterogeneity, Vozzi et al. [110] used a structured and unsegregated cell model 

in their study of the lifespan and senescent behavior of stem cells. Thalheim et al. 

[111] employed a 3D computational model to study stem cell competition in 

intestinal crypts involving phenomena from multiple scales, akin to this work. 

However, there are fundamental differences in the two approaches: since the 

intestinal crypts only contain a small number of (stem) cells (typically 5–15), they 

were able to model each cell individually, which would be impractical for the large 

cell counts that occur in osteogenic differentiation experiments (more than 50000 

per well plate). The model by Chen et al. [112] described cell population counts 

using two ordinary differential equations, one for each type of cell (MSCs and 

chondrocytes). While their model also described MSC differentiation, they 

focused on the effect of the transforming growth factor beta (TGF-β) on the 

chondrogenic differentiation of mesenchymal stem cells, while the current 

chapter presents the results of a mathematical model that encompasses cell 

cycle dynamics, intracellular metabolism, and genetics, as well as the 

connections between them. Finally, Renardy et al. [113] investigated the stability 

of regenerating tissues in terms of cell fraction by type and population recovery 

rate, looking for the conditions (parameter values) necessary for the tissues to 

maintain normal function. 

This chapter introduced a novel mathematical model built from first 

principles, whose key contributions lie in the form of the transition function being 

used by phases G and M, and in the integration of intracellular metabolism and 

gene expression (for a vital subset of metabolites and genes) with cell growth and 

osteogenic differentiation, while at the same time capturing the heterogeneity of 

the cellular division cycle (both between and within cell cycle phases).
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Chapter 3. Mathematical modeling 

of the osteogenic differentiation 

of mesenchymal stem cells in a 

rotating-wall bioreactor 
This chapter presents a mathematical model for the osteogenic 

differentiation of alginate-gelatin-bead-encapsulated umbilical cord blood 

mesenchymal stem cells in a rotating wall bioreactor. To describe osteogenic 

differentiation in detail, the model encompasses phenomena at multiple scales, 

from intracellular energy metabolism and gene expression to cell cycle and 

differentiation state population level heterogeneity, to bead level nutrient and 

waste mass transport phenomena as well as bioreactor-level mass balances. The 

model is constructed around a population balance core and provides a framework 

for culture and reactor process optimization to build upon. The work showcased 

in this chapter contributes to the scientific literature the novelty of the multi-scale 

approach applied to stem cell cultures, with a highly detailed description at the 

single cell and cell population scales, integrating intermediary (alginate-gelatin 

bead) and macroscopic (reactor) scale phenomena into the model. 

The structure of the chapter begins with a section containing the 

description of the physical and biological phenomena being modelled 

(intracellular metabolism, gene expression, cell division and differentiation, and 

extracellular metabolite transport). The following section presents the method for 

solving the mathematical model by discretizing distributed variables that are part 

of integral, partial differential and algebraic equations (IPDAEs). Next, the main 

results of the chapter (rotating-wall bioreactor) are unveiled and compared with 

the results from the previous chapter describing the osteogenic differentiation of 

mesenchymal stem cells in well plate cultures. Following the results, the findings 

of this chapter are discussed and contrasted with other relevant publications. 

Finally, the validity of the mathematical model is assessed by investigating its 

predictions under various circumstances corresponding to meaningful biological 

scenarios. 
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3.1. Mathematical model formulation 
The osteogenic differentiation of MSCs was carried out in a 55 mL 

perfusion rotating wall bioreactor that allowed fresh culture medium to be 

continuously fed into the reactor while removing existing spent medium from the 

reactor at the same time; the cells were encapsulated in alginate-gelatin beads 

throughout the differentiation process. Oxygen was supplied to the culture 

medium via semipermeable tubing before entering the reactor and a 

gas-permeable membrane acting as the outer surface of the reactor [114,115]. 

The cells are encapsulated within alginate-gelatin beads [116], which have been 

optimized for stem cell expansion and osteogenic differentiation [117]. In 

formulating the mathematical model for the MSC osteogenic differentiation 

process, phenomena at the cell, bead, and reactor level were described and 

interlinked. 

The mathematical model is built around a population balance core that is 

very similar to the one used in the previous chapter. This was a natural choice, 

since the model in this chapter builds upon the innovation from the previous 

chapter, and the same cell line is being used. Thus, the description of the 

intracellular landscape matches the one presented in Figure 2.1, and the 

differentiation sequence follows the diagram from Figure 2.2. The set of 

intracellular metabolites and genes has been kept unchanged (Figure 2.3), but 

the definition of the cell distribution variable has been updated to a cell density 

distribution, which is better suited for the three-dimensional structure of the 

alginate-gelatin bead. The description of the cell division cycle in terms of its 

component phases is the same as shown in the previous chapter (Figure 2.4). 

Cells no longer interact with the (liquid) culture medium directly. Instead, 

the alginate-gelatin bead that they are encapsulated within plays the role of the 

extracellular environment. The extracellular alginate-gelatin bead volume uses 

separate molar balance equations to keep track of metabolite transport by 

molecular diffusion, as well as cross-membrane transport performed by the cells. 

This osteogenic differentiation process was carried out in a rotating wall 

bioreactor, where the encapsulated cells were free to move as the outer walls of 

the reactor kept rotating. Metabolite transport occurs at the reactor scale between 
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the bulk culture medium and the alginate-gelatin beads as well as inside the 

beads and is described through rigorous mass balance equations. 

In summary, the mathematical model encompasses and interconnects 

phenomena at the cellular, bead, and bioreactor scales; it captures intracellular 

metabolism, gene expression, and spatial and cell cycle heterogeneity for each 

of the three differentiation states, throughout the osteogenic differentiation 

process. 

3.1.1. Assumptions 

All assumptions listed in the chapter titled “Mathematical modeling of the 

osteogenic differentiation of mesenchymal stem cells in well-plate culture” are 

applicable to the model presented in this chapter. Additionally, the assumptions 

below also apply. 

• The flow of the culture medium inside the rotating-wall bioreactor 

corresponds to perfect mixing conditions during the osteogenic 

differentiation process. 

• All alginate-gelatin beads in the rotating-wall bioreactor are identical, in 

terms of their geometry, size, as well as metabolic, genetic, and cellular 

density distribution within the bead volume. Bead-to-bead variability is 

considered negligible by the mathematical model. 

3.1.2. Balance equations for intracellular metabolism 

The concentration levels of intracellular metabolites vary with cell type, 

radial position (in the alginate-gelatin bead), and time. The mechanism regulating 

the intracellular metabolism of the cells should not depend on the details of the 

experimental setup utilized to culture them. Therefore, intracellular metabolism 

uses equations that are built on those in the previous chapter, modified to account 

for the location of the cells within the alginate-gelatin bead. 

Thus, the molar balance for intracellular metabolites is given by equation 

(3.1), whose right-hand side terms represent, in order: the contribution of 

incoming cells that may have different intracellular metabolic activity levels when 

differentiating into the current type, net intracellular metabolite generation rate, 
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and net cross-membrane transfer. The previous chapter of this thesis provides a 

more detailed explanation of each term of the intracellular molar balance 

equation. 

𝜕𝑀𝑚
(𝑇𝑌𝑃)(𝑟, 𝑡)

𝜕𝑡
=
∫ 𝐷𝑜𝑢𝑡

(𝑇𝑌𝑃−1)(𝑟, 𝑥, 𝑡) 𝑑𝑥
𝑥𝑚𝑎𝑥,𝐺
𝑥𝑚𝑖𝑛,𝐺

𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)(𝑟, 𝑡)

⋅ (𝑀𝑚
(𝑇𝑌𝑃)(𝑟, 𝑡) − 𝑀𝑚

(𝑇𝑌𝑃−1)(𝑟, 𝑡))

+∑ (𝑆𝑇𝑂𝐼𝐶𝑚,𝑖 ⋅ 𝑅𝑅𝑎𝑡𝑒𝑖
(𝑇𝑌𝑃)(𝑟, 𝑡))

𝑁𝑅

𝑖=1

+∑ (𝑆𝑇𝑂𝐼𝐶𝑚,𝑗+𝑁𝑅 ⋅
𝑇𝑅𝑎𝑡𝑒𝑗

(𝑇𝑌𝑃)(𝑟, 𝑡)

𝑉𝑐𝑒𝑙𝑙
)

𝑁𝑇

𝑗=1
 

(3.1) 

The intracellular reaction rate has a first-order linear dependence on the 

concentration of the corresponding reactant as shown in equation (3.2). 𝐶𝑅𝑖(𝑟, 𝑡) 

refers to the concentration of the reactant for intracellular metabolic reaction 

number 𝑖 and can be identified from the stoichiometric matrix (2.2) by looking at 

the column pertaining to reaction 𝑖 and choosing the only row for which the 

coefficient is negative (i.e., the reactant); the leftmost column gives the name of 

the metabolite playing the role of the reactant for reaction 𝑖. 

𝑅𝑅𝑎𝑡𝑒𝑖
(𝑇𝑌𝑃)(𝑟, 𝑡) = 𝑘𝑐𝑎𝑡,𝑖 ⋅ 𝐶𝑅𝑖(𝑟, 𝑡) (3.2) 

Cross-membrane transport rates are calculated using equation (3.3), 

which corresponds to product-inhibited enzymatic transport and assumes that the 

amount of transporter enzyme found in the cell membrane is constant for each of 

the three cell types (MSC, PRE, and OBC) but different for each cell type. 

𝑇𝑅𝑎𝑡𝑒𝑖
(𝑇𝑌𝑃)(𝑟, 𝑡) =

𝑘𝐸,𝑖
(𝑇𝑌𝑃) ⋅ 𝐶𝑀𝑖,𝑜𝑢𝑡(𝑟, 𝑡) ⋅ 𝑘𝑇,𝑖

𝑘𝑇,𝑖 +𝑀𝑇𝑖
(𝑇𝑌𝑃)(𝑟, 𝑡)

 (3.3) 

3.1.3. Balance equations for gene expression 

Intracellular expression of gene mRNA depends on time, differentiation 

state, and position of the cell within the alginate-gelatin bead. The molar balance 

equation (3.4) expresses the accumulation rate of gene-specific mRNA in terms 
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of base expression of each gene 𝑖 in the undifferentiated MSC state, transcription 

rate of the gene from its corresponding location within the DNA of the cell, natural 

decay of intracellular mRNA; the last term on the right-hand side of the equation 

accounts for differences in gene expression levels between cells as they change 

their differentiation state. 

