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“Since I grew tired of the chase and search, I learned to find;
and since the wind blows in my face, I sail with every wind.
You must be ready to burn yourself in your own flame.

How could you rise anew if you have not first become ashes?”

- Friedrich Wilhelm Nietzsche
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Doctor of Philosophy

Optimization-based Techniques for Production Scheduling of

Continuous and Batch Processes

By Apostolos P. Elekidis

During the last few years, the significant advances of cutting-edge technologies led to a
fourth industrial revolution, referred to as Industry 4.0. At the dawn of the new era of
industrialization, modern production environments attempt to integrate various
decisional and physical aspects of production processes into automated and
decentralized systems. Two of the main decision levels in these systems, are production
planning and scheduling, which constitute a major component for the efficient
operation of the process industries. Especially in the current competitive globalized
market, production planning and scheduling are of vital importance to most industries,
since profit margins are miniscule. Therefore, efficient usage of resources has a critical
role in the viability and sustainability of all industries. Additionally, efficiency targets
are increasingly being adapted with sustainable production goals towards a green and
circular economy. In addition to cost savings, further objectives must be considered,
such as the reduction of greenhouse gas emissions, the increased usage of renewable

energy sources and the reduction of waste.

These objectives can be achieved by exploiting recent advances of computer-aided
optimization tools and methodologies. During the last 30 years plethora of research
contributions have been published by the scientific community in the field of production

scheduling optimization. However, the practical implementation of optimization-based
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scheduling frameworks in real-life industrial applications is limited. In most industries,
the optimization of production scheduling constitutes an extremely challenging and
time-consuming task, since the majority of decision-makers prefer to generate
scheduling solutions manually, or use simulation-based software, resulting to

suboptimal solutions.

This thesis proposes systematic mathematical frameworks for the optimization of a
wide variety of complex production planning and scheduling problems. The
optimization-based solutions are based on mixed integer linear programming (MILP)
frameworks. However, a main drawback of MILP models is their inability to handle
efficiently large problem instances, since the model size increases exponentially with
the problem size. To face this challenge, novel MILP-based solution algorithms have

been also investigated for the solution of real-life industrial problems.

More specifically, the first chapter considers the scheduling problem of a real-life large-
scale industrial facility of packaged consumer goods. The problem under consideration
is mainly focused on the packing stage which constitutes the major production
bottleneck. Two precedence-based MILP mathematical models are proposed to describe
explicitly the continuous process of the plant. The models rely on allocation, timing and
sequencing constraints. Additional constraints, referring to the production/formulation
stage of the plant, are also imposed in order to ensure the generation of feasible
production schedules. Furthermore, two MILP-based decomposition algorithms are
proposed for the efficient solution of large-scale problem instances. The applicability of
the proposed approaches is illustrated by solving several real-life industrial problem
instances of a multinational consumer goods industry under consideration. The results
lead to nearly optimal scheduling in reasonable solution times, comparing favorably

with manually derived schedules by the production engineers.

The second chapter addresses the scheduling problem of continuous make-and-pack
industries, including flexible intermediate storage vessels, aiming to provide better
synchronisation of the production stages. A novel continuous-time, precedence-based,
MILP model is developed for the problem under consideration. Extending previously
proposed precedence-based MILP models, multiple campaigns of the same recipe can be
stored simultaneously in a storage tank. Explicit resource constraints related to the

generation and recycling of byproduct are introduced, to achieve a better utilization of

xii



the available resources. Several case studies, inspired by a large-scale consumer goods
industry have been solved, to illustrate the applicability of the proposed frameworks.
Although global optimal solutions cannot be guaranteed, good quality schedules are
obtained, while the utilisation of intermediate buffers leads to a better synchronisation

of the production stages and increased productivity.

The final chapter of the thesis presents an integrated planning and scheduling
framework for the optimal contract selection problem of Contract Manufacturing
Organizations (CMOs) under uncertainty in pharmaceutical industry. During the last 20
years a growing number of pharmaceutical companies outsource part of their
operations to reduce operational cost and mitigate their risk exposure. Contract
Manufacturing Organizations (CMOs) utilize their facilities to manufacture products for
multinational pharmaceutical companies on a contract basis. Considering a multistage,
multiproduct, batch facility of a secondary pharmaceutical industry, an aggregated MILP
planning model, including material balances and allocation constraints is firstly
proposed. Using a rolling horizon approach, the production targets are then provided to
a precedence-based MILP scheduling model to define batch-sizing and sequencing
decisions in detail. To model demand uncertainty, a scenario-based approach is
proposed, considering the Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)
measures. Since large number of scenarios introduces significant challenges to
computations, a scenario reduction framework is integrated to reduce the total solution
time, when considering large-scale problem instances. The proposed methodology
increases the profitability of CMOs, by selecting the optimal contract combinations,
depending on their risk tolerance, while considering the availability and optimal

utilization of underlying production resources.
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Mepiinym

To oUyxpovo Brounxaviko mepdAiov yapaktnpiletat amo vPmAn aoctdbela, Adyw Twv
oAoéva Kol TaxUTEPA HETABAAAOUEVWV OLKOVOULK®WV KOl TOALTIKWV OLVONKWV O€
Taykoopula kAlpaka. ‘Etol, mapatnpeltal pla oxvpn] KALAKWON TOU OVTAYWVIGUOU
UETAED TWV ETIXELPNOEWY, Ol OTIOIEG ETMKEVTPWVOVTAL OAOEVA KL TIEPLOGOTEPO OTN

Stapxn Bedtiwon Twv Stadikaolwv ANYPnG AmoEACEWV.

H oAoéva av€avopevn {nmmon, oe cuvdvacpo e Tov VPMAG aplBpd TEAIKWY TIPOTOVTWY,
KaBLoTOUV TV KAAVYT) TTOAAQTIAWY TAPAYYEALWV HiX GNUAVTIKY) TIPOKATOT. ZUVETWG,
Yl TNV ETMITUXN IKAVOTIONOT TWV AVAYK®OV TWV TEAATWV, Elval LSLATEPA ONUAVTIKNA N
QTOTEAEGUATIKY) XPNON TOUL €EOTMALOMOV Kal 1 amodoTiky aflomoinon OAwv Twv
Slabéoluwy TOPpWV NG TMAPAYWYIKNG HOVASAS, UE ATWTEPO OTOXO TN UEIWON TOU
KOOTOUG Tapaywyns. Tnv iSia otiyun, ot lopnyavies o@eilovv va cuppop@WVOVTAL LE
TIG 0AOEVA KAL TILO QUOTNPEG TIEPLBAAAOVTIKEG VOUOOETIKEG PLBUICELS KAl va EVTEIVOUV
TIG TIPOOTIAOELEG TOUG YIA PEIWOT) TOV EVEPYELAKOV ATTOTUTIMUATOS KAL TWV EKTIOUTIWV
pUTIWV. Me Baomn Ta MApPATAVW, TIAPATNPELTAL Pid oTASIAKA EVTEWVOUEV TIPOOTIABELX
auTopatoTmoinong Twv Stadikactwv AMPNG amo@aocewy, o€ OAA TA LEPAPXIKA emiTeSQ,
BaoWlopevn otV TPOOSEVTIKA aVEAVOUEVT] XPTIOT VEWV UTIOAOYLOTIK®V EPYUAEIWV KAL

TEXVOAOYLWOV ALYUNG.

O XPOVOTIPOYPUAUUATIONOG TNG TApAywYNG amoTeAel éva {wTkNG onuaciag emimedo
AMUYng amo@dacewv kat Swadpapatifet onuaivovta poAo otnv amoédoon plag
Blopnyavikng povadag. A@opa TNV KATAVOUN TwV TOPWV HETAEY AVTAYWVIOTIKWY
SPACTNPLOTTWY OE OUYKEKPLUEVEG XPOVIKEG TEPLOSOUG, £XOVTUG WG OTOXO TN
BeATioTOOMON €VOG 1] TTEPLOGOTEPWV AVTIKELUEVIKWV 0TOXWV. ['la TN BeATioTomoinon
TOU XPOVOTIPOYPAUUATIOUOU TIapaywyns kabloTatal amapaltn 1 LEAETN TOU GUVOAOL
TwV SlEPYaoIwV Tov AapBdvouy xwpa Kol ot KAANAETISPACELS TOUG [LE TO EVPUTEPO

Bopnyaviko mepBaAiov.

Ta tedevtaia 30 xpovia Exel Tpotabel Eva evpv PATHA PEBOSWV YIA TNV AVTILETWTILON
AUTWV TWV CUVSVACTIK®WV TPORANUATWY, WOTOGO 1 TAELOVOTNTA TOUG ETKEVTPWVETOL
KUplwg og MpoBANHATA IOV SEV ATTOTUTIWVOULV TNV Blopunxavikn Tpaypatikotta. Ta
TPOLAUATA XPOVOTIPOYPUAUUATIOHOU TWV CVUYXPOVWY BLopnyaviwy TepAapufavouv

TANOWPA TEAKKWV TPOIOVTWVY KAl UNYXAVOAOYLKOU €EEOTALOHOV, €V 1) TOPAYWYLKN
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Stadikaoia kabiotatal WSlaitepa mepimAokn. ZuvNBwS Ta TPOBANUATH AVTA VTTOKELVTOL
0€ TOAATAOUG TEYVIKOUG Kol AELITOUPYLKOUG TEPLOPLOUOVS, |E OATIOTEAECUA VA
xapaktnpilovtal amo ealpeTIKA VYMAT] UTOAOYLOTIKI] TOAUTIAOKOTNTA KOl WG €K
TOUTOU 8&v pmopovv va emAvBolv o€ XpOVOUS amodekToUS amod Tnv Plounyxovia.
INUEPA, OTIG TEPLOCOTEPEG PLOUNXAVIKEG HOVASEG, TO TPOYPUAUUA TOPAYWYNS
AapfBavovtat yewpokivnta pe TN peBodo TG SokNG Kol o@AAUATOG, aTO
€EELOIKEVIEVOUG PUNXOVIKOUG TIHPAYWYNS, BACLOUEVOL KUPIWG OTNV EUTIELPIX TOUG KL TN
XPN oM TEPLOPLOUEVOL aplOpoV BonBNTIKWVY pyaAEiwY, OTIWG AOYLOUIKA TIPOGOUOIWoNG.
Q¢ ek TOUTOV, KplveTal avaykaio 1 avATTUEN VEWV VTTOAOYLOTIKWV TEXVIKWY, Ol OTIOLES
Ba o8nyolv o LVYMANG TOLOTNTAG AVCELS € CUVTOUO XPOVO, KAl KATA GUVETELA B
amoteAEoouy T BAOT YlX TNV AVATITUEN ATOTEAECUATIKWOV UTIOAOYLOTIKWV EPYAAELWV
mov Ba ovpufdAiovv onupavtikd otn BéAtiotn ANYTM amo@dcewv. Me [Baon Ta
TAPATIAVW, 1| TTAPOVoA SLATPLPN ETKEVIPWVETAL OTNV AVATITUEN VEWV HABUATIKWOV
HOVTEAWV Kol TEYVIKWVY, Ta omola Aapfdavouv vmoylv OAa Ta amapaitnto
XAPAKTNPLOTIKA PEAALOTIK®WV PBLOUNXOVIKWOV HOVASWY, OG0 KL GTNV AVATITUEN VEWV
aAyopiBuwv ywx v emiAvon TOAVTAOKWY TPORANUATWY HEYAANG KAlpakag, o€

amodeKTO amod TN Blopnyavic VTTOAOYLOTIKO XPOVO.

O TpoypauUATIoNOS TAPAYWYNS ATIOTEAEL Eval HOVO TUNUA TNG LEPAPY KNGS Sladikaoiag
AMUYNG amo@acewyv Kat TEPAAUBAVEL Eva HEPOG TWV ATIOPACEWY TIOV AapufdvovTtal o€
uia Bropmyavikn povada. ‘Eva Slautépws onUavTikd emiTES0 AMOPAGEWY ATOTEAEL
emiong o pakpoxpoviog oxediaopds mapaywyns (Planning). Xe avtiBeon pe To
XPOVOTIPOYPAUUATIONO TTIHPAYWYTG, OTIOU HEAETATAL CLVNOWG EVaS XPOVIKOG opilovTag
Ewg Kal 2-3 eBSopddwy, 0 oXESLHOUOG TNG TTAPAYWYNG TIPAYUATEVETAL TN HEAETN EVOG
HLOKPOXPOVIOU XPOVIKOU opilovTta, 0 omoiog elval oVUVNBES va KUPAIVETAL ATTO PEPLKES
eBSopades ewg kat 51 10 €. Ze auto To emimedo, Aapfavovtal KUplws OTPATNYIKESG
KOl OLKOVOWIKEG OTO@ACELS TNG ETALPEING, OXETIKA HE TO OYESOUO KoL TN
SuvaplkémTTa ™G PLOPNXAVIKNG HOVASAS, TOV TPOYPAUUATIONO YlX TNV ayopd
TPOUNBELWV Kol TNV TapAdoon Twv TapayyeAlwV KTA. ZuviiBwg, oL Amo@ACELS TOU
oxeblaopov mapaywyns amoteloVv dedopéva L6680V Yla TO LEPAPXIKO €TITESO TOV
xpovompoypappatiopoV. H tavtdxpovn peAétn Twv U0 emMESWYV ATMOQPACEWV
(oxeblaopog KoL  XPOVOTPOYPAUUATIONOG TOAPAYWYNG), TAPOUCLALEL OMUAVTIKE
TAEOVEKTIHATA EVAVTL TNG EMUEPOVS UEAETNG TwV V0 TPOPANUATWY KAl umopel va

odnynoel oe AoELG oL oTtoleg otV TPAEEN ATOSEIKVUOVTAL TILO ATIOTEAECUATIKEG KoL
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TIEPLOCOTEPO EPAPUOCLIUES. MAAOTA, 0 APKETEG PBLOUNXAVIKEG LOVASEG 1) ETUEPOVS
UEAETN Kal eMiAvon Twv V0 TpofAnuaTwy pmopel va 08nynoeL o€ AVOELS 0L 0TIO(ES Elvat
UN E€QPIKTEG OTA KATWTEPA Eemimeda AYNG AMOPACEWY, OTMWG TO E€miMeSo TOL
XPOVOTIPOYPAUUATIONOU TAPAYWYNG. ZTOV avTITmoda, Eva ONUAVTIKO HELOVEKTNUA TIOU
TAPOVCLAJOVV Ol EVOTIOWUEVEG TIPOCEYYIOELS Yl TNV TAPAAANAN HEAETN Twv SVO
mpofANUaTWY, €lvat 1 avdykn yia xpnon ovénpévou oplBpov peTAfAnTovV Kot
TEPLOPIOUWY, KATL TOU EMUPEPEL LYMAOTEPN TOAVTAOKOTNTA Kol KaBlotd TO

evotoimuévo TpofAnua SVokoAa EMAVGLUO.

AOYw NG HEYAANG SLAPKELXG TIOV ATIALTELTAL YLK TNV AVATITUEN VEWV QAPUAK®VY KL TOU
VYPNA0U KOGTOUG TWV KAWVIKWVY SOKIUWY, TO TPOBANUA TOU EVOTIOMUEVOL OYXESLAOUOV
KAl XPOVOTIPOYPUUUATIOHOU Tpaywyns elvat  dlaltepa  onpavTKO  yl@  TIS
@EAPUOKEVTIKEG Blopnyavies. EmmAov, katd tn Sidpkela Twv teAevtaiwv 20 etwv,
AOY® TOU £VTOVOU QVTAYWVICHOVU, TAPATNPEITAL 0TI @APUAKEVTIKY] Blounyxavia pia
aLEAVOLEV TAOT] YIX VTIOYPAET CUUPBACEWY PETAEY UEYAAWV TIOAVEOVIKWVY ETALPELWV
Kl EEWTEPIKWV CUVEPYATWV YA TNV avABeoT NG Tapaywynsg Twv TPOIOVTWY TOUG
(Contract Manufacturing). AuTO EMTPEMEL OTI PAPUAKEVTIKEG Plopmyavies va
EMKEVTPWOOUV 0€ UEYAAUTEPO XAPTOPUAAKLO TPOIOVTWV YXWPIS va auidvouv TI§
SATIAVEG IOV GUVSEOVTAL UE TNV KATAOKELT VEWV EYKATAOTACEWY. L0Td00, 1 {1jTNnon
TWV  QAPUAKEVTIKWVY TPOIOVTWY eival Slaitepa  petafAnt), kabw¢ upmopel va
emnpeacOel onuavTiKG@ omd aTMPOCSOKNTEG TAPEVEPYELEG N OO TN XOUNAY
SPACTIKOTNTA TWV VEWV QAPUAKWY. G €K TOVUTOV, oL eEwTepikoi ouvepydates (Contract
Manufacturing Organizations) o@eilovv va emAéyouvv 10 PEATIOTO GUVELAGHO
ovuBoAaiwv/TPoidoVTIWY, WOTE VA LEYLOTOTIOW)COUV TA KEPST TOUG AapuBAVOVTAG OUWS
VTOYLV KAl TOo VTokelpevo pioko. Ztn BiAoypagia, ekteviig aplOpds €PELVITIKWV
gpyactwv TePLoplleTal Kuplwg oTn HEAETN TWV EMUEPOVS TPOBANUATWY TOU
XPOVOTIPOYPAUUATIONOY 1)  TOU  UAKPOXPOVIOU  OXESLAOHOU  TapAywynS  TNG
@EAPUOKEVTIKNG PBlopunyaviag. Qotoco, dev evtomileTal KAMolx epyacia 1 omola va
EMKEVTPWVETAL OTN MEAETN] TOU eviaiov TmpofANuatog Tou oxeSlaopov Kol
XPOVOTIPOYPAUUATIONOU TIAPAYWYNG VO afePALOTNTA O PAPUAKEVTIKEG Blopn)xovieg
Kal e81kOTEPQ, 0€ Blopn)avikég povadeg Tov Aettovpyolv kat' avabeon mapaywyng
QEAPUAKEVTIKWV TPOIOVTWY AAAwV etatpelwv (Contract Manufacturing Organizations).
Ta mapamavw dnpovpyolv €va EPEVYNTIKO KEVO PEYAAOL €VELAPEPOVTOG, ELATEPWS

AOyw Twv TeAsutalwy e8eAiewv Kal TG kplong TG QPAPUAKEVTIKNG EQOSIXOTIKNG
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aAvoidag. 'ETol, 0To TeAsutaio TUNpA TG SI8aKTOPIKNG SlatpLPng HEAETATAL TO eviaio
TPOPANUA  TOU  OXESLAOUOU KAl TOU XPOVOTIPOYPUUUATIOHOU TIOXPAYWYNG, OF
Bopnyavikég povades @apudkwyv vmo afefatdta g (tnong. MeAetdatat emiong to
TPORANUa ™G PBEATIOTNG €MAOYNG OUUPBOAQIWY YylX TNV TOPAYWYN TPOIOVTWV OEF
Blopnyavikég povades @appdkwy, ol omoleg AelToupyovv Kat avdbeorn mapaywyns

PUPUAKEVTIK®OV TIPOIOVTWVY AAAwV etatpelwv (Contract Manufacturing Organizations).

‘OAa T TPOTELWVOUEVA LOVTEANX KAL OL aAYyOpLlOpoL eMiAvong vAoTTOBNKAV PUE XP1IOT TOV
AoylopikoV GAMS kat tov emiAvtry CPLEX. AvaAuTIKOTEPQ, 1) GUVELGPOPA TNG TTAPOVC UG

St8axtopikng StatpPng cuvoPileTal TUPAKATW.

Apxka, peAetatal To TPOLANUA TOV BEATIOTOU XPOVOTIPOYPAUUATIOUOV TTAPAYWYNG OE
Blounyavieg ToAAaTA®Y oTadiwV TTapaywyng, Tov Teplapfavouy Slepyacies ouveXoUg
Aettovpylag. Ewdwkotepa, avamtixdnkav 0o pabnuatika povtéda MektoU-Akepaiov
Ipappixov IMpoypappatiopov (MILP) yua v elayiotomoinon Touv cuvoilkol Xpovou
evaAlaywv (changeover minimization). Ta mpotewopueva paONPATIKE HOVTEAQ
aAAnAovyiag (precedence-based), emikevipwvovtal o0TO OTASIO TNG OGUOKELAOIOG
Blopnyavikwv povadwv KatavadwTikowv ayabwv kat Bacilovtal ce pa oepd amo
AOYIKOUG OAAQ KAl TEXVIKOUG TeplOoPLopoVs. EmimALov meploplopol, Tov agopovv To
OLVEXEG OTASL0 TAPAYWYNS TWV EVOIAUECWV TPOIOVTWY, KABWG Kol TEPLOPLOPOL Yia
TOUG XPOVOUG TPASooNG TwV TPOIOVIWY, CULUTEPAAUPBAVOVTAL TIPOKEUEVOL VA
SLo@AALODEL 1] KATAOKELT] PEAALCTIKWV TIPOYPAUUATWY Tapaywyns. I tnv emidvon
TPOLANUATWY TPOYPAUUATIONOV TOPAYWYNG HEYAANG KAIHAKAG O€ PLOUNYAVIKES
uovadeg  ouvvexolS  Aertoupylag,  avamtUxOnkav  emiong 600  aAdyoplOuol
BeAtiotomomong. O otdX0g TwV aAyopiBuwy emilvong eivatl 1 Stkomaon Tov apxtkov
TPOBAUATOG OE  UIKPOTEPA KAl  €UKOAOTEpA  emMAVOIUX  LTOTpoPANHaTA
(decomposition-based algorithm). Twx v a&loAdynon Twv TPOTEWOUEVWV
HOONUATIKWV HOVTEAWY, KAL TV aAYopBuwv emilvong, eEetdotnkav Sltd@opa oevapla
{NTNOoNG KAl KATAOKEVAGTNKAV TIPOYPAUUATA TIHpaywyns ya mavw amo 130 teAwkd
Tpoidovta mov mapayovtal eBdopadiaiwg. Ot peAétes vAomombnkav pe TN xpron
PEAALOTIKWV SES0UEVOV MLAG BLOUNYAVIKNG HOVASAG KATAVOAWTIKWV TPOIOVIWV TNG
etalpelag Procter and Gamble (P&G). Ta amotedéopata amodeikviouv TwG ol

TIPOTEWVOUEVOL QAYOpLOUOL BEATIOTOTIOMONG KAl TA LABNUATIKA HOVTEAQ 08nyoUv o€
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ONUAVTIKY UEWON TOU XPOVOU EVOAAAYWV KOl OUVETIWG OF quénom Tng

TAPAYWYIKOTNTAS TNG HovadSag.

ETumAgov pedet)bnke o BEATIOTOG XPOVOTIPOYPAUUATIONOS TIHPAYWYNG O€ Blopnyavieg
OLVEXOUG AelTOVPYLAG HE SLUVATOTNTA EVOLAUEONG QATOBNKEVONG KUl VAKUKAWGONG
Tapanpoiovtwy. Ilpotelvetat éva véo paBnuatikd povtédo MelktoU-Akepaiov
[pappkov Mpoypappatiopov (MILP), To omoio amoteAeital amod pio oelpA AOYIKWV Kol
TEXVIKWV TEPLOPLOPWY, TIOU OXeT(ovTal pe TNV aAAnAovyia Twv TPOIOVTIWY, TN
SLBEGIUOTNTA TWV CUOKEVWYV, TOUS XPOVOUG TIApAdoonS Twv TPolovTwy K.a. EmimAéoy,
TO pHabnuatikd povtédo Baciletal o0 GLVEXT AVATIAPACTAOT] TOU XPOVIKOU opilovTta,
EVW OL TEPLOPLOoOL TwV ooluylwv PH&lag tkavoTolovvTal HEcw TNG XPNIONG EVOS VEOU
ouvvodou Svadikwv petafAntwv. Télog, mepllapfdvovtal TEPLOPLOUOL Yl PEVUAT
AVAKUKAWONG TWV TOPATPOIOVTWY, TA OTOlA TAPAYOVTAL KATA TN OSLAPKELX TWV
Stepyaciwv Kabaplopov twv ocvokevwv. [MapdAAnia, avamtuxOnke évag aAdyoplOpog
BeAtiotomoimong (decomposition-based algorithm), yia ™v emilvon mpofAnudatwv
XPOVOTIPOYPAUUATIONOU  TIHPAYWYNG, BLOUNXAVIK®OV HOVASWV HEYAANG  KAIHOKAS.
MedetOnkav TPoBANUATH LEYAANG KAIHOKAG, XPNOLUOTIOIWVTAS PEAALOTIKA SeSopuéva,
amd plo Bopnyavikn povada KATAVOAWTIK®OV TPOIOVTIwV. ATO TV afloAdynon Twv
eCayOUeEVWY AVOEWY, CUUTEPAIVETUL TIWG TO TIPOTELVOUEVO HAOMUATIKO HOVTEAO OF
oLVOLACUO HE TIG OTPATNYIKEG E€TiALONG, 08nyolv o€ AVGELS TOU PBEATIWVOULV TO
ovyxpovioud Hetald Twv otadiwv Tapaywyns evw TaApaAANAa auidvouv v
ATOSOTIKOTITA TOV EEOTALGHOU KL TN XPTON TWV TIPWTWV VA®V, LELWVOUV TO CUVOALKO

KOO TOG KL EAXXLOTOTIOLOVV TH) TIHPAYWYT] TIAPATIPOIOVTWV.

Ito tedevtaio Tunua TG S8akTopikng SatpPrg peAetdtal 1 BeATioTomoinon Tov
eviaiov TPoRAUATOG TOU OXESIAGHOU KAL XPOVOTIPOYPUUUATIOHOU TAPAYWYNG OE
Blopunyavikég povades @apuakwyv Vo afefatdTnTa. ApYIKA TIPOTEIVETAL Vo LOVTEAO
Mewtov-Akepatov TpappikoV IMpoypappatiopov (MILP), yia to empépouvg mpoAnua
TOU BpayuxpOvVIOU XPOVOTIPOYPAUUATIOHOU THPAYWYNG O€ Hovadeg SlaAelmovoag
Agttovpylag. To paBnuatikd povtéAo, To omoio BacileTal o€ GUVEYT AVATIAPACTACT] TOU
XPOVIKOU 0pilovTa, amOTEAEITAL ATO UL CEPA TIEPLOPLOWY, OL 0ToioL oxeTi{ovTal HE
™MV aAAnAovxia TwVv TPOIOVTWY, TN SUVAUIKOTNTA TWV GCUOKEVWY, K.a. EmmpocBetwg,
avamtuxOnke éva povtédo MektoU-Aképatov I'pappikov [poypappatiopov (MILP), yia

TO TPOPBANUA TOU HAKPOXPOVIOU OXESLHOUOV TAPAYWYNS OE BLOUNXAVIKEG MOVASES
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Stadeimovoag Aettovpyiag. To pabBNuaTiKO HOVTEAO, ATAPTI(ETAL OMO WA OEPA
TEPLOPLOUWY, OL oTtolol oxetilovtal pe TN SabeoudTNTA KAl T SUVAUKOTNTA TWV
OLOKELWYV, TA oolUylx HAlaG TwV VAK®WY, TNV oTOBNKEVLTIKY SUVAUKOTNTA TNG
Bopunyavikng povadas k.o Ta v emidvon mMPoBANUATWY HEYAANG KAIHOKOG,
TPOTAONKE évag eMAVOANTITIKOG aAyoplBpog, o omolog BacileTal oTNV TEXVIKY TOU
KuALopevov opifovta (rolling horizon). MapdAAnAa, yia tn peAétn ¢ afeBatdotntog
gywve xpnon twv gpyaieiwv petpnong kwwdvvou, Value-at-risk (VaR) kat Conditional
Value-at-Risk (CVaR). Ot mpotewvOpeves HABNUATIKEG TEXVIKEG E£PAPUOOTNKAV OEF
TpofAHATA OXESIAGHOV KAl YXPOVOTIPOYPAUUATIONOU TIapaywyns vmo afefadtnta
™G MTong, o€ BLOUNXAVIKEG LOVASEG TTapaywyNS @appakwv. Eldikdtepa, peretdnke
To TPOBANUA NG BEATIOTNG €MAOYNG OCUUPBOAXIWY Yl TNV TIapaywyn TPOIOVTWY o€
Blopunyavikég HOVASES PAPUAKWY, OL OTIOLEG AELTOVPYOVV TTAPAYOVTAG TIPOIOVTA GAAWY
etapelwv  pe  efwtepikny  avabeon (Contract Manufacturing Organizations).
MedemOnkav mpoAuata HEYAANG KAlpakag To oTola mepAapfdvouv TOAAATAG
oTadla TapAywyng Kol HEYAAO oplOpd Tpoiovtwv. ATO TNV oafloAdynon Twv
eCayouevwy AVOEWVY, CUUTEPAIVETAL TIWG TA TIPOTEVOUEVA UAOMUATIKA HOVTEAQ, OE
oLVOLACO |E TIS OTPATNYLIKEG emiAvong, o8nyovv o BEATIOTEG AVOoELS, AapfavovTag

QATOTEAECUATIKA VTIOYLV TO UTIOKEIEVO plOKO.
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Introduction

1

Introduction

1.1 Motivation and objectives

Nowadays, due to the ever-increasing competition, process industries face multiple
tough challenges. Hence, decision-makers put massive effort to increase profit margins
by allocating more efficiently the available resources between competing activities and
reducing the various costs. However, in the new era of manufacturing processes, goals
of efficiency are now being complemented by sustainable production objectives. Besides
cost reduction, further benefits can be achieved by using cutting-edge technologies,
such as time reduction, predictive maintenance, reduction of the environmental
footprint, and better supply chain visibility. Following the recent advances of the Fourth
Industrial Revolution (Industry 4.0), modern process industries are obliged to invest in
research and development to digitalize the various decision-making processes (Rossit et
al, 2019). Furthermore, due to the tremendous volatility of the global market, the
coordination of different decision levels has a vital role in the sustainability of process
industries (Harjunkoski et al., 2014). Production scheduling constitutes a crucial
decision level, as it has a direct impact on the overall efficiency of all industrial facilities.
Critical objectives can be achieved via optimal production schedules, according to the
current needs of the plant, such as the reduction of production cost or production
downtimes, and the minimization of energy consumption. Hence, during the last three
decades a plethora of mathematical frameworks has been proposed to face the
production scheduling optimisation problem. The vast majority of these approaches
rely on mixed-integer linear programming (MILP) formulations, since it proved to be
extremely flexible and accurate, while ensuring optimal solutions (Georgiadis et al.,

2019a; Harjunkoski et al., 2014).