𝜕𝐺𝑖
(𝑇𝑌𝑃)(𝑟, 𝑡)

𝜕𝑡
= 𝜔𝑖 +

𝑘𝑡𝑟𝑎𝑛𝑠,𝑖 ⋅ 𝐴𝐺𝑖
(𝑇𝑌𝑃)𝑛𝑡𝑟𝑎𝑛𝑠

𝐴𝐺𝑖
(𝑇𝑌𝑃)𝑛𝑡𝑟𝑎𝑛𝑠 + 𝑘𝐷𝑁𝐴,𝑖

𝑛𝑡𝑟𝑎𝑛𝑠
− 𝑘𝑑𝑒𝑐𝑎𝑦 ⋅ 𝐺𝑖

(𝑇𝑌𝑃)(𝑟, 𝑡)

+
∫ 𝐷𝑜𝑢𝑡

(𝑇𝑌𝑃−1)(𝑟, 𝑥, 𝑡) 𝑑𝑥
𝑥𝑚𝑎𝑥,𝐺
𝑥𝑚𝑖𝑛,𝐺

𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)(𝑟, 𝑡)

⋅ (𝐺𝑖
(𝑇𝑌𝑃)(𝑟, 𝑡) − 𝐺𝑖

(𝑇𝑌𝑃−1)(𝑟, 𝑡)) 

(3.4) 

The molar balance for the intracellular concentration of dexamethasone 

(the osteogenic differentiation agent being used in the experiments supporting 

this work [85]) is given by equation (3.5), which relates the accumulation rate of 

dexamethasone inside the cell to its rate of transfer through the cell membrane. 

The molar balances for dexamethasone in the alginate-gelatin bead and culture 

medium compartments are given in another chapter below. 

𝑑

𝑑𝑡
(𝑉𝑐𝑒𝑙𝑙 ⋅ 𝐷𝑒𝑥𝑐𝑒𝑙𝑙(𝑟, 𝑡)) = 𝜆𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 ⋅ (𝐷𝑒𝑥𝑏𝑒𝑎𝑑(𝑟, 𝑡) − 𝐷𝑒𝑥𝑐𝑒𝑙𝑙(𝑟, 𝑡)) (3.5) 

3.1.4. Population balance equations for the cellular 

division cycle and cell differentiation 

Similar to chapter 2.1.5, the cell division cycle is described in terms of the 

main growth stages: phase G lumps Gap 0 and Gap 1, phase S models DNA 

synthesis, and phase M lumps Gap 2 and mitosis. The order of progression 

through cell division cycle used in the mathematical model, G–S–M, matches the 

biological succession (gap 1, synthesis, gap 2, and mitosis). The independent 

variables are the position of the cell within the alginate-gelatin bead (𝑟), the phase 

growth coordinate (𝑥), and time (𝑡). The model ignores the specific cyclins that 

characterize each cell cycle phase and abstracts that notion into a shared 

distribution domain (i.e., the growth coordinate). 



56 

Each cell cycle phase functions in the same way for each of the three 

modelled differentiation states (MSC, PRE, and OBC) since cell cycle phases are 

not specific to any one cell type and are generally applicable to the eukaryote 

class. Equation (3.6) describes the location- and time-dependent density 

distribution over the growth coordinate of cells as they traverse cell cycle phase 

G. The terms on the left-hand side of the equation represent, in order: time 

derivative of the cell density distribution, progress rate in traversing the current 

growth phase, death rate, and transition rate (to the next cell cycle stage: phase 

S). The right-hand side (RHS) of the equation contains the boundary condition 

and differentiation rates. The RHS boundary condition ensures that cells start 

each growth phase from the beginning (all incoming cells are added to the cell 

cycle phase at the lowest phase coordinate, where the Kronecker delta function 

is equal to 1). The two differentiation terms account for the contribution of 

differentiation to the number of cells of the current type: cells that become the 

current type are counted as inflow, and cells that are differentiating further are 

regarded as outflow. 

𝜕𝑁𝐺
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡)

𝜕𝑡
+
𝜕[𝜇𝐺

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅ 𝑁𝐺
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡)]

𝜕𝑥
+ 𝜃𝐺

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅

⋅ 𝑁𝐺
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) + 𝑇𝐺,𝑜𝑢𝑡

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅ 𝑁𝐺
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡)

= 𝛿𝐾(𝑥, 𝑥𝑚𝑖𝑛,𝐺) ⋅ 𝑇𝐺,𝑖𝑛
(𝑇𝑌𝑃)(𝑟, 𝑡) + 𝐷𝑜𝑢𝑡

(𝑇𝑌𝑃−1)(𝑟, 𝑥, 𝑡) − 𝐷𝑜𝑢𝑡
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) 

(3.6) 

The equation for the DNA synthesis phase (labelled “S”) follows a similar 

approach to phase G, keeping only the relevant terms. Since the main objective 

of the cell during phase S is DNA code duplication, neither transition nor 

differentiation are part of equation (3.7). 

𝜕𝑁𝑆
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡)

𝜕𝑡
+
𝜕[𝜇𝑆

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅ 𝑁𝑆
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡)]

𝜕𝑥
+ 𝜃𝑆

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅

⋅ 𝑁𝑆
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) = 𝛿𝐾(𝑥, 𝑥𝑚𝑖𝑛,𝑆) ⋅ 𝑇𝑆,𝑖𝑛

(𝑇𝑌𝑃)(𝑟, 𝑡) 

(3.7) 
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The final phase of the cell division cycle (labelled “M”) includes terms for 

the temporal derivative of the cell density distribution, phase traversal rate, death 

rate, transition rate on the left-hand side, and the boundary condition on the 

right-hand side (3.8). Considering that the main objective of the cell during mitosis 

is cellular division, differentiation is excluded from the list of cellular behaviors 

exhibited by cells while traversing phase M. 

𝜕𝑁𝑀
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡)

𝜕𝑡
+
𝜕[𝜇𝑀

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅ 𝑁𝑀
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡)]

𝜕𝑥
+ 𝜃𝑀

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅

⋅ 𝑁𝑀
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) + 𝑇𝑀,𝑜𝑢𝑡

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅ 𝑁𝑀
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡)

= 𝛿𝐾(𝑥, 𝑥𝑚𝑖𝑛,𝑀) ⋅ 𝑇𝑀,𝑖𝑛
(𝑇𝑌𝑃)(𝑟, 𝑡) 

(3.8) 

For each differentiation state (denoted by the superscript “TYP”), the total 

(position and time dependent) cell density is obtained by summing the total 

densities for each growth phase (only from cells that are at the corresponding 

differentiation state), as shown in equation (3.9). 

𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)(𝑟, 𝑡) = ∫ 𝑁𝐺

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) 𝑑𝑥
𝑥𝑚𝑎𝑥,𝐺

𝑥𝑚𝑖𝑛,𝐺

+∫ 𝑁𝑆
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) 𝑑𝑥

𝑥𝑚𝑎𝑥,𝑆

𝑥𝑚𝑖𝑛,𝑆

+∫ 𝑁𝑀
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) 𝑑𝑥

𝑥𝑚𝑎𝑥,𝑀

𝑥𝑚𝑖𝑛,𝑀

 

(3.9) 

Equation (3.10) shows the approach for the calculation of the total cell 

count per alginate-gelatin bead, by integrating the density of the cells over the 

bead volume. The right-hand-side of the equation shows the calculation method 

being used under the assumptions stated in this chapter (i.e., spherical symmetry 

of the beads). 

∭(∑𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)(𝑟, 𝑡)

𝑇𝑌𝑃

)𝑑𝑉

 

𝑉𝑏𝑒𝑎𝑑

= ∫ (∑𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)(𝑟, 𝑡)

𝑇𝑌𝑃

) ⋅ 4𝜋𝑟2 𝑑𝑟

𝑅𝑏𝑒𝑎𝑑

0

 (3.10) 
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The duration of phase G is correlated with the production rate of energy 

cofactors (3.11), separately for each differentiation state TYP. The production 

rates for the cofactors (the two partial derivatives from the equation below) are 

calculated as per equation (3.1); although they are distinct model entities, the 

parameters connecting cofactor production rates to the duration of phase G are 

interdependent 𝐸𝑁𝐴𝐷𝐻
(𝑇𝑌𝑃) = 2.5 ⋅ 𝐸𝐴𝑇𝑃

(𝑇𝑌𝑃)
, since the electron transport chain processes 

NADH to produce more ATP [95]. 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐺
(𝑇𝑌𝑃)(𝑟, 𝑡) =

1

𝐸𝐴𝑇𝑃
(𝑇𝑌𝑃) ⋅

𝜕𝑀𝐴𝑇𝑃
(𝑇𝑌𝑃)(𝑟, 𝑡)
𝜕𝑡

+ 𝐸𝑁𝐴𝐷𝐻
(𝑇𝑌𝑃) ⋅

𝜕𝑀𝑁𝐴𝐷𝐻
(𝑇𝑌𝑃)(𝑟, 𝑡)
𝜕𝑡

 
(3.11) 

The transition rates between growth phases, which are used in the 

boundary conditions on the right-hand side of equations (3.6), (3.7) and (3.8), 

transfer cells from each growth phase to the following one, thus ensuring cell 

cycle phase progression. Equation (3.12) gives the transition rate into phase G; 

the number 2 multiplying the integral on the right-hand side of the equation 

accounts for cell duplication during mitosis. 

𝑇𝐺,𝑖𝑛
(𝑇𝑌𝑃)(𝑟, 𝑡) = 2 ⋅ ∫ 𝑇𝑀,𝑜𝑢𝑡

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅ 𝑁𝑀
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) 𝑑𝑥

𝑥𝑚𝑎𝑥,𝑀

𝑥𝑚𝑖𝑛,𝑀

 (3.12) 

Equation (3.13) gives the transition rate of cells from phase G into the 

DNA synthesis phase. 

𝑇𝑆,𝑖𝑛
(𝑇𝑌𝑃)(𝑟, 𝑡) = ∫ 𝑇𝐺,𝑜𝑢𝑡

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅ 𝑁𝐺
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) 𝑑𝑥

𝑥𝑚𝑎𝑥,𝐺

𝑥𝑚𝑖𝑛,𝐺

 (3.13) 

Equation (3.14) gives the transition rate from phase S into phase M. Due 

to the requirement that DNA be properly duplicated before progressing into the 

following phase, the transition rate is no longer distributed over the phase 

coordinate around a mean value and occurs at a single point (labelled 𝑥𝑚𝑎𝑥,𝑆) 

instead. 
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𝑇𝑀,𝑖𝑛
(𝑇𝑌𝑃)(𝑟, 𝑡) = 𝜇𝑆

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅ 𝑁𝑆
(𝑇𝑌𝑃)(𝑟, 𝑥𝑚𝑎𝑥,𝑆, 𝑡) (3.14) 

Cells leave phase M to divide and transition into phase G at a rate given 

by equation (3.15). The transition rate is distributed over the phase coordinate 

(as well as position within the alginate-gelatin bead, 𝑟, and time, 𝑡) and depends 

on the growth rate of the cells traversing phase M, as well as the cumulative 

probability of transition at the current growth coordinate. Since the phase growth 

coordinate setup is identical to the one used for the well plate culture in the 

previous chapter, the expression for the cumulative transition probability is given 

by equation (2.23). 

𝑇𝑀,𝑜𝑢𝑡
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) =

𝜇𝑀
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅

𝑑𝑃𝑀(𝑥)
𝑑𝑥

1 − 𝑃𝑀(𝑥)
 (3.15) 

The rate for transition between phase G and phase S uses the more 

complicated formulation (3.16), which accounts for the possibility for cells to leave 

phase G either by transitioning into phase S or by differentiating into a more 

specialized cell type. Note that the equation for the transition rate reduces to the 

expression used for phase M (equation (3.15) valid for transition in the absence 

of differentiation) when the differentiation fraction (𝑓𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃)

) is null, and becomes 

zero when the differentiation reaches the (maximum) value 1. The expression for 

the cumulative probability of transition 𝑃𝐺(𝑥) is given by equation (2.22). 

𝑇𝐺,𝑜𝑢𝑡
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) =

𝜇𝐺
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅ (1 − 𝑓𝑑𝑖𝑓𝑓

(𝑇𝑌𝑃)(𝑟, 𝑡)) ⋅
𝑑𝑃𝐺(𝑥)
𝑑𝑥

1 − 𝑓𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃) ⋅ 𝐶𝑃𝐷𝐺(𝑥) − (1 − 𝑓𝑑𝑖𝑓𝑓

(𝑇𝑌𝑃)(𝑟, 𝑡)) ⋅ 𝑃𝐺(𝑥)
 (3.16) 

Cell may also undergo differentiation while traversing phase G, at a rate 

given by equation (3.17). Note that when the differentiation fraction is zero, the 

differentiation rate is also null, and the derivative of the differentiation rate with 

respect to the growth coordinate is positive, reaching the maximum value (for the 

differentiation rate) when the differentiation fraction is also at its maximum value 
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of 1. The function for the cumulative probability of differentiation, 𝐶𝑃𝐷𝐺(𝑥), is 

calculated as per equation (2.24). 

𝐷𝑜𝑢𝑡
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) =

𝜇𝐺
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) ⋅ 𝑓𝑑𝑖𝑓𝑓

(𝑇𝑌𝑃)(𝑟, 𝑡) ⋅
𝑑𝐶𝑃𝐷𝐺(𝑥)

𝑑𝑥
⋅ 𝑁𝐺

(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡)

1 − 𝑓𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃) ⋅ 𝐶𝑃𝐷𝐺(𝑥) − (1 − 𝑓𝑑𝑖𝑓𝑓

(𝑇𝑌𝑃)) ⋅ 𝑃𝐺(𝑥)
 (3.17) 

The value of the differentiation fraction depends on the position of the 

cells within the alginate-gelatin bead and is expressed in terms of the relative 

expression of its key gene and a single differentiation parameter (i.e., 𝑘𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃)

), as 

per equation (3.18). The key gene for mesenchymal stem cells (TYP=MSC) is 

Runx2, while the key gene for pre-osteoblasts (TYP=PRE) is osteonectin. 

Osteoblasts (TYP=OBC) do not further differentiate, as per equation (3.19). 

𝑓𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃)(𝑟, 𝑡) =

𝐺𝑘𝑒𝑦
(𝑇𝑌𝑃)𝑑𝑥𝑝

𝑘𝑑𝑖𝑓𝑓
(𝑇𝑌𝑃)𝑑𝑥𝑝 + 𝐺𝑘𝑒𝑦

(𝑇𝑌𝑃)𝑑𝑥𝑝
 (3.18) 

𝑓𝑑𝑖𝑓𝑓
(𝑂𝐵𝐶)(𝑟, 𝑡) = 0 (3.19) 

3.1.5. Mass balance at the alginate-gelatin bead and 

bioreactor scales 

Diffusive transport through the spherical alginate-gelatin bead is modeled 

through the molar balance equation (3.20) for the three extracellular metabolites 

(glucose, lactate, and glutamine) and the differentiation agent (dexamethasone). 

The accumulation of metabolite in the alginate-gelatin bead is expressed by the 

partial derivative on the left-hand side; the two terms on the right-hand side of the 

equation are the negative divergence of the molar flux (accounts for diffusive 

transport of metabolite within the bead) and the net rate of generation for 

metabolite 𝑚 (accounts for uptake or release of metabolites by the cells via 

cross-membrane transportation). The mathematical formulation utilizes identical 

beads with 1.15 mm radius, in agreement with the experimental technique that 

produced them [115,118], neglecting bead size distribution. 
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𝜕𝐶𝑚(𝑟, 𝑡)

𝜕𝑡
= −∇ ⋅ 𝐹𝑚(𝑟, 𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑅𝑉𝑚(𝑟, 𝑡) (3.20) 

Under the assumption of spherical symmetry, the divergence term in 

equation (3.20) can be written explicitly as a partial derivative in the radial 

direction. Equation (3.21) is obtained by substituting the divergence term in 

equation (3.20) with the corresponding partial derivative; although the two 

equations are equivalent under the working assumptions, equation (3.21) is more 

useful for numerical model formulation, as the partial derivative can be readily 

replaced by a finite difference or encapsulated in a finite element discretization 

scheme. 

𝜕𝐶𝑚(𝑟, 𝑡)

𝜕𝑡
= −

1

𝑟2
⋅
𝜕

𝜕𝑟
(𝑟2 ⋅ 𝐹𝑚,𝑟(𝑟, 𝑡)) + 𝑅𝑉𝑚(𝑟, 𝑡) (3.21) 

The constitutive equation for the diffusive molar flux density of metabolite 

𝑚 is given by equation (3.22), which is also known as Fick’s first law of diffusion. 

Under the assumption of spherical symmetry, the concentration gradient is equal 

to the partial derivative of the concentration in the radial direction, as per equation 

(3.23), which is the variant implemented by the computational counterpart to the 

mathematical model. 

𝐹𝑚(𝑟, 𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = −𝒟𝑚 ⋅ ∇𝐶𝑚(𝑟, 𝑡) (3.22) 

𝐹𝑚,𝑟(𝑟, 𝑡) = −𝒟𝑚 ⋅
𝜕𝐶𝑚(𝑟, 𝑡)

𝜕𝑟
 (3.23) 

Each of the molar balance equations is accompanied by corresponding 

boundary conditions: the molar flux density through the center of the spherical 

bead is null, due to symmetry (3.24); molar fluxes through the outer surface of 

the bead are calculated using mass transfer equation (3.25) whose partial mass 

transfer coefficient 𝑘𝑏𝑒𝑎𝑑,𝑚 is based on a dimensionless correlation. Although the 

mathematical model uses the full form of mass transfer correlation equation 

(3.26) [119] (as cited by [120]), the flow velocity corresponds to a very low 

Reynolds number (𝑅𝑒 < 10−3), and the Sherwood number (𝑆ℎ) is practically 
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equal to 2. The perfused culture medium replenishes the main metabolites 

(glucose and glutamine) and removes lactate from the bioreactor without 

meaningfully affecting their transfer rate between the alginate-gelatin bead and 

the culture medium in the bulk of the liquid surrounding the beads. 

𝐹𝑚,𝑟(0, 𝑡) = 0 (3.24) 

𝐹𝑚(𝑅𝑏𝑒𝑎𝑑, 𝑡) = 𝑘𝑏𝑒𝑎𝑑,𝑚 ⋅ (𝐶𝑚(𝑅𝑏𝑒𝑎𝑑, 𝑡) − 𝐶𝐶𝑚(𝑡)) (3.25) 

𝑘𝑏𝑒𝑎𝑑,𝑚 ⋅ 𝑅𝑏𝑒𝑎𝑑
𝒟𝑚

= 𝑆ℎ𝑚 = 2 + 0.6 ⋅ 𝑅𝑒
1/2 ⋅ 𝑆𝑐𝑚

1/3 (3.26) 

The volumetric reaction term appearing in equations (3.20) and (3.21) is 

defined by equation (3.27). Each extracellular metabolite 𝑚 is paired with its own 

transport rate 𝑖 as follows: glucose is transported with rate 1, lactate with rate 2, 

and glutamine with rate 3. The negative sign at the beginning of the equation 

accounts for the fact that the values of the transport rates (𝑇𝑅𝑎𝑡𝑒𝑖
(𝑇𝑌𝑃)

) correspond 

to their intracellular effect and not their effect on the bead metabolite levels: e.g., 

the glucose transport rate is positive (for the cell) but has the effect of reducing 

the concentration of glucose locally in the alginate-gelatin bead. The 

measurement units on the right-hand side (molar flowrate in 𝑝𝑚𝑜𝑙/𝑑𝑎𝑦, and cell 

density in 𝐿−1) combine to form the correct unit on the right-hand side (reaction 

rate in 𝑝𝑚𝑜𝑙 ⋅ 𝑑𝑎𝑦−1 ⋅ 𝐿−1). 

𝑅𝑉𝑚(𝑟, 𝑡) = −∑𝑇𝑅𝑎𝑡𝑒𝑖
(𝑇𝑌𝑃)(𝑟, 𝑡) ⋅ 𝑁𝑡𝑜𝑡𝑎𝑙

(𝑇𝑌𝑃)(𝑟, 𝑡)

𝑇𝑌𝑃

 (3.27) 

Because the rate cross-membrane transport of dexamethasone is 

modelled differently than the transport of metabolites, the corresponding reaction 

rate term is adapted to the specifics of dexamethasone transport, as per equation 

(3.28). 

𝑅𝑉𝐷𝑒𝑥(𝑟, 𝑡) = 𝜆𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 ⋅ (𝐷𝑒𝑥𝑐𝑒𝑙𝑙(𝑟, 𝑡) − 𝐷𝑒𝑥𝑏𝑒𝑎𝑑(𝑟, 𝑡)) ⋅ 𝑁𝑡𝑜𝑡𝑎𝑙
(𝑇𝑌𝑃)(𝑟, 𝑡) (3.28) 
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Finally, the molar balance equations for mass transport inside the 

alginate gelatin bead are accompanied by initial conditions for each variable: the 

concentration of metabolites is considered the same as in the culture medium, 

whereas concentration of dexamethasone starts at zero. 

Metabolite levels in the culture medium are modelled using equation 

(3.29), which accounts for metabolite transport between the culture medium and 

alginate-gelatin beads, as well as flow in and out of the reactor. The reactor scale 

molar balance equation (3.29) is valid for the three extracellular metabolites 

(glucose, lactate, and glutamine) and the differentiation agent (dexamethasone). 