Within the overall current climate of business globalization, modern industrial facilities

have to satisfy a highly diversified product portfolio that can address the needs of
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customers. Current real-world industrial applications include hundreds of different final
products in flexible facilities, under several tight design and operational constraints. As
a result, several companies from various industrial sectors, such as food and beverages,
pharmaceuticals, chemicals and fast-moving consumer goods (FMCGs), have adopted

continuous make-and-pack production layouts (Castro et al., 2018; Méndez et al., 2006).

The utilization of continuous processes can lead to notable benefits for process
industries. Firstly, continuous processes can increase the production throughput, by
reducing the total processing time. Aside from time saved, industries decrease the total
energy consumption by avoiding shutting down and resetting machines repeatedly.
Furthermore, once a continuous equipment starts to operate, only a general supervision
of the machinery is required. This allows for labour costs reduction and therefore

research and development expenditures can be increased (Harjunkoski et al., 2014).

Despite the multiple advantages, scheduling optimization of continuous processes is a
tough task. Usually, the synchronization between stages cannot be easily achieved and
due to different production rates undesirable idle times are realized. Hence, modern
industrial facilities consist of complex production layouts that include several
production routes, flexible storage vessels and recycling streams to increase the overall
productivity. However, it can be noticed that scheduling optimization of continuous
processes, has received only a small attention in comparison with batch facilities
(Castro et al, 2018; Harjunkoski et al., 2014; Méndez et al., 2006). Therefore, the
development of efficient mathematical frameworks for the optimal production
scheduling of multistage continuous processes is a known research gap. Concerning the
above observation, novel mathematical frameworks are proposed in this thesis, for the

optimal scheduling of multistage continuous processes.

Although digitalization has attracted a lot of attention within various industrial sectors,
in terms of production scheduling the reality is not so encouraging. In practice
production schedules are mainly manually generated, based on the experience of
production engineers. Therefore, production scheduling is a time-consuming process as
a lot of manpower is wasted to obtain even a feasible or sub optimal solution.
Additionally, due to unexpected events, such as order cancelations or equipment
breakdowns, the initial solution must be updated in weekly or even in daily basis.

Simulation tools (e.g., SchedulePro™) constitute a useful tool as fast and feasible

2



Introduction

solutions can be generated, although without ensuring optimality (Koulouris et al.,
2021; Papavasileiou et al., 2007). Concerning the above facts, it is concluded that there
is a strong need to develop efficient mathematical frameworks that lead to nearly
optimal solutions in small computational times. Although numerous MILP models can
be found in the open literature, only a few industrial applications have been reported. It
can be noticed that most of the optimization methods have efficiently handled small or
medium sized problem instances, while only a few of them have been applied in large
scale industrial problems (Castro et al., 2018; Georgiadis et al.,, 2019a). Hence, due to
the lack of real-life applications, this thesis proposes efficient MILP-based solution

algorithms for the scheduling of real life, large-scale, industrial problems.

Finally, among different industrial sectors pharmaceutical industry is composed of
many challenging planning and scheduling problems possessing both industrial and
academic significance (Sarkis et al.,, 2021; Shah, 2004). Over the past few years, large
R&D pharmaceutical companies have increasingly outsourced non-core activities, such
as manufacturing, to Contract Manufacturing Organisations (CMOs). CMOs are
companies without their own product portfolio and serve other companies in the
pharmaceutical industry on a contract basis to provide comprehensive services related
to drug manufacturing. This policy enables multinational pharmaceutical industries to
reduce their costs and emphasise on drug discovery and marketing, which are
considered as key parts for their value chain (Jarvis, 2007). A contract can include
currently developed products, characterized by highly volatile demand and high selling
prices, or drugs with less uncertain demand and lower profit margins. Typically, drug
development is a time-consuming process, as it takes at least 10 years on average for a
new medicine to be in the marketplace. Additionally, demand of newly developed
pharmaceutical products is usually highly uncertain. Lower drug efficacy can affect the
demand and total sales, while in the worst case, it can lead to the suspension or even the
withdrawal of the drug. Under this dynamic and uncertain environment, a CMO must
decide the best contract combination to accept, so as to maximize its profits. Although
multiple research contributions are focused on the short-term scheduling of
pharmaceutical industries (Kopanos et al, 2010a; Stefansson et al, 2006) or the
planning of clinical trials (Colvin and Maravelias, 2011; Levis and Papageorgiou, 2004),
only a handful of them considered the integrated planning and scheduling problem,

while the optimal contract selection problem of CMOs under uncertainty in the

3
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secondary pharmaceutical industry has never been addressed. Hence, the scientific
knowledge is expected to be broadened with the introduction of an optimization-based
framework for the optimal contract appraisal of CMOs in the secondary pharmaceutical

industry under demand uncertainty.
The main objectives of this thesis are:

e The development of novel MILP-based models for the optimal production
scheduling of multistage continuous processes, while considering flexible
intermediate storage vessels, aiming to provide better synchronization of the
production stages.

e The efficient modelling of byproducts recycling streams to reduce waste,
environmental footprint and production cost.

e To propose efficient MILP-based solution strategies for the solution of large-
scale industrial problem instances.

e The development of integrated planning and scheduling optimization
frameworks considering uncertainty for multistage batch plants of the secondary
pharmaceutical industry.

e To propose an efficient MILP-based optimization approach for the optimal
contract selection problem of Contract Manufacturing Organizations in the
pharmaceutical industry under demand uncertainty.

e To reduce the existing gap between scientific research and industrial reality by
successfully applying the proposed mathematical frameworks in real-life, large-
scale industrial cases studies, either using real industrial data, or data that

correspond to real-life conditions.

1.2 Production scheduling

Scheduling is concerned with the allocation of scarce resources among competing
activities over time. It is a decision-making process aiming to optimize one or more
objectives by taking into account the processes taking place and their interactions with
the environment. Scheduling problems exist in many manufacturing and production
systems, in transportation and distribution of people and goods, and in other types of

industries. The three elements which need to be mapped out are time, tasks and

4
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resources: The time at which the tasks have to be performed needs to be optimized
considering the availability and restrictions on the required resources. The resources
may include processing, material storage and transportation equipment, manpower,
utilities (e.g., steam, electricity), any supplementary equipment and so on. The tasks
typically include processing operations (e.g., reaction, separation, blending, packaging)
as well as other activities like transportation, cleaning in place, changeovers, etc.,
(Kallrath, 2002). Both external and internal elements of the production need to be
considered. The external element originates from the need to co-ordinate
manufacturing and inventory levels based on a given demand, as well as arrival time of
raw materials and even maintenance activities. The internal element considers the
execution of tasks in an appropriate sequence and time, while taking into account all
external considerations and resource availabilities. Overall, the sequencing and timing
of tasks over time and the assignment of appropriate resources to the tasks must be
performed in an efficient manner, that will, as far as possible, optimize a given objective.
Typical objectives include the minimization of cost or maximization of profit, the

maximization of throughput, the minimization of tardy jobs, etc., (Méndez et al., 2006).

Flexible multipurpose plants are able to produce a wide range of different products
using a variety of production routes. This characteristic makes such plants particularly
effective for the manufacture of classes of products that exhibit a large degree of
diversity, and which are subject to fast-varying demands. Due to their inherent
flexibility, the scheduling of such plants is a problem of high complexity. Compared to
other parts of the supply chain management (e.g., distribution management and
inventory control), the production scheduling is often by far the most computationally
demanding part. The most general “multipurpose” plants can be viewed as collections of
production resources (e.g.,, raw materials, processing and storage equipment, utilities,
manpower) shared by several processing operations, that manufacture a number of
products over a given time horizon. The process may include several intermediates that
lead to multiple final products, recycles of byproduct materials, and multiple routes to
the same final product. Single or multiple stage multi-product plants are thus special
cases of multipurpose plants. Concerning the above facts, even the most trivial
scheduling problems are NP-hard, thus no known solution algorithms exist that are of
polynomial complexity in the problem size. This has posed a great challenge to the

research community, and multiple research contributions have arisen aiming to develop
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either tailored algorithms for specific problem instances or efficient general-purpose
methods. Although the first approaches have been focused on providing generic
mathematical models, during the next years this endeavour has been abandoned, since
the research community focused on exploitation of problem-specific mathematical

frameworks.

1.2.1 Classification of Scheduling Problems

Usually, scheduling problems are defined by three main elements. The production
environment, the special characteristics of process industry (production constraints)
and the main objective under consideration (e.g., minimization of cost). Since the entries
of these elements are extremely diverse among process industries, many classes of
scheduling optimization problems exist. In particular, scheduling problems can be

defined by the following inputs:

e Data related to production facilities, such as processing stages, production
equipment, storage vessels, processing rates and unit to task compatibility.
e Availability of resources such as raw materials, utilities, and manpower

e Production or inventory targets that need to be satisfied.

The first terms can be usually considered static since they remain fixed for all problem
instances of a facility unless any redesign studies are considered. On the other hand, the
other terms are usually defined by other decision-levels, such as production planning
and control. Therefore, scheduling is not a standalone problem; it is part of the overall
manufacturing supply chain, and it is strongly connected to other functions (see Figure

1.1).
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Figure 1.1 Information flow towards scheduling level

The scheduling decisions seeks to optimally answer to the following questions:

What tasks must be executed to satisfy the given demand and the production

targets (batching/lot-sizing)?

Which resources must be used?

How many and what kind of batches/lots must be produced?

In what sequence are batches/lots processed?

The most common objective is the maximization of the total profit, while respecting all
operational, logistical and technical constraints. However other objectives such as the
minimization of the total cost, earliness and/or tardiness, and production makespan are
also considered depending on the current needs of the industry. The main scheduling

decisions are also illustrated in Figure 1.2.
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Figure 1.2 Main scheduling decisions
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It should be noted that depending on the specifics features of each problem, some of the
aforementioned decisions are not considered in the scheduling level. The development
of a scheduling model requires the consideration of all essential production features to
ensure the feasibility of the proposed schedules. However, the production should be
represented in the simplest way to reduce the computational complexity of the
problem. This is vital when solving real-life industrial problems, which typically
includes a huge number of products and constraints that must be satisfied. The
scheduling problems found in process industries are classified in terms of: (a) the
production facility and (b) the specific processing characteristics and constraints. As a
result, several modelling frameworks have been proposed by the research community.
A short description of these terms is presented in the following subsections, while an
interested reader can find more details in the excellent reviews of Harjunkoski et al.,

(2014) and Georgiadis et al.,, (2019a).

1.2.2 The production facility

The production facilities can be classified based on the type of the processes and the
production environment. It should be noted that many scheduling problems consider
the optimization of material transfer operations rather than production operations.
Indicative examples are the crude oil and pipeline scheduling. However, these problems
are out of the scope of this thesis. Therefore, the following analysis is focused on

production scheduling of process industries.

1.2.2.1 Process type

The main types of production process found in the process industries can be defined as
continuous or batch. In continuous operations, raw materials are continuously provided
into processing units resulting in a constant flow. Continuous processes are ideal for
mass production of similar products because they can ensure product quality
consistency while lowering manufacturing costs due to economies of scale. On the other
hand, in batch processes all components must be completed at a unit before they
continue to the next one. Batch processes are often chosen for production of high-added

value products as they can ensure the required purity and the quality of products. Batch
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operations are also appropriate for the production of products that described by
seasonal demand (e.g., large batches of one product are made for sale in the
summertime). Batch and continuous processes both necessitate the same types of
decisions in terms of scheduling. Batches in batch processing and lots in continuous
processing are the two types of tasks. In continuous processes, assignment (of
batches/lots to units), sequencing (between batches/lots), and timing (of batches/lots)
decisions are identical, whereas task selection and sizing (batching/lot-sizing) have
more degrees of freedom. In continuous processes, capacity restrictions refer to
processing rates and times, which are usually unrestricted, so a given order can be
fulfilled in a single lot (campaign) or multiple shorter ones. Batch production, on the
other hand, is limited by the amount of processed material that a unit can handle,
affecting the number and size of batches that must be scheduled. Another distinction
lies in the way inventory levels are affected. It's worth noting that many facilities are
characterized by multiple types of processes. For example, in "make-and-pack”
production facilities, multiple batch or continuous processing phases are followed by a
packaging (continuous) stage. This production layout is highly frequent in the food and
beverage and consumer goods industries, and it necessitates the consideration of both

batch and continuous manufacturing processes.

1.2.2.2 Production environment

Production facilities can be classified as sequential or network, based on material
balance constraints. In sequential processes each batch/lot follows a set of production
steps based on a specific recipe. In this industries batch mixing/splitting is not allowed.
Network facilities are more general and complex, and their topology is usually arbitrary.
Furthermore, there are no limitations on the handling of input and output materials, so

mixing and splitting operations are allowed.

Sequential facilities can be divided into the following categories based on their

topological characteristics:

e Single stage: A production facility with only one processing stage, which can be
a single unit or multiple parallel units. The product-to-unit compatibility can be

fixed (each batch must be processed in a single unit) or flexible (each batch can
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be processed in multiple units), but each batch must be processed in a single unit
in all cases.

e Multistage: Each batch must be processed in multiple stages, each of which may
consist of a single unit or multiple parallel units.

e Multipurpose: When routings are product-specific, or when a processing unit
belongs to different processing stages depending on the product, a facility is
described as multipurpose, and it is equivalent to jobshop environments in

discrete manufacturing.
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Figure 1.3 Categorization of scheduling problems based on their topological characteristics

The majority of early research focused on sequential facilities (Egli and Rippin, 1986;
Vaselenak et al., 1987). Process industries that operate in a sequential environment are
quite similar to discrete manufacturing, and there are many similarities to be found
when describing them. Sequential facilities can be simply represented in terms of
batches and production stages. However, this is not applicable for network facilities, so
they cannot be modelled in the same way. The representations of the State task network
(STN) (Kondili, E., Pantelides, C. and Sargent, 1993), and the Resource Task Network
(RTN), (Pantelides, 1994), were the first to propose general representations of network
facilities. Both contributions constitute the cornerstone of research advance since most
existing approaches rely on these concepts. A classification of the scheduling problems

based on their topological characteristics is illustrated in Figure 1.3.

10



Introduction

1.2.3 Processing characteristics and constraints

Scheduling problems may refer to facilities that described by various special processing
features and constraints. These aspects increase the complexity of the problem but must
be taken into account, in order to guarantee the feasibility of the generated production
schedules. A brief presentation of these features is given in this section while a detailed

description is provided by Méndez et al., (2006).

Resource considerations, aside from task-unit assignments and task-task sequences, are
of great importance. These may involve auxiliary units (e.g., storage vessels), utilities
(e.g. steam and water) and manpower. Resources are mainly classified into renewable
(recover their capacity after being used in a task, e.g. labor) and non-renewable (their
capacity is not recovered after being consumed by a task, e.g. raw materials). Renewable
resources can be further classified into discrete (e.g. manpower) and continuous (e.g.
electricity, cooling water). Another important characteristic in process industries is the
handling of storage, which is usually referred to as the storage policy. Depending on the
duration a material can be stored, the storage policies are described as i) Unlimited
Intermediate Storage (UIS), ii) Non-Intermediate Storage (NIS), (iii) Finite Intermediate
Storage (FIS) and (iv) Zero Wait (ZW). Setups are a critical factor in most processing
facilities as they represent operations like re-tooling of equipment, cleaning or
transitions between steady states. They are associated with a specific downtime that
can be sequence-independent or sequence-dependent (changeovers) and a cost is
induced to the production process. To reduce the complexity associated with the
consideration of setups, products are categorized into families. In that case setups exist

only between products of different families.

This categorization shows the complexity of scheduling problems and the huge diversity
of characteristics that must be accounted for when facing real-life industrial problems.
The inherent diversification of scheduling problems in the process industries hindered
the initial efforts of the academic community to propose a generic mathematical
framework. Therefore, research turned into the development of less general methods
that can address industrial cases that share similar characteristics. As a result, a
multitude of efficient specialized methods for the optimization of scheduling in the

process industries have been proposed in the last 30 years.
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1.2.4 Classification of modelling approaches

As it is described in the previous subsections, scheduling optimization is affected by
extremely diverse features. The initial attempts of developing a generic mathematical
model, that would be efficiently applied to all scheduling problems were proven
unsuccessful and soon the research community focused on the exploitation of more
problem-specific mathematical formulations and solution algorithms. The
computational complexity of scheduling problems gave rise to numerous optimization
approaches. Although this thesis is focused on the MILP-based approaches, it should be
mentioned that a plethora of alternate approaches is also proposed in the open
literature. In particular, constraint programming models (Malapert et al, 2012;
Zeballos, 2010), heuristic (Aguirre et al,, 2017; Bilgen et al., 2014) and metaheuristic
approaches (Subbiah et al., 2009; Zobolas et al., 2009) have been developed. The main
advantage of these methods is their ability to generate fast and feasible solutions.
Hence, they constitute a very attractive option for industrial problem instances.
However, their main drawback is related to their inability to ensure the optimality of
the generated schedules. To combine the advantages of both MILP models and non-
optimization approaches, hybrid methods have emerged that are able to provide near-
optimal solutions in low computational time (Baumann and Trautmann, 2014;

Georgiadis et al., 2021; Kopanos et al., 2010a).

The three main aspects that describe all optimization models for scheduling are: (i) the
optimization decisions to be made, (ii) the modelling elements and (iii) the
representation of time. A detailed presentation of the main modelling approaches is

given by Méndez et al., (2006).

1.2.4.1 Optimization decisions

The optimization decisions may differ depending on the needs and the policy of each
industry. One important aspect is the consideration of batch/lot sizing decisions. In
particular, the number and the size of batches (or lots) can be either defined in the
planning or scheduling level. In the first case the number and the size of batches/lots is
prefixed and constitute one of the main inputs of the scheduling optimization model. On
the other hand, the consideration of batch or lot sizing decisions in the scheduling

model allows for further flexibility and can led to better solutions. The number and size
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of batches can be also defined heuristically by decision-makers. Then an optimization
approach for the unit allocation, sequencing and timing decisions can be applied. This
approach is common in models for sequential environments where batch mixing or
splitting is not allowed. In contrast, a monolithic approach, consisting of batching/lot-
sizing, unit assignment, sequencing, and timing decisions, is used for network

environments (Georgiadis et al., 2019a).

1.2.4.2 Modelling elements

According to the entity used to handle the mass balance constraints, scheduling models
are classified into batch-based and material-based. In sequential environments, where
the identity of each batch remains the same throughout the processing stages, batch-
based approaches are mainly chosen in sequential environments, where the identity of
each batch remains the same throughout the processing stages. On the other hand,
material-based approaches tend to be more suitable, when dealing with network
environments, that includes several mixing operations, recycling streams and more
complex production routes. It is important to mention that the modelling elements
used are also strongly connected to the optimization decisions. In particular, in
monolithic approaches the scheduling problems are modelled using a material-based
approach, while a batch-based approach is followed, whenever the batching decisions
are known a priori. However, batch-based approaches that consider batch sizing
decisions have been also proposed (Cerda et al., 2020; Kopanos et al., 2010b; Méndez
and Cerd4, 2002a)

Batch-based approaches are mainly relied on the representation of processing stages,
processing units in each stage and batches or products (depending on whether batching
decisions are prefixed or not). The second type of representation emerged in the early
90s from the novel works of Kondili, E., Pantelides, C. and Sargent, (1993), and
Pantelides, (1994),who introduced the STN and RTN, both based on the modelling of
materials, tasks, units and states. The STN represents manufacturing processes as a
collection of material state{s (feeds, intermediate final products) that are consumed or
produced by tasks. The main difference between STN and RTN is that in the latter states,
units and utilities are represented uniformly as resources that are produced and

consumed by tasks. While both STN and RTN representations was initially introduced
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for scheduling problems in network environments, recent works have addressed

problems in sequential environments (Lee and Maravelias, 2017).

1.2.4.3 Time representations

The most important element and the one that mostly differentiates optimization models
for scheduling is the representation of time. Modelling frameworks can be mainly

categorized into two main approaches. The precedence-based and the time-grid-based.

Precedence-based MILP models relies on binary sequencing variables that denotes the
sequence of batches or products. Based on the type of the precedence variables,
precedence-based models can be further divided into general, immediate and unit-
specific general precedence models. The majority of these models consist of product (or
batch) to unit allocation, timing and sequencing constraints (Méndez et al., 2006). In
general precedence models, precedence relationships are established between all pairs
of batches/lots while in immediate precedence models, the precedence relationship is
established only between consecutive pairs. Typically, general precedence models
include fewer binary variables, and therefore they are more computational efficient.
One of the main drawbacks of general precedence models is their inability to identify
subsequent tasks, and therefore to consider changeover costs and heuristics, such as
pre-fixing or forbidding certain processing sequences (Cerda et al., 2020). To overcome
this limitation immediate precedence formulations can be utilized. Furthermore, in
order to combine the advantages of both approaches, unit-specific general precedence
approaches have been proposed that combines both general and immediate sequencing
variables (Kopanos et al., 2010a). One of the main disadvantages of precedence-based
models is the dramatic increase of the size of the model when considering large number
of batches/products. The use of heuristics such as product families or pre-fixing of
sequences mitigates this phenomenon and enormously improves the efficiency of these

models (Kopanos et al.,, 2010b).

Time-grid-based models can be classified into discrete and continuous, while
continuous-time formulation may employ single or multiple-time grids. Although
numerous discrete and continuous-time models have been presented, the selection of
time representation is still an open issue. Continuous-time formulations are not

necessarily more efficient than discrete-time models, since the selection of the most
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appropriate time representation is strongly dependent on the scheduling problem
under consideration (Castro et al., 2009¢c; Maravelias and Grossmann, 2003). A great
variety of time-grid-based approaches exist depending on the representation of events,
such as time slots, global periods and time points. In discrete-time models the time-grid
is divided into a pre-defined number of time periods with a given and known duration,
both of which need to be specified by the model developer. Most discrete formulations
use a common time grid for all resources. However, Velez and Maravelias, (2013),
proposed discrete-time models that utilize multiple time frames. One of the main
challenges in discrete models is the optimal selection of the number of time periods that
needs to be employed. A highly discretized grid results to better quality solutions but in
in computationally intractable models, since the number of variables is highly increased.
An advantage of discrete-time models is their ability of monitoring mass balances,
inventory and backlog levels, as well as the availability and consumption of utilities
without introducing nonlinearity constraints. Moreover, time-dependent utility-pricing
and holding and backlog costs can be linearly modelled, while integration with higher
planning levels is straightforward (Maravelias and Sung, 2009). In continuous models,
the horizon is subdivided into a fixed number of periods of variable length, which is
defined as part of the optimization procedure. Both single, common and multiple, unit-
specific time frames have been successfully employed to continuous-time models.
Continuous formulations can mitigate some of the computational issues associated with
discrete-time models, since fewer variables, are required for same scheduling problem.
Recently, Lee and Maravelias (2018, 2020), proposed a general framework, combining
advantages of both discrete and continuous-time representations. The various time

representations are also depicted in Figure 1.4.
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Figure 1.4 Categorisation of modelling approaches based on time representation

In the next subsections we demonstrate the basic research contributions in the
scheduling optimization. More specifically, we present an overview of the models based
on the problems they are used for and we analyse the basic constraints and variables of
representative models. Further details on the different mathematical models for
production scheduling can be found in the excellent reviews of (Méndez et al., 2006),

Harjunkoski et al,, (2014) and Georgiadis et al.,, (2019a).

1.2.5 Models for network production environments

In network environments batches do not maintain their identity, since mixing and
splitting of batches is allowed. Hence, the problem the majority of the proposed
scheduling models are based on either the STN or the RTN process representation
(batch-based approaches). Moreover, the complexity of the production arrangement,
with tasks consuming or producing multiple materials and materials being processed in
different tasks and units, requires the proper monitoring of material balances, status of
units and utility and inventory levels. Therefore, most of the proposed formulations rely

on time-grid based approaches.

The introduction of the discrete STN and RTN models by Kondili, E., Pantelides, C. and
Sargent, (1993), and Pantelides, (1994), emerged a plethora of modelling formulation.
Mockus and Reklaitis, (1997) were the first to propose a continuous-time formulation
based on the STN formulation and exploiting its generality. A common resource grid is

used, with the timing of the grid points (“event orders” in their terminology)
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determined by the optimization. The model is a MINLP, which may be simplified to a
mixed integer bilinear problem by linearizing terms involving binary variables, which is
solved using an outer-approximation algorithm. Zhang and Sargent, (1996,1998),
presented a continuous time formulation based on the RTN representation for both
batch and continuous operations, with the possibility of batch size-dependent
processing times for batch operations. Again, the interval durations are determined as
part of the optimization. A MINLP model ensues; this is solved using a local linearization

procedure combined with what is effectively a column generation algorithm.

One of the major disadvantages of the first models developed based on the continuous
STN and RTN mathematical frameworks was the large optimality gap. This issue was
addressed by Schilling and Pantelides, (1996). They developed a hybrid branch-and-
bound solution procedure which branches in the space of the interval durations as well
as in the space of the integer variables. A relaxation of Schilling’s formulation (Schilling
and Pantelides, 1996), has been proposed by Castro et al., (2001). Their model is less
degenerate since it allows tasks to last longer than the actual processing time.
Therefore, smaller CPU time is required. Castro et al.,, (2004) further improved this
formulation in, allowing the optimization of continuous processes. A novel continuous
STN-based formulation was introduced by Giannelos and Georgiadis, (2002). They
utilized a non-uniform time grid, that eliminates any unnecessary time events, thus
leading to small MILP models. Maravelias and Grossmann, (2003), suggested a general
continuous STN-model that accounts for various processing characteristics such as,
different storage policies, shared storage, changeover times and variable batch sizes.
Another well-known MILP model was proposed by Sundaramoorthy and Karimi,
(2005). The model is based on a continuous-time representation with synchronous

slots, while a novel idea of several balances (resource, time, masses etc.) introduced.

The concept of multiple unit-specific time grids was first proposed by lerapetritou and
Floudas, (1998). This approach decouples the task events from the unit events, thus less
slots are required. As a result, smaller MILP models are generated, leading to a
significant decrease in computational effort. Multiple works have been proposed ever
since, improving the computational characteristics and expanding the scope of the

initial formulation (Janak et al., 2006).
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Velez and Maravelias, (2013), were the first to introduce the concept of multiple, non-
uniform discrete time grids. The multiple grids can be unit-, task- and material-specific.
The same authors extended this work with the consideration of general resources and
characteristics like changeovers and intermediate storages (Velez et al., 2017). It should
be noted that while these formulations were initially proposed for network facilities,

they can be also used for the scheduling of sequential environments.

1.2.6 Models for sequential production environments

Scheduling problems of sequential environments do not share the same complexity, in
terms of problem representation, with the ones encountered in network environments.
Therefore, both precedence-based and time-grid based approaches can be employed.
Each of these approaches display specific advantages and drawbacks. On the one hand
precedence-based models generate smaller, more intuitive models that provide high
quality solutions, on the other hand time-grid based models are usually tighter and
computationally superior. As a result, a great variety of models have been proposed to

address sequential production environments.

One of the most important time-grid based models was proposed by Pinto and
Grossmann, (1998). An MILP model has been developed for the minimization of
earliness of orders for a multiproduct plant with multiple production units at each
stage. The representation of time is achieved via two types of individual time grids: one
for production units and one for orders. (Castro and Grossmann, 2005)proposed an
MILP model, for the scheduling problem of multistage multiproduct plants, based on a
non-uniform time grid representation. The formulation has been tested on various
objectives e.g., minimization of makespan, total cost and total earliness and compared it
with other known formulations. It is concluded that the efficiency of the model is highly

depended on the objective and the problem features.