𝑑(𝑉𝑅 ⋅ 𝐶𝐶𝑚(𝑡))

𝑑𝑡
= 𝐹𝑚,𝑟(𝑅𝑏𝑒𝑎𝑑, 𝑡) ⋅ (4 ⋅ 𝜋 ⋅ 𝑅𝑏𝑒𝑎𝑑

2) ⋅ 𝑁𝑏𝑒𝑎𝑑 

+𝐹𝐼𝑁 ⋅ (𝐶𝐼𝑁,𝑚 − 𝐶𝐶𝑚(𝑡)) 

(3.29) 

3.2. Solution methodology 
The computer implementation of the mathematical model uses 

discretized versions of the equations for distributed variables. For accurate 

calculations, phases G and M are each discretized into 100 bins, phase S is 

discretized into 50 bins, and the alginate-gelatin bead into 16 spherical shells, 

similar to chapter 2.2. The complete implementation consists of 12,563 ordinary 

differential equations, which are solved using the ode15s routine provided by 

MATLAB [121]. The average solution time is about one hour on a computer with 

a 4.20GHz Intel® Core™ i7-7700K CPU and 16 GB of RAM. Although the more 

popular ode45 MATLAB routine typically produces a (slightly) more accurate 

solution than ode15s, the latter was employed to solve the mathematical 

formulation of the problem, because the stiff system of ordinary differential 

equations presented herein requires prohibitively more time to solve using ode45, 

necessitating more than two weeks (of computational time) to calculate the 

solution of the model up to day 10 of the simulation for the osteogenic 

differentiation process. 

All distributed variables are discretized (over the phase growth 

coordinate, 𝑥, and the radial position in the alginate-gelatin bead, 𝑟) before 
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running the simulation and each of the continuous partial differential equations 

becomes multiple discrete ordinary differential equations, with time as the unique 

independent variable. The radial domain is discretized by the index 𝑗, ranging 

from 1 to 16, while the growth coordinate is discretized by the index 𝑖, ranging 

from 1 to 100 for phases G and M and from 1 to 50 for phase S. In the equations 

below, the index 𝑗 corresponds to radial position 𝑗 ⋅ Δ𝑟, where Δ𝑟 is the results of 

dividing the bead radius by the number of spherical shells (16 in this case); the 

index 𝑖 corresponds to growth coordinate 𝑥𝑚𝑖𝑛 + 𝑖 ⋅ Δ𝑥, where Δ𝑥 is found by 

dividing the total span of the growth phase (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) by the number of bins 

used to discretize the particular cell cycle phase. 

The discretization of equation (3.6) — which describes cells as they 

progress through phase G of the cell division cycle — is presented in two parts: 

equation (3.30) is valid for 𝑖 = 1 and includes the boundary condition specifying 

the location at which cells enter the cycle phase, while equation (3.31) is valid for 

𝑖 ≥ 2 and describes phase traversal. Each 𝑁𝐺
(𝑇𝑌𝑃)(𝑟, 𝑥, 𝑡) distributed variable is 

turned into 1600 time-dependent 𝑁𝐺,𝑗,𝑖
(𝑇𝑌𝑃)(𝑡) variables per differentiation state 𝑇𝑌𝑃. 

𝑑𝑁𝐺,𝑗,1
(𝑇𝑌𝑃)(𝑡)

𝑑𝑡
+
𝜇𝐺,𝑗
(𝑇𝑌𝑃)(𝑡) ⋅ [𝑁𝐺,𝑗,1

(𝑇𝑌𝑃)(𝑡) − 0]

Δ𝑥
+ 𝜃𝐺

(𝑇𝑌𝑃)(𝑡) ⋅ 𝑁𝐺,𝑗,1
(𝑇𝑌𝑃)(𝑡) + 𝑇𝐺𝑜𝑢𝑡,𝑗,1

(𝑇𝑌𝑃) (𝑡)

⋅ 𝑁𝐺,𝑗,1
(𝑇𝑌𝑃)(𝑡) = 𝐷𝑜𝑢𝑡,𝑗,1

(𝑇𝑌𝑃−1)(𝑡) − 𝐷𝑜𝑢𝑡,𝑗,1
(𝑇𝑌𝑃) (𝑡) + 𝑇𝐺𝑖𝑛,𝑗

(𝑇𝑌𝑃)(𝑡) 

(3.30) 

𝑑𝑁𝐺,𝑗,𝑖
(𝑇𝑌𝑃)(𝑡)

𝑑𝑡
+
𝜇𝐺,𝑗
(𝑇𝑌𝑃)(𝑡) ⋅ [𝑁𝐺,𝑗,𝑖

(𝑇𝑌𝑃)(𝑡) − 𝑁𝐺,𝑗,𝑖−1
(𝑇𝑌𝑃) (𝑡)]

Δ𝑥
+ 𝜃𝐺

(𝑇𝑌𝑃)(𝑡) ⋅ 𝑁𝐺,𝑗,𝑖
(𝑇𝑌𝑃)(𝑡)

+ 𝑇𝐺𝑜𝑢𝑡,𝑗,𝑖
(𝑇𝑌𝑃) (𝑡) ⋅ 𝑁𝐺,𝑗,𝑖

(𝑇𝑌𝑃)(𝑡) = 𝐷𝑜𝑢𝑡,𝑗,𝑖
(𝑇𝑌𝑃−1)(𝑡) − 𝐷𝑜𝑢𝑡,𝑗,𝑖

(𝑇𝑌𝑃) (𝑡) 

(3.31) 

The population balance equations for phases S and M are discretized in 

an analogous manner, producing an additional 2400 equations per differentiation 

state. Note that in the computer implementation, the growth rate 𝜇𝐺,𝑗⋅𝛥𝑟
(𝑇𝑌𝑃)(𝑡) and 

death rate 𝜃𝐺
(𝑇𝑌𝑃)(𝑡) are no longer dependent on the cell cycle phase coordinate 

as the available experimental data were insufficient to support any conceivable 
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hypothesis over any other; an alternative way to express this choice is that these 

distributed variables are uniform. 

Discretization of the alginate gelatin bead variables was constructed such 

that the concentration and molar fluxes are staggered along the radial direction. 

Partial derivatives in the radial direction have been replaced by first order finite 

differences, which have second order accuracy due to staggering. Thus, the 

discretized version of the molar balance equation (3.21) for extracellular 

metabolites inside the alginate-gelatin bead is given by equations (3.32) valid 

inside the innermost shell (which is a sphere of radius Δ𝑟) for 𝑗 = 1 and (3.33) 

valid at every other discretized radial position where 2 ≤ 𝑗 ≤ 16. Equations (3.32) 

and (3.33) are written in their shortest form, simplifying factors of Δ𝑟 where 

possible. 

𝑑𝐶𝑚,1(𝑡)

𝑑𝑡
= −4 ⋅

𝐹𝑚,1(𝑡)

Δ𝑟
+ 𝑅𝑉𝑚,1(𝑡) (3.32) 

𝑑𝐶𝑚,𝑗(𝑡)

𝑑𝑡
= −

1

(𝑗 − 0.5)2
⋅
𝑗2 ⋅ 𝐹𝑚,𝑗(𝑡) − (𝑗 − 1)

2 ⋅ 𝐹𝑚,𝑗−1(𝑡)

Δ𝑟
+ 𝑅𝑉𝑚,𝑗(𝑡) (3.33) 

Equation (3.34) describes the discretized radial component of the molar 

flux vector whose expression is given by equation (3.23) and applies to all interior 

points in the bead, except for the bead surface (2 ≤ 𝑗 < 16). 

𝐹𝑚,𝑗(𝑡) = −𝒟𝑚 ⋅
𝐶𝑚,𝑗+1(𝑡) − 𝐶𝑚,𝑗(𝑡)

Δ𝑟
 (3.34) 

The boundary condition for the surface flux defined by equation (3.25) 

remains valid, equation (3.35) explicitly replaces the surface concentration by the 

outermost available value. 

𝐹𝑚,16(𝑡) = 𝑘𝑏𝑒𝑎𝑑,𝑚 ⋅ (𝐶𝑚,16(𝑡) − 𝐶𝐶𝑚(𝑡)) (3.35) 
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3.2.1. Parameter estimation 

Most parameters of the mathematical model presented in this chapter 

were calibrated based on experimental data. Their values were estimated based 

on experimental measurements for well-plate cultures and are identical to those 

used in the mathematical model presented in Chapter 2. The only parameters 

that were estimated for the bioreactor model presented in this chapter are the 

diffusion coefficients involved in extracellular diffusive mass transport within the 

hydrogel bead in the radial direction. 

3.2.1.1. Diffusion coefficients for mass transport 

To enable the calculation of diffusive molar fluxes and the solution of 

equation (3.22), (3.23), or (3.34), the values of the diffusion coefficients for each 

extracellular metabolite, 𝒟𝑚, must be known first. These coefficients’ values are 

available from published literature for glucose and glutamine [122], but not for 

lactate and dexamethasone. The missing coefficient values were estimated using 

the Wilke-Chang correlation [123] shown in equation (3.36), where 𝜙𝑆 is the 

association factor for the solvent, 𝑀𝑆 is the molar mass of the solvent, 𝑇 is the 

absolute temperature, 𝜂𝑆 is the viscosity of the solvent, and 𝑉𝑚 is the molar 

volume of the metabolite 𝑚 at its normal boiling temperature. If values for the 

above parameters are not available from published literature, they may be 

estimated using specific methods. Values for the properties of the solvent 

(alginate-gelatin bead) were considered equal to those for water (given the similar 

transport behavior of the two materials). The values of the diffusion coefficients 

used by the mathematical model are listed in Table 3.1. 

𝒟𝑚 =
7.4 ⋅ 10–8 ⋅ √𝜙𝑆 ⋅ 𝑀𝑆 ⋅ 𝑇

𝜂𝑆 ⋅ 𝑉𝑚
0.6  (3.36) 

Table 3.1. Diffusion coefficient values used by the mathematical model 

Parameter Value [122] Parameter Value 

𝒟𝐺𝑙𝑢𝑐𝑜𝑠𝑒 6.7⋅10⁻⁶ cm²/s 𝒟𝐿𝑎𝑐𝑡𝑎𝑡𝑒 9.9⋅10⁻⁶ cm²/s 

𝒟𝐺𝑙𝑢𝑡𝑎𝑚𝑖𝑛𝑒  7.6⋅10⁻⁶ cm²/s 𝒟𝐷𝑒𝑥𝑎𝑚𝑒𝑡ℎ𝑎𝑠𝑜𝑛𝑒 4.0⋅10⁻⁷ cm²/s 
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3.3. Simulation results 
The mathematical model — consisting of equations (3.1)-(3.3) for 

intracellular metabolism, (3.4)-(3.5) for gene expression, (3.6)-(3.19) for cell 

proliferation and differentiation, (3.20)-(3.29) for bead and reactor scale mass 

transport — was solved for a time frame of 21 days (equal to the duration of the 

osteogenic differential experiment) using the ode15s differential and algebraic 

equation solver available in the MATLAB computing environment [121]. 

Simulation results include the time profiles of intracellular (Figure 3.1) and 

extracellular (Figure 3.2) metabolites, gene expression (Figure 3.3), cell counts 

(Figure 3.4), and radial profile of cell density at the end of the differentiation period 

(Figure 3.5). Results presented in Figure 3.1, Figure 3.3, and Figure 3.4 were 

plotted against model predictions and experimental measurements from 

well-plate cultures (using data presented in Chapter 2). A global sensitivity aiming 

to assess the significance of the diffusive mass transport coefficients was also 

performed; sensitivity indices yielded by the analysis are presented in Figure 3.6. 

3.3.1. Metabolism 

Intracellular metabolite levels start at concentrations specific to 

mesenchymal stem cells (MSC) and maintain a flat profile until the cells start to 

differentiate into pre-osteoblasts (PRE), between day 6 and day 7, as shown in 

Figure 3.1. Next, metabolite concentration increases simultaneously with the 

fraction of pre osteoblasts (shown in Figure 3.4a), reaching a maximum value 

between day 9 (e.g., for glutamine) and day 12 (e.g., for glucose). Finally, as cells 

differentiate further, metabolite levels decrease and settle at osteoblast-specific 

levels, around day 17. 

Compared to the well-plate culture scenario (presented in Chapter 2), in 

alginate-gelatin bead encapsulated cells (“bioreactor”), metabolites involved in 

glycolysis and anaerobic catabolism (glucose, pyruvate, and lactate; 

Figure 3.1a-c) attain peak values later, and the peaks are lower. This effect is 

produced by the composition of two factors: (1) the plots present concentration 

averages (over differentiation state and location within the alginate gelatin bead), 

and cells located closer to the center of the bead experience lower concentrations 

of glucose in their environment, resulting in lower intracellular levels and 
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diminished glycolytic activity; (2) the proportion of cells at distinct differentiation 

states varies with position in the alginate-gelatin bead, with cells that are located 

closer to the center of the bead entering each of the last two differentiation states 

(PRE and OBC) later than cells closer to the outer surface of the bead, thus 

distributing the peak over a larger time frame and flattening it; this, in turn, is 

caused by a corresponding delay in gene expression (Figure 3.3). 

Glutaminolysis (Figure 3.1h) activity is strongly affected by the same 

trend as glycolysis. In addition, the cells uptake a large portion of the available 

glutamine in the environment (presented in Figure 3.2), making it impossible to 

maintain high levels of intracellular glutamine between day 9 and day 16. 

With both glycolysis and glutaminolysis registering reduced activity 

compared with well-plate culture, the metabolites in the TCA cycle show 

corresponding concentration declines between day 9 and day 12 (citrate, 

iso-citrate, succinate, and fumarate; Figure 3.1d-g), particularly while 

pre-osteoblasts (PRE) remain the predominant differentiation state (Figure 3.4a). 

As more cells terminally differentiate into osteoblasts (OBC), metabolic activity 

decreases, in agreement with experimental measurements [44], and culture 

medium metabolite concentrations return to higher values (presented in 

Figure 3.2). 
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Figure 3.1. Average intracellular metabolite levels during osteogenic differentiation of 
MSCs; comparison between rotating wall bioreactor (thick solid black line), well plate 

culture (thin dashed blue line), and experimental data for well plates (blue diamonds for 
experimental values and vertical blue lines for standard deviation) 
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Figure 3.2. Culture medium metabolite levels during osteogenic differentiation of MSCs 

3.3.2. Gene expression 

Gene expression results are reported as average values (over cell 

differentiation state and location inside the alginate gelatin bead). Profiles of the 

average gene expression values (Figure 3.3) show an increase in Runx2 activity 

around day 5 denoting the differentiation of MSCs into pre-osteoblasts, followed 

by an increase in osteonectin expression around day 11, corresponding to the 

formation of osteoblast cells from pre-osteoblasts. 

For both genes considered in this study, their activation in alginate-gelatin 

bead encapsulated cells is slightly delayed (by about 1 day) compared to well 

plate cultures (Figure 3.3). The observed delay is correlated with a similar 

outcome for dexamethasone concentration as it diffuses from the culture medium 

inward through the hydrogel bead. 
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Figure 3.3. Average relative expression of genes during osteogenic differentiation of 
MSCs; comparison between rotating wall bioreactor (thick solid black line), well-plate 

culture (thin dashed blue line), and experimental data for well plates (blue diamonds for 
experimental values and vertical blue lines for standard deviation) 

3.3.3. Cell counts and density distribution 

Figure 3.4a shows the cell count evolution during the simulation. The 

number of mesenchymal stem cells (MSCs) increases until about day 7, which 

marks the beginning of differentiation into pre-osteoblasts (PRE); next, the 

number of pre-osteoblasts increases gradually until about day 11, when 

differentiation into osteoblasts (OBC) exceeds cellular division for 

pre-osteoblasts. Finally, the osteoblast count increases gradually as they become 

the predominant cellular differentiation state after day 18. The total cell count 

shows a moderate rate of growth for MSCs, an accelerated rate during the 

pre-osteoblast peak, and a low expansion rate for osteoblasts. 

Figure 3.4b compares the total cell count per bead for alginate-gelatin 

bead encapsulated cells with the total cell count per well plate (for static well plate 

cultured cells). The cell count is visibly lower for encapsulated cells, due to lower 

concentrations of intracellular metabolites toward the center of the 

alginate-gelatin bead, which correlates with lowered energy production rate and 

lower cellular division rate. It is important to note that the model presented in this 

chapter uses cell density, not cell count as part of the mathematical description. 

The total cell numbers plotted in Figure 3.4 (thick black line) are the total cell 

count per alginate-gelatin bead and were calculated as described by equation 
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(3.10). Even though Figure 3.4b suggests that well-plate cultures (dashed blue 

line labeled “reference”) produce more cells that bead-encapsulated ones, the 

entire culture volume should also be considered instead of just a single bead. 

When comparing the two bioprocesses, the rotating wall bioreactor exhibits a 

cellular density (expressed as the number of cells per culture volume unit) about 

four hundred times larger than the well plate culture. 

 
Figure 3.4. Averaged cell counts during osteogenic differentiation of MSCs; a) total cell 

count (thick black line) and partial counts for each differentiation state (thin colored 
lines); b) comparison between total cell counts for the rotating wall bioreactor (thick 

solid black line), well plate culture (thin dashed blue line), and experimental well plate 
data (blue diamonds for experimental values and vertical bars for standard deviation) 

The similar trends observed for the two processes (in Figure 3.1, 

Figure 3.3, and Figure 3.4) can be justified on the basis of similar extracellular 

conditions for the two processes: while the perfusion flowrate through the rotating 

wall bioreactor ensured that culture medium was continuously being replenished, 

culture medium exchange was performed manually for the well plate culture every 

2–3 days, to prevent the accumulation of toxic waste products such as lactate. 

A consequence of encapsulating cells in alginate gelatin beads (or other 

materials) is that cells at the center of the bead will generally experience more 

severe environmental conditions — i.e., lower nutrient concentrations and higher 

waste levels. Figure 3.5 shows the radial profile of the cellular density in the bead 
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at the end of the differentiation process (day 21); in this case, the cell density is 

about 2.5% lower in the center than at the outer surface (for 2.3 mm diameter 

beads). 

 
Figure 3.5. Calculated radial cell density distribution in the alginate gelatin bead at day 

21 

3.3.4. Sensitivity analysis 

Total sensitivity indices were computed for 13 factors and two main 

responses (total cell count per alginate gelatin bead, and osteoblast fraction) 

evaluated at days 7, 14, and 21 of the differentiation process. The factors include 

the 10 parameters that were deemed significant by the global sensitivity analysis 

shown in chapter 2.2.2, whose values were allowed to vary between 50% and 

150% of their nominal value, and the diffusion coefficients for glucose, lactate, 

and glutamine, whose values were allowed to vary between 10% and 150% — 

the larger relative deviation towards lower values was allowed considering that 

an overestimation of the diffusion coefficients is more dangerous for the cultured 

cells, whereas an underestimation would mean that conditions in the bioreactor 

are milder than considered by the model. A total of 14000 simulations were 

performed to complete the sensitivity analysis (see 0 for convergence plots). 
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Within the uncertainty of the thirteen parameters that were selected for 

the global sensitivity analysis, none have sensitivity index values above the 0.1 

significance threshold for the response of the total cell count at the end of the 

process (Figure 3.6a). 

 
Figure 3.6. Global sensitivity analysis results: sensitivity indices for (a) total cell count 
and (b) osteoblasts fraction — names of factors with total sensitivity indices above the 

0.1 threshold are indicated with bold red font 

Four of the total sensitivity indices for the response of osteoblast fraction 

exceed the significance threshold (RNA decay rate, DNA binding constant for the 

activation of the Runx2 gene, base expression of Runx2 in mesenchymal stem 
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cells, and differentiation constant controlling the specialization of PRE cells into 

OBC), indicating that the uncertainty in these parameters’ values propagate into 

the variance of the observed values for the osteoblast fraction response 

(Figure 3.6b). 

Note that all diffusivity parameters (𝒟𝐺𝑙𝑢𝑐𝑜𝑠𝑒, 𝒟𝐿𝑎𝑐𝑡𝑎𝑡𝑒, and 𝒟𝐺𝑙𝑢𝑡𝑎𝑚𝑖𝑛𝑒) 

have total index values below the threshold, indicating that the uncertainty in their 

values does not significantly impact the variance of the mathematical model’s 

prediction. 

3.3.5. Discussion 

Other mathematical models for culture dynamics of stem cells including 

cell death and differentiation phenomena have been published in the scientific 

literature; Chen et al. have described cell differentiation by assigning each 

(differentiation) state a separate compartment in the mathematical model [42]. 

Herein, each of the differentiation states are also allocated different 

compartments, but the model describes stem cell dynamics with greatly 

increased detail and accuracy at every step of the differentiation process. The 

use of population balance equations enables the quantification of cell population 

densities (or counts) as well as the distribution (heterogeneity) of those 

populations among the cell cycle phases and spatially within the alginate-gelatin 

beads. Cell differentiation is not only described by the mathematical model, but it 

is also precisely located within phase G (Gap 1) of the cell cycle [85,89]. The 

mathematical model of MSC osteogenic differentiation provides a detailed 

description of the underlying biological phenomena and advances the possibility 

of obtaining high-quality engineered bone tissue through culture optimization. 

Achieving such a feat solely by in-vitro experimentation entails relatively slow 

progress at high costs. On the other hand, the mathematical model is potentially 

useless without practical confirmation and at least some amount of 

experimentation is required for informing and supporting modeling decisions, 

refining parameter values, and validating the mathematical model before 

rendering it ready for clinical application. 