Maravelias and co-workers thoroughly investigated the employment of discrete-time
models in sequential environments. Sundaramoorthy et al., (2009) proposed a discrete
time model to integrate utility constraints for the scheduling problem of multistage
batch processes. Merchan and Maravelias, (2016), proposed two novel formulations,

based on the STN and RTN representation. Furthermore, they introduced tightening
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constraints that allowed for significant computational enhancements. Recently, Lee and
Lee and Maravelias, (2017), presented two new MILP models for scheduling in
multipurpose environments using network representations. Interestingly, states and
tasks were defined based on batches instead of materials, making possible the
consideration of material handling constraints in sequential production environments.
The authors displayed the potential of the proposed models by incorporating important
process features, such as time-varying data and limited shared resources, and by solving

medium-size problem instances to optimality.

The concept of precedence has been extensively studied by the PSE community.
Numerous unit-specific immediate (Cerda et al., 1997), immediate (Méndez et al,
2000a) and general precedence (Méndez and Cerda, (2002a), models have been
proposed for scheduling problems in sequential environments. In initial studies the
batches to be scheduled was predefined and constituted an input data, however later
contributions suggested models for the simultaneous batching and scheduling problem
(Cerda et al,, 2020; Kopanos et al., 2011, 2010b). Méndez et al. (2000) initially proposed
the idea of precedence-based models, while Gupta and Karimi (2003) considered the
impact of big-M constraints on the solution times and the overall performance of the
model. The scheduling problem of a semi-continuous process of a yoghurt facility has
been considered by Kopanos, Puigjaner, and Georgiadis (2010). A general-precedence
MILP model has been presented for the scheduling of packing stage, while efficient mass
balance constraints are imposed on batch stages to ensure the feasibility of generated
schedules. A rescheduling approach, based on the previous MILP model has also been
applied in a dairy industry by Georgiadis et al. (2019). Liu, Pinto, and Papageorgiou
(2010), integrated travelling salesman problem (TSP) constraints in a precedence-
based MILP model for the scheduling problem of single-stage batch plants. Recently,
Cerd4, Cafaro, and Cafaro (2020) considered the scheduling problem of multistage bath
plants with intermediate storage vessels. A general precedence MILP was proposed

including batch sizing and new capacity constraints, to allow batch mixing and splitting.

1.2.7 Scheduling in make-and-pack industries

Current real-world industrial facilities include hundreds of different final products in

flexible facilities operating under several tight design and operational constraints.
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(Georgiadis et al., 2019a). Thus, several companies from various industrial sectors, have
adopted flexible make-and-pack production processes. Production facilities used for
such processes consist of a making stage and a pack stage. Depending on the shelf-life
duration, they can be further categorized to durable goods (such as detergents) and
nondurable (e.g. beverages). One category of the main consumer goods is the Fast-
Moving Consumer Goods (FMCG), which are characterized by frequent purchases, rapid

consumption and low prices.

Méndez and Cerdd (2002a), developed a general-precedence MILP model for the
planning and scheduling of multiproduct make-and-pack continuous processes. The
model includes lot-sizing, timing and sequencing constraints. Intermediate storage
limitations are taken into account by introducing efficient mass balance constraints,
without relying on concept of time-slots or event points. Méndez and Cerda (2002b)
proposed a general precedence-based MILP model for a make-to stock production
facility. Unlimited storage capacity has been assumed for both intermediate and final
products. Giannelos and Georgiadis, (2003), proposed a slot-based, MILP mathematical
framework for the planning and scheduling of continuous processes. The mathematical
framework is based on the STN representation and includes efficient intermediate
storage constraints. The formulation was tested on a medium-size industrial consumer
goods manufacturing process, considering cases with up to 35 final products and 5

packing lines. Feasible schedules are generated within a 5-10% integrality gap.

Janak, Lin, and Floudas (2004) proposed a continuous-time MILP for the scheduling of
batch processes. The model is based on the STN representation using the idea of event
time points. Glinther, Grunow, and Neuhaus (2006) presented two different approaches
for the production planning and scheduling problem of a hair dyes industry, by
introducing the concept of block planning. Castro, Westerlund, and Forssell (2009)
proposed an RTN-based MILP framework considering the scheduling problem of a
tissue paper mill. The generation of byproduct waste has been efficiently taken into
account by introducing novel recycling policies. Elzakker et al.,, (2012), presented a
problem-specific model for the short-term scheduling problem, considering a Fast-
Moving Consumer Goods (FMCG) industry. An algorithm based on a unit-specific,
continuous time interval MILP model is proposed. Dedicated time intervals to specific

product types are adapted to decrease the computational time. In order to assess the
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efficiency and the applicability of the proposed formulation ten industrial case studies
are considered, as provided by Unilever, related to an ice cream production process.
Optimal schedules have been generated for problem instance of up to 73 batches of 8
products allocated to six storage tanks and two packing lines within 170s. The time-
horizon under consideration was 120 hours. The production scheduling problem of an
ice cream facility has also tackled by Kopanos et al., (2012). A real-life case study of 8
final ice cream products, 2 packing lines and 6 aging vessels is introduced. The
simultaneous optimization of all processing stages is achieved, and 50 problem
instances are optimally solved. An MILP-based decomposition strategy is proposed to
handle scheduling problems of large scale food process industries. High quality
solutions were generated for larger cases of up to 24 final products utilizing the

proposed decomposition technique.

An MILP-based hybrid method for a large scale consumer goods case study, has been
developed by Baumann and Trautmann (2014). According to this approach, a subset of
the final operations was scheduled iteratively, via the solution of a general-precedence
MILP model (Baumann and Trautmann, 2013). Medium-sized problem instances were
optimally solved within short CPU times. Aguirre, Liu, and Papageorgiou (2017)
introduced a decomposition algorithm based on the concept of the rolling horizon
approach, considering multistage continuous processes. The algorithm is based on a
general precedence MILP model, assuming unlimited intermediate storage capacity and
same production sequence throughout all stages. Elekidis, Corominas, and Georgiadis
(2019) presented two MILP-based solution strategies for the scheduling optimization of
a real-life, large scale, consumer goods industries. The proposed approaches lead to
significant productivity gains by reducing the total changeover time. Yfantis et al,
(2019), presented a discrete-time, MILP-based decomposition algorithm for continuous
make-and-pack production plants with a large intermediate buffer tank. Extending this
approach, Klanke et al. (2020), integrated a precedence-based, pre-sorting MILP model
to improve the obtained solutions. Georgiadis et al., (2020), studied the integrated
sterilization and packing stage scheduling problem in a large-scale canned fish Spanish
industry. An MILP based decomposition algorithm is utilized to tackle the high
computational cost, as the products are inserted in an iterative way until the final
schedule is generated. A general precedence model efficiently describes the batch

(sterilization) and the continuous (packing) processes of the plant. Recently, Elekidis
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and Georgiadis, (2021), proposed a continuous-time, precedence-based MILP model for
the scheduling optimization problem of multiproduct make-and-pack continuous
processes, with intermediate storage facilities. A new set of binary variables is
introduced to accurately handle material balances and prevent overloading of storage
vessels, without requiring any type of time horizon discretization. New resource
constraints related to the generation and recycling of byproduct waste are also
proposed to improve the utilization of raw materials and minimize byproducts

management costs.

1.3 Integration of planning and scheduling

Among the different decision levels, tactical planning and medium-term scheduling are
strongly connected. Tactical production planning is mainly concerned with determining
efficient production targets over time while considering capacity limitations, mass
balances and other constraints. On the other hand, scheduling level decisions are mostly
related to timing and sequencing decisions. Planning and scheduling are often confused
since no distinct differentiation exists between them. However, it is generally accepted
that planning determines the input of the scheduling problem in terms of production
targets like order sizes, due dates and release dates. Additionally, batching/lot-sizing
decisions can be made in the planning level, thus affecting the type of decisions that
needs to be made in the scheduling level. In that case batching/lot-sizing decisions are
pre-defined, and the scheduling decisions include only unit to task assignment,

sequencing and timing of tasks.

Despite the strong demand fluctuations, it is imperative that facilities satisfy the
customer’s demand. Thus, equipment capacity must be fully utilized, while production
targets must also be feasible. To address this challenge, scheduling level decisions can
be integrated into planning models to enhance accuracy and to guarantee the feasibility

of the generated solutions (Maravelias and Sung, 2009).

Taking this consideration into account, a plethora of mathematical frameworks have
been proposed for the integrated planning and scheduling problem. The major
modelling approaches for the integration of planning and scheduling decisions are

presented in detail by Maravelias and Sung, (2009). Although earlier approaches have
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focused on developing monolithic planning and scheduling MILP formulations that
include detailed scheduling constraints, this endeavor was soon abandoned since it
results in computationally intractable models when the time horizon extends to several

weeks or more months (Maravelias and Sung, 2009).

1.3.1 Planning and scheduling using monolithic approaches

The majority of monolithic approaches mainly focus on scheduling problems while
considering medium-term planning decisions, such as lot or batch sizing. Papageorgiou
and Pantelides (1996), proposed an integrated campaign planning and scheduling MILP
model for semicontinuous process industries. To reduce the complexity of the problem,
the idea of cyclic scheduling have been considered. Méndez and Cerda, (2002),
developed a general-precedence MILP model for making scheduling and lot-sizing
decisions of multiproduct, continuous processes. Novel mass balance constraints are
introduced for the storage of intermediate products without utilizing any type of time
horizon discretization. Giannelos and Georgiadis, (2003) have proposed an MILP model
for the medium-term scheduling of continuous processes, considering also lot-sizing
decisions. The simultaneous batching and scheduling of single-stage batch plants has
been addressed by Castro et al,, (2008). Two MILP formulations have been developed
based on either global precedence variables or multiple time grids. The batching and
scheduling problem has also been considered in multi-stage processes by
Sundaramoorthy et al,, (2009). Kopanos et al.,, (2010), considered the medium-term
planning and scheduling problem of a yoghurt facility. A general-precedence MILP
model has been proposed for the scheduling of packing stage, while lot-sizing decisions
are made for a weekly time horizon. Recently, Cerda et al., (2020), proposed a novel
general-precedence MILP model for the scheduling of multi-stage batch plants. The
model considers batch sizing decisions, while new capacity constraints are also included

to allow for batch mixing and splitting.

Although monolithic approaches can be efficiently applied in small or medium-sized
problems, only a limited number of them are able to solve large-scale industrial
problems when the time horizon extends to several weeks or months. Thus, many
research works have focused on developing hybrid mathematical frameworks by

combining MILP models with heuristic methods or hierarchical decomposition
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techniques (Georgiadis et al., 2019a). Glinther et al., (2006), incorporated the concept of
block planning into an MILP model to solve a real-life production planning and
scheduling problem of a hair dyes industry. Bilgen et al., (2014), proposed a hybrid
method based on an MILP model and a simulation algorithm for the production and
distribution planning in the soft drink industry. The integrated lot-sizing and scheduling
problem of a brewery industry has been addressed by Baldo et al,, (2014). In order to
solve real-life problem instances, a set of efficient heuristic rules are used in parallel
with an MILP model. The same problem has also been solved by Georgiadis et al.,
(2021). Large-scale problem instances can be efficiently solved in acceptable by the
industry computational times, using an MILP-based solution strategy that consists of a

constructive and an improvement step.

1.3.2 Planning and scheduling using the rolling horizon framework

Hierarchical decomposition techniques have also been widely used for long-term
planning and scheduling problems. In hierarchical methods, a set of high-level decisions,
such as production targets, are defined at the planning level. Planning level decisions
constitute the main input of the lower-level scheduling problem that is solved to obtain
a detailed optimal solution. Among various hierarchical approaches, the idea of the
rolling horizon has been widely considered by research community to solve long-term
planning and scheduling problems. The concept of rolling horizon is based on solving a
detailed scheduling formulation only for a few early periods, while aggregated planning
models are solved for the rest of the time horizon under consideration. Decisions
related to the early periods are exact and thus directly implemented, while long-term
planning decisions can be updated as the time horizon rolls. Dimitriadis et al., (1997),
introduced both forward and backward rolling horizon approaches for medium-term
planning and scheduling of multipurpose plants. According to the forward rolling
horizon approach, successive scheduling periods are solved sequentially in detail. On
the contrary, in backwards rolling horizon framework, the last time period constitutes
the first scheduling period that is being solved. Erdirik-Dogan and Grossmann, (2007),
addressed the production planning of parallel batch reactors using an MILP-based
rolling horizon scheme. Sequencing of tasks is accurately taken into account at the

planning level by integrating a set of travelling salesman constraints. Verderame and
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Floudas, (2008) developed an MILP-based rolling horizon framework for the integrated
operational planning and medium-term scheduling of multipurpose batch plants that
produce both made-to-order and made-to-stock products. A feedback loop is also
incorporated into the rolling horizon framework to obtain more accurate solutions,. Li
and lerapetritou, (2010) proposed a rolling horizon approach for the integrated
planning and scheduling of multipurpose facilities. To enhance the efficiency of the
modeling framework, production capacity information is considered in the planning

model by using the method of parametric programming.

1.3.3 Planning and scheduling under uncertainty

A significant challenge within the field of integrated planning and scheduling is the
consideration of uncertainty. Various types of uncertainty can be examined. For
example, customer demand, product prices, demand due times, and raw materials
availability can be modelled as uncertain parameters. As it is described above, the
integration of planning and scheduling is typically a challenging problem. Hence, the
consideration of uncertainty causes a further increase in the complexity of the problem.
However, several industrial cases have proven that the assessment of uncertainty
within planning and scheduling can have a massive impact on the profitability of a plant
as different objectives of a company can be compromised (Verderame et al., 2010). An
important decision is related to which uncertainties must take into account at the
planning and the scheduling level. Furthermore, uncertainty can be classified as
continuous, and discrete distributions. Several techniques can be utilized in order to
examine different types of uncertainty. A detailed description of the different
approaches for integrated planning and scheduling under uncertainty is presented by

Verderame et al., (2010).

Among them, rolling horizon approaches have been widely proposed. Wu and
lerapetritou, (2007), proposed a multi-stage stochastic rolling horizon framework for
the integrated planning and scheduling under demand uncertainty. The time horizon
has been discretized into three stages with increasing levels of uncertainty. An efficient
feedback loop was also integrated into the modelling framework to converge the
planning and scheduling production targets. Verderame and Floudas, (2010), addressed

both demand and processing time uncertainty by developing a rolling horizon
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modelling framework for the operational planning and scheduling of multipurpose
batch plants. The proposed framework allows for a two-way interaction between

planning and scheduling decision levels through a feedback loop.

Usually, methods for modelling uncertainty, such as stochastic programming, can obtain
a solution that performs optimally over a given set of scenarios. These methodologies
are very efficient when the decision-maker is risk-neutral since they focus on
maximizing the potential gains regardless of the risk. This approach is however myopic
since a risk-averse decision-maker would prefer to avoid the opportunity for a
significant gain in favor of safety. Taking this into account, the importance of
considering risk measures in the integrated planning and scheduling model can be
realized. In particular, risk measures such as Value-at-Risk (VaR) and Conditional Value-
at-Risk (CVaR) can constitute a valuable method to control risk in the decision-making
process (Cardoso et al., 2016; Vieira et al., 2020). Both VaR and CVaR evaluate the risk
of a variable under a certain degree of confidence and aim to guard against the adverse
realization of uncertain parameters. Verderame and Floudas, (2010b) considered the
problem of operational planning under due date and demand uncertainty of
multiproduct batch plants, by developing a novel MILP modelling framework based on
the CVaR measure. A sample average approximation has also been utilized to maintain
computational tractability when a large set of scenarios is considered. Vieira et al,,
(2020) proposed a two-stage MILP model for the integrated retrofit design and
scheduling of multipurpose batch plants. The Conditional Value at Risk (CVaR) measure
was incorporated into the mathematical model to evaluate the risk of experiencing both

downside losses and upside gains.

Making realistic decisions while assessing uncertainty may require the consideration of
numerous scenarios. This issue can significantly increase the size of the optimization
problem, making it very hard to solve. To overcome this limitation, various scenario
reduction frameworks have been proposed. Karuppiah et al, (2010) proposed a
heuristic method for the scenario reduction of discrete distributions. Li and Floudas,
(2014), also proposed an MILP model for the scenario reduction problem. To enhance
the quality of the solution, the proposed MILP model takes into account both input and

output space of the initial distribution.
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1.3.4 Planning and scheduling in the pharmaceutical industry

Among different industrial sectors pharmaceutical industry is composed of many
challenging planning and scheduling problems possessing both industrial and academic
significance (Shah, 2004; Marques et al., 2020; Sarkis et al,, 2021;). Planning of clinical
trials is one of the most significant and complex problems in the pharmaceutical
industry, since it lasts several years and costs a tremendous amount of money. A
schematic representation of drug discovery process is depicted in Figure 1.5. Gatica et
al, (2003), considered the pharmaceutical capacity planning problem under clinical
trials uncertainty. Four clinical trial outcomes (high success, target success, low success,
failure) are taken into account for each product, using a multi-scenario MILP model. A
risk measure has also been formulated to evaluate risk and potential returns of each
option. Levis and Papageorgiou, (2004), presented an aggregated, multi-site, planning
model for pharmaceutical industries in an attempt to integrate drug portfolio
management and supply chain design problems. The proposed modelling approach
aims to maximize the patent lifetime of drugs and the total profit. Colvin and Maravelias,
(2008), also addressed the clinical trial planning in new drug development by solving a
multi-stage stochastic MILP model. To address larger problem instances a benders

decomposition algorithm has been proposed by Sundaramoorthy et al., (2012).
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Figure 1.5 Schematic representation of the drug discovery process.
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Production of both active pharmaceutical ingredients (APIs) and final products is a
complex task, as the process industries must comply with strict safety guidelines,
imposed by regulatory agencies, such as Food and Drug Administration (FDA). Hence,
several research works have been focused on the scheduling optimization of
pharmaceutical industries. Stefansson et al., (2006) suggested two MILP models for the
short-term scheduling of pharmaceutical industries. A temporal decomposition is
utilized, as the production stages are scheduled sequentially to reduce the complexity of
the initial problem. The integrated supply chain planning and scheduling of
pharmaceutical industries has been addressed by Amaro and Barbosa-Pdvoa, (2008).
The two decision levels are solved sequentially, while the consideration of reverse
product flows allows for further solution improvement. Castro et al, (2009) also
addressed the scheduling problem of multi-stage batch pharmaceutical industries. To
overcome the complexity of realistic problem instances, an RTN-based decomposition
technique is proposed. The modelling framework allows for partial rescheduling
decisions during each iteration to obtain nearly optimal schedules. An iterative
decomposition algorithm has also been developed by Kopanos et al,, (2010a), for the
short-term scheduling of large scale, multi-stage, batch pharmaceutical industries. A
general-precedence MILP model constitutes the main core of the algorithm that consists
of two main steps. During the first step, a feasible solution is obtained. An improvement
step is also incorporated to obtain good quality solutions. Stefansson et al., (2011),
addressed the integrated planning and scheduling problem of secondary
pharmaceutical industries. An MILP- based solution framework is proposed using a
moving horizon approach to solve real-life problem instances. Sousa et al.,, (2011)
considered the global supply chain planning of pharmaceutical companies. Two MILP-
based decomposition algorithms was proposed to face the complexity of large problem
instances that include production at primary and secondary sites and product
distribution to markets. Vieira et al.,, (2016) proposed a continuous-time, RTN-based,
MILP model for the campaign planning and scheduling of biopharmaceutical processes.
The model includes key problem features, such as shelf life and batch mixing or splitting
constraints. A model-based tool for the production and maintenance planning
optimization in a biopharmaceutical industry has also been presented by Vieira et al,,

(2019).
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1.3.5 Contract Manufacturing Organizations in the Pharmaceutical
Industry

During the last 20 years, due to the shortening of patent life periods and the intense
competition, an increasing trend is noted for outsourcing activities in the
pharmaceutical industry (Jarvis, 2007; Sarkis et al.,, 2021). One of the main advantages
of outsourcing is that it allows large multinational companies to focus on their core
competencies, such as drug discovery and marketing. Furthermore, since CMOs
manufacture products for multiple customers, they benefit from economies of scale and
can decrease individual costs regarding purchasing of raw material, production, and
storage. Outsourcing allows multinational companies to focus on larger product
portfolio without increasing capital expenses associated with the construction of new
facilities (Johnson, 2005; Sarkis et al., 2021). Usually, value of drugs typically halves on
patent expiry. After patent life the competition is more vigorous in the market due to
the development of generic drugs. The typical life-cycle of pharmaceutical products is
also illustrated by Figure 1.6. Hence, a contract can be offered to a CMO even before the
final approval of a drug in order to take full advantage of the patent period.
Furthermore, potential adverse effects can decrease significantly the value and the
demand of new drugs. Under this uncertain environment CMOs has to optimally define
the appropriate contract combination in order to maximize the profit margins and to

ensure their viability.

Johnson, (2005), addressed the contract appraisal problem of Contract Manufacturing
organizations under demand uncertainty in the fine chemicals industry. Based on the
RTN representation, a modelling framework was introduced for the planning and
scheduling of multipurpose network-based facilities. Due to the combinatorial nature of
the problem, each contract combination and each scenario are solved independently, via
a two-phase solution algorithm. The determination of the optimal contract mixture is
made considering risk measures such as Value-at-Risk (VaR) and left-side mean

absolute deviation.
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Figure 1.6 Demand of pharmaceutical products over time

To the best of our knowledge, there is no previous research work that considers the
contract selection problem of CMOs under demand uncertainty in the secondary
pharmaceutical industry in the open literature. Therefore, an optimization framework
for the contract selection of CMOs is proposed in Section 4. Demand uncertainty is
modelled via a set of independent scenarios for each contract. To enhance the solution
accuracy, scheduling level decisions are explicitly taken into account. In particular, an
MILP-based, rolling horizon framework is proposed for the integrated tactical planning
and medium-term scheduling of multi-stage batch facilities. Risk measures such as
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are utilized to evaluate and
mitigate risk while considering the optimal mixture of tendered contracts to accept. A
scenario reduction MILP model is also utilized to solve large-scale problem instances

with multiple scenarios.

1.4 Thesis Overview
This thesis is organized as follows:

In chapter 2, the optimal short-term scheduling of continuous process industries is
addressed. Firstly, two precedence-based MILP models are proposed. Furthermore, two
decomposition algorithms are presented to solve large-scale problem instances. The
proposed optimization methods are applied to real-life industrial problems. More

specifically, the optimal production scheduling of a continuous consumer goods

30



Introduction

industrial facility is considered. It is shown that both methods can provide near-optimal
solutions in low CPU times. Comparing the obtained solution with the manually derived
schedules by the production engineers, significant benefits are noticed in terms of

changeover minimization and productivity improvement.

In chapter 3, the optimal scheduling of continuous make-and-pack processes with
flexible intermediate storage vessels and byproducts recycling is addressed. The
process structure under study is commonly met in several industrial sectors, such as
food and beverages, specialty chamicals and consumer goods industries. Based on a
continuous-time representation, a novel MILP model is proposed. The model relies on a
new set of binary variables that enable the efficient consideration of mass balance
constraints. Constraints related to byproduct recycle streams are also taken into
account to enhance the general utilization of resources and reduce total waste. An MILP-
based solution strategy is proposed to face complex problem instances. An industrially
relevant scheduling problem is considered to evaluate the efficiency of the proposed
modelling frameworks. Results show that the utilization of flexible storage equipment
allows for better synchronization of production stages, while the consideration of

byproduct constraints significantly reduces waste and raw material usage.

Chapter 4 investigates the optimal contract selection problem of Contract
Manufacturing Organizations in the pharmaceutical industry under uncertainty. The
problem is mainly focused on secondary pharmaceutical production. Hence, an
integrated planning and scheduling modelling framework is presented for multistage
batch facilities. The proposed MILP models are solved via a rolling horizon approach. A
solution algorithm is introduced based on a set of discrete demand scenarios to model
demand uncertainty considering risk metrics such as Value-at-Risk (VaR) and
Conditional Value-at-Risk (CVaR). Results demonstrate that the developed modelling
framework constitutes a systematic approach for the contract appraisal problem of
Contract Manufacturing Organizations as it can provide the optimal contract mixture

depending on the corresponding risk tolerance.

Chapter 5 provides a synopsis of the research outcomes of this thesis. Possible future

research directions are also proposed.
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2

Optimal Production Scheduling of
Consumer Goods Industries

2.1 Introduction

This chapter considers the production scheduling of real-life consumer goods
industries. In particular, we focus on continuous make-and-pack processes that
constitute a typical production layout in fast-moving consumer goods industries
(FMCGs), such as the production of detergents or soft drinks. Most of those industries
usually consist of a processing stage that prepares the intermediate products based on a
given recipe, followed by a packing stage. In continuous make-and-pack industries, the
overall production rate is determined by the slowest production stage, which is
typically the packing process. Despite the extensive scientific work on the subject of
optimal production scheduling, these types of facilities were not sufficiently addressed,

thus underlying a significant gap in the literature.

Furthermore, over the past 20 years, the literature illustrates a large number of
scheduling models, which have been mostly applied to generic but relatively small or
medium problem instances (Castro et al., 2009b; Cerda et al.,, 2002; Giannelos and
Georgiadis, 2003; Kopanos et al, 2011). However, current real-world industrial
applications include hundreds of different final products produced under several tight
design and operating constraints (Castro et al, 2018; Harjunkoski et al., 2014).
Therefore, only a few approaches have been used to solve large-scale industrial

scheduling problems, in continuous process industries (Georgiadis et al., 2019a).

The main goal of the work, presented in this chapter, is to effectively fill this scientific
gap, by proposing novel mathematical frameworks that can solve large-scale production
scheduling problems for continuous processes. An immediate-precedence and a unit-

specific general precedence-based MILP models are proposed that approach the
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problem at hand. The models focus on the packing stage, taking also into account
constraints referring to the production/formulation stage, in order to ensure the
generation of feasible production schedules. Constraints related to maintenance
restrictions are also considered. Two MILP-based decomposition strategies are also
proposed to solve realistic problem instances in acceptable computational times, as

imposed by the industry.

In order to evaluate the efficiency of the proposed modelling frameworks, the
scheduling of a real-life consumer goods industry is considered (Elekidis et al., 2019).
More than 300 products can be produced continuously in parallel packing lines. The
production process consists of the formulation/production and the packing stage. In the
formulation stage, multiple intermediate products are produced, while in most cases,
more than one final product can be produced from the same intermediate product in the
packing stage. Each packing line is connected to its own production/formulation unit.
Sequence-dependent changeovers take place in both stages. The changeover times
differ among the various sequences, depending on the package size, the package color,
the intermediate product etc. All changeovers, in the two stages, take place
simultaneously and therefore, the most time-consuming changeover determines the
total changeover time for a product sequence. In addition, due to technical plant
restrictions in the formulation stage, the total number of intermediate products’
changeovers should not exceed an upper limit. The short-term scheduling horizon of
interest is one week, and both the packing and the formulation units are available 24
hours per day. Products’ due dates are considered along with the necessary planned
maintenance activities. The main objective of the plant is the minimization of total

changeover time.

The applicability of the proposed approaches is illustrated by solving several real-life
industrial problem instances in the consumer goods industry under consideration.
Scheduling solutions have been validated by the industry and directly compared with
schedules derived by the operators using simulation tools. Significant changeover time
reductions are achieved, leading to improvements in the overall plant productivity. The
proposed solution strategies also provide the basis of an automated tool that allows

decision-makers to take quick and near-optimal scheduling decisions.
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2.2 Problem Statement

The scheduling problem under consideration is inspired by a real-life, large-scale
industrial plant, of a multi-national consumer goods corporation. More specifically, a
large variety of fast-moving consumer goods (FMCG) is produced on a daily basis for
different purposes. The packaged products are distributed to several countries and
customer centers, depending on their specific features. More than 300 final liquid
detergent SKUs are produced during a week via production campaigns, in order to
satisfy customer demand. A plethora of raw materials and base liquids are transformed
into intermediate products through a continuous production/formulation process.
Intermediate items are packaged in several sizes and types. The high degree of
diversification in the raw materials, enables the production of a huge variety of final

products. The main production stages are illustrated in Figure 2.1.
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Figure 2.1 Plant production stages

According to the current plant layout, fully flexible product allocation is allowed in the
production stage and each intermediate product can be produced in any of the available
production units. Since the production stage is overdesigned, the related scheduling
decisions do not need to be decided in detail. On the other hand, the packing stage
consists of several non-identical packing lines. Underlying production policies often
assign products to selected packing units. Both stages operate in a continuous mode. As
there is no intermediate storage capacity between the two stages, intermediate
products are transported directly to a set of parallel packing lines. Due to the lack of
intermediate storage capacity and according to other design limitations, each

production unit is strictly connected to only one packing line. The packing stage is
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described as the most time-consuming process and constitutes the main production

bottleneck of the plant. The current plant layout is depicted on Figure 2.2.

e Production line 1

¢ Production line 2 WH

Figure 2.2 Plant overview - Current layout

Due to the wide range of raw materials, the different package types and sizes, the
diverse kinds of labels, and other product-dependent features, a large number of
changeovers take place in both stages, thus resulting in large production downtimes,
higher usage of human resources and unnecessary energy consumption. Furthermore,
frequent changes of raw materials, used in the formulation stage, lead to the generation
and the accumulation of undesirable amounts of byproduct waste. The generated liquid
waste is recycled, so that small amounts of it are reused into the next production
campaigns without affecting the product’s quality. The limited storage capacity of liquid
waste imposes un upper bound on the total number of liquid changeovers on a daily
basis. All changeovers take place simultaneously in the two stages and therefore, the
most time-consuming changeover determines the total changeover time for a product
sequence. Changeover times should be explicitly considered, as they constitute a key
feature of the production process. The minimization of the total changeover time is the
overarching target of the plant, as it significantly improves the plant’s productivity, by
decreasing the equipment idle time and generation of byproduct liquid waste in the

production stage.
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The short-term scheduling horizon of interest is one week (or less) and both the
packing and the production units operate continuously 24 hours per day. Full demand
satisfaction must be achieved, and strict due date constraints must be satisfied, since
products have to be delivered on time to the customer’s centers. Various planned
maintenance activities take place as determined by the ERP system of the plant. Once a
product campaign starts, it must be carried out until completion without interruption,
as the splitting of product orders is not allowed due to the underlying industrial policy.
One of the main challenges faced by the planning engineers, is the highly volatile
demand, which makes the production environment extremely dynamic. Frequent, late-
order arrivals, or sudden order cancelations, impose the need of several modifications
in the initial production schedule on a daily basis. Consequently, there is a significant
need for the quick generation of good quality schedules, that will assist the production
engineers in their effort to develop rigorous scheduling plans under dynamic demand

changes.