Population balance models (PBM) have previously been used in 

mathematical models for stem cell cultures. Wu et al. used a PBM to describe 
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cell aggregation in spinner flask cultures [55]. This work utilizes PBMs differently 

and employs them for a detailed description of cell cycle phase heterogeneity, 

enhanced by differentiation state and spatial heterogeneity; in this work 

metabolism and cell growth are linked directly, whereas Wu et al. focused on the 

transport of oxygen as the limiting factor for stem cell expansion. Bartolini et al. 

used a PBM for the proliferation of stem cells in suspension reactors [56], but 

were focused on bioreactor operation and dynamics, whereas this work 

emphasizes intracellular metabolism and gene expression, and differentiation 

and mass transport inside alginate-gelatin beads. The two PBMs also differ in the 

choice of the independent distribution variable: Bartolini et al. distributed the cell 

cycle over the mass of the cells, whereas this work distributes each cell cycle 

phase over a cell-cycle-phase-specific cyclin, or DNA. The PBM used in this work 

has similar features to that used for modeling cell-cycle-phase-specific chemical 

leukemia treatment [54], and for cell-cycle-phase-specific antibody production 

rates [124] but differs from both referenced works by including intracellular 

metabolism, gene expression, cell differentiation, and bead and reactor level 

mass transport. 

Global sensitivity analysis was performed on a subset of the parameters 

of the model; the newly introduced diffusivity parameters were analyzed together 

with the 10 most significant parameters that were identified in the well plate 

culture scenario (see Figure 3.6). The most significant parameters are still the 

ones related to gene expression: RNA decay rate, DNA binding interaction, and 

differentiation constants. While the newly added parameters were not deemed 

significant by the global sensitivity analysis, it is possible that this result is valid 

only for alginate-gelatin beads up to a certain size, above which diffusion 

transport limitations affect the outcome of the process. The radius of the beads 

themselves was not part of the sensitivity analysis, because the experimental 

technique produced beads with a narrow size distribution [114]; furthermore, even 

larger deviations (± 10%) from the nominal 2.3 mm bead diameter did not produce 

significant changes in the predictions of the model. By experimentation with 

running additional simulations, it was found that a bead diameter of about 4.5 mm 

leads to a large decrease in cell counts. The threshold is probably lower in 

practice, as the model in its current form does not properly account for potentially 
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increased death rates among the cells closer to the center of the bead caused by 

a combination of toxic lactate concentrations and hypoxia. This suggests the 

existence of an optimal bead radius for alginate-gelatin beads used in the 

osteogenic differentiation of MSCs, with a bead size that balances the potential 

benefit of using larger beads (enables the use of higher flowrates and 

recirculation of a fraction of the culture medium) and the drawbacks (higher cell 

mortality). 

3.4. Mathematical model validity assessment 
The mathematical model presented herein has a high degree of 

complexity and sophistication, which provides copious opportunity for conceptual 

mistakes to slip in. Although the model was examined carefully — both in the 

formulation of its equations and using global sensitivity analysis — several 

computer simulations were designed and performed to confirm the qualitative 

behavioral validity of the mathematical model with respect to several physical 

variables. In all case studies detailed below, the model output is biologically 

correct. 

The mathematical model presented in this chapter does not include a 

description of oxygen transport, nor its contribution to intracellular metabolism. 

Although an experimental analysis showed that cells were not affected by hypoxia 

under the investigated culture conditions and the results presented herein have 

been confirmed experimentally [115], some of the in-silico results presented 

below (such as high initial cell density or the use of larger alginate-gelatin beads) 

might not fully capture the severity of the environmental conditions that would be 

experienced by their biological counterpart (e.g., hypoxia). 

3.4.1. Model response to initial cell density variations 

Since the aim of the experimental procedure, which is represented by the 

mathematical model in this chapter, is to generate osteoblasts that can be used 

to treat bone defects in clinical settings, it is crucial to have sufficient suitable cells 

for an effective treatment. Since cell count is directly proportional to cell density 

(expressed as count of cells per unit volume, in units of cells per liter), this variable 

is of great practical importance. 
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Cell density at the end of the osteogenic differentiation process (day 21) 

is one of the outputs of the model, but the result of the calculation depends on 

the initial value of this variable, corresponding to the cell density in the 

alginate-gelatin bead when the beads are formed. Since this variable can be 

adjusted experimentally, it is meaningful to assess the effects of adjusting it. 

The initial cell density has been labeled 𝜌0 in this chapter. Apart from the 

base value of 9 billion cells per liter, the simulation was repeated for two other 

values, at about half and double the base cell density (4, and 20 billion cells per 

liter, respectively). 

Regarding the potential effects of changing the cell density, when the 

number of cells increases within a finite volume, they should uptake nutrients at 

a higher rate, leading to a lower nutrient concentration level in their environment, 

i.e., the alginate-gelatin bead. In turn, this would hinder the ability of the cells to 

absorb nutrients from the environment, causing a decrease in intracellular 

metabolite concentrations levels (compared with a baseline level). In contrast, 

when the number of cells is lower, they should uptake fewer nutrients, deplete 

their resources slower, and would exhibit higher intracellular metabolite 

concentration levels. Figure 3.7 confirms these predictions for all modelled 

intracellular metabolites. 

The effect of changing the initial cell density on the culture medium 

compartment (the bulk liquid in the reactor, Figure 3.8) is analogous to the 

intracellular picture: larger densities are correlated with higher total uptake rates 

and result in lower metabolite levels overall for glucose and glutamine. Culture 

medium lactate responds in the opposite manner, as higher intracellular 

metabolism (achievable for lower cell density values) leads to increased lactate 

production, which consequently increases extracellular lactate concentration. 
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Figure 3.7. The response of intracellular metabolism to initial cell density (𝜌0) variations 
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Figure 3.8. The response of extracellular (bulk liquid) metabolite levels to initial cell 

density variations 

The effects of initial cell density on gene expression are negligible 

(Figure 3.9), since metabolism and gene expression are disjoint behaviors, with 

the latter being strongly connected only with the differentiation agent 

(dexamethasone) that initiates the osteogenic differentiation sequence. 

Except for situations where higher cell densities cause cell death by 

locally depleting the nutrients in the environment, increasing the (initial) cell 

density should always lead to higher cell counts. The predictions of the 

mathematical model agree with this result (Figure 3.10). 
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Figure 3.9. The response of relative gene expression to initial cell density (𝜌0) 

variations 

 
Figure 3.10. The response of total cell population per alginate-gelatin bead to initial cell 

density (𝜌0) variations 

Figure 3.11 conveys the effect of changing the initial cell density on the 

final (day 21) cell density. The resulting radial cell density profiles agree with 
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expectations: lower initial cell density leads to lower final density. Furthermore, at 

higher cell density, the total nutrient uptake rate grows, causing cells that are 

closer to the center of the alginate-gelatin bead to experience more severe 

conditions compared to those closer to the outer surface of the bead (as the cells 

remove nutrients as they traverse the bead radius). In conclusion, higher cell 

densities accentuate the percentual difference between the surface and the 

center of the bead. 

 
Figure 3.11. The response of the radial cell density distribution at day 21 to initial cell 

density (𝜌0) variations 

These in-silico results suggest that an initial cell density of twenty billion 

cells per liter would improve the final cell count (Figure 3.10) without affecting the 

quality of the produced cells, as evaluated by their gene expression (Figure 3.9). 

However, while the outcome is still qualitatively correct, it might not be 

quantitatively accurate: (a) the death rate of cells could be higher than the 

estimated value at high waste concentrations; (b) although there is no direct 

connection between the selected metabolic pathways and the two genes, it is 

possible that an indirect link could become more active under those conditions. 

Furthermore, while the mathematical model does prohibit cell densities that are 

mathematically infeasible (i.e., when the total volume of the cells exceeds the 
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available local space inside the alginate-gelatin bead), it does not quantify the 

effect of cell density on the transport of extracellular metabolites (i.e., the values 

of the diffusion coefficients for metabolites are kept constant, irrespective of the 

cell density). 

3.4.2. Model response to nutrient concentration 

variations 

Intracellular metabolism is an essential component of the mathematical 

model (because it controls the proliferation rate of the cells) as well as one of the 

elements of novelty contributed by the work presented in this thesis. Although 

intracellular metabolite concentration levels are controlled by molar balance 

equations (and model parameters), their dynamics are also dependent on 

extracellular conditions. 

In addition to the base case scenario (where the culture medium was 

prepared using a solution with 25 mmol/L glucose and 4 mmol/L glutamine), 

simulations for two other scenarios were investigated: with lower concentrations 

of nutrients (15 mmol/L glucose and 2 mmol/L glutamine) and with higher nutrient 

concentrations (30 mmol/L glucose and 6 mmol/L glutamine). The effects of 

nutrient concentration on intracellular and extracellular metabolism, gene 

expression, cell counts, and radial cell density distribution within the 

alginate-gelatin bead are presented in the figures below; the numbers (expressed 

in mmol/L) in the legend associate each result (line plot) with its corresponding 

scenario (Glc stands for glucose, and Glu stands for glutamine). 

When changing both the glucose and glutamine concentrations in the 

culture medium, the reaction of the intracellular metabolism of the cells is 

predictable and reasonable: higher extracellular levels cause intracellular levels 

to rise as a result (Figure 3.12). 
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Figure 3.12. Response of intracellular metabolism to variations in nutrient concentration 

in the culture medium 

Extracellular metabolite concentration levels follow similar trends to the 

base case scenario but are affected by their initial values; the general trend is 

preserved, and the entire temporal profile rises and lowers depending on the 

initial concentration (Figure 3.13). The production rate of lactate indirectly 
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depends on the concentrations of the two nutrients: when lower concentrations 

are used, intracellular reaction rates and metabolic levels are reduced, leading to 

overall decreased lactate levels in the culture medium. 

 
Figure 3.13. The response of extracellular (bulk liquid) metabolite levels to variations in 

nutrient concentration in the culture medium 

Gene expression is largely unaffected by changes in extracellular 

metabolite concentration (Figure 3.14). The slight delay in osteonectin 

expression is correlated with longer cell cycle duration, which results in a 

marginally higher percentage of mesenchymal stem cells in the culture, lowering 

the average values (since they only express osteonectin at a basal level). 

Figure 3.15 shows the temporal evolution of the total cell count (per 

alginate-gelatin bead). As expected, an environment rich in nutrients leads to a 

higher cell count at the end of the process. 
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Figure 3.14. The response of relative gene expression to variations in nutrient 

concentration in the culture medium 

 
Figure 3.15. The response of total cell population per alginate-gelatin bead to variations 

in nutrient concentration in the culture medium 

The total cell count (shown in Figure 3.15) is directly proportional to the 

total cell density (shown in Figure 3.16). By analogy with the total cell count 
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outcome, decreasing the level of nutrients in the culture medium lowers cell 

density. Nevertheless, when cell density is higher inside the alginate-gelatin 

bead, it is also less uniform (i.e., the difference in cell density between the center 

of the bead and the outer surface is highest at high cell density, which is favored 

by increased nutrient levels in the culture medium). 