In general, the large number of products and the high production flexibility increase the
complexity of the scheduling problem significantly. Although the problem under study
is focused mainly on the scheduling of the packing stage, which constitutes the main
production bottleneck, all necessary technical and operational constraints, related to
the production stage, are also considered. Thus, the generation of infeasible production

schedules is avoided.

Since the plant operates continuously 24 hours per day, the main objective function
under consideration is the minimization of the total changeover time. However, other
alternative objectives, such as the minimization of makespan, could also be considered,

depending on the prevailing needs of the plant.

The problem under consideration can be formally defined as follows:

Given:
e The time horizon of interest
e Asetof products

e A set of parallel packing lines/units
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A multidimensional set describing if a packing line is capable to produce the
production order.

The packing units availability

Product due dates and demand

Packing rates of units

The processing time of each product order

The changeover time, expressing the necessary transition time between the
production of two consecutive orders, in each packing unit. The changeover time
of final products is precalculated, based on the products’ package types and sizes,
the package color, the diverse kinds of labels, the related intermediate products
and other product’s features.

An upper limit of intermediate products’ changeovers. Due to the limited plant’s
resources and the liquid waste generation, this upper limit is determined by the
scheduling operators.

The time window, defining if the completion of an order has to take place during
a specific time slot. In that case the related starting time has to be greater than a

lower limit.

Determine:

So as:

The allocation of products to packing lines,
The sequencing of product orders in every packing line,

The completion time of each production order,

Optimize a given objective function.
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2.3 Mathematical frameworks

In this section two MILP models are proposed, to address the real-life industrial
scheduling problem, described above. Both formulations utilize the concept of the
precedence variables. The first mathematical framework is based on the immediate
precedence sequence of product orders in parallel units (Kopanos et al., 2011), while in
the second one, the idea of global sequencing variables is also adopted, leading to a unit-

specific general precedence model (Kopanos et al., 2010a).

It is known that general precedence scheduling models, can be usually solved faster, as
they rely on a smaller number of variables. It has been shown that general precedence-
based models are generally more efficient compared to immediate precedence models
(Méndez et al., 2006). However, sequence-dependent objectives, such as the changeover
minimization, cannot be considered without the incorporation of immediate precedence
variables. The proposed MILP-based models, described in the next two subsections, can
be solved directly, or they can provide the core of MILP-based decomposition strategies,

described in detail in the section 2.4.

2.3.1 Immediate precedence single-stage MILP-model

In this subsection, an immediate-precedence, single-stage model, of parallel units is
described. The model is inspired by an immediate precedence MILP model developed
by Kopanos et al., (2011), for the integrated planning and scheduling problem of parallel
continuous processes. Instead of using the idea of the mixed discrete-continuous time
representation, the proposed MILP model relies on a unified time horizon. Furthermore,
efficient big-M values have been investigated in order to improve the overall
computational performance of the model. Except from the typical assignment, timing
and sequencing constraints, problem-specific constraints have also been included.
Henceforth, we will also refer to this immediate precedence MILP model as IPM. A

detailed description of the MILP model is presented below, as follows:
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Assignment constraints
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Constraints (2.1) guarantee that each product order is assigned to one unit j € J;.
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We introduce the binary variable XX;;; to define the local immediate precedence

between two products i and i’. The binary variable takes the value 1, only if a product
order i’ is processed immediately after production order i in unit j € J. Constraints (2.2)
and (2.3) ensure that, if production order i € I is allocated to packing line j € J, at most
one production order is processed before and after it, respectively. Apparently, in case
that the production order is processed first or last then it has no predecessor or
successor. According to constraint (2.4), the total number of sequences in a packing unit

J € ] has to be equal to the total number of produced orders minus one.

Time window constraints

C; — T; = Lower; Vi,window; =1 (2.5)

According to the underlying inventory constraints of the plant, some products have to
be produced, during a strictly defined time window. These production campaign cannot

start before a lower time limit, Lower;, without also exceeding their related due dates
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DDATE;. The parameter window; takes the value 1, only if a production order has to be
produced during a specific time window as the value Lower; is predefined according to
the industry’s needs. Otherwise, the window; parameter takes the value 0 and the

parameter Lower; is also equal to 0.

Timing constraints

Cir =2 C;+ Ty + XX, v jchangeover; ;y — DDATE;(1 — XX, ;1 ;) (2.6)

..
na|

vi,i' #i,j € (ini’})

’

According to the big-M constraints (2.6), the completion time C;s of a product order i
has to be greater that the completion time of whichever product i is produced
beforehand at the same unit, plus the processing time T;; and the corresponding

changeover time, expressed by the parameter changeover; ;/, only if the binary variable

ii’
XX j, is equal to 1. Constraint (2.6) also ensures the avoidance of sequence subcycles

in the final schedule.

Ci’ S Ci + TI:’ + XXL Changeoverl',l” + (DDATEl/ - Tl’)(]‘ - XXi,l",j) (27)

i

vi,i' #i,j € (i ni’;), window; # 1

Constraints (2.7) enforces the completion time C;s of a product order i’ to be smaller or
equal to the sum of the completion time C; of product i produced prior to order i’ at the
same unit, the processing time T/, and the changeover time, changeover; ;s. Constraints
(2.7) has to be taken into account if the minimization of changeover times constitutes
the objective function, since otherwise unnecessary idle times are observed in the
generated schedules. The production orders, produced in a strict time window,
(window; = 1), are excluded from constraints (2.7), because infeasible production

schedules may be generated.

The selection of the big-M value has a crucial impact on the computational complexity

(Gupta and Karimi, 2003). Increased big-M values relax the domain of the continuous
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variables. A same pattern appears also in the solution of the MILP problem. Hence, the
computational time required, for achieving the global optimum and reducing the
relative gap between the relaxed and the best integer solution, is getting prohibitively
high (Aguirre et al., 2017). In the proposed MILP formulation efficient big-M values have
been chosen, for the purpose of reducing the computational time and providing more

efficient mathematical models.

In particular, according to constraints (2.6), the big-M value is equal to the DDATE;.
Since variable C; is smaller or equal than the parameter DDATE; and the binary variable
XX jis equal to 0, the constraint expresses that € should be greater than the related
processing time, T/, minus a small number (equal to C; — DDATE; ), which is significant

smaller than the usually used value of the time horizon under consideration.

The same concept is also applied in constraint (2.7), as the big-M value is equal to,
(DDATE;» — T;7). When the binary variable XX; ;» ; is equal to 0, the constraint expresses
that the C;» should be smaller than the related due date time (DDATE;/) plus the value
of the variable C;. The proposed value is also significant smaller, than the commonly

utilized value, equal to the scheduling time horizon of interest.

Formula card constraints (Production stage constraints)

z Z Z (XX;r; ;) < Limit (2.8)

Jj iLi€J; i i"#ii'ej;
formula;#formula;

Constraint (2.8) are referred to the production/ formulation stage of the facility. As it
was described above, several changeovers take place among the production of different
intermediate products due to cleaning or other activities. Furthermore, a significant
amount of byproduct waste material is generated, which can be partially reused into the
next product campaigns. Due to the lack of the necessary resources and the limited
storage capacity of the occurred waste the total changeovers related to the intermediate

products with different recipe, formula;, should not exceed an upper limit, Limit.
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Due date constraints

C; < DDATE; Vi (2.9)

Constraints (2.9) forces the completion time of a production order C; to be lower or

equal than its deadline, expressed by the parameter DDATE;.

Objective Functions
a) Minimization of production makespan

min Cpay = C; Vi (2.10)

b) Minimization of total changeover time

min CT = Z Z z XX, jchangeover, ; (2.11)

JjoLiejp il i'£ii'e);

Objective (2.10) expresses the minimization of the total production makespan, Cp,4x,
while constraint (2.11) expresses the minimization of changeovers and unnecessary

idle times.

Planned maintenance activities are also considered. Each maintenance task is
represented by a dummy product order, which is inserted into the production schedule,
by fixing their allocation and their completion variables Y;; and C;. These dummy
product orders have also to be processed during a time window and therefore their

related parameter window; is equal to 1.

2.3.2 Unit-specific General Precedence Single-Stage MILP Model

A single stage, unit-specific general precedence MILP model of parallel units is proposed
here. It is based on an extension of a unit-specific precedence framework developed by
Kopanos et al,, (2012). A continuous time representation has been utilized and problem-
specific constraints have been added. As the main objective under consideration is the

minimization of the total changeover time, timing constraints (2.15) have been
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included, in order to avoid the generation of unnecessary idle times in the package
units. Efficient big-M values have been used in the timing constraints, in order to
improve the performance of the model. Furthermore, constraints related to the
formulation/production stage of the plant, as well as due date constraints have also
been adapted into the MILP model. Henceforth, we will refer to this MILP model as
USGP. Constraints are described in detail, according to the type of decision (e.g.,

assignment, timing, sequencing, etc.), as follows:

Assignment constraints

Z Y, =1 Vi (2.12)

]El]'

Constraints (2.12) guarantee that each product order is processed in just one unit j € J;
Timing and sequencing constraints
Xpij+ X +12Y;+Y; vi,i' >i,je(ijni’}) (2.13)

Cyr = C;+ Ty + XX, jchangeover; s — DDATE;(1 — X, ;1 ;)

(2.14)
vi,i' #i,j € (ijni’))
Ci’ S Ci + Ti’ + XXi,i”jChangeoveri'i’ - (DDATEl’ - Tl’)(l - Xi,i,,j)

(2.15)
vi,i' #i,j € (ij ni';), window; # 1
2(Xp i+ X)) S Yy +Yy vi,i' >i,je(ijni’}) (2.16)

Constraints (2.13) - (2.16) provide the relative sequencing of product orders. The big-M
constraints (2.14) and (2.15) impose the completion time C;s of a product order i’ to be
greater that the completion time and the processing time T;» of whichever producti is
produced beforehand at the same unit, and greater than the changeover time,

changeover; ;s, only if the binary variable X;; ; is active. The binary variable X; ;s ; is

P
Li,J

active only if product i’ is produced after product i. The big-M values are defined, as
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described in subsection 2.3.1 for the timing equations (2.6) and (2.7). Constraints (2.15)
ensures the avoidance of unnecessary idle times. Constraints (2.13) and (2.16) state
that when two products are produced at the same unit, only one global sequencing
binary variable has to be active and when one of the binary variable X;s; ; and X, ; is

Ll

active, at least one of the ¥; ; and Y7 ; has to be active as well.

Immediate precedence constraints

Zip i+ XXy = X5 ViiLj e (i niy) (2.17)

R
Lt,j L) = Lt,j

A (X j + Xy g ;) + M(1 = XX, 0 ;)

i1 je(ijni’ ;) (2.18)

ii'j —

vi,i',j e (ijni’))

The variables Z; ;7 ; determine the position difference among two products produced in

the same packing line. When Z; ;7 ; is equal to 0, product i is produced exactly before the
i'. Variable Z;; ; are then calculated in equation (2.18). As a result, according to

constraint (2.17) the immediate precedence binary variable XX;; ; takes the value 1
only when variables Z; ;s ; are equal to zero. The binary variable XX; ; ; takes the value 1

when product i’ is produced exactly after product i. The difference among the

immediate and the global sequence binary variables is illustrated in Figure 2.3.

X1,2,1 =1 XX1,2,1 =1 X2,3,1 =1 XX2,3,1 =1

Time horizon
X1,3,1 =1 XX1,3,1 =0

Figure 2.3 Immediate and general precedence binary variables
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Formulation/production stage constraint

T Y e <mi -

j iLi€); i i'#ii'e);
formula;#formula;

Similarly to constraints (2.8), constraints (2.19) guarantee that the number of
sequences between products with different recipes, formula;, does not exceed an
upper limit (Limit) which is determined by technical restrictions in the plant. To take
into account the above, the usage of the immediate precedence binary variables is

necessary.
Due date constraints

C; < DDATE, (2.20)

Constraint (2.20) forces the completion time of a production order C; to be lower or

equal than a deadline, expressed by DDATE;.
Time window constraints
C; — T; = Lower; Vi,window; =1

(2.21)

Similarly to the constraints (2.5), constraints (2.21) refers to products that have to be

produced within a strict time slot.
Objective function
a) Minimization of makespan
min Cppqy = C; Vi (2.22)

b) Minimization of products changeover time

min CT = Z Z Z XXy jchangeover, ;s
j o Li€); i, i #1i'e);
formula;# formula;

(2.23)
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While both objectives are often considered in scheduling problems, the continuous
operation mode of the plant, determine the minimization of the total changeover time as
the most appropriate one. Planned maintenance activities are considered as described

in section 2.3.1.

2.4 Solution strategies

In general, the above MILP mathematical models, illustrate a strong advantage
comparing with other models, due to their ability to provide the best solutions,
especially for small or medium-sized problem instances. However, they cannot be used
for the efficient solution of large-scale problem instances. Short solution times are a

prerequisite for the acceptance of scheduling solutions by the industry.

Hence, MILP-based decomposition strategies are necessary, to satisfy the emerging
industrial needs for practical implementation of scheduling solutions (Georgiadis et al.,
2019a; Harjunkoski, 2016; Harjunkoski et al, 2014). It should be noted that the
proposed models are suitable for the particular process structure which does not

include recycle or complex recipes.

Input data
(e.g. packing rates, __ Output
changeover times,

demand)

-Products’ allocation
-Products’ sequence

Solution
MILP model Algorithm
precedence-based MILP
model

-Starting/completion
times

Figure 2.4 Schematic representation of the solutions strategies’ structure

The MILP formulations, described in section 2.3, constitute the main core of the

proposed solution strategies. They aim to generate good quality solutions, in short
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solution times, accepted by the plant. A brief schematic representation of the proposed

solution strategies is illustrated in Figure 2.4.

2.4.1 Solution strategy - ST1

This strategy, consists of i) a unit-specific general precedence single-stage MILP model,

described in subsection 2.3.2, ii) a constructive step and iii) an improvement step.

“" Production orders N

are sorted based on
the chosen insertion
policy

/

Products unit allocation binary Products immediate
variables, Y; ; and general precedence binary variables,
precedence binary variables, XX j and timing variables C;
X“/J are fixed remain free

production orders [ € P; are
inserted based on the chosen
insertion policy

dais
9AIdNIISU0)

Have all the
products been
inserted?

\_

15 the time Production orders i with A Tnitla

fThe z§st solutioz limit N-5 < order(i) <N feasible
QURCUISFEROE exceeded? are reinserted schedule is
achieved _

g

dazs
juawanosdw

Figure 2.5 Schematic representation of the solution strategy - ST1

The key idea is to decompose the initial large-scale industrial scheduling problem into
smaller tractable subproblems (Kopanos et al., 2010a). Firstly, an initial feasible
solution is generated via the constructive step. The generated scheduled can be further
improved via an integrated reordering step. Figure 2.5 illustrates the proposed

decomposition technique.

2.4.1.1 Constructive step

At each iteration a subset of the product orders ie P; is scheduled. These MILP
subproblems are solved much easier, as the complexity and the computational time is

significantly decreased. After each iteration, the global sequencing variables X, ;, as
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well as the allocation variables Y; ; of the inserted products are fixed. On the contrary,
the timing variables C; and the immediate precedence binary variables XX; ;s ; remain
free. The complete schedule is generated when finally, all products are inserted. An
optimality gap of 0% is aimed at each iteration. However, industrial requirements
impose an upper bound on the total computational time. Hence, a time limit of 3

minutes, has been set for the solution of each subproblem.

In order to provide better quality schedules, the last production orders, processed
before the starting time of the new schedule, are set as the first production campaigns
on each packing line. This way, the changeover time among the first product of the new

schedule and the last produced campaign is also taken into account.

The simultaneous utilization of both general and immediate precedence binary
variables, increases the flexibility of the algorithm, providing further alternatives during
the insertion of new production orders. Figure 2.6 illustrates the allowed and the

forbidden relative sequences of a new production order.

Furthermore, a set of efficient integer cuts are imposed in order to increase the
computational efficiency. In particular, if a production order i€ P; is allocated to a
specific packing unit, then all precedence binary variables, related to other packing lines
and later inserted products i’ ¢ P, are fixed to zero. These integer cuts decrease the
complexity of the subproblems and improve the overall performance of the method.
Constraints (2.24), (2.25), (2.26) and (2.27) express explicitly which binary variables

are enforced to zero.

Xp; ;=0  ViieP,Y,; =0,i'¢ P,je(ini)) (2.24)
Xup;=0  ViieP,Y,; =0,i'¢ P,je(ini)) (2.25)
XXyp;;=0 ViieP,Y,; =0,i'¢ P,j€(ini') (2.26)
XX, ;=0 ViieP,Y,; =0,i'¢ P,je(ini)) (2.27)
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Initial sequence
X12171 XXy 2471

7~ N

Product 1 Product 2

Allowed sequences of the
newly inserted products

Product 1 Product 2

Indicative forbidden

sequence
Product 2 Product 1
X3,1171 XX31171

Figure 2.6 Allowed and forbidden sequences, according to the solution strategy ST1

The insertion policy constitutes a key step for both the computational efficiency and
more importantly, for the quality of the solution. As a result, various insertion policies
should be considered (Kopanos et al.,, 2010a). As the initial problem is solved iteratively,
the number and sequencing of inserted products have to be decided. Two insertion
criteria are used in order to avoid the generation of infeasible schedules. According to
the first criterion, production orders are sorted firstly by the earliest due dates.
Moreover, it is often observed that by minimizing the total changeover time, some
packing lines are fully utilized. As a result, by inserting products with limited unit
allocation flexibility in the last iterations, infeasible production schedules may be
generated, due to the lack of unit availability. Thus, it is proposed to insert first products
with limited unit allocation flexibility. In other words, products with limited allocation

options to packing lines should be scheduled first. The planned maintenance activities
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are always scheduled first, by inserting a number of dummy product orders and fixing

the allocation and ending time variable of them.

The number of inserted products i € P;, has a huge impact in the initial feasible solution
and the overall performance of the algorithm. As this number is increased, better
quality solutions are expected due to larger degrees of freedom. However, more
complex subproblems have to be solved and thus the computational time in increased.
Taking into account current industrial requirements regarding the solution time and
specific problem features, different insertion policies could be employed. Several real
tests have illustrated, that a 5-by-5 product insertion policy is the optimal one for the
problem under consideration since by inserting larger groups of products, the solution
is not improved and the computational cost is increased, as it is discussed in section
2.5.2. In particular, an indicative comparison between 3 different insertion policies is

presented in Table 2.8, depicting the advantages of a 5-by-5 insertion policy.

2.4.1.2 Improvement step - Reinsertion stage

The initial feasible solution, generated by the constructive step can be further improved
via an iterative process. Following the main idea of previous research contributions
(Basan et al., 2019; Kopanos et al., 2010a), a subset of products i € [T¢" are released
from the initial schedule, in order to achieve better unit allocation and sequencing
decisions. The allocation, sequence and timing variables of productsi € I"®" are
relaxed. However, the allocation and the relative sequence variables of products i €&

I™®™ remain fixed. The products are reinserted iteratively and small subproblems are
solved. Similarly to the constructive stage, a tradeoff between the computational time
and the solution quality exists. Since the number of reinserted orders is increased, more
complex subproblems have to be solved (Basan et al.,, 2019; Kopanos et al.,, 2010a).
Since the proposed solution strategy focuses on solving a large-scale industrial problem,
high computational times should be avoided as required by the industry. Hence, in this
approach 5 products are reinserted in each iteration. According to the selected insertion
policy in the constructive step and the comparison of results presented in Table 2.8 this
insertion policy is the optimal one. A different number of reinserted products can be
defined by the scheduler, depending on the underlying scheduling problem features and
the desired plant policy. To fully satisfy the industrial requirements and to avoid high
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computational times, a time limit of 1200s is set. As the total computational time
reaches this limit, the reinsertion stage is terminated, and the best solution found is
reported. The improvement stage could also be terminated once a better solution is

achieved, in case the number of production orders is too high.

2.4.2 Solution strategy - ST2

The main core of this strategy is the immediate-precedence model, described in
subsection 2.3.1. Following a similar structure with solution strategy ST1, the proposed
approach consists of i) the MILP model, ii) a constructive step and iii) an improvement
step. A schematic representation of the proposed solution strategy is described in

Figure 2.7.

2.4.2.1 Constructive step

A number of smaller-size subproblems is solved iteratively. On the contrary with the
previously described decomposition technique, higher number of orders i€ P, are
inserted in each iteration. The product’s allocation binary variables, Y; j»as well as, the
immediate precedence binary variables, XXi,i’,j' are fixed after the solution of each

subproblem. In particular, a number of smaller sub-schedules, forms the constituent

parts of the final schedule, that achieved when all production orders are inserted.

Contrary to the solution strategy ST1, even a larger number of products can be inserted
at each iteration. Furthermore, global optimal solutions or solutions with an optimality
gap of less than 3% are achieved in each subproblem. A limit on the solution time is
again imposed, to avoid the generation of schedules which are not acceptable by the

plant operators.

The size of each subproblem has a crucial impact on the quality of the final solution.
Taking into account relevant industrial requirements it is of the highest importance to
guarantee that all subproblems are solved with a small (0% -3%) optimality gap and
within the time limit of 300 CPU s. The solution of smaller size subproblems tend to
minimize the complexity, requiring less computational effort. However, at the same
time, as all binary variables are fixed after the solution of each iteration, low quality

final schedules are generated. On the other hand, a lower degree of decomposition may
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result to intractable subproblems, which cannot be solved to optimality in reasonable
computational times. Hence, medium size subproblems should be preferred, which can
be solved fast enough without sacrificing the quality of the solution. According to this
tradeoff, several tests indicate that at maximum 35 products should be scheduled in
each iteration. As it is demonstrated in Table 2.1, problem instances with even up to 35
products can be optimally solved by using the immediate precedence MILP model, since
solutions with small optimality gaps (less than 3%) can be achieved within the 300 CPU
s. On the contrary, in larger subproblems the intended optimality gaps cannot be

guaranteed due to the large model sizes.

“ Production orders ™

are sorted based
on the chosen
insertion policy

/

Products unit allocation binary
variables, ¥; ; and immediate Products timing variables C;
precedence binary variables, remain free

XX j are fixed
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Figure 2.7 Schematic representation of the solution strategy - ST2

The insertion policy has also a huge impact in the performance of the decomposition
algorithm. In the same concept with the previously described solution strategy ST1,
products with the earliest due dates are inserted first. As a second criterion, products
with limited unit allocation flexibility are inserted first. Possible maintenance activities
are also scheduled before other production orders, by fixing the corresponding
allocation variables and completion times. The immediate precedence-binary variables

of the maintenance activities remain free.
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The last production campaigns, produced before the time horizon of interest, are also
considered into the final solutions, by taking into account the corresponding
changeover times. In particular, dummy production orders, with zero production time,
T; and the same features with the last production campaigns of the previous schedule,
constitute the first production orders of each packing line. Hence, possible time-
consuming changeover times, related to the first product sequence of each packing line,

tend to be avoided, as they are also taken into account.

Effective integer cuts are imposed after the solution of each subproblem. Unnecessary
sequencing combinations are eliminated, to reduce the computational effort. According
to the constraints (2.28) and (2.29), if a production order, i € P;, is not processed in a
specific packing line je/, ( Y;; =0), then all the related immediate precedence

variables XX/ ;  and XX, s ;, for production orders i’ ¢ P, are forced to zero.

XXy, =0 ViieP,V,; =0,i'¢ P,je(ini)) (2.28)

XX, . =0 ViieP,Y,; =0,i'¢e P,je(ini) (2.29)

2.4.2.2 Improvement step - Reinsertion stage

An additional step is integrated into the solution algorithm to improve the initial
generated schedule by the construction step. Given the allocation decisions, sequencing
decisions of each product can be fully redefined to further reduce the sequence-
dependent changeovers and the corresponding changeover times. Hence, the allocation
variables of the productsY;; are fixed. Sequencing subproblems, equal to the total
number of packing units, are solved iteratively. A subset of products i € [7¢°rd which
have been assigned to the same production unit in the constructive stage, is allowed to

be reordered by relaxing the related sequencing variables XX; Since only the

L
sequencing variables are redefined, small subproblems are solved aced in each iteration
with a 0% optimality gap achieved in less than 30 CPU s. After considering all possible
sequencing problems of each packing unit, the final schedule is generated. A schematic

representation of the proposed improvement step is also presented in Figure 2.7.
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2.5 Industrial case studies

In order to assess the applicability and the efficiency of the proposed MILP models and
solution strategies, a number of indicative real-life case studies of a consumer goods
industry is considered. All models were implemented in GAMS (General Algebraic
Modeling System), and solved utilizing the IBM ILOG CPLEX 12.0 solver on an 3.60 GHz
Intel Core i7 7700 processor and 16 GB RAM.

In collaboration with the plant engineers, an efficient tool has been developed, to
facilitate data exchange through a direct communication of GAMS and the ERP systems
of the plant. A middle Microsoft Excel file is generated automatically, which includes
customers demand, products special features, due dates and other essential
information. The GAMS files are also called automatically and the problem under
consideration is solved by utilizing an MILP model or a solution strategy. The generated
solutions can be illustrated via interactive Gantt charts, or via Microsoft Excel sheets.
Frequent late order arrivals, force the plant operators to modify the initial schedules in
order to fully satisfy the demand. Due to the current industrial needs, the optimized

schedules have to be generated in less than 20 minutes (1200s).

Several real-life case studies have been studied, and schedules have been generated by
first solving the monolithic MILP models directly (described in subsection 2.3.1), or by
implementing the proposed solution strategies ST1 and ST2. All problem instances are
real industrial cases based on historical data and product demands. All results have
been fully validated by the industry, and detailed comparisons, with manually generated
schedules or with simulation tools have been made by the operators. Data related to the
specific product features and the capacity of the plant cannot be disclosed due to
confidentiality issues. Since, the plant operates continuously 24 hours per day the main
objective is the minimization of the total changeover time. The changeover time savings
can also lead to productivity improvements by reducing idle times of the production

units.

2.5.1 Small and medium size problem instances

For small problem instances, the direct solution of the immediate precedence, single

stage MILP model, described in subsection 2.3.1 is considered. Several tests illustrated

54



Optimal Production Scheduling of Consumer Goods Industries

that the immediate precedence MILP model provides better quality solutions comparing
with the unit-specific general precedence (USGP) MILP model. A detailed comparison of
the two proposed MILP models, for 3 indicative problem instances, is presented in Table
2.1. In particular, detailed information related to the computational features and
solutions found within the time limit of 1200s CPU time is provided. It is observed that
for the same problem instances the number of variables is strongly augmented by
utilizing the USGP MILP model. As a result, the immediate precedence MILP model leads
to better quality solutions and smaller optimality gaps. It is worth mentioning that for
the third problem instance not even a feasible solution is reported by utilizing the USGP

model.