 
Figure 3.16. The response of the radial cell density distribution at day 21 to variations 

in nutrient concentration in the culture medium 

The predominant effect of increasing the nutrient concentration being fed 

to the rotating wall bioreactor is higher cell proliferation, with minor differences in 

phenotype (intracellular metabolism and gene expression are largely unaffected 

at day 21 of the differentiation process). These results suggest that using a higher 

nutrient concentration is preferrable. However, the availability of a concentrated 

culture medium mixture might be limited and, crucially, the purpose of cellular 

differentiation is to transform the mesenchymal stem cells into osteoblasts that 

can be used in clinical applications. If a higher cell count is desirable, it is likely 

to be more useful to obtain the required cell count in the previous experimental 

stage (i.e., mesenchymal stem cell expansion). 
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3.4.3. Model response to increasing lactate 

concentrations in the culture medium 

 
Figure 3.17. Response of intracellular metabolism to variations in lactate concentration 

in the culture medium 

The regular culture medium fed to the bioreactor does not contain lactate, 

because it is one of the waste products of the process. Three additional scenarios 
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have been investigated, with progressively larger lactate concentrations in 

increments of 2 mmol/L. When lactate is more concentrated in the extracellular 

compartment, its evacuation from the cell is hindered and the concentration of 

intracellular lactate rises (Figure 3.17c). All other intracellular metabolites are not 

influenced by extracellular lactate levels. Although the expected biological 

response includes changes in the levels of other metabolites, the mathematical 

model cannot accurately replicate this result using the small subset of metabolites 

that it incorporates, and the mathematically reasonable prediction is likely not 

biologically accurate for the other 7 metabolites (Figure 3.17, subplots a, b, d-h). 

Extracellular lactate concentration levels also rise the more lactate is fed 

into the reactor as part of the culture medium, leaving glucose and glutamine 

levels unaffected (Figure 3.18). 

 
Figure 3.18. Response of extracellular (bulk liquid) metabolite levels to variations in 

lactate concentration in the culture medium 

Gene expression is not affected by the increase in extracellular lactate 

(Figure 3.19). 
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Figure 3.19. Response of relative gene expression to variations in lactate concentration 

in the culture medium 

The total cell count is slightly reduced when using culture medium 

contaminated with lactate (Figure 3.20). 

 
Figure 3.20. Response of total cell population per alginate-gelatin bead to variations in 

lactate concentration in the culture medium 
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The cell density in the alginate-gelatin bead is also reduced 

(Figure 3.21a), but the relative radial cell density profile is largely unchanged 

(Figure 3.21b). 

 
Figure 3.21. Response of the radial cell density distribution at day 21 to variations in 

lactate concentration in the culture medium 

The analysis suggests that extracellular lactate has little effect on the 

outcome of the osteogenic differentiation process of mesenchymal stem cells. 

The validity of the result depends on the accuracy of the death-related 

parameters of the model. Although the parameters were estimated based on 

experimental data, those data do not carry enough information about cell death, 

given that the experimental objective was to culture — and not kill — the cells. 

While qualitatively correct, the prediction of the mathematical model about the 

impact of extracellular lactate on the outcome of the osteogenic differentiation, 

should seek experimental confirmation before attempting to replicate the results 

in clinically relevant settings. 
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3.4.4. Model response to dexamethasone concentration 

variations 

Dexamethasone fulfills a key role in the osteogenic differentiation 

process of mesenchymal stem cells: it is the differentiation agent that triggers the 

chain of genetic and metabolic changes transforming MSCs into osteoblasts. 

Apart from the base case simulation (where the concentration of dexamethasone 

in the culture medium is 100 nmol/L), four additional scenarios were simulated 

where the concentration of dexamethasone in the culture medium inlet were 80, 

90, 110, and 120 nmol/L. 

Intracellular metabolism (Figure 3.22) remains at basal MSC levels when 

the concentration of dexamethasone is reduced to 80 nmol/L. When 

dexamethasone concentration is increased to 90 nmol/L, intracellular metabolism 

does shift towards the pre-osteoblast (PRE) phenotype, but the shift is 

considerably delayed and flattened over a longer period, with the peak values for 

each intracellular metabolite occurring about 7–10 days later than in the base 

case. When using higher concentrations of dexamethasone in the culture 

medium, the metabolic changes occur sooner and over a shorter duration, with 

the effect being more pronounced for the highest concentration (at 120 nmol/L). 

The effect on the extracellular metabolite concentration levels 

(Figure 3.23) is complementary to the intracellular picture: the trends suggest the 

existence of a single cell type when the concentration of dexamethasone is 80 

nmol/L, and shows the typical extreme (largest for lactate, and smallest for 

glucose and glutamine) value that corresponds to peak intracellular metabolic 

activity and cross-membrane transport. The profile is delayed and stretched over 

a longer duration when the concentration of dexamethasone is 90 nmol/L. The 

larger 110 and 120 nmol/L concentrations have the opposite effect: the largest 

changes occur sooner and over a shorter timespan than in the base case. The 

timepoints corresponding to the largest changes are synchronized between the 

intracellular (Figure 3.22) and extracellular (Figure 3.23) compartments. 
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Figure 3.22. Response of intracellular metabolism to variations in dexamethasone 

concentration in the culture medium 
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Figure 3.23. Response of extracellular (bulk liquid) metabolite levels to variations in 

dexamethasone concentration in the culture medium 

Figure 3.24 shows the response of gene expression in these scenarios, 

which is drastically reduced for the dexamethasone deficient scenarios, with no 

significant increase in osteonectin expression, an important marker of 

osteogenesis (which is incomplete in this case). On the other hand, when using 

culture medium richer in dexamethasone differentiation agent, the cells 

overexpress (compared to the base case) the two modelled genes, whose 

relative expression is 5–10 times larger than in the base case scenario. 
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Figure 3.24. Response of relative gene expression to variations in dexamethasone 

concentration in the culture medium 

 
Figure 3.25. Response of total cell population per alginate-gelatin bead to variations in 

dexamethasone concentration in the culture medium 

Cell count plots (Figure 3.25) show that in the presence of reduced 

dexamethasone concentration the cells continue to expand steadily. In contrast, 
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when using larger concentrations of dexamethasone, the cell count stagnates 

and settles at lower values, indicating that cells have terminally differentiated into 

osteoblasts (which have generally larger cell cycle duration and lower growth rate 

compared to mesenchymal stem cells and pre-osteoblasts). 

Cell densities inside the alginate-gelatin bead at day 21 (Figure 3.26a) 

are correlated with the total cell count (i.e., higher cell count corresponds to higher 

cell density). Figure 3.26b shows the relative cell density at day 21 in the 

alginate-gelatin bead. In the base case, cell density is lower near the center of 

the bead, because the cells uptake nutrients as they are transported by molecular 

diffusion, resulting in lower extracellular metabolite concentrations closer to the 

center, reduced intracellular metabolic activity and lower growth rates and cell 

density. This effect is qualitatively the same when the concentration of 

dexamethasone is 80 nmol/L but reduced in intensity since mesenchymal stem 

cells uptake less nutrients from their environment compared to pre-osteoblasts. 

The same effect (lower cell density near the center of the bead) is observed when 

the concentration of dexamethasone is increased to 90 nmol/L; its intensity is 

even higher than in the base case, because both the count and percentage of 

pre-osteoblasts in the bead are higher than in the base case, and pre-osteoblasts 

uptake more nutrients than mesenchymal stem cells. When using larger 

concentrations of dexamethasone than in the base case, cell density is highest 

in the center of the alginate-gelatin bead, because the transport of 

dexamethasone through the bead requires a finite amount of time and the cells 

closer to the center of the bead experience an environment with lower 

dexamethasone concentrations compared to the cells closer to the outer surface. 

Therefore, cells neared to the center of the bead will express genes at a slower 

pace and will differentiate later than those that are closer to the outer surface, 

spending more time as mesenchymal stem cells or pre-osteoblasts, during which 

they proliferate more than the cells at the surface, thus increasing their density 

faster, despite facing lower nutrient concentrations and higher waste (lactate) 

levels than cells at the outer bead surface. 
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Figure 3.26. Response of the radial cell density distribution at day 21 to variations in 

dexamethasone concentration in the culture medium 

The mathematical model correctly predicts that higher dexamethasone 

concentrations aid in the process of osteogenic differentiation of mesenchymal 

stem cells. Although qualitatively meaningful, these results may not quantitatively 

represent the biological outcome, as some of the parameters of the model may 

be inaccurate due to insufficient information in the experimental data used to 

estimate them. Furthermore, cells may experience gene inactivation at higher 

concentrations of dexamethasone, which the mathematical model does not 

account for in its current form. 

3.4.5. Model response to alginate-gelatin bead diameter 

variations 

The size of the alginate-gelatin bead can be controlled by changing the 

proportion of the ingredients or the size and shape of the nozzle that aids in the 

formation of the droplets (before they are immersed in solution where they 

become viscous gelatinous beads). This chapter presents the impact of changing 

the radius of the alginate-gelatin bead by 30% in both directions. The legends of 

the figures below show the diameter of the beads, labeled “d”. 
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Figure 3.27. Response of intracellular metabolism to variations in alginate-gelatin bead 

diameter 

The main disadvantage of having a larger bead is caused by mass 

transport limitations, which lessen the amount of nutrients that are available to 

cells deeper in the bead (closer to the center). The lack of nutrients then lowers 
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cross-membrane transport rates and intracellular metabolite concentration levels 

(Figure 3.27). 

Furthermore, larger beads have proportionally higher cell counts (at the 

same cell density), making the nutrient uptake and waste generation more 

intense, which exacerbates the effect not only on the intracellular compartment, 

but on the extracellular one as well (Figure 3.28). 

 
Figure 3.28. Response of extracellular (bulk liquid) metabolite levels to variations in 

alginate-gelatin bead diameter 

Gene expression is visibly affected by the alginate-bead size 

(Figure 3.29): dexamethasone has easier access to the cells near the center of 

smaller beads and can trigger the gene switches sooner than in the base case. 

Larger beads impede the efficient transport of dexamethasone, whose lowered 

levels require longer times to activate the expression of the two osteogenic 

genes. 

Although the initial cell density was identical in the three scenarios, larger 

beads have a higher cell count as they can fit more cells in their larger volume, 

even at the same cell density. Cell counts are, predictably, higher for larger beads 

(Figure 3.30). 
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Figure 3.29. Response of relative gene expression to variations in alginate-gelatin bead 

diameter 

 
Figure 3.30. Response of total cell population per alginate-gelatin bead to variations in 

alginate-gelatin bead diameter 

The radial cell density profiles at day 21 show higher cell densities in 

smaller alginate-gelatin beads (Figure 3.31a), corresponding to milder mass 
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transport limitations. Despite the higher cell density, the cell count per bead is still 

larger for bigger beads (as shown in Figure 3.30). The efficiency of the mass 

transport of nutrients radially through the alginate-gelatin bead is confirmed by 

the relative radial cell density profile (Figure 3.31b): the values of the cell density 

at the center of the bead and at the outer surface are closer when the beads have 

smaller radii. 