Table 2.1 Comparison between the immediate precedence and the unit specific inmediate
precedence MILP models

Problem Instance 1 2 3
Number of Products 35 45 55
MILP Model IPM USGP IPM USGP IPM USGP
Constraints 3282 17866 5622 29776 7092 35436
Binary Variables 1520 3071 2660 5371 3380 6515
Continuous Variables 459 10851 4058 18001 5008 21365
CPU time (s) 560 1200 1200 1200 1200 1200
Optimality gap (%) 0 3.8 5.6 22.6 8.9 -
Solution - Total
changeover time 7.5 7.79 8.65 10.08 9.38 -
(hours)

*IPM= Immediate precedence MILP model
**USGP = Unit specific general precedence MILP model

The majority of the products are described by high unit allocation flexibility, as most of
the products packed in more than one packing lines. The generated schedules have been
compared with the implemented schedules of the plant and results are summarized in
Table 2.2. An exhaustive list of the computational features and the model sizes of the
problems under consideration is presented in Table 2.3. As it is observed, significant

changeover savings are achieved, thus resulting in a noticeably decrease in the total
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production time. In particular, the total changeover time is decreased by 33 minutes
(6.72%), in the first case study and goes up to 222 minutes (22,05%) in the seventh one.
These savings can also be translated to important improvements on the plant’s
production time, from 0.36% in the first case up to 2.30% in the last one. It should be
also noted that, the total changeover time is decreased in all the MILP-based schedules
compared to the schedules realized by the plant operators using simulation tools. In

addition, higher improvements are observed in larger problem instances.

It is observed that small optimality gaps are achieved in all cases. Furthermore, in small
problem instances global optimal solutions can be achieved within the imposed time
limit. In Figure 2.8, an indicative Gantt chart is depicted including also a planned

maintenance activity.
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Figure 2.8 Indicative Gantt chart including maintenance activities

Two additional industrial case studies, with limited product-allocation flexibility to
packing units, have been considered. The majority of products can be packed in one
packing line only. Results are illustrated in the Table 2.4. A significant changeover time
reduction is achieved in both cases, comparing with the operating policy of the plant.
The changeover time savings lead to an improvement on the total production time of

over than 0.5%. It has to be mentioned that 0% optimality gaps have been achieved in
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all the problem instances under consideration. A detailed list of the computational
features and the model sizes of the problems under consideration is presented in Table

2.5.

Table 2.2 Comparison between the immediate precedence MILP model and the plant’s schedules

Changeover % %

Case Products time Changeover Improvement (.:PU Optimallity
study UL reduction time on the total time gap (%)
SEHELee (minutes) reduction  production time )
1 45 33 6,72% 0,36% 461 0
2 51 68 8,79% 0,61% 1200 3.2
3 49 75 9.34% 0.69% 1200 1.3
4 65 189 14,08% 2.32% 1200 6.1
5 68 201 20,99% 1,47% 1200 9.7
6 38 124 20.74% 2.16% 480 0
7 55 222 22.05% 2.30% 1200 5.7
Table 2.3 Computational features of the problem instances under consideration
Case Products to be Constraints Binary Continuous
study scheduled variables variables
1 45 8198 3059 6077
2 51 10628 3,983 7,805
3 49 9778 3659 7205
4 65 17194 6447 12677
5 68 19040 7169 13876
6 38 5818 2163 4334
7 55 12448 4679 9077
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Table 2.4 Comparison between the proposed MILP model and the plant’s schedules

Products Chan_geover % Changeover % improvement CPU . .
Case time . . Optimallity
STy to be reduction time on the total time gap (%)
scheduled . reduction production time (s)
(minutes)
1 41 78 11.04% 0.53% 536 0
2 33 69 11.86% 0.72% 351 0
Table 2.5 Computational features of the problem instances under consideration
Case Products to be Constraints Binary Continuous
study scheduled variables variables
1 41 2891 1117 4992
2 33 2110 600 2682

In all cases, solution times are less than 20 CPU minutes and fully acceptable by the
plant. Strict packing line allocation constraints can affect the efficiency of the model. The
proposed modeling strategy is able to optimally solve real problems with approximately
up to 65 products in 3 parallel lines. For larger problem instances, the computational
cost is prohibitively high and as a result, not even a feasible solution can be generated

within the imposed time limitation.

2.5.2 Large industrial problem instances

Several larger industrial problem instances have been also studied. A detailed
comparison of the immediate precedence MILP model and the solution strategy ST1 is
presented in Table 2.6. The initial feasible solutions are also presented in order to
depict the benefits of the proposed improvement step. The decomposition algorithm
results to significant savings in the changeover time by sacrificing part of the quality of
the solution. More specifically, the changeover time is reduced by 57 minutes (5.37%) in
the first case and by 67 minutes (5.83%) in the second one. These savings are translated

into an improvement in the total production time, by 0.49% and 0.47% respectively.
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Table 2.6 Comparison between the proposed MILP model, the solution strategy ST1 and the plant’s
schedules

0,
Products CPU Char!geover o % Improvement
Case . time Changeover
to be Approach time . . on the
study reduction time . .
scheduled (s) . . production time
(minutes) reduction
Listage 44 47 4.43% 0.41%
solution
1 50 Impr:t‘;me“t 795 57 5.37% 0.49%
IPM 1200 60 5.75% 0.54%
1+ stage 670 52 453% 0.37%
solution
2 62 Impr;’t‘;;me“t 530 67 5.83% 0.47%
IPM 1200 104 9.12% 0.75%
st
1+ stage 728 356 24.39% 2.22%
solution
3 73 Impr;’t‘g;me“t 472 378 25.89% 2.35%
IPM 1200 - - -

Although global optimal solutions cannot be achieved, relatively good quality schedules
are generated in comparison with schedules obtained via the direct solution of the MILP
monolithic model. In the first problem instance a 3.4% optimality gap has been achieved
by utilizing the immediate precedence MILP model, while a solution with a 5.8%
optimality gap has been obtained in the second one. Nevertheless, the proposed
monolithic MILP model, can only be used for medium problem instances (case study 1
and case study 2), since in larger problems, such as case study 3, which involves 73
products, a feasible solution was not even obtained. In the third case study under
consideration, a significant improvement in the changeover time is observed by
applying solution strategy ST1. The total changeover time is reduced by 378 minutes
(25.89%), which corresponds to an improvement of 2.35% in the total production time.
The computational features of the case studies under consideration are presented in

Table 2.7.
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Table 2.7 Computational features of the problem instances under consideration

Case Products to be Constraints Binary Continuous

study scheduled variables variables
50 36771 6629 22251
62 55887 9625 34287
73 81396 17203 47597

The evaluation of the various insertion policies, is illustrated via an indicative
comparison, presented in Table 2.8. This case study includes 50 products and 3 packing
lines and it is solved using both the construction stage of the decomposition algorithm
(ST1) and the monolithic MILP model, described in the subsection 2.3.1. The 5-by-5
insertion policy solution seems to be the optimal one. In addition, the computation time
is significantly decreased by applying a 1-by-1, or 5-by-5 insertion policy. On the
contrary, the application of a 10-by-10 insertion policy, increases the complexity of the
subproblems and an optimality gap of 0% was not achieved under the solution time
limitations. As a consequence, the computational time is gradually increased, and higher

changeover time values are obtained.

Table 2.8 Comparison between the MILP model and solution strategy ST1 for different insertion
policies

Solution strategy (ST1)
IPM : . ; . .
Insertion policy Insertion Insertion policy
1-by-1 policy 5-by-5 10-by-10
Changeover (hrs) 17.9 19.89 18.06 18.9
Computational Time (s) 3360 360 768 2172
Optimality gap (%) 0 - - -

*IPM= Immediate precedence MILP model

Further representative large-scale, real-life case studies have also been considered and
solutions were generated by utilizing solution strategy ST2. These case studies include
more than 60 products, with high product allocation flexibility, and 3 packing lines. The
insertion policy involves 35 products in each iteration. An extensive comparison

between solutions obtained by the decomposition algorithm and real schedules realized
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by a plant is shown in Table 2.9. The computational time for the constructive step (1st
stage) as well as the total computation time are also included to the same table. A
significant changeover time reduction is achieved, from 90 minutes (9.01%), in the third
problem instance, up to 925 (31.20%) minutes in the fifth one. These savings lead to an
important improvement in the plant productivity. In particular, the total production
time is decreased from 0.54% in the third case, up to 3.67% in the fifth one. It is worth
mentioning that the initial feasible solutions can be significantly improved via the
proposed improvement step. Indicatively, in the fifth problem instance, the total

changeover time is decreased by 180 minutes (3 hours). Hence, the plant productivity is

further improved by even 0.57%.

Table 2.9 Comparison between the proposed solution strategy ST2 and the plant’s schedules

0, 0,
Products cpy Changeover %o %o
Case to be time time Changeover Improvement
Sudy . 4 eduled (s) reduction e S
(minutes) reduction  production time
1st st_age 781 106 7.96% 0.73%
solution
1 74
Impr;)t\;;ment 148 180 13.51% 1.19%
1st stgge 764 2cg 23.16% 2.43%
solution
2 66
Impr;)t\;;ment 192 301 27.02% 2.56%
1st stfalge 792 49 4.90% 0.31%
solution
3 63
Impr;\;;ment 106 90 9.01% 0.54%
1st stgge 792 251 22.53% 2.36%
solution
4 66
Impr:t‘:;ment 212 317 28.47% 2.70%
1st stgge 380 745 25.14% 3.10%
solution
5 119
Imprsot\;;ment 314 925 31.20% 3.67%
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The computational features of the case studies under consideration are presented in
Table 2.10. In particular, the total number of equations and the large number of binary
and continuous variables depicts the necessity to utilize decomposition algorithms in
order to provide good quality solutions for larger problem instances. Indicatively, the
fifth case study under consideration consists of even 42538 binaries and 29048

continuous variables

Table 2.10 Computational features of the problem instances under consideration

Case study Products to be Equations Biflary Cont_inuous
scheduled variables variables
1 74 19480 6960 16421
2 66 17690 6629 13070
3 63 12928 4443 11895
4 66 17386 6588 12994
5 119 72386 42538 29048

2.5.3 Comparisons between the solution approaches

An extensive comparison between the two proposed solution strategies (ST1 and ST2)
and the immediate precedence MILP model is presented. Three indicative medium-size
case studies are considered, and an explicit comparison of the three methods is
summarized in Table 2.11. As expected, the direct solution of the MILP model leads to
good quality solutions with acceptable optimality gaps and within the time limit of
1200s. Furthermore, solution strategy ST2 provides better solutions than the ST1, with
smaller computational times and therefore schedules are better than the ones

implemented in the plant by the operators.
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Table 2.11 Comparison between the proposed MILP model, solution strategies ST1 and ST2 and the
plant schedules

Case % Planners
study IPM ST1 ST2 schedule
Number of products 49
Changeover time 13,39 15.8 15,32 16,8
(hours)
1
Total CPU time (s) 1200 1200 730 -
Optimality gap 12% - - -
Number of products 55
Changeover time 12.17 12.6 12.59 12.71
(hours)
2
Total CPU time (s) 1200 820 601 -
Optimality gap 8% - - -
Number of products 62
Changeover time 12.55 13.31 13.18 15.29
(hours)
3
Total CPU time (s) 1200 1200 820 -
Optimality gap 9.3% - - -

*IPM= Immediate precedence MILP model

A further comparison between the two proposed solution strategies for larger-scale
problem instances is illustrated in Table 2.12. Although, both techniques are able to
decrease the total changeover time, strategy ST2 leads to higher reduction in the total
changeover time with less computational effort. In addition, smaller optimality gaps are
achieved in the solution of subproblems using strategy ST2, thus affecting the quality of
the final solution. It is worth mentioning that no solution is reported from the MILP

model within the time limit of 1200s.

The generated schedules, related to the third case study of the Table 2.11, are visualized
via Gannt charts in Figure 2.9. In this problem instance, 62 products are scheduled
within a time horizon of 90 hours. According to Table 2.11, the total changeover time is
decreased by even 17.9% (2.7 hours) by utilizing the MILP model. A significant
changeover time reduction is also achieved by using the solution strategies ST1 and ST2

(1.97 and 2.1 hours respectively).
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Table 2.12 Comparison between solution strategies ST1 and STZ and the plant schedules

Planners
*
Case study ST1 ST2 IPM schedule
Number of products 66
1 Changeover time 871 855 . 1114
(minutes)
Total CPU time (s) 839 886 1200
Number of products 79
2 Changeover time 932 863 1200 1115
(minutes)
Total CPU time (s) 984 860 - -

*IPM= Immediate precedence MILP model

Given the huge production throughputs in the plant, the aforementioned savings

correspond to a notable improvement of the overall profitability. The minimization of

the total changeover time leads to an increased plant. The product dependent

changeovers correspond to Cleaning-In-Place (CIP) and/or setup operations. Hence, the

minimization of changeovers represents also savings in the utilization of plant

resources, such as manpower, steam and energy consumption. Since the available

production time is increased, maintenance activities could be planned more efficiently

to avoid the unexpected units’ breakdowns. As a result, the generated schedules lead to

significant improvements in the overall plant efficiency something that has been also

acknowledged by the underlying industry
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Figure 2.9 Gannt Charts for the plant schedule and optimized schedules

2.5.4 Real-time tests in the plant

For the purpose of fully validating the proposed methods, several real-time tests have
been made in the plant. These tests are concerned with the arrival of new orders or
order modification at real-time. As such, there is no comparison with existing
scheduling approaches in the plant. Depending on the problem’s complexity, different
solution methods have been used. For smaller problem instances the direct solution of

the immediate precedence MILP model is chosen, while the use of the ST2 method is
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preferred for larger instances. The generated optimized schedules fully satisfy all
technical and operational constraints of the plant and they have been used to modify the

manually generated schedule of the planners.

2.6 Conclusions

This work presents two MILP models and two solution strategies for the short-term
scheduling of a real-life, large-scale, continuous process plant, of a multi-national
consumer goods corporation. Emphasis is placed on the packing stage which constitute
the main bottleneck of the plant. An extension of a previously proposed immediate
precedence MILP model is used, for the efficient solution of medium size problem
instances within solution time limitations imposed by the industry. The model takes
into account all constraints relevant to the formulation stage in order to avoid infeasible
schedules in the packing stage. Furthermore, two MILP-based decomposition strategies
are developed for the solution of larger problem instances. Both techniques constitute
problem-specific methods, resulting in relatively good quality solutions which compare
favorably with schedules realized on the plant. Significant benefits related to the
productivity of the plant are achieved, for a large set of realistic problems. All generated
schedules have been fully validated by the industry. As expected for small or even
medium size problems the direct solution of the immediate precedence MILP model is
preferred. For larger problem instances solution strategy ST2 compares favorably with
solution strategy ST1. The proposed approaches can provide significant support to
scheduling decision makers in order to cope with challenging scheduling problems
typically met in industrial facilities. This work illustrates the impact of scheduling
optimization on the overall performance of an industrial facility and provides clear
evidence for the need of using optimization-based techniques for challenging scheduling
problems. Finally, this work highlights some serious obstacles that have to be
confronted in order to successfully implement scheduling optimization methods in the
industrial environment. The accuracy of the data is vital for the solution quality, hence
the direct connection of the scheduling methods with the EPR system via integrated
tools is critical. In the course of this study it was revealed that often the generated
schedules should be easily modified by the plant operators, due to frequent unexpected

events occurred, such as new order arrivals or order cancellations. For this end, the
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solution visualization via interactive Gannt charts provides the decision makers with

flexibility and allows necessary adjustments prior to the final application of the

proposed schedules.

Nomenclature
Indices/Sets
i€l Production orders
JE]J Production units
I Production orders that can be produced in unit j
p Subset of production orders, inserted in the production schedule
! generated by a solution strategy
Parameters
Hor The scheduling horizon under consideration
T; processing time of each product orderi € I
Changeover time between two consecutive production orders i € [ and
changeover;;;
el
DDATE; Due dates of product order i € I
Limit Upper limit of intermediate product’s changeovers, coming from
different formula types formula;
formula; Formula type of intermediate producti € I
D; Demand of product orderi € I
PR; Packing rate of product orderi € I
window: Parameter, taking the value 1, if a product campaign has to take place
: during a specific time window.
Lower; The lower limit of a production order’s i € [ starting time
Variables
Y, i binary variable denoting that order i € I is allocated to unitj
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C; completion time of order i € |

X global sequencing of product orders that is activated when orderi € [ is
b processed before order i’ € I

XX. immediate sequencing binary variable that is activated when order i € I is

bt processed exactly before order i’ € I
Cmax total production makespan
total changeover time

cT 8

7. Position difference of products i € I and i’ € I which are both assigned to
b the same production unit j
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3

Production scheduling of
continuous make-and-pack processes
with byproducts recycling

recycling

3.1 Introduction

Nowadays, several companies from various industrial sectors, such as food and
beverages, pharmaceuticals, chemicals and fast-moving consumer goods (FMCGs), have
adopted make-and-pack production processes. Due to variable production rates, a
challenge typically met in continuous make-and-pack processes is the necessity to
synchronize the production rates of consecutive stages (Elekidis and Georgiadis, 2021;
Klanke et al, 2021). Thus, continuous stages are often decoupled by deploying

intermediate storage vessels (Méndez and Cerda, 2002).

Several early research contributions addressed the scheduling optimization problem of
continuous make-and-pack processes, with intermediate storage facilities (Giannelos
and Georgiadis, 2002; Méndez and Cerda, 2002). However these approaches can only
applied to small or medium sized problems Furthermore, later approaches are based
on non-realistic assumptions and as a result they lead to infeasible or suboptimal
solutions (Klanke et al., 2020, 2021; Yfantis et al.,, 2019). Hence, the development of
efficient mathematical frameworks for the scheduling of large-scale continuous make-
and-pack industries with flexible intermediate storage vessels constitutes a significant

research gap.

Additionally, product-dependent changeovers, mainly occurred by cleaning operations,
have to be minimized to increase the productivity of production facilities. In cases when
cleaning with water can affect the quality of products, an undesirable amount of

byproduct waste is generated between two consecutive campaigns. Usually, the
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byproducts can be recycled into the next production campaigns. This industrial policy is
typically met in liquid detergents industries (Elekidis et al, 2019; Elekidis and
Georgiadis, 2021). However, according to the best of our knowledge the modelling of
byproducts recycling streams has not been addressed in consumer goods industries,
while only a few research contributions have been focused on modelling the generation

of byproduct waste in the paper industry (Castro et al., 2009¢)

In this chapter, a new continuous-time, precedence-based MILP model is proposed for
the scheduling optimization problem of multiproduct make-and-pack continuous
processes, with intermediate storage facilities. The model includes allocation, timing
and sequencing constraints. In the vast majority of scheduling models, a time horizon
discretization approach is employed to efficiently handle material balance constraints
(Klanke et al., 2021; Stefansson et al., 2011). This work introduces a new set of binary
variables to accurately handle material balances and prevent overloading of storage
vessels, without requiring any type of time horizon discretization. Furthermore,
multiple production orders, produced by the same intermediate product type, are
allowed to simultaneously be stored in the same storage vessel, via new explicit mass
balance constraints. These constraints are based on extensions of previous precedence-
based frameworks (Méndez and Cerda 2002a). Additionally, in recently proposed MILP
frameworks (Klanke et al., 2021, 2020; Yfantis et al.,, 2019), it is assumed that all types
of intermediate products can be stored simultaneously in a single buffer tank, by
considering only an aggregated capacity constraint. However, this assumption is not
realistic, and it can lead to production schedules which cannot be implemented in
practice. In the proposed MILP model explicit mass balance constraints are included for
each buffer tank without relying on this assumption. Moreover, in the work of Klanke
et al,, (2021), it is assumed that all intermediate products are obligatorily stored into a
buffer tank. This work relaxes this assumption by allowing, a more flexible storage and
processing policy, since an intermediate product can either be temporarily stored into a
buffer tank, or it can be routed directly to a packing line, bypassing the storage vessels.
This flexible storage policy can lead to significant productivity benefits. Finally, new
resource constraints related to the generation and recycling of byproduct waste are
introduced to improve the utilization of raw materials and minimize byproducts

management costs. A decomposition-based strategy is also proposed for the solution of
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real-life, large-scale industrial problem instances. Several case studies inspired by
consumer goods industries have been solved, to illustrate the efficiency and

applicability of the proposed framework using different objectives.

3.2 Problem statement

The process under consideration consists of two main continuous stages and it has been
mainly inspired by multinational, large-scale, consumer goods industries (Elekidis et al.,
2019). These industrial facilities operate as a make-and-pack production process. A
plethora of raw materials is transformed into intermediate products through a
continuous production/formulation process. The intermediate products are packaged
in several package sizes or types and numerous final products are distributed to

customers.

Depending on the specific product features, the bottleneck of the process could be
either detected in the formulation or the packing stage. Since there is usually no clear
production bottleneck, both stages have to be scheduled in detail. The utilization of
intermediate buffers can provide the necessary flexibility to overcome these limitations
and to synchronize both stages. The production time of each product can be modified,
depending on the utilization of buffer tanks. An intermediate product can be
temporarily stored in a buffer tank, or it can be directly transferred to packing lines
bypassing storage. If an intermediate product is transferred to a buffer tank, both stages
can operate at their highest throughput. Otherwise, the slowest stage determines the
rate of both stages. Once a product campaign starts, it must be carried out until

completion without interruption, as the splitting of product orders is not allowed.

Furthermore, frequent changes of raw materials, used in the formulation stage, lead to
the generation and accumulation of undesirable amounts of byproduct waste. The
generated liquid waste is recycled, so that small portions of it are reused into one of the
next production campaigns without affecting the quality of products. This policy is
typically met in liquid detergent production plants, as cleaning with water or air can
cause the generation of undesirable amount of foam. Furthermore, if liquids are filed
into tablets, even small amounts of water can dissolve the tablet film. A schematic

representation of the plant layout is illustrated in Figure 3.1.
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Figure 3.1 Plant layout

The problem under consideration can be formally stated as follows:

Given:

e A set of production orders i,i" € I, produced by an intermediate product type

(recipe), given by parameter f;
e Asetof processing units, j € |
e Asetof processing stages, s € S

e A set of flexible intermediate storage tanks,v € V, and their corresponding

capacity, e,
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e Due dates of production orders, d;
e Demand of product orders, dm;
e Maximum production rates of production orders at each stage, 7;

e Changeover times, between the production of two consecutive production orders

in each stage n; ;7 ¢

e (Capacity of byproduct tanks of each processing unit of stage 1, cp;.

Determine:
e The allocation of products to processing units, Y; ;
e The allocation of products to intermediate storage tanks, YV;
» The sequencing of product orders in the processing units, X;/; ;

e The starting time, ST; ;, the processing time, T; ;, and the completion time, CT; s, of

each production order at each stage.
e The produced, 0;, and the recycled, W; , amount of byproduct

e The total production cost, TC

3.3 MILP model

In this section, an immediate-precedence, multi-stage model, of continuous processes is
described. Instead of using a discrete-time horizon, a set of binary variables is
introduced to correctly handle mass balance constraints. Product orders made of the
same intermediate product may coexist in the same buffer tank for a period of time. An
intermediate product can be temporarily stored in a storage vessel or it can be

transferred directly to a packing line. However, a product campaign cannot be split.

Previous research works (Méndez and Cerda 2002a; Giannelos and Georgiadis 2003),
illustrated that several product campaigns are consecutively operated in the same unit,

but at different processing rates. This policy is not typically met in real-life industrial
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facilities, since it leads to higher demand for manpower and generates unnecessary idle
times (Méndez and Cerda 2002a). In this work, if an intermediate product is transferred
to a buffer tank, both stages operate at their highest speed. Otherwise, the slowest stage
determines the rate of both stages. Constraints are grouped according to the type of
decision (e.g., assignment, timing, sequencing, etc.) as follows. A detailed description of
model sets, variables and parameters is presented in the nomenclature section at the

end of the chapter.

Assignment constraints

Y, ;=1 VielseS (3-1)
je JIinJSs)

Constraints (3.1) guarantee that each product order, i is assigned to one processing unit

J, (j € JI;), at each production stage s, (j € JSs).

Product orders sequencing constraints

Xpij <Y Vielje ]l (3.2)
el i'#i

XipjsYy Vielje ]l (3.3)
el i'#i
DD Kuy+l=) Yy Ve (34)
ierj; UVeljj:i'# i€l];

Binary variables X;/,; ; define the local immediate precedence between two products i

!iVj
and i’. They are equal to 1, only if a product order i’ comes immediately after production
order i in processing unit j. Constraints (3.2) and (3.3) ensure that, if production order i
is allocated to packing line j, at most one production order comes before and after it,

respectively. If a production order is processed first or last, then it has no predecessor
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or successor. According to constraints (3.4), the total number of sequences in a

processing unit j has to be equal to the total number of produced orders minus one.
Timing constraints

CTi,S = Ti.S + STi,S Vi € I,S ES (35)

(3.6)
Tis = z YV, pmys +pli| 1— Z YVi,| VielLses

vev vev

Z YV, <1 Vi€l (3.7)

VeV

According to constraints (3.6), if an intermediate product is transferred to a buffer tank,
both stages operate at their highest speed and the processing time is equal to the
minimum processing time. Otherwise, the slowest stage determines the rate of both
stages and therefore the processing time is equal to the maximum pl;. In addition,
constraints (3.5) express that the completion time of each product is equal to the
starting time plus the processing time. Constraints (3.7), guarantee that each product

order is assigned at most in one storage vessel.

STy s = CTys + Xy jnyrg —h(1— X, ) (38)

ii',j"tii's

VielLi'el,seS,je(JSsn(JLn JIy))i" #1i

STI:’,S S CTi,S + Li,i"s + X Y (P + h(l - Xl,l,,]) (39)

ii,j"ii's

Vieli'el,seS,je(JSsn(J;n JI;)):i" #i

The big-M constraints (3.8) define the timing decisions of each product order. Since a
product order i’ is operated immediately after product order i, in stage s, the starting

time ST ; has to be larger than the sum of the completion time CT;; and the related
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changeover time n; ;7 ;. On the other hand, if binary variable X; ; ;, is equal to 0 and the

N
L7

specified sequence does not take place, the constraints are relaxed.

Extending previous precedence-based frameworks (Méndez and Cerda 2002a; Elekidis,
Corominas, and Georgiadis 2019; Cerd4, Cafaro, and Cafaro 2020), constraint (3.9) is
also included in the model framework, to examine possibly generated idle times. Thus,

the starting time of each product order ST ¢ has to be larger than the sum of the ending
time of the previously operated product CT, the related changeover time n; ;7 ; and the

idle time between the consecutive campaigns, L; ;7 .
Buffer timing constraints

Constraints (3.10) and (3.11) and establish the sequence of production orders,
containing different intermediate products (f; # f;/), that are temporarily stored in the
same intermediate buffer tank. If a production run i’ is stored in a storage vessel v after
a production run i, the starting time ST/ ; has to be bigger than the completion time

CT;p

CTi’z < STi',l + h(2 - YVi,v - YVi’,v) + h(l - XVi,i',U) (310)

VielLi eLveV:i'">i

CTy, < STy +h(2 =YV, =YV ,) + hXV; 1, (3.11)

Viel,LielLLveVlV:i'>i

Usually, production orders that are made by the same intermediate product may coexist
in the same buffer tank for some period of time. Extending previous precedence-based
frameworks (Méndez and Cerda 2002a; Cerda, Cafaro, and Cafaro 2020), constraints

(3.12) and (3.13) are introduced to account for this case.

STy <STju +h(2 =YV =YV ,) + h(1 =XV ;) (3.12)
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VieELU'elLveV:i'">i, fi=fy

STyy < STy, +h(2—YVi, —YV,,,) +hXVy,, (3.13)

VieELU'elLveV:i'">i, fi=fy

In particular, since the two product orders are made by the same recipe (f; = f;/), they
can be simultaneously stored in the same tank. In that case, product i can be filled into
the storage tank before the completion of packing stage of product i’ and the starting
time ST; ; has to be greater than the starting time ST/, , if they are sequentially stored

in the same vessel (XV/;,, =1).
Definition of auxiliary binary variablesYO0;, Z;;,P;y and K ;

An auxiliary binary variably, YO;, is introduced to satisfy the necessary mass balance
constraints for each product order. Binary variables, YO; take the value 1, only if a

product order starts packing, ST; ,, later than completing the formulation stage (CT; ;).
ST;, 2 ST;1 —h(1—-Y0;) Vi€el (3.14)
ST;, 2CT;; —h(1—-Y0;) Vi€l (3.15)

A new set of binary variables is furthermore introduced to efficiently satisfy storage
capacity constraints, for products that may coexist in the same buffer tank. The binary
variables Z; ;/ take the value 1, only if a product order i starts packing (ST; ;) earlier than

the completion time of the formulation stage (CT;r ; ) of product order i'.

STy = CTy, —hZyy Vi€Eli' €l :i' #i (3.16)

STip <CTy,+h(1—-Z;p) VieLi'el :i"#1i (3.17)

The binary variables P; ;s take the value 1, only if a product order i starts packing (ST; ;)

earlier than the starting time of the packing stage (ST , ) of product order i'.
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STi,Z 2 STi,,Z - h’Pi,i, VI, (S I, il (S I : ]Cl - fi’ (3.18)
STi,Z S STi,,Z + h(l - Pi,i, ) VI, € I, il el: ]Cl = fi’ (3.19)

The binary variables K;; take the value 1, only if a product order i completes
formulation (CT; ;) earlier than the completion time of the formulation stage (CT; , ) of

product order i'.