 
Figure 3.31. Response of the radial cell density distribution at day 21 to variations in 

alginate-gelatin bead diameter 

The results presented in this chapter indicate that the optimal 

alginate-gelatin bead size is likely determined by a tradeoff between the 

convenience of using larger beads and the nutrient mass transport efficiency 

observed when using smaller beads. Alginate-gelatin beads with a radius of 1.5 

mm (diameter of 3 mm) do not exhibit strong mass transport limitations.
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Chapter 4. Conclusions and 

Directions for future work 
This chapter summarizes the key points of the current thesis, emphasizes 

the original contributions within, and lists recommendations for future research 

efforts. 

4.1. Conclusions 
This thesis demonstrates a population balance model which describes 

mesenchymal stem cell (MSC) osteogenic differentiation, linking metabolism, 

gene expression, and cell cycle dynamics. The model introduced in Chapter 2 

captures the heterogeneity of the cell cycle, and its predictions agree with 

experimental measurements. An analysis of the effects of altering the growth 

rates of mesenchymal stem cells and pre-osteoblasts reveals a potential inherent 

trade-off between proliferation and differentiation, even when the two behaviors 

are not competing for the energetic resources of the cell. Global parameter 

sensitivity analysis reveals that the most significant parameters are related to 

differentiation (controlled by gene expression) and proliferation (controlled by the 

duration and traversal rates of the cell cycle phases). 

Chapter 3 presents a multiscale approach for the process of osteogenic 

differentiation of mesenchymal stem cells in a rotating wall bioreactor, built 

around population balance equations and includes a concise and carefully 

selected set of intracellular metabolites, as well as gene expression and cell cycle 

dynamics. The multiscale mathematical model captures cell cycle, 

differentiation-state and spatial heterogeneity, and interconnects processes at 

different biological and physical scales: (1) cell cycle phase and population level, 

(2) bead level, and (3) bioreactor level. The mathematical model was used to 

simulate the rotating wall bioreactor for 21 days of differentiation. Model 

predictions agreed with experimental measurements for intracellular metabolism 

as well as relative gene expression. Global sensitivity analysis revealed that mass 

transport properties of the alginate-gelatin bead are less significant for the 

outcome of the simulation than biological parameters of the cultured cells. Future 

parameter estimation efforts should focus on more accurately determining the 
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latter. The impact of alginate-gelatin bead size on the outcome of the simulation 

is negligible for beads smaller than 3–4 mm in diameter. 

The mathematical models proposed in this work provide a detailed view 

of MSC osteogenic differentiation built on deterministic population balances that 

can serve as a starting point for model-based bioprocess optimization and 

support the development of bone grafts for medical applications. Although the 

formulated mathematical model and the implemented companion computational 

model were adapted for mesenchymal stem cells and their differentiation into the 

bone cell lineage, the underlying framework is more general and may be 

successfully applied to other research applications involving the differentiation of 

stem cells (e.g., nerve or heart muscle cells) with minimal changes to the 

structure of the mathematical model. 

4.2. Original contributions 
The mathematical representation for the osteogenic differentiation of 

mesenchymal stem cells uses a refined population balance equation at the core 

of the model. The following improvements are original contributions of the work 

showcased in this thesis: 

1. The continuous population balance equation for each cell cycle phase 

contains a duration variable that can be set to the experimentally 

determined value and the rest of the computation behaves accordingly. 

2. Cellular differentiation has been localized precisely within the lumped 

Gap 0/Gap 1 cell cycle phase, instead of at the end of the cell division 

cycle, as done previously in the scientific literature. 

3. All cell cycle phases are regarded as growth stages that are conceptually 

very similar, differing only in terms of their relative position within the 

division cycle and specific behaviors for transition or differentiation. Each 

phase uses an appropriate modification of the primary population balance 

equation to accounts for phase specific behaviors (i.e., the DNA synthesis 

phase does not utilize a transition function, while the lumped Gap 0/Gap 1 

cell cycle phase incorporates information about cellular differentiation 

rates in addition to transition). 
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4. The mathematical model includes a representative subset of intracellular 

metabolites that showed significant changes during the process of 

osteogenic differentiation of mesenchymal stem cells, selected from the 

glycolysis and oxidative phosphorylation metabolic pathways (which were 

shown to play a significant role in differentiation to the bone cell lineage) 

5. Cross membrane transport of metabolites is rigorously modelled using a 

product-inhibited transport rate equation 

6. The model improves the mathematical connection between the 

population-level growth rate of the cells and metabolism by connecting the 

growth rate to the intracellular context of the cell instead of cell culture 

metabolite levels (improving on the previously used method) 

7. The mathematical model includes two genes that are characteristic of early 

and late osteogenic differentiation: the runt related transcription factor 2 

(Runx2) and osteonectin. 

4.3. Recommendations for future directions 
While researching the subject of this thesis, several weaknesses that 

require further effort or inquiry have been uncovered. 

Simulation speed 

Although the mathematical model presented in Chapter 3 of this thesis is 

flexible and accurate, the current computer implementation renders the code too 

slow for model-based optimization, unless a powerful computational cluster is 

available and used for calculations. 

Future efforts may improve computational efficiency by coding the 

mathematical model using a lower-level programming language, such as C++ or 

Fortran. Alternatively, a modeling language (such as gPROMS) may be used to 

similar effect — this approach was considered for the mathematical model in this 

thesis as well, but its implementation has been unsuccessful up to this point. 

Another option that may be feasible under some scenarios would be to 

reduce the complexity of the model. Despite being a reasonable research focus, 
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completing this task successfully is challenging and might be impossible to 

achieve without reducing the model’s flexibility, accuracy, or both. 

Integration of computational fluid dynamics in the bioreactor model 

The most complex of the mathematical models introduced in this thesis 

integrates the phenomena that occur at the cell, bead, and reactor scales within 

a biological reactor. The most comprehensive approach for reactor modeling 

includes computational fluid dynamics (CFD) to simulate fluid flows during 

dynamic bioreactor operation. Many such (CFD) modeling and simulation studies 

have been published in scientific literature, including for models of bioreactors. 

However, no studies that integrate multiple geometrical scales while using CFD 

seem to exist, and this is likely because of the complexity of such models and the 

long duration of the individual simulations. Researching the reactor scale 

integrated with the cellular and bead-scale phenomena is a logical continuation 

of the current thesis. 

Investigation of other differentiation protocols and cell sources 

The mathematical model presented in this thesis is accurate and offers 

significant flexibility and modularity. However, the set of 3 differentiation states 

that were included in the description of osteogenesis is based on the phenotypic 

changes (intracellular metabolism) observed in mesenchymal stem cells treated 

with dexamethasone as the osteogenic differentiation agent. 

Although mesenchymal stem cells (MSCs) are a suitable and reliable 

starting point for osteogenic differentiation processes, multiple differentiation 

protocols exist, involving MSCs as well as other stem cell types (such as 

pluripotent stem cells). To make the model more general, other cell sources and 

cell types should be researched, and the modeling approach should attempt to 

identify patterns and common ground between the various experimental 

methods.
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Appendix A. Estimation results for 

the important parameters of the 

well plate model and their 

confidence intervals 
Table A.1. Estimated values of the important parameters that were identified using 

global sensitivity analysis and their confidence intervals 

Parameter 

name Nominal value 

Confidence intervals 

90% 95% 99% 

𝑘𝑑𝑒𝑐𝑎𝑦 1.85 0.827394 0.994523 1.33507 

𝑘𝐷𝑁𝐴,𝑅𝑢𝑛𝑥2 117.0355 8.39000 10.0847 13.5380 

𝑘𝐷𝑁𝐴,𝑜𝑠𝑡𝑒𝑜𝑛𝑒𝑐𝑡𝑖𝑛 0.3953 0.0694921 0.0835291 0.112132 

𝜔𝑅𝑢𝑛𝑥2 0.2775 0.173551 0.208608 0.280041 

𝑘𝑑𝑖𝑓𝑓
(𝑀𝑆𝐶)

 0.19 0.0427088 0.0513357 0.0689145 

𝑘𝑑𝑖𝑓𝑓
(𝑃𝑅𝐸)

 35 4.50081 5.40996 7.26248 

𝑘𝐸,1
(𝑀𝑆𝐶)

 5.25⋅10–18 4.1682⋅10–19 5.0101⋅10–19 6.7257⋅10–19 

𝐸𝐴𝑇𝑃
(𝑀𝑆𝐶)

 400 65.1075 78.2588 105.057 

𝐸𝐴𝑇𝑃
(𝑃𝑅𝐸)

 80 19.7698 23.7633 31.9004 

𝑘𝑐𝑎𝑡,2 22.66 2.71351 3.26163 4.37850 
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Appendix B. Convergence of 

sensitivity analysis for well-plate 

parameters 

 
Figure B.1. Convergence plot of global sensitivity analysis for well-plate parameters, 

when the analyzed response is the total cell count 

 
Figure B.2. Convergence plot of global sensitivity analysis for well-plate parameters, 

when the analyzed response is the osteoblast-only cell count 
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Appendix C. Statistical significance 

of experimental measurements for 

gene expression during 

osteogenesis in well plates 
This appendix presents experimental measurements of gene expression 

for well-plate cultures, together with statistical significance markers. 

 
Figure C.1. Experimental measurements for Runx2 expression during osteogenesis of 
mesenchymal stem cells in well-plate cultures, with statistical significance markers; the 

capital letter D on the horizontal axis denotes the day of the measurement 

 
Figure C.2. Experimental measurements for osteonectin expression during 

osteogenesis of mesenchymal stem cells in well-plate cultures, with statistical 
significance markers; the capital letter D on the horizontal axis denotes the day of the 

measurement 
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Appendix D. Convergence of 

sensitivity analysis for bioreactor 

parameters 
This appendix includes plots of the total sensitivity indices of the 

parameters included in the global sensitivity analysis for the bioreactor model 

presented in Chapter 3. Figure D. shows the complete history of sensitivity index 

values, while Figure D.2 only shows index values calculated using between 

10,000 and 14,000 simulations. 

 
Figure D.1. Convergence plot of global sensitivity analysis for bioreactor parameters 
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For the figures included in this appendix the values on the horizontal axis 

indicate the number of simulations that were used in the calculation of (sensitivity 

index) values plotted on the vertical axis. 

 
Figure D.2. Convergence plot for global sensitivity analysis showing only the last 4,000 

iterations (out of 14,000 in total) 

 