CTi,l 2 CTi’,l - hKi,i’ Vl € 1, i’ € I :ﬂ = fi/ (320)

CTiy <CTy +h(1-K;p) VieLi'€l : fi=fu (3.21)

Mass balance constraints

Since all storage tanks have finite capacities, the net amount of material stored in a tank
should never exceed its capacity. Assuming that the production rate of an intermediate
is greater than the overall consumption rate (packing rate), the capacity constraints
should only be enforced at the completion time of the formulation stage; see the yellow
arrows in Figure 3.2. However, one cannot guarantee that the production rate in the
formulation stage will be greater than or equal to the overall consumption rate for any
product. Thus, the capacity constraints must also be enforced at the starting time of

every packing order; see the red arrow in Figure 3.2, (Méndez and Cerda 2002a).

Figure 3.2 illustrates the profile of the buffer level when multiple products belonging to
the same product family (they are produced by the same intermediate product) can be
stored simultaneously in the same tank. The production rate of product 1 is higher than
its packing rate. Therefore, the capacity constraints have to be enforced at the
completion time of its formulation stage (t1). On the contrary, the packing rate of

product 2 is higher than the rate of its formulation stage and therefore capacity
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constraints must also be enforced at the starting time of the packing order of product 2
(t3).

Units

Formulation

Packing

Buffer
Level

Figure 3.2 Buffer level where the coexistence of multiple product orders is allowed

The variable Q; expresses the maximum stored amount of product order i, if product i

does not coexist with other product orders in the same storage tank.

Q; < Z e, YVi, Vi€l (3.22)

VeV

Constraint (3.22) ensures that the stored amount of a product order (Q; ), does not
exceed the capacity of the storage vessel (e,), only if this product is allocated to a

storage vessel v.

Constraints, (3.23), (3.24) and (3.25) define the value of variable Q; . The auxiliary
binary variable YO; has a vital role in mass balance constraints. According to constraints
(3.14) and (3.15), YO, takes the value 1, only if a product order starts packing (ST; )
later than completing the formulation stage (CT; ). In this case, storage constraints are

forced at the end of the formulation stage. In Figure 3.2, variable Y0, is 0 while variable

YO, is 1.
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Qi > pmi,l ri,l Z YVi,v - pmi‘l ri,l(l - YOl) Viel (323)

VeV

Units
Production -
stage (s=1) ,

Packing : . -
stage (s=2) i :

Buffer
level

Time

1

1

pPMmi1tin b PMiaTig
d 1

1

Figure 3.3 Illustrative example where the two stages do not operate simultaneously

Constraints (3.23) are activated when there is no overlapping between the two stages
(YO; = 1). Under these circumstances, the stored amount Q; should be equal to pm; ;7; 4
, as it is depicted in Figure 3.3. Constraint (3.23) is activated only if product i is stored in
one of the available buffers (3, YV;, = 1) . If variable YO; = 0, the term pm; r;; is

utilized as big-M value and the RHS value of the constraint is forced to zero.

On the other hand, if a packing operation starts while the related intermediate product
is still filled into a buffer tank (YO; = 1), constraints (3.24) and (3.25) are activated.
Two separate cases are examined. Constraints (3.24) define the stored amount Q; in
cases where the main bottleneck is detected in the first stage (r;, > 171, pm; >, < pm; 1 ).
Under these circumstances, the stored amount is equal to the term (ST;, — ST; 1)7; 1. An

illustrative example is presented in Figure 3.4.
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Units

Production
stage (s=1)

Packing
stage (s=2)

Buffer Time

level E i (8T;2—ST;1)7ia

Figure 3.4 Indicative example where formulation stage constitutes the main bottleneck

Furthermore, the term (d;—pm,,) 1;; plays the role of big-M value, in constraints
(3.24). The selection of the big-M values has a crucial impact on the computational
complexity of a MILP model and the selected values should be as small as possible. Since
variable ST;, is less than or equal to the corresponding due date (d;) minus its
corresponding minimum processing time pm;,, (ST;, <d; —pm;,) and variable
ST; 1 is greater than zero (ST;; = 0), the first term of the RHS is less than or equal to the

term (d;—pm; ;) 7i 1.

Qi = (8T, — ST;1)1i1 — (di—pm;2) 111 YO; — (3.24)

—(di—pm;3) i1 (1 — Z YVi,) Viel:pm;, <pm;,

veEV
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Qi = pmyaTis z YViy — (CTyy — STy 2)Tiz — (3.25)

vev

—[pm; 11 +(di—pm;; — pm; 1) 1;2]Y0; viel:pm;; <pm;,
Units
Production -\
stage (s=1)

Packing
stage (s=2)

pmi i Tia

Buffer 4
level

\ Time

- —(CTyy - STiq)rin

Figure 3.5 lllustrative example where the main bottleneck is detected in the packing stage

In cases like the one illustrated in Figure 3.5, where the main bottleneck is detected in
the packing stage (r;; =71;,,pm;; < pm,;,),the stored amount Q; is defined by
constraint (3.25). Then the stored amount is equal to the inserted product ( pm;17; 1)

minus the exported quantity which is equal to the term (CT; ; — ST; ;)7 5.

The term [pm; ;771 + (d;—pm;, —pm,; 1) 7; ] is used as a big-M value and is activated if
variable Y0;=1. In particular, the term pm;7;, is included to cancel the term of the
inserted amount while the term (d;—pm,;, — pm; ) r; 1 is used to cancel the term of the

exported amount. If variable Y0;=1 then (ST;, = CT; ;) and therefore the term —(CT;; —
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ST;)1i, = 0.Since ST;, <d; —pm;, and CT;; = pm;,, it is concluded that —(CT;; —

ST;2)1i2 <(di—pm;, — pm; 1) 7; 5.

Mass balance constraints for product orders produced by the same intermediate

product type (recipe)

As has been previously mentioned, production orders which are made by the same
intermediate product (f; = f;/), may be stored simultaneously in the same buffer tank
for some period of time. To ensure that the net amount of storage material does not
exceed the capacity of storage vessels, explicit mass balance constraints are enforced
both at the completion time of formulation stage and at the starting time of packing

stage of each product.

Mass balance constraints at the completion time of formulation stage

oz Y Q- Y QEy viel (3.26)
er fi=fy Vel fi=fy

0T, < Zevyvi,,, Viel (3.27)
vevV

The variable QT; is introduced to define the net amount stored, at the completion time
of formulation stage of product i, (CT;;). According to constraints (3.26) the
accumulated amount is greater than the total inserted amount, Q/;s;, minus the total
exported quantity, QE;s ;. The orders i’ are made by the same recipe ( f; = f;/) and may

coexist in the same buffer tank with product i. Constraints (3.27) guarantee that the

stored amount (QT; ), will not exceed the related capacity of vessel v, (e,).

To satisfy capacity constraints (3.27), the mathematical model tends both to decrease
the total inserted amount and increase the exported amount. Thus, a set of inequalities
are additionally introduced to impose the required bounds on both variables Q/;; and

QE} ;. The corresponding inequality constraints are presented below.
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QEy; < dmy Z(XVL",L',v +XViy,) Vi€ELi'€l:fi=fy (3.28)
vEV
QEy; < (CTyy = STy o)1y + diri’,z(1 —Zy; VielLLi"el:fi=fy (3.29)

Variables QI;/; are defined by a set of big-M constraints (3.28) and (3.29). The auxiliary
variable K;/;, plays a significant role in mass balance constraints. More specifically,
variable K;; takes the value 1, only if a product order i’ completes its formulation
(CT;,) earlier than the completion time of the formulation stage (CT;s; ) of product

orderi’.

Similar to constraints (3.24) the term d;r;; plays the role of a big-M value in
constraints (3.29). Variable CT;; is less than or equal to the corresponding due time,
(CT;, < d;), while variable ST/ ;is greater than o equal to zero (ST;s ; = 0). Therefore,

the value of the term (CT;; — STy ;)77 is less than or equal to d;7 ;.

ST14 CTyy STy, CTyy ST31 | CT3,4

Production

Linel

STyq €Ta
Production
Line 2
|
STy, | CTyq ST3, CT3p

Packing

Line 1

Packing

Line 2

Time

Figure 3.6 Illustration of the role of Q1; ; and QE; ;» variables

84



Production scheduling of flexible continuous make-and-pack processes with byproducts

recycling

Once the variable K; ;s is equal to 1, the inserted amount should be equal to the total
amount dm;, according to constraints (3.28). Otherwise, constraints (3.29) are
activated and the inserted amount is forced to be equal to the term (CT;; — ST )17 4.
Both constraints (3.28) and (3.29) should be activated only if both products i and i’ are

stored at the same tank, (ZU(XVi’,i,v + XV;;1,,) = 1). For the sake of the clarity of this

idea, an illustrative example is shown in Figure 3.6.

Byg S dmy Yy (Vg +XVig,) VIELI€l:fi=fy (3.30)
vev

QE; ; < (CTyy — STy )1y, + diri,_z(l —Zy; Viel,i'el: fi=fy (3.31)

QEy; <dmyZy; Vi€lLi'€l:fi=fy (3.32)

To define variables QE;;, auxiliary variable Z; ;, is utilized. Constraints (3.30) and

By
(3.32) ensure that the amount of QE;/; does not exceed the total amount of product ',
(dm;r). If a product i’ either starts packing (ST ,) later than the completion time of the
formulation stage (CT;; ) of product i, (Z;s ; = 0), or it is not allocated to the same buffer
tank (X,(XVjr;, +XV;;7,,) = 0), variables QE;/; are forced to zero. In case that a
packing operation has not been completed until the time point under consideration, the
variable QE; ; is limited by the term (CT;; — ST ,)r;,, as it is guaranteed by

constraints (3.31). Similar to constraints (3.29) the term d;r;s, is utilized as a big-M

value in constraint (3.31).

To illustrate the role of variables QI;;» and QE;; an indicative example is depicted in
Figure 3.6. The mass balance constraints can be applied at the end of product 4 (CT} ).
Since all the amount of product 1 has already been filled into the buffer tank at the time
under consideration (K; , = 1), the variable QI 4 should be equal to the total amount of
product 1 (dm,). The aforementioned approach is applicable in the case of product 2 as
well. On the other hand, only the line-shaded part of product 3 has been filled into the

tank at the time under consideration (K34 = 0). This amount is expressed by the term
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(CTyy — ST54)13,. The variables QE;/; can also be defined at the completion time
(CT,4). Since all the amount of product 1 has been packaged up until the time point
under consideration, the variable QE, 4, should be equal to dm;. On the other hand, only
the line-shaded part of product 2 has been packed up until the time under

consideration. This amount is expressed by the term (CT,; — ST, 1)1 ».

Mass balance constraints at the starting time of packing stage

As it has been mentioned above, mass balance constraints are also imposed at the

starting time of packing stage of each product order.

QP = Z Pli,i’ — Z PEi’,i Viel (3:33)
i'er: fi=fy i'e It fi=fr:

QP; < ZevYVi_v Viel (3:34)
vev

The net stored amount (QP;) at the starting of packing operation of product i is
determined by constraints (3.33). The first term refers to the total imported amount,
while the second term is related to the total consumed of the buffer tank. Constraints
(3.34) guarantee that the stored amount (QP;), will not exceed the related capacity of
vessel v, (e,). Similarly to the constraints (3.28)-(3.32), a set of inequalities are

introduced to impose the required bounds on both variables PI; ;s and PE; ;.

Pli,i’ 2 dml-l(l —_ Zi,i’) —_ dmil (1 —_ Z(Xvi’,i,v + XVi,i,,U)>
VeV

(3.35)
VielLi"el:f,=fy
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Pl;;r = (ST, — STi’,l)ri’,l — (di—pm; ;) Ti'1 (1 - Zi,i’) -

(3.36)
(di—pm;) ryr g (1 - z(XVi’,i,v + XVi,i’,v)> VielLi'€l:f=fy

VeV

Constraints (3.35) and (3.36) determine variables PI; ;,by utilizing an auxiliary variable
Zy ;. According to constraints (3.16) and (3.17), variables Z; ; take the value 1, only if a
product order i’ completes the formulation stage later than the starting time of packing
operation of product i. As variables Z; ;s are equal to 1, it is implied that all the amount
of product has been inserted into the buffer up until the time point under consideration.
Thus, constraint (3.35) imposes the total amount of product i’, dm;s, as lower limit for
the variable PI; ;/. In the opposite case, constraint (3.36) guarantee that only a portion of
the product order i has been filled into the storage vessel up until the considered time
point. This amount is given by the term (ST;, — ST;7 ;)17 ;. Similar to constraints (3.24)

the term (d;—pm;,) r;7 ; plays the role of a big-M value.

An illustrative example for variable PI; ;s is shown in Figure 3.7, whereas the mass
balance expression at the starting time of packing operation of product 4 is considered.
Variables Z,, and Z,3; are equal to 1 while variable Z,, is zero. Although, all the
produced amount of product 1 has been filled into the buffer tank, only the line-shaded
portion of product 2 has been inserted up until the time under consideration. This
portion is given by the term (ST, — ST, ;)73 ;. Since zero amount of product 3 has been
filled into the tank so far, the related term, (ST,, — ST3 )72 1, is negative and therefore

the lower bound of variable PI, 3 is forced to zero as well.

Plyy =dm, Plyy = (STy2—STp)72, Plyz = (STy2—ST31)124,
(8T4,2—ST31)121<0
STy STz T3,
Formulation
stage
Z4n =0 ‘ -
Zyy =1
Packing Zaz=1
stage

Time

Figure 3.7 Indicative example of variable P1I; ;r
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PEi,i’ S dmi’Pi"i' Vl E I, i, E I : ﬁ - fi, (337)
PE; ;1 < (STip = STy )15 + (di—pmy ) 1y, (1= Py (3.38)
VielLi"el:f,=fy

Eyo Sdmy ) (Vi + XVi,) Vi€Li €1 fi=fy (3:39)
vEV

Constraints (3.37)- (3.39) determine variables PE; ;» .For this purpose, variable P ; is

utilized. As it has been described earlier, P;/ ; takes the value 1, only if product i’ has

completed its packing before product i. Constraints (3.37) and (3.39) ensure that the

amount of PE; ;s does exceed the total amount of product i’, (dm;r). If a product order i’
starts its packing after the packing operation of product order i, (P;; = 0), variables
PE; ;s are forced to zero. This is also the case if products i and i’ are not assigned to the
same buffer tank (X,(XVy;,+ XV, ) =0). If a packing operation has not been

completed by the specific time point, only a portion of product order i’ is removed from

the storage vessel. Thus, variable PE;;s is further bounded by the term (ST;, —
ST;r )T 5, as it is imposed by constraints (3.38). Similar to constraints (3.24) the term

(di—pm, ;) r;r; plays the role of a big-M value in constraint (3.38).

An illustrative example for variable PE;/; is shown in Figure 3.8, where the mass
balance constraints at the starting time of packing operation of product 4 are
considered. Variables P; 4 and P, , are equal to 1 while variable P;, takes a zero value.
Even though all the produced amount of product 1 has been packaged, only the line-
shaded portion of product 2 has completed its packing operation by the time under
consideration. This portion is defined by the term (ST, — ST, ;)7 ;. Furthermore, the
packing operation of product 3 starts later and therefore the variablePE ; is forced to

Zero.
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PE4I1 = dm4 PE4I2 = (ST4I2_ST2I2)T2I2 PE4I3 =0

STy4 STz4 ST34
Packing
Line 1

Pia=1 o

Pya=1 STy
Packing P34=0
Line 2

Time

Figure 3.8 Indicative example of variable PE; ;

Relationship between the starting and completion time of product orders

GPi = STi,Z - STi,l Vl € I

GP; = (pmy; —pmy; ) z YVi, Vi€l:pm;, <pm,
vev
GPi >0 VvViel: pm;, = pm; .
GP,< g Z Yv,, Viel
VeV

CTi,Z —STi,1 < rs; Viel

CT,<d; Vi€l

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

If the formulation stage is slower than the packing stage, it should be ensured that

enough amount of product has already been filled into the buffer tank before the

packing operation starts (Figure 3.9). Otherwise, the storage vessel will become empty

and the packing process must be aborted. One way of satisfying this, is by utilizing the

auxiliary variable GP;, which expresses the difference of starting times between the two

stages of product i. The variable GP; has to be greater than the term (pmi,l —pm;, ) ,in

case the production bottleneck is the formulation stage. On the other hand, if the

formulation process operates in a time-consuming fashion, similar to the packing
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operation, this constraint is relaxed. Usually, depending on the specific industrial
policies, an upper bound could be also set to the GP;, or to the total residence time of a
product, r's;. in a buffer tank. If there is no limitation on the maximum residence time,
the parameter rs; have to be equal to the time horizon h. Constraints (3.43) also
guarantee that if a product bypasses the storage tank, the process of the two stages will
start simultaneously. Finally, constraints (3.45) ensure that each final product is

produced earlier than its due date d;.

pm;; <pm;, pm;; = pm;,
STl,l STiJ
Production |
Line 1
GP;

s

Packing
Line 1

Time Time

Figure 3.9 Definition of variable GP;

Byproducts constraints

The constraints described in this subsection are referred to the formulation stage of the
plant. Usually, several product-dependent changeovers take place among the
production of different intermediate products. The majority of these changeovers is due
to cleaning activities. In many cases, such as the production of detergents, the industrial
practice does not permit cleaning with water, since water can affect the quality of the
products. As a result, a significant amount of byproduct waste material is generated,
which is usually stored in storage vessels and can be partially recycled into one of the

next product orders without violating product quality specification.

The accumulated byproduct waste cannot exceed the storage capacity of the storage
vessels. Explicit material balance constraints are introduced to prevent the overloading
of storage vessels without using further binary variables or utilizing a discrete-time

horizon.
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As illustrated in Figure 3.10, during a changeover time an amount of byproduct is
generated. Variables O; express the amount of byproduct which is stored in the storage
vessel at the end of the changeover which takes place after the production of
intermediate product of production order i. A specific part of this amount (W;) can be
potentially recycled into one of the following orders. The recycled amount depends on
the campaign length and the specific recipe of the intermediate product. If mixing is not
allowed then the byproduct remains in the storage vessel. The remained amount can be
recycled into the next production campaigns or remains into the vessel as the final

waste (RW;), in case there are no further product campaigns to recycle it.

Accumulated
Changeover ated
time byproduct in line j
RW; = LI;

Generated Accumulated Recycled
byproduct byproduct

byproduct
LI
3 \N3

Recycled
byproduct

0]
1 W,

Figure 3.10 Byproducts recycling policy in a processing unit of formulation stage

Oi = LIL + Z Z Xi,i’,'ni,ifri’,l - Wi Viel (346)

e i’ je(Jsin jLn i)

Constraints (3.46) express the mass balances of byproduct storage vessels. The amount
of byproduct waste O; at the end of the changeover which takes place after the
formulation of intermediate product of product order i, is equal to the previously
accumulated material LI;, plus the generated byproduct during the changeover, minus

the amount which is recycled by the intermediate product of product order i, (W;).
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(3.47)
L <Op+dm (1= > Xpy | VieLiel:i#i
je(Jsinjin ji;)
(3.48)
LILZOL’_dmL 1_ z Xi’,i,j VLEI,lIEI:l,;tl
je(JsinJin ji;)
LI < iw; Y;; + dm; Z Xiy, Vi€Lj€(Sn L) (3:49)
i'e 1jj:i'=+i
LI; = iw; Yy ; — dmy z Xy  VieLje(JSinJL) (3.50)

i'e Ij;:i'#i

Constraints (3.47)-(3.50), define the accumulated amount of byproduct (LI;), at the
beginning of each product i. In particular, constraints (3.47) and (3.48), force variable
LI; equal to variable O, only if intermediate of product i’ is produced exactly before
product i, (X;7; ; = 1). Furthermore, the initial stored amount of byproduct of each unit
(iwj) is taken into account. Constraints (3.49) and (3.50) ensure that the accumulated
amount of byproduct at the beginning of the first campaign of (X;/; ; = 0), are equal to
zero or equal to the initial byproduct amount (iw;) at the beginning of the time horizon

under consideration. The demand parameter dm; is used as a big-M value in constraints

(3.47-3.50)

Wi < dmi a; Viel (351)
W, <L, Vi€el (3.52)

Constraints (3.51) and (3.52) ensure that the amount of byproduct (W;) which can be
recycled into campaign i, must not exceed a specific maximum percentage of the total
amount (dm;). This percentage is defined by parameter a; and depends on the quality

specification of each intermediate product.

0; < cp; Vi) Vielje (S, nJL) (3.53)
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Constraints (3.53) guarantee that the stored amount of byproduct in the vessel of each

unit, will not exceed the related capacity (CAP)).

ii'j
i'el];:i'#i

VielLje(JS;n ]JI)

According to constraints (3.54), the final remained amount of byproduct waste in the
storage vessel of a unit j (RW;), is forced to be equal to the byproduct amount (0;) of the
last operated campaign (Y;; =1, X;;7; = 0) at this unit. An inequality constraint is
utilized, since variable RW; is minimized by being part of cost minimization objective

function. Industrial policies may also impose an upper bound on the remained unused
amount of byproduct. In this case, a capacity constraint could also be used for variables

RWj;. The maximum capacity parameter cp; is used as a big-M value in constraints

(3.54)

Objective function

min TC =(ccz Z z Z Xy s+ + (3.55)

SES j€Ss i€lj; i'€ljj:i'=#i

icz Z Z Li’ir,s++pcz ZT“J’ bc z RW})

seS i€l i'el:i'#i SES i€l JEJS,

Objective (3.55) expresses the minimization of total costs. The first term represents the
total changeover cost, while the second term expresses the total cost of idle times. The
last two terms are related to the total production cost and the cost of the generated

byproduct waste.
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3.4 Solution strategy

Due to the highly increasing demand and the high diversification of the product
portfolio, in the vast majority of process industries, a plethora of different products are
scheduled weekly. Although monolithic MILP approaches can generate optimal or
nearly optimal solutions for small or medium-sized scheduling problems, they are not
efficient for larger problem instances. To cope with this limitation, a decomposition-
based solution algorithm is proposed. Similarly with previous research works (Kopanos,
Méndez, and Puigjaner 2010; Elekidis, Corominas, and Georgiadis 2019) the solution
strategy consists of a constructive and an improvement step. A brief schematic

representation of the proposed solution strategy is illustrated in Figure 3.11.

3.4.1 Constructive step

The main idea of the constructive step is to decompose the initial problem into smaller
subproblems which can be solved iteratively. At each iteration, a subset of product
orders

i € I'N is scheduled by using the proposed MILP model. Product orders are inserted
based on a selected insertion policy. The related unit allocation variables, as well as the
related sequencing variables, are fixed after each iteration. On the contrary, the timing
variables and the sequencing variables of storage vessels remain free. Once all

production orders have been inserted, an initial feasible solution is generated.

According to the selected insertion policy, products with the earliest due time are
inserted first. The number of inserted products could vary, depending on the specific
scheduling problem. Regarding the problem under consideration a 5-by-5 product
insertion policy seems to be the optimal one, since by inserting more products, the

solution is not improved while the computational cost is dramatically increased.

3.4.2 Improvement steps

To enhance the initial solution generated by the constructive step, two improvement
steps are implemented sequentially. According to those, some production orders are

extracted from the initial schedule and reinserted to further improve the solution. The
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marked products are exported from the initial schedule by relaxing the corresponding
allocation and sequencing variables. The two proposed improvement steps are

described below.

Improvement step 1

Usually, the synchronization of stages in continuous production plants is a challenging
task and due to different production rates undesirable idle times are realized. Thus, the
first improvement step is mainly focused on eliminating the idle times of the initial
schedule. In particular, all production sequences that lead to idle times are identified

I'°N are reinserted. The MILP model is then solved and if

and the related products i €
the solution obtained is better than the solution of the constructive stage, the

corresponding variables are updated.

Improvement step 2

IREIN s reinserted

To further improve the solution, part of the remaining products i €
iteratively. In particular, 5 products are chosen lexicographically from set I and all
related variables are relaxed in each iteration. At the same time, the remained product
sequences that lead to idle times are detected as well and the related products i are also

i € IREIN and reinserted. The MILP model is then solved at each

included into set
iteration and if a better solution is found all variables and the objective function are

updated.

Furthermore, industrial requirements usually impose an upper bound on the total
solution time. Hence, an upper limit in the total CPU time, (It), could be set as a stopping
criterion. If the total CPU time exceeds this limit or all product orders have been
reinserted, the algorithm is terminated, and the best solution found is reported. In this
way, good quality solutions could be generated within reasonable computational times.
A different stopping criterion could be set once the solution is improved by a specified
percentage (in comparison with the previous stage). Finally, detailed pseudo-codes for
the constructive and the improvement steps of the proposed solution strategy, are

provided in in Appendix A.
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Constructive step Improvement step 1

All production sequences that lead to idle
times are identified and the related products
i € I'PN gre reinserted

Production orders
are sorted based on
the earliest due time

If a better solution is obtained the decision
variables are updated

Production orders
i € 'Nareinserted

Improvement step 2

The MILP model is solved. Allocation and

immediate precedence variables are fixed. A set of extra

products i € [REIN
are chosen and
reinserted.
The remained
product sequences
that lead to idle
times are
identified and the
related products
i € IREIN are also
reinserted

Have all
products
been
reinserted
or the total
CPU time
exceed the

related limit
2

Have all
products
been
inserted?

A feasible
schedule is
constructed

The best
solution is
reported

Figure 3.11 Schematic representation of the solution strategy

3.5 Case studies

To assess the applicability and the efficiency of the proposed MILP model and solution
strategy, several problem instances are considered. Most problems simulate real-life
industrial data of a large-scale consumer goods industry (Elekidis et al., 2019). The
problem instances are based on 5 different cases, considering different product types
and processing times. The data related to the first case are presented in Appendix B.
Data for the rest of the cases under consideration are provided by Elekidis and
Georgiadis, (2021). The proposed mathematical framework has been implemented in

GAMS (General Algebraic Modeling System) and was solved using the IBM ILOG CPLEX
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12.0 solver with default settings and 8 threads, on 3.60 GHz Intel Core i7 7700
processor and 16 GB RAM.

3.5.1 Illustrative example

This problem consists of 15 final products, 3 packing lines, 3 production lines and 2
storage buffers. The time horizon of interest is 1 day (24 hours). Table 3.1 summarizes
the capacities of storage vessels, while the individual cost coefficients are given in Table

3.2. For this example, the first 15 products of case 1 have been utilized.

Table 3.1 Capacity of vessels

Vessel Capacity (kg)
Storage vessel 1 3000
Storage vessel 2 1600
Byproduct vessel 1 120
Byproduct vessel 2 160
Byproduct vessel 3 120
Table 3.2 Individual costs
Cost Relative Money Units (RMU)
Changeover time cost 10 rmu/h
Idle time cost 30 rmu/h
Processing time cost 1 rmu/h
Byproduct waste cost 0.5 rmu/kg

The optimal schedule is depicted in Figure 3.12, corresponding to a total cost of
177.2857 relative money units (rmu). The cost distribution is presented via a pie chart
in Figure 3.14. Since realistic cost data were not available, indicative cost values have
been utilized. It is observed that the total idle time is forced to zero, since the higher
cost is related to it. On the other hand, the largest percentage of the total cost, reflects
the processing time. The buffer levels of the two intermediate storage tanks are

illustrated in Figure 3.13.
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Figure 3.12 Gantt chart of the generated schedule for the illustrative example
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Figure 3.13 Total stored amount in buffer tanks
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Figure 3.14 Cost distribution

Figure 3.15 illustrates the profile of generated amount of byproduct waste for each line.
Due to the imposed byproduct cost, all the generated waste is recycled in lines 1 and 2.
However, an amount of 20,5 kg remains in the storage tank of line 2. This amount

represents 17% of the total costs, as shown in Figure 3.14.

99



Production scheduling of flexible continuous make-and-pack processes with byproducts
recycling

1a0  Storage Vessel of Production Line 1 Storage Vessel of Production Line 2
180
L1 e, ST T P
100 140
g -
- 2120
€ 80 -
= L4
o [~
2 100
& g
T % 80
g :
(] o
40 & 60
40
20
20
0

0 2 4 6 8 10 12 14 16 18 20 22 24
0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hours) Time (hours)

190  Storage Vessel of Production Line 3
0 S,
100
80

60

Stored amount (kg)

40

20

Time (hours)

Figure 3.15 Total stored amount of byproduct in line tanks

3.5.2 Comparison between two plant layouts

A common issue in continuous process facilities is the necessity to synchronize the
production rates of both stages. Usually, in continuous make-and-pack processes, the
maximum production rate varies with the type of product and the slowest stage poses a
varying production bottleneck. The utilization of intermediate storage tanks aims to
improve the synchronization of production stages and thus, to increase the overall plant

productivity.

To evaluate the benefits of the intermediate storage tanks, several case studies have
been examined, by considering two different plant layouts: a decoupled layout with
intermediate storage and a coupled layout without any storage. Both layouts use the

same number of processing units (3 formulation and 3 packing lines) and their
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difference relies on the use of intermediate buffer tanks. The proposed MILP model and
solution strategy have been used to solve several problem instances for the second
plant layout (decoupled layout), while a single-stage, precedence-based MILP model],
presented in section 2.3.1, has been used for the first plant layout (coupled layout). A

total CPU time limit of 3600s has been imposed for all cases.

Since the majority of the make-and-pack facilities operates continuously 24 hours per
day, the minimization of the total operational time often constitutes one of the main
objectives (Elekidis et al., 2019).. The extra available time can be used to increase the
total produced amount thus increasing the profits of the plant. Also, the reduction of the
operational time is crucial since the extra time can be utilized to schedule more often
maintenance tasks and it can provide additional flexibility if rescheduling decisions
should be made. Often, cost data are not available in the process industries, since the
calculation of individual costs is a time-consuming and challenging task. In those cases
the minimisation of total operational time constitutes an alternative industrial objective
(Elekidis et al., 2019). Thus, schedules have been generated for both layouts and
detailed comparisons have been made between the total operational time of all
processing units, which constitutes the objective function for this study. The total
operational time includes the total processing time, the changeover time and the idle
times of all production units. In other words, total operational time expresses the total

makespan of each production unit.

The results are summarized in Table 3.3. It is observed that the intermediate storage
vessels can provide significant flexibility, resulting in a notable improvement of the
productivity of the plant. More specifically, productivity is increased, from 1.10% (case
4 with 25 products) to 33.75% (case 4 with 20 products). For problem instances with
up to 50 products, optimal schedules have been generated for the coupled layout, by
solving directly the monolithic MILP model (Elekidis et al., 2019). On the other hand,
only problem instances with up to 20 products can be optimally solved for the
decoupled layout by using the monolithic MILP model, while optimality gaps within the
range of 5-10% are obtained within the CPU time limit, in cases with 25 products.
Hence, the proposed decomposition strategy is utilized for the larger problem instances
under consideration. As a result, smaller productivity gains are realised since

suboptimal solutions are obtained in cases with 35 and 50 products. Problem instances
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with 70 products, have been solved by using the proposed decomposition strategies for
both layouts. As it was expected, higher productivity gains are obtained for the

decoupled layout in the range of 16.64% to 20.74%.

Table 3.3 Comparison between the total operational time (in hours) of the two layouts

Decoupled plant layout Coupled plant layout

Number Productivity
of Case gain
Products Objective C.PU (.S) / Objective CP[.J (S)./ (%)
Optimality gap Optimality
(h) (h)
gap
Casel  124.75 212 /0% 170.13 112 / 0% 26.67%
Case 2 82.07 226 / 0% 113.18 126 / 0% 27.49%
15 Case3  119.43 234 / 0% 136.92 134 / 0% 12.77%
Case4  100.22 267 / 0% 120.27 167 / 0% 16.67%
Case5  124.54 233 /0% 173.05 133 /0% 28.34%
Casel  186.63 427 / 0% 225.63 127 / 0% 17.29%
Case2  127.34 462 / 0% 147.35 134 / 0% 13.58%
20 Case3  142.23 583 / 0% 170.55 183 / 0% 16.60%
Case 4  104.22 692 / 0% 157.31 192 / 0% 33.75%
Case5  200.44 785 / 0% 240.54 185 / 0% 17.00%
Casel 24992 3600 / 5.6% 261.99 312 / 0% 4.61%
Case2  213.25 3600 /9.7% 220.73 326 /0% 3.39%
25 Case3  220.25 3600/ 6,2% 222.70 334 /0% 1.10%
Case4  199.10 3600 / 6.4% 215.34 367 / 0% 7.54%
Case5  202.46 3600 /5.1% 236.88 313 /0% 14.53%
Casel  355.34 299 /- 371.82 367 / 0% 4.43%
Case2  269.61 2603 /- 274.50 343 /0% 1.78%
35 Case3  261.05 2603 /- 309.71 357 /0% 15.71%
Case4  261.05 2603 /- 304.15 382 /0% 14.17%
Case5  231.22 2603 /- 310.23 327 / 0% 25.47%
Case 1  422.14 2587 /- 442.70 562 /0% 4.64%
Case2  288.92 2165 /- 335.24 578 / 0% 13.82%
50 Case3  362.20 1927 /- 377.41 614 / 0% 4.03%
Case4  366.59 1874 /- 374.48 582 / 0% 2.11%
Case5  342.46 2579 /- 381.97 627 / 0% 10.34%
Casel 59623 3484 /- 725.88 212 /- 17.86%
Case2 44396 2462 /- 532.58 216 / - 16.64%
70 Case 3 534.62 2194 /- 674.52 263 /- 20.74%
Case4  508.24 3295 /- 632.09 294 / - 19.59%
Case5  468.92 3571 /- 542.73 213 /- 13.60%
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3.5.3 Larger problem instances

In the vast majority of process industries, a large variety of final products is scheduled
on a weekly or even on a daily basis. Thus, there is a strong necessity to develop
efficient solution techniques, which can generate good quality schedules in low
computational times for complex and challenging problems. To assess the efficiency and
the applicability of the proposed modelling framework and solution strategy, a set of
larger problem instances have been solved. The minimization of the total cost
constitutes the objective. All cases consist of 3 packing lines, 3 production lines and 2
intermediate storage vessels. The individual cost coefficients are depicted in Table 3.2,
for all cases. Results are summarized in Tables 3.4 and 3.5. A CPU time limit of 3600s is
imposed to the algorithm, while a zero-optimality gap has been achieved in each
iteration.

Table 3.4. Results for large problem instances - Comparison between the constructive and the
improved solutions

Products Case 1 Case 2 Case 3 Case 4 Case 5

Constructive 435087 70791  768.06 66573  699.87

step
Te Improvement 130167 67535 74540 62243  648.14
" step (-1.9%) (-4.6%) (-2.9%) (-65%) (-7.3%)
CPU time Conssttre‘;““’e 1684 2032 1753 2071 1719
(s)
Total 2603 2746 2780 2649 2736
Relaxed solution 97575 43673 48913 397.14 397.14
Conssttzg:t“’e 256149 679.86 94674 87815 910.50
Te Improvement ~ 1999.60 66488 919.96 82752  849.81
step (-21.9%) (-22%) (-2.8%) (-57%) (-6.6%)
60 :
CPU time Conittt;‘:t“’e 2103 2124 2101 1839 2099
(s)
Total 2639 2800 2632 2783 2635
Relaxed solution 129935  404.07 49895 477.72  479.96

*TC=Total cost in monetary units
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Table 3.5. Results for large problem instances - Comparison between the constructive and the
improved solutions

Products Casel Case2 Case3 Case4 Case5
Constructive step 3505.94 81147 1091.66 1087.62 1124.40
TC
Improvement 3378.55 794.67 1064.86 1045.75 1056.92
step (-3.6%) (-2.1%) (-2.8%) (-3.8%) (-6.0%)
70
CPU time Constructivestep 2155 2467 2633 2686 2792
S
(=) Total 3600 3365 3600 3600 3600
Relaxed solution 2297.04 58992 677.62 70111 786.39
Constructive step 5455.10 1499.83 1568.30 1870.55 1939.96
TC
Improvement 5117.08 141593 1558.30 1857.71 1847.83
step (-6.6%) (-5.5%) (-0.6%) (-0.6%) (-4.7%)
100
CPU time Constructivestep 2805 2895 2907 2865 2898
s
(<) Total 3600 3600 3600 3600 3600
Relaxed solution 3859.82 915.61 1046.52 1192.75 1126.36

*TC=Total cost in monetary units

The proposed improvement step leads to notable benefits in terms of total cost

reduction. In particular, the total cost is reduced from 0.64% (case 3 with 100 products)

up to 21.9% (case 1 with 60 products). The relaxed solution of each problem is also

presented in Table 3.4 and Table 3.5 in order to provide a bound on the value of the

optimal objective. The computational time of both stages is provided as well. The

improvement is mainly achieved by reducing the idle time cost as it illustrated in Tables

3.6 - 3.9, where the individual costs of each problem instance are presented.
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Table 3.6 Results for large problem instances - Comparison between the constructive and the
improved solutions for cases with 50 products

Case Algorithm step TC* COoC* ITC* PTC* WC*
Conssttre‘;““’e 132687  210.10 651.79 385.47 79.50
Case
1 Improvement 130167 221.80 614.89 385.47 79.50
step (-1.90%)  (+5.28%)  (-6.00%) (0.00%) (0.00%)
Conssttre‘;““’e 707.91 161.50 136.32 256.96 153.13
Case
2 Improvement 675.35 162.80 127.23 256.96 128.37
step (-4.6%)  (+0.80%) (-6.67%)  (0.00%) (-16.17%)
Conssttzu““’e 768.06 174.50 169.72 29539 128.45
Case P
3 Improvement 745.40 186.20 153.12 289.84 116.24
step (-295%)  (+6.70%)  (-9.78%)  (-1.88%) (-9.50%)
Conssttzu““’e 665.73 168.26 86.85 279.82 130.80
Case P
4 Improvement 622.43 179.1 4056269  279.82 122.9489
step (-6.50%)  (+6.44%) (-53.30%)  (0.00%) (-6.00%)
Consstt’;u““’e 699.87 179.00 92.39 297.68 130.79
Case P
5 Improvement 648.14 179.10 40.56 297.68 130.79
step (-7.39%)  (+0.06%) (-56.10%)  (0.00%) (0.00%)

*TC=Total cost, COC=Changeover cost, ITC=Idle time cost, PTC=Processing time cost, WC=Waste cost

“The costs represent monetary units
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Table 3.7 Results for large problem instances - Comparison between the constructive and the
improved solutions for cases with 60 products

Case Algorithm step TC* COoC* ITC* PTC* WC*
Conssttre‘;““’e 2561.49 221.10 1812.12 470.69 57.58
Case
1 Improvement  1999.60  231.90 122417 470.69 72.84
step (-21.90%) (+4.66%) (-48.03%)  (0.00%) (+20.95%)
Conssttre‘;““’e 679.86 201.60 148.90 329.36 0.00
Case
2 Improvement 664.88 210.00 123.70 329.36 0.00
step (-2.2%) (+4.2%)  (-16.9%)  (0.00%) (0.00%)
Conssttzu““’e 946.74 195.50 377.27 373.96 0.0
Case P
3 Improvement 919.96 211.90 334.07 373.96 0.00
step (-2.83%)  (+8.39%) (-11.45%)  (0.00%) (0.00%)
Conssttzu““’e 878.15 196.74 309.96 366.30 5.16
Case P
4 Improvement 827.52 229.80 24855 34432 485
step (-5.77%) (+16.80%) (-19.81%) (-6.00%) (-6.00%)
Consstt’;u““’e 910.50 209.3 329.74 366.30 5.16
Case P
5 Improvement 849.81 229.80 24855 366.30 5.16
step (-6.67%) (9.79%)  (-24.62%)  (0.00%) (0.00%)

*TC=Total cost, COC=Changeover cost, ITC=Idle time cost, PTC=Processing time cost, WC=Waste cost

“The costs represent monetary units
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Table 3.8 Results for large problem instances - Comparison between the constructive and the
improved solutions for cases with 70 products

Case Algorithm step TC* COoC* ITC* PTC* WC*
Conssttre‘;““’e 3505.94  299.00 2592.56 541.69 72.70
Case
1 Improvement 337855 304,60 2459.57 541.69 72.70
step (-3.6%)  (+1.84%)  (-541%)  (0.00%) (0.00%)
Conssttre‘;““’e 811.47 242.00 159.64 378.25 31.58
Case
2 Improvement 794.67 250.40 134.44 378.25 31.58
step (-2.07%)  (+3.47%) (-15.79%)  (0.00%) (0.00%)
Conssttzu““’e 1091.66  239.30 391.37 433.40 27.58
Case P
3 Improvement 106486  255.70 348.17 433.40 27.58
step (-2.83%)  (+6.85%) (-11.04%)  (0.00%) (0.00%)
Conssttzu““’e 1087.62 243.65 332.66 421.32 89.98
Case P
4 improvement 104575 259.50 347.22 421.32 17.71
step (-3.85%)  (+6.51%)  (-4.38%) (0.00%) (-80.32%)
Consstt’;u““’e 1124.40 259.20 353.90 421.32 89.98
Case P
5 improvement  1056.92 255.60 344.77 421.32 35.22
step (-6.00%)  (-1.39%)  (-2.58%) (0.00%) (-60.86%)

*TC=Total cost, COC=Changeover cost, ITC=Idle time cost, PTC=Processing time cost, WC=Waste cost

“The costs represent monetary units
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Table 3.9 Results for large problem instances - Comparison between the constructive and the
improved solutions for cases with 100 products

Case Algorithm step TC* COocC* ITC* PTC* WwC*
Conit;“c“"e 545510  422.29 4193.11 757.67 82.03
Case p
1 Improvement ~ 5117.08 40920 386819 757.67 82.03
step (-6.61%)  (+3.20%)  (8.41%) (0.00%) (0.00%)
Conit;“c“"e 149983 381.40 397.37 532.52 188.54
Case P
2 Improvement 141593 39132 381.63 532.52 110.46
step (-5.59%)  (+2.60%)  (-3.96%)  (0.00%) (-41.41%)
Conit;“““’e 1568.30 342.10 481.39 608.29 136.53
Case P
3 Improvement 155830  350.10 46339 608.29 136.53
step (-0.64%)  (+2.34%)  (-3.74%)  (0.00%) (0.00%)
Conit;“““’e 187055  364.53 783.24 549.87 172.92
Case P
4 Improvement 185771  389.90 731.33 584.96 151.51
step (-0.69%)  (+6.96%)  (-6.63%)  (+6.38%)  (-12.38%)
Conssttre“‘:t“’e 193996  387.80 783.24 584.96 183.95
Case P
5 Improvement ~ 1847.83 39110 720.26 584.96 151.51
step (-4.75%)  (+0.85%)  (-8.04%) (0.00%) (-17.63%)

*TC=Total cost, COC=Changeover cost, ITC=Idle time cost, PTC=Processing time cost, WC=Waste cost

“The costs represent monetary units

Figure 3.16 presents the Gantt chart of an illustrative example focusing on the
improvement step. The first Gannt chart illustrates the initial solution, obtained by the
constructive step. The first feasible solution can be further improved by implementing
an additional improvement step, as it is shown in the second Gantt chart. In particular,
since the improvement step aims to decrease the total cost, unnecessary idle times are
detected, and better solutions are obtained by reinserting a set of products. In the

example of Figure 3.16 an idle time is detected in the initial schedule in line 5. The idle
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time is eliminated by reinserting a set of products via the improvement step, as it is

shown in the second Gannt chart.
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Figure 3.16 Indicative Gannt chart of the schedules of constructive and improvement steps

Furthermore, in order to assess the quality of solutions obtained using the proposed
solution algorithm, a detailed comparison of the monolithic MILP model and the
proposed solution strategy is presented in Table 3.10. It is observed that for problem
instances with up to 25 products near optimal solutions can be generated by using the
proposed solution algorithm in small computational times. For larger problem
instances, even a feasible solution cannot be generated using the monolithic MILP

model under the specified time limits.
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Table 3.10 Comparison between the monolithic MILP model and the proposed solution strategy
considering the minimization of total cost

N MILP Solution approach
of Case
Products Objective Optimality CPU time Objective CPU time
(rmu) gap (s) (rmu) (s)
Case 2 102.68 0.00% 209 119.49 109
15 Case 3 119.43 0.00% 217 128.56 117
Case 4 107.09 0.00% 198 137.27 98
Case 5 124.54 0.00% 238 139.68 100
Case 2 152.42 0.00% 424 156.96 256
20 Case 3 157.19 0.00% 359 171.79 267
Case 4 105.39 0.00% 533 199.97 198
Case 5 200.44 0.00% 686 204.97 238
Case 2 311.16 1.29% 3600 313.36 288
25 Case 3 330.60 0.67% 3600 350.56 296
Case 4 378.65 6.34% 3600 417,12 263
Case 4 332.48 7.83% 3600 378.27 257

3.5.4 Comparison between different storage policies

The proposed MILP model allows the implementation of flexible-storage policies,
according to which each intermediate product can be stored temporarily in a buffer
tank or transferred directly to the packing stage bypassing the storage tanks. To assess
potential benefits of this flexible-storage policy, two problem instances are considered,
in which different storage policies are compared. Both cases include 3 packing lines and
3 production lines. Except from the aforementioned flexible-storage policy, an
obligatory-storage policy is also considered. According to this, all product orders are
stored obligatorily into an intermediate buffer tank before their packing. The results are
summarized in Table 3.11 for problem instances with 50 products and in Table 3.12 for

problem instances with 70 products.
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Table 3.11. Results of different storage policies in problem instances with 50 products

Case Storage  Buffer ., coc* ITC* PTC* wc*
policy tanks
Obligatory 2 460494 38798 362501  517.97 73.99
storage

oo Obligatory 3320.62  331.64 272456  517.97 72.70

ase storage (-20.64%) (-12.5%) (-24.8%) (0.00%)  (-1.74%)
Flexible , 337855  304.60  2459.57  541.69 72.70
storage (-26.63%) (-21.4%) (-32.1%) (+4.58%) (-1.74%)
Obligatory 2 769.74 199.41  200.84 239.14 130.35
storage

Case 2 Obligatory ; 689.86 17429  147.43 239.14 129.00

ase storage (-10.38%) (-12.6%) (-26.5%)  (0.00%)  (-1.0%)
Flexible , 675.35 162.8 127.23 256.96 128.37
storage (-12.26%) (-18.3%) (-36.6%) (+7.45%) (-1.52%)
Obligatory 2 896.09 24048  232.78 289.84 133.00
storage

Case 3 Obligatory \ 778.82 200.75  163.83 289.84 124.41

ase storage (-13.09%) (-16.5%) (-29.6%) (0.00%)  (-6.46%)
Flexible , 745.4 186.2 153.12 289.84 116.24
storage (-16.82%) (-22.7%) (-34.2%)  (0.00%)  (-12.6%)
Obligatory 2 687.20 24391 70.79 248.49 124.02
storage

o Obligatory 638.62 195.30 48.12 271.99 123.22

ase storage (-7.07%)  (-19.9%) (-32.0%) (+9.46%) (-0.64%)
Flexible 622.43 179.1 40.56 279.82 122.94
storage (-9.4%)  (-26.5%) (-42.7%) (+12.61%) (-0.86%)
Obligatory 707.32 22929 7091 27126  135.86
storage

Case s Obligatory 662.93 191.65 48.15 291.07 132.06

ase storage (-6.28%)  (-16.4%) (-32.1%) (+7.31%) (-2.81%)
Flexible 648.14 179.10 40.56 297.68 130.79
storage (-837%) (-21.9%) (-42.8%) (+9.74%) (-3.73%)

“TC=Total cost. COC=Changeover cost. ITC=Idle time cost. PTC=Processing time cost. WC=Waste cost

“The costs represent monetary units
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Table 3.12 Results of different storage policies for cases with 70 products

Case Storage  Buffer .., coc* ITC* PTC* we*
policy tanks
Obligatory 4971.26 372.64 399022  532.06 76.34
storage

oy Obligatory 3706.39 31898 277719  536.32 73.90

ase storage (-25.44%)  (-14.40%) (-30.4%) (+0.82%) (-3.21%)
Flexible , 3378.55 304.60 245957  541.69 72.70
storage (-32.04%) (-18.26%) (-38.3%) (+1.81%) (-4.77%)
Obligatory 942.91 321.03 240.07  350.23 31.58
storage

cop  Obligmory 825.49 27480  167.09  353.03 30.57

ase storage (-12.45%)  (-144%) (-30.3%) (+0.78%) (-3.27%)
Flexible , 794.67 250.40  134.44 37825 31.58
storage (-15.72%)  (-22.1%) (-44.6%) (+8.04%)  (0.00%)
Obligatory 1458.74 309.00 693.84  426.07 29.82
storage

coeq  Obligatory 1138.81 261.03 41730 43267 27.80

ase storage (-21.93%)  (-15.53%) (-39.86) (+1.55%) (-6.77%)
Flexible ) 1064.86 255.70 348.17 433.67 27.58
storage (-27.12%)  (-17.25%) (-49.8%) (+1.55%)  (7.520p)
Obligatory 1314.69 24435 631.31  421.32 17.71
storage

Caseq  ODlgAOOTY 1083.95 240.88  404.04  421.32 17.71

ase storage (-17.55%)  (-1.42%) (-36.1%) (0.00%)  (0.00%)
Flexible , 1045.75 259.50 34722  421.32 17.71
storage (-20.46%)  (+6.21%) (-45.0%) (0.00%)  (0.00%)
Obligatory 1190.52 283.18  450.80  421.32 35.22
storage

coes  Obligatory 1094.52 27112 36686  421.32 35.22

ase storage (-8.06%)  (-4.26%) (-18.6%) (0.00%)  (0.00%)
Flexible 1056.92 255.60 34477 42132 35.22
storage (-11.2%)  (-9.74%) (-23.5%) (0.00%)  (0.00%)

*TC=Total cost. COC=Changeover cost. ITC=Idle time cost. PTC=Processing time cost. WC=Waste cost

“The costs represent monetary units
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Results illustrate clearly a significant reduction in the total cost, by implementing a
flexible-storage policy. In particular, the total cost is decreased by 26.63% in cases with
50 products, while a decrease of 32,04% is realized in cases with 70 products. It is

noticed that the improvements are mainly due to the idle-time cost reduction.

3.5.5 Consideration of byproducts

The impact of byproduct recycling is studied here, using the problem instances with 50,
60, 70 and 100 products form case 1. The capacity of byproducts vessel tanks is equal to
160 kg and the stored amount should not exceed this limit. Figure 3.17 shows, the total
amount of recycles for each case. It is noticed that the byproduct recycles constitute a
significant percentage of the total produced amount, which ranges from 6.1% (Case 1
with 50 products) to 7.57% (Case 4 with 100 products). It is therefore clear that the
usage of this policy leads to better utilization of raw materials and significant reduction

of material cost.
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Figure 3.17 Recycled amount

Furthermore, Case 1 has been solved with and without the proposed byproducts
constraints. It is noticed that the generated waste violates the storage capacity in all

vessels if capacity constraints are ignored. On the other hand, storage limitations are
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fully respected by considering the proposed byproduct constraints. The profile of stored

amount for both cases is illustrated in Figure 3.18 and Figure 3.19.
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Figure 3.18 Case 1 - Total stored amount of byproduct in tanks considering byproducts constraints
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Figure 3.19 Case 1 - Total stored amount of byproduct in tanks without considering byproducts

constraints

3.6 Conclusions

This chapter presents a precedence-based MILP model framework, for the scheduling of

continuous, make-and-pack industries. Intermediate buffers are considered to achieve a

better synchronization between the two production stages. Instead of using a discrete

time horizon, a set of auxiliary binary variables are introduced, to correctly handle mass

balance constraints. A salient feature of the modelling framework is the recycling of

byproducts waste, to achieve a better utilization of raw material and resources. For the

solution of large problem instances, a two-stage decomposition algorithm is proposed.

Several case studies have been solved, to consider the application of the proposed
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modelling frameworks and solution strategy. Results illustrate significant
improvements in the economic operation of the plant. To evaluate the benefits of
intermediate storage tanks, different plant layouts have been studied. The intermediate
storage tanks provide better synchronization of the production stages and lead to
significant productivity gains, while flexible-storage policies result in higher cost
savings in comparison with obligatory storage. The proposed two-stage decomposition
strategy can provide good-quality schedules for large-scale problems and can
potentially constitute an important tool for engineers to derive fast and rigorous
scheduling decisions in a dynamic environment. Further extension of the proposed
optimization-based approach seems a promising research task. Future works are
envisaged to focus on extending the proposed approach, by considering multiple
production stages with flexible storage tanks. Moreover, another direction for future
extension would be the development of an integrated planning and scheduling

optimization framework, by including lot-sizing decisions and inventory constraints.

Nomenclature

MILP model

Indices/sets

i,i'el Production orders
JE] Production units
SES Processing stages
veEV Storage vessels
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Subsets

J1;

1j;

JSs

Parameters

a;

cc

Cp]

fi

ic

iw

Processing units j € J available to process production orders i €

LU <])

production orders i € I that can be processed by processing

unitsj €/, (IJ; €1)

Available processing units j € J to process stages € S, (JSs € /)

upper percentage of the total amount of product i that can be

recycled

Changeover cost

Capacity of byproduct vessel of unit j
due date for product order i

Demand of product i

Capacity of vessel v

Recipe of product i

maximum difference of starting times between the two stages

of the products

The time horizon under consideration
Idle-time cost

The initial stored amount of byproduct at the storage tank of

each processing unit j
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M

ii’ s

pc

pl;

pm; s

rs;

wc

Continuous
Variables
CT; s

GP;

ii's

LI

A big number

changeover time between two consecutive production orders i

and i" at stage s

production time cost

Maximum processing time of product i in both stages

Minimum processing time of product i at stage s

Maximum production rate of product i at stage s

Maximum residence time of a product i at a storage tank

Byproduct cost

Completion time of product i at production stage s

Difference of starting times between the two stages of product i

Idle time between product i and i’ at production stage s

Accumulated amount of byproduct waste in the unit that

operates product i at the starting time of formulation stage

Accumulated amount of byproduct waste in the unit that

operates product i at the ending time of formulation stage

Exported amount of product i’ in a storage vessel up until the

starting time of packing stage of product i

Inserted amount of product i’ in a storage vessel up until the
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starting time of packing stage of product i
Q; Stored amount of product i

QE;; Exported amount of product i'in a storage vessel up until the

end of formulation stage of product i

Qlyr; Inserted amount of product i’ in a storage vessel up until the

end of formulation stage of product i

QP; Stored amount up until the starting time of packing stage of
product i

QT; Stored amount up until the end of formulation stage of product
i

RW; Remained amount of byproduct waste at the end of time

horizon in unit j

ST; s Starting time of product, i at production stage s

T;s Processing time of product i at production stage s

TC Total cost

W; Amount of waste which is recycled by product i

Binary

Variables

Ky Takes the value 1 only if a production order i completes

formulation earlier than the completion time of the formulation

stage of production order i'.

Py Takes the value 1 only if a product production order i starts
packing earlier than the starting time of the packing stage of

production order i'.
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XViiry Takes the value 1 only if production order i stored before
production order i at in the storage tank v

Xirij Takes the value 1 only if production order i is processed exactly
before order i’ in unit j

Y Takes the value 1 only if a production order i is allocated to
unit j

YO, Takes the value 1 only if a production order i starts packing
later than the completion time of its formulation stage

YV, Takes the value 1 only if a production order i is allocated to
vessel v

YARL Takes the value 1 only if a production order i starts packing

earlier than the completion time of the formulation stage of

production order i’

Solution strategy

Indices/sets

iel'N Subset of production orders, which are inserted into the
schedule of the constructive step of solution strategy (I'N < I)

i € ['PN Subset of production orders, which are reinserted during the
first improvement step of solution strategy, since an idle time is
detected before or after its processing (I'°N € I)

i € [REIN Subset of production orders, which are reinserted during the

second improvement step of solution strategy (IRE/N c )

120



Production scheduling of flexible continuous make-and-pack processes with byproducts
recycling

Parameters
pos; The relative position of element i in set |
It The total CPU time limit of solution algorithm

121



Optimal Contract Selection for Contract Manufacturing Organizations in the
Pharmaceutical Industry Under Demand Uncertainty

4

Optimal Contract Selection for
Contract Manufacturing
Organizations in the Pharmaceutical
Industry Under Demand Uncertainty

4.1 Introduction

Over the past few years, large R&D pharmaceutical companies have increasingly
outsourced non-core activities, such as manufacturing, to Contract Manufacturing
Organisations (CMOs), which are companies without their own product portfolio.
Contract Manufacturing Organizations utilize their facilities to manufacture products for
multinational pharmaceutical companies on a contract basis. This policy enables R&D
multinationals to reduce costs and emphasise on drug discovery and marketing, which
are the key parts for their value chain. Typically, drug development is a time-consuming
process, as it takes at least 10 years on average for a new medicine to be in the
marketplace. Additionally, demand of newly developed pharmaceutical products is
usually highly uncertain. Lower drug efficacy can affect the demand and total sales,
while in the worst case, it can lead to the suspension or even the withdrawal of drugs.
Under this dynamic and uncertain environment, CMOs must define which contracts to
accept to maximize their profit while considering their risk tolerance (Marques et al.,

2020).

Although several research contributions have been focused on the scheduling of
pharmaceutical industries and on the planning of clinical trials (Sundaramoorthy et al.,
2012), the contract selection problem of Contract Manufacturing Organizations has not
been considered in the open literature. Hence, in this chapter an integrated tactical

planning and medium-term scheduling framework is proposed for the optimal contract
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appraisal problem of Contract Manufacturing Organizations in the secondary

pharmaceutical industry under demand uncertainty.

First, an aggregated MILP-based planning model is proposed, including material
balances, time horizon and allocation constraints. A general precedence MILP model for
the scheduling of multistage, multiproduct, batch industries is also proposed. The
production targets are defined in the planning decision level using a rolling horizon
framework, while the scheduling MILP model makes batch-sizing and sequencing and
timing decisions in detail. A three-phase, scenario-based solution algorithm is
introduced to model demand uncertainty considering Value-at-Risk (VaR) and
Conditional Value-at-Risk (CVaR) measures, while both systematic and unsystematic
risk are considered. Results illustrate that the proposed modelling framework can
constitute a systematic approach for the contract appraisal problem of CMOs as it can
select the optimal contract mixture depending on the corresponding risk tolerance.
Finally, the proposed modelling approach can constitute the basis for a computer aided
tool that evaluates the feasibility and the profitability of different contract

combinations.

4.2 Problem Statement
Contract Manufacturing Organizations

Pharmaceutical industry constitutes one of the most important industrial sectors, since
it has an enormous impact on the quality of life of population. Furthermore,
pharmaceutical industry, has a vital role in the economies of developed countries. This
is also confirmed by the fact that the revenue of the worldwide pharmaceutical market
at the end of 2020 reached $1.27 trillion. The necessity to transfer new medicines and
vaccines to all over the world, leads to global supply chains, including primary and
secondary manufacturers, warehouses, suppliers, etc. Hence, under this complex supply
chain network, an ever-expanding number of multinational companies decide to
outsource part of their manufacturing processes in order to reduce costs and increase
their overall productivity (Jarvis, 2007). Nowadays, the pharmaceutical companies can
be categorized as follows: i) R&D based multinationals, focused on the whole product

life cycle (from discovery to distribution), ii) generic manufacturers, iii) biotechnology
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companies (mainly focused on research and drug discovery activities) and iv) Contract

Manufacturing Organizations (CMOs).

Contract Manufacturing Organizations provide outsourcing services to multinational
companies on a contract basis. Typically, the vast majority of CMOs is focused on
secondary manufacturing when active pharmaceutical ingredients (APIs) are combined
with a plethora of excipients and transformed into final products. Although CMOs don’t
have their own product portfolio, they play a key role in the supply chain of
pharmaceutical products. Contract Manufacturing market is projected to grow at a
compound annual growth rate of 9.4% and therefore to reach $188 billion by 2026,
from $ 92.42 billion in 2018. (Healthcare Contract Manufacturing Outsourcing (CMO)
Market - Forecasts from 2016 to 2021, 2016)

One of the main advantages of outsourcing, is that it allows large multinational
companies to focus on their core competencies such as drug discovery and marketing.
Furthermore, since CMOs manufacture products for multiple customers, they are
benefited from economies of scale and they can decrease individual costs, regarding to
the purchasing of raw material, production, and storage. Besides the above, outsourcing
allows multinationals for larger product portfolio without increasing capital expenses

associated with the construction of new facilities.
Main Challenges - Uncertainty

Both pharmaceutical products and processes must comply with strict guidelines,
stipulated by regulatory agencies such as Food and Drug Administration (FDA) or
European Medicines Agency (EMA). Thus, drug development is usually a time-
consuming process. Although a drug patent usually expires 20 years after the date a
company applies for it, it can take several years only for development and testing before
a drug reaches the market. In particular, clinical trials alone take 2-10 years on average.
As a result, pharmaceutical multinational companies typically aim to get products into
the market as soon as possible to take advantage of the “market life under patent”. After
a patent expires, pharmaceutical products have to face strong competition from generic

drugs and as a result, both value and sales typically halve.
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In order to reduce their risk exposure, multinationals approach CMOs to outsource part
of their manufacturing process. Since pharmaceutical products must be placed on the
market as soon as possible, a contract can be often offered to a CMO even before the
final approval of the regulatory agencies. However, the approval process can last more
time than it is expected. Furthermore, if the new drug application is not successful, it
must be revised and resubmitted. As a result, a CMO has to decide if it is a good choice to
reserve part of its plant capacity to produce a set of currently developed products,

whose demand window is uncertain.

In addition, even after a drug approval, the drug maker is required to perform further
clinical trials (Phase IV- Post Approval Monitoring), to confirm the benefits of the drug.
Often, the initial estimations of the drug effectiveness can be proven wrong or not fully
accurate. Lower drug efficacy can affect the demand and the total sales. In the worst
case, unexpected side-effects of a new drug can lead the regulatory agencies to decide

the temporary suspension or even the withdrawal of the drug (Aronson, 2017).

Demand of currently developed drugs is affected by unsystematic risk, which is unique
to each specific pharmaceutical product. In particular, four clinical trial outcomes (high
success, target success, low success, failure) can be considered for these products as it is
typical in the industry (Gatica et al., 2003). Although recently developed drugs are
characterized by high demand uncertainty and high risk, usually they are sold at higher

prices, and they are related to higher profit margins.

On the other hand, “mature” drugs, which have been already placed on the market and
have been proved effective over time, are characterized by less volatile demand, since
they are affected only by systematic risk. Systematic risk is inherent to the market as a
whole, reflecting the impact of economic, geo-political and financial factors. At the same
time, the profit margin of these products is lower since they face strong competition due
to generic drugs. The demand volatility range of different types of products is also

illustrated in Figure 4.1.
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Figure 4.1 Demand uncertainty for mature and currently developed products

Under this dynamic environment, a CMO must decide the best contact combination to
accept, so as to maximize the total profit while considering its tolerance to risk. When a
CMO allocates its resources, the so far agreed contracts, as well as the set of available
contacts, which have not been accepted yet, should be taken into consideration. The

selection of the optimal contract mixture is also called as “contract appraisal problem”.
Secondary Pharmaceutical Manufacturing

Pharmaceutical production can be divided into two major subsectors. Primary
manufacturing is mainly focused on the production of active pharmaceutical ingredients
(APIs). On the contrary, secondary manufacturing is related to the conversion of APIs
into final and suitable for usage products, such as tablets, capsules, injections etc.
Typically, a secondary pharmaceutical industry operates as a multistage batch facility.
In each stage, the production takes place in multiple parallel lines, The main operations
that take place, usually include granulation, compression, and coating (Stefansson et al.,
2011). During granulation, APIs are mixed with plethora of excipients and the mixed
powder is transformed into multiparticle entities, called granules. Granulation aims to
generate homogenized mixtures and contributes to cross-contamination reduction.
Powder mixtures are then compressed to form final products, such as tablets.
Throughout compression, key attributes such as hardness, friability, and thickness, can
be monitored and controlled. Finally, the surface of intermediate products is typically
covered by a thin continuous layer of solid. The main purposes of film coating are the
increase of drug shelf life, the taste-masking, and the aesthetic enhancement. Coating

also plays an important role in the moderation of the release profile of drug substances.

126



Optimal Contract Selection for Contract Manufacturing Organizations in the
Pharmaceutical Industry Under Demand Uncertainty

It should be mentioned that recent advances in manufacturing technology have
prompted several pharmaceutical industries, to adopt continuous manufacturing
(Ierapetritou et al., 2016). This movement has also been encouraged by regulatory
agencies, such as FDA, to address drug shortages and recalls. However, the transition to
continuous manufacturing has been proven ineffective in practice and therefore, batch
operations still prevail in secondary pharmaceutical manufacturing (Marques et al,,

2020).

In each production stage, multiple units operate in parallel. After each stage, production
typically stops, in order to collect samples and to test the quality of products. Product-
depended changeovers also occur between consecutive batches, due to required
cleaning operations. Furthermore, batch integrity must be preserved. Hence, batch
mixing or splitting is not allowed, in order to ensure the purity and the quality of final
products (Sundaramoorthy and Maravelias, 2011). Although there are no intermediate
storage units between stages, intermediate products can be stored as inventory in
warehouse of the plant. Additionally, product batches can remain in a processing unit
after completing their process, as long as it is required. The pharmaceutical plant
operates 24 hours per day, for five days a week, to satisfy a weekly order-driven

demand.
The problem can be formally stated as follows:
Given:
e Asetof available and already agreed contracts with uncertain demand level
e Asetof demand scenarios for each contract
e Asetof processing stages with parallel processing units with limited capacity
e Atime horizon
e Product-dependent changeover times
e Selling price of products
e Raw materials, operational, inventory and backorder costs
e The fixed and the batch-size dependent processing rates of products
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Determine:
e The optimal contract mixture
e the detailed production plan
so as to:

e maximize the expected profit while mitigating the corresponding risk

4.3 Planning and scheduling using the Rolling Horizon
framework

In this section, an hierarchical modelling framework for the integrated planning and
scheduling of multistage batch pharmaceutical industries is proposed. An aggregated
MILP planning model is firstly proposed considering capacity, mass balance and time
horizon constraints. Planning-level decisions are made, including the determination of
weekly production and inventory targets. A continuous time, general precedence, MILP
scheduling model is also proposed, inspired by the work of Cerda et al., (2020). The
model focuses on the detailed scheduling of multistage batch facilities and relies on
batch-sizing, unit allocation, sequencing, and timing constraints. A feedback loop is also
integrated into the optimization framework so as to converge the solutions of both
decision levels.

Typically, a CMO must define the best contract mixture to accept in order to maximize
its profits, while considering its tolerable risk exposure. Demand uncertainty of each
contract can be modelled by considering several independent scenarios. Each scenario
represents a possible demand instance and is associated with a given weight, indicating
the probability of its realization.

Considering multiple available contracts, and several demand scenarios, a contract
selection problem is described as highly combinatorial. However, since all contract
combinations and all individual scenarios are independent, the integrated planning and
scheduling problem of each scenario can be solved and evaluated separately

(Dimitriadis, 2000; Johnson, 2005).
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Furthermore, a major challenge for a contract selection problem is typically the
consideration of long-term time horizons. Hence, the solution of planning and
scheduling is addressed through an hierarchical framework, based on the idea of the
rolling horizon approach (Dimitriadis, 2000; Verderame and Floudas, 2008; Wu and
lerapetritou, 2007). In sections 4.3.1 and 4.3.2 the aggregated planning and the detailed
scheduling models are proposed. Finally, the hierarchical framework, based on the

rolling horizon approach is presented in Section 4.3.3.

4.3.1 Planning MILP model
The model constraints are presented below:

Allocation constraints
CIWJminWVp.j,w < Qpjw S QW "WV VPEPjEPL,WEW (41)

Constraints (4.1) impose an upper (qw;"**) and a lower (qw}"i”) bound on the

production of each product Qp,w, in production unit j, during week w.

Mass balance constraints

Ip,s,w—l + Z Qp,j,w = Ip,s,w + z Qp,j,w +
JE(JSsNPp) jE(JSs+10PIp) (4.2)

+dpsw—Bpswt+Bpsw-1 VDEP,SESSwWeEW

Constraints (4.2) express the material mass balances. In particular, the total produced

and stored amount of product p from the previous week (/5 ,,—1), must be equal to the

weekly demand (dpsw), the produced amount at the next production stage (s+1) and the

new stored amount, Ly sw- If the demand cannot be fully satisfied, then that amount is
denoted as backlog (or backorder), and it is represented by variable B,,. The
unsatisfied demand is penalized in the objective function by considering an associated

cost term. The last term of the mass balance constraints is related to the backlog of the
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previous week, (Bpsw-1). Since backorders must be satisfied as soon as possible,

variable B, 5,1 is added into the market demand for the current week.

z Qp,jw < z Qpjw tlpsw-1 VPEPseSweW:s>1 (4.3)
JE€JSs J€JSs-1

Constraints (4.3), ensure that the total production of product p at stage s, at the end of
week w, should not exceed the amount that has been produced at the previous stage,
plus the amount being stored from the previous week, Ipsw-1. Obviously, the above
restriction doesn’t affect the first production stage, where production is limited only by

the capacity of production units.
Duration constraints

Q). _
Npjw = qi’% VpEP,jEP,wEW (4.4)

J

The minimum number of batches for each product p, in unit j, is denoted by integer

variable N

p,jw- According to constraints (4.4), the minimum number of batches is at

least equal to the quotient of the division of the produced amount @, ;,, and the
maximum capacity of unit j, g **. Using an inequality constraint, if the quotient of the
division leads to a non-integer number, variable N, ;,, is rounded up to the next higher

integer.

_ Qp,j,w
Tpjw = fXp,iNpjw + ,
Utp,]

VpEP,jEP,,wEW (4.5)

The processing time of each product p, Ty, ; ,,, is given by constraints (4.5), including two
terms. The first term is related to the fixed processing time, while the second is
associated with the size-dependent processing time. The fixed processing time typically

includes the time needed for filling and emptying the processing units, as well as the
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required time for quality control. The terms fxp; and vt; express the fixed and variable

processing time coefficients, respectively.
Storage constraints

Lysw<cap,s VpeEPseSweW (4.6)

ZZ ILpsw<=wc VweW (4.7)
p S

Storage capacity limitations are satisfied via constraints (4.6) and (4.7). In particular,
constraints (4.7) guarantee that the stored amount cannot exceed the total warehouse
capacity of the plant, w¢, while constraints (4.6), impose a capacity limitation for the

stored amount of product p, at stage s, given by the parameter, capp,.

Time horizon constraints

ZTp,j,W-I_ZClp,jWVp.j.WSh VjE],WEW (48)
14 14

Z Tpjw=<avlsgu, VseSweW (4.9)
p JEUSsNPJp)

To enhance the accuracy of the planning model, time horizon constraints (4.8) and (4.9)
are also considered. According to constraints (4.8), the total processing time and the
average cleaning time clp; of each production unit must be lower than the available time
horizon, h. Additionally, constraints (4.9) state that the total production time of each
production stage, must not exceed an upper limit, given by the parameter avis. Usually,
parameter avls is equal to the time horizon, h multiplied by the number of parallel lines
of stage s. Parameter p; is a sequencing factor and it has a vital role in the proposed
solution framework (Verderame and Floudas, 2008; Wu and lerapetritou, 2007). The

initial value of the sequencing factor equals 1, but it can be modified during the rolling
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horizon algorithm. Since the planning model doesn’t include timing and sequencing
constraints, in some cases, the production targets provided to the scheduling level are
proven infeasible. To converge the production amounts of the two models, the upper
bound is adjusted to the maximum production time defined by the scheduling level.
Hence, the MILP planning model is more accurate. A detailed description of the use of

sequence factor is provided in section 4.3.3

Objective function
initial contarct payment total sales
——
w3 S Wty
c w  p je(JSsnPJp)
backlog cost inventory cost production cost
2.2 Boowb =0, 0 D oo 0,0, D, Qo1 - (410)
w p ]EP]p
raw materzal fixed cost raw material variable cost
———
D YD ) YONERS
D jEP]p w

The objective function aims at maximizing the total profit. The main income of the
company is related to the initial payment of each signed contract (in.), and the total
revenue of sales. On the other hand, expenses include backlog, inventory, production,
and raw material costs. It is assumed that if a contract is signed, a minimum amount of
raw materials must be purchased regardless of the actual demand and the final
production level. Thus, a term related to the fixed cost of raw materials is considered as

well.

4.3.2 Scheduling MILP model

In this section, a general precedence-based MILP is proposed, inspired by the work of
Cerda et al,, (2020). The model is focused on the scheduling of multistage, multiproduct
batch processes, typically met in secondary pharmaceutical industries. A description of

model sets, variables and parameters is presented below, while constraints are
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categorized based on the type of decision (e.g. allocation, batch sizing, timing,

sequencing, etc.).

Allocation constraints

Z YP,,<1VbeB (4.11)
pEP
JEUSsNPJp)

Constraints (4.11) ensure that any batch is assigned to at most one product p.
Furthermore, as it is stated by constraints (4.12), each batch b is allocated to at most

one processing unit j, in each production stage s.

Mass balance constraints

ininy, s + Z QBpps = dmys — BAp s+ INV, s + Z QBpps+1 VDPEP,SES (4.13)
bEB bEB

Mass balances are expressed for each product p and production stage s, using

constraints (4.13). In particular, the initial inventory, ininv, s , plus the total production
of product batches, must be equal to the customer’s demand, dm,, the amount
processed in the next production stage s+1 and the new stored amountINV,,. If

demand cannot be fully satisfied, it is backlogged by utilizing variable BA,, .

Timing constraints

QBVy
TPhs= D > YUy fry+—22

p JEUSsNPJp)

ey VbeB,seSs (4_14)
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The processing time of batch b of product p, TPy, is expressed by constraints (4.14).
Similarly to constraints (4.5), the processing time has two contributions. The first term
is associated with the fixed processing time, whereas the second one with the size-
dependent processing time. Variable, QBV,, ,, ; represents the variable component of

batch size.

CTb,s = STb,s + TPb,s + WTb,s VbeEB,seSs
(4.15)

According to constraints (4.15) the completion time of batch b, CT, ;, must be equal to
the sum of the corresponding starting time, ST}, ; and the processing time, TP, ;. In some
cases, a waiting time is allowed between sequential stages. The waiting time of batch b
in stage s, is represented by variable WT, ;. In case of zero-wait storage policy, variable

WTy s is set to zero.

CTps+ chyyr < STy s+ h(2=YUpp; = YUy ;) + R(1 = XB, ;)
VbeBb €eBpeP,p eP,seS,je(JSs N PL,):p #p,b >b (4.16)

CTyrs + Chpp < STps+ h(2—=YUpyp; — YUy ;) + hXBy
VbeB,b'€BpeEP,p eP,seS,je(JSs n Pl,):p #p,b' >b (4.17)

Constraints (4.16) and (4.17) define the relative sequencing of batches at each
processing unit j (Kopanos et al., 2010a). Since batch b’is processed after batch b, in unit

j of stage s, (XB), , ; = 1), the starting time, ST, must be greater than the sum of the
completion time CT}, s and the corresponding changeover time ch,, ,. On the other hand,
if the general precedence variable is equal to 0, constraints (4.17) force variable ST}, ; to
be greater than the sum of variables CTy, s and ch,,. If batches b and b’ are not
processed in the same unit j, (YU, ; = YU,/ ,r ; = 0), constraints (4.16) and (4.17) are
relaxed.

CTps < CTyr g +h(2—=YUpp; — YUy, ;)

(4.18)
VbeBb €BpeEP,s€eS,je(JSs n PJ,):b' >b,s=|S|
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To avoid symmetric solutions, the processing of batches that contain the same product p
can be preordered. According to constraints (4.18), batches assigned to the same
product p and the same unit j, must be processed in the same order as they appear in set
B. Constraints (4.18) is applied only to the last production stage since otherwise, a
subset of feasible solutions could not be detected in the solution search space (Cerda et

al.,, 2020).

STyse1 = CTys + trs, Z QByps VbEB,sES:s<IS| (419)
14

Constraints (4.19) determine the timing of batches between consecutive stages. The
starting time of batch b, in stage s+1, must be equal to its completion time in the
previous stage s, plus the necessary transferring time, which is given by the parameter

tT'Sp.

CTys < hz Z YU,,; VbEB,SES (4.20)

P je(JSsNPJp)

STy < hz Z YUp,; VbEB,SES
P je(JSsNPJp)

(4.21)

WTb,SShZ Z YUpyp j VbeB,ses
p je(JSsnNPJp)

(4.22)

Constraints (4.20)-(4.22), guarantee that variables CTj s, ST}, s and WT,, ; are forced to

zero if batch b is not allocated to any product p, or any unit j at stage s.

Batch sizing constraints

QBpps = Z (YUpp,;a"™ + QBVyyp;) VbEBpPEPSES (4.23)
JEJSs
QBVyp, < (@ —q"™YU,,; VbEB,pEP,sES,jE (S N PJp) (4.24)
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The size of batch b, which consists of two individual terms, is defined by constraints
(4.23). The fixed component is equal to the minimum capacity of the corresponding
processing unit, q}"in. On the other hand, the variable batch size is expressed by variable

QBVyyp j- Furthermore, as it stated by constraint (4.24), the variable batch size must not

exceed the maximum capacity g7***

j »minus the minimum capacity of processing unit j.

YUb,p,j = Z (YUb,p,j) + YIIb,p,S—l
je(JSs N PJp) j€(JSs—1 N PJp) (4.25)

VbeB,peP,seS:s>1

Additionally, a batch b, in stage s, can be either produced by a processing unit j or it can
be fulfilled by the inventory being stored in the warehouse. To take this issue into
account, an auxiliary binary variable YII,, ¢ is introduced, which is equal to 1 only if
batch b in stage s is covered by stored amount. Constraints (4.25) ensure that a batch b
can be allocated to unitj in stage s, only if it has been previously produced or it has been

covered by the stored amount in previous stage, s-1.

QBpps <UINVyps 1+ QBpps—1 VDEBpPEP,sES:s>1 (4.26)
UINVy s < Yl sininv,s Vb €EB,p EP,s €S (4.27)
Z UINVy s < ininv,s VpEP,s€S (4.28)
beB

Furthermore, variables UINV,, ; are introduced, to express the stored amount of
product p, that is being used to fulfil batch b, in stage s. According to constraints (4.26),
the batch size of batch b in stage s, should be less than the produced amount of the
previous stage, QBp, 1, and the amount received by the warehouse, UINV,, ,_;.
Constraints (4.27), ensure that the stored amount of product p in stage s, used for
satisfying batch b, does not exceed the total inventory of product p, ininv, ;. Finally,
constraints (4.28) guarantee that the total used inventory, cannot exceed the initially

stored amount of product p at stage s.
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Storage constraints

INV,s < capp,s VpEP,SES (4.29)

D I < we (4.30)
P s

Similar to constraints (4.6) and (4.7), constraints (4.29) and (4.30) ensure that the net
amount of storage material does not exceed the storage capacity of the plant. In
particular, constraints (4.29) determine the storage capacity for each individual product

at each stage s, while the warehouse capacity limitations are imposed by constraints

(4.30).

Underproduction constraints

z QBpps + PU,s = tprod,s V p€EP,SES (4.31)
beB
INV, s+ IU,s < tinv,;, VpePSES (4.32)

The decisions made by the proposed MILP planning model define the production targets
for the scheduling level. However, the capacity of the plant could be overestimated by
the planning model, and thus the production targets would be proven infeasible. Hence,

we introduce two slack variables PU, s and IU

p,s) €xpressing the total underproduction

and inventory underproduction of product p in stage s, respectively. Constraints (4.31)
and (4.32) are included to allow for potential violation of the production targets and
maintain the robustness of the model. Additionally, both slack variables are penalized
in the objective function. It should be noted that both constraints (4.31) and (4.32) can
be written as equalities. However, the usage of inequality constraints can potentially

improve the CPU time without affecting the quality of the solution.
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Objective function
total sales backlog cost inventory cost
max Z pr,dm, 3 — z bc,BAy 5 — Z Z icpINV, ¢
p p p s
production cost underproduction cost inventory underproduction costt (433)

——

ZZZ qcpQBpps — pchZPUp,S - ichZlUns
b p s s p s P

In accordance with the objective of the planning model, the maximization of total profit
is considered as the main target of the scheduling model. The objective function takes
into account the various individual costs, such as backlog, inventory and production
cost, along with the total sales of final products. The two final terms aim to minimize the

slack variables related to the total underproduction, and inventory underproduction.

4.3.3 Rolling horizon framework

Among the different decision levels, tactical planning and medium-term scheduling are
strongly connected. One of the main challenges in the integration of production
planning and scheduling is the development of computationally effective formulations
for complex production facilities, which include multiple product routes, and sequence-
dependent changeovers. The major modelling approaches for the integration of
planning and scheduling decisions are presented in detail by Maravelias and Sung,
(2009). Furthermore, modern process industries must satisfy multiple customer orders,
considering frequent demand fluctuations. Hence, processing equipment has to be fully
utilized, while at the same time, production targets must be feasible (Georgiadis et al,,
2019a).

To address this challenge, the integrated planning and scheduling problem can be
solved via an hierarchical framework, based on a rolling horizon approach. The main
idea of the rolling horizon algorithm is the division of the initial long-term time horizon,
h, into a sequence of N smaller subperiods, (i.e., weeks). Each subperiod can be
optimized in an iterative way. Two new subsets, Ts and T, are also introduced, to
represent the scheduling and the planning time-blocks, respectively. In each iteration,

only decisions related to the scheduling time block, Ts, are made in detail, while the rest
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subperiods are considered in an aggregate manner. Typically, in process industries the
scheduling horizon is equal to one week, but this could vary depending on the specific
problem features.

In the first iteration of the rolling horizon algorithm, the planning time-block consists of
the overall planning horizon (Tp= {n,,..ny}), while subset Ts includes only the first time
period (Ts ={n,}). Hence, the aggregated planning model is solved, considering the
entire planning horizon Tp, and the solution determines production targets for each
subperiod. Then, the medium-term scheduling model is solved for solely the first
subperiod and detailed decisions are made.

In the second iteration, the subset Ts is updated so that Ts ={n,}, while Tp= {n,,..ny}.
Hence, the aggregated planning model is solved again for the entire planning horizon, h.
However, decisions related to the first subperiod are considered fixed, since they have
already been taken by the scheduling model in the first iteration. Considering the
updated production targets, the scheduling model is solved for the second subperiod, Ts
={n,}, and the related scheduling decisions are also fixed.

The procedure described above, is repeated until all subperiods are solved in detail by
the medium-term scheduling model. Production targets can be revised in each iteration.
A brief schematic representation of the rolling horizon framework is illustrated in

Figure 4.2.
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Figure 4.2 Rolling horizon framework

One of the main drawbacks of the rolling horizon framework is that the production
capacity of the plant cannot be represented so accurately by the aggregated planning
model (Li and lerapetritou, 2010). Thus, the defined production targets may be often
proven suboptimal or even infeasible by the scheduling model. To address this issue,
the rolling horizon framework should allow for feedback between scheduling and
planning models. This can be achieved by including additional feasibility constraints
into the planning model, in order to reduce the feasible solution space and impose
accurate enough capacity upper bounds (Verderame and Floudas, 2008; Wu and
lerapetritou, 2007). In particular, time horizon constraints (4.9) are included in the
proposed planning model. To allow for feedback between the two optimization levels, a

sequence factor y, is also introduced (Wu and lerapetritou, 2007). The sequence factor
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has a significant role in the rolling horizon algorithm, as it represents the impact of
sequencing constraints in the planning model. Thus, an accurate value of the sequence
factor can lead to convergence between planning and scheduling solutions. The initial
value of the sequence factor equals 1. However, if there is a gap between planning and
scheduling production levels, the sequence factor is updated for the subsequent

iterations as follows:

scheduled
piter = yiter-15____ gy ceg (4.34)

planned
s

Parameters PP'4""¢? and pscheduled  denote the total production targets for production
stage s, as defined by the planning and the scheduling optimization levels, respectively.
Apparently, the sequence factor cannot exceed the value of 1, as in that case, the time
horizon constraints would be relaxed and deactivated. If the plant capacity is

overestimated by the planning model, the production targets may be proven infeasible

by the scheduling model (PP'*""¢¢ > pscheduled) |p this case the sequencing factor will
be adjusted to a smaller value, for the following iterations of the algorithm. Rarely, the
plant capacity can be even underestimated by the planning model, and therefore the
sequence factor is forced to an increased value. It should be noted that if there is a gap
between planning and scheduling production levels, an iterative procedure could be
applied in order to obtain the optimal value of the sequencing factor. However, this is
not a major target, as parameter y, can be modified at each iteration (Verderame and

Floudas, 2008; Wu and Ierapetritou, 2007).

4.4 Solution framework

In this section, a systematic approach for the contract appraisal problem is proposed,
aiming to determine decisions on which contract to accept, while considering resource
allocation and demand uncertainty. In particular, given a set of available and already
agreed contracts, a CMO must define the best contract mixture to maximize its profits,
while considering the corresponding risk exposure. However, the consideration of

multiple contracts and several demand scenarios for each individual contract, renders
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the contract selection problem a complex task. The development of a two-stage
stochastic model for the strategic planning of CMOs could be proven inaccurate, as
sequencing decisions cannot be considered in detail by an aggregated planning model.
Additionally, the examination of long-term time horizons also imposes limitations on
developing tractable integrated planning and scheduling MILP formulations. To address

this issue, a solution framework is proposed.
Typically an MILP model can be written in the following form:

maxa’x + bTy
S.t.
Ax+By <c
(4.35)
xb<x<xV
x €R"

y €{0,1}

Dimitriadis (2000), shows that if variable vectors x and y can be partitioned into p
independent vectors, the problem (4.35) is decomposable. Furthermore, each individual

P-MILPs can be solved in parallel to reduce the required computational time.

It should be noted that in the contract appraisal problem, all contract combinations, as
well as all scenarios, are independent. Thus, instead of considering all contracts and
scenarios as part of a single MILP model, each one of them can be evaluated
independently (Dimitriadis, 2000; Johnson, 2005). In particular, the proposed rolling
horizon framework for the integrated planning and scheduling can be solved for each
individual contract combination and each combined scenario. Afterwards, the generated
solutions can be utilized to construct the profit distribution of each combination of
contracts. To address large problem instances that involve numerous scenarios, an
MILP-based scenario reduction framework can also be employed (Li and Floudas,
2014). The proposed solution framework consists of three phases, which are thoroughly
described below. A schematic representation of the proposed solution strategy is also

illustrated in Figure 4.3.

142



Optimal Contract Selection for Contract Manufacturing Organizations in the

Pharmaceutical Industry Under Demand Uncertainty

15t phase

The first phase is focused on the assessment of the feasibility of each contract
combination. In particular, the predominant scenario of each combination is considered
by solving the aggregated planning MILP model. If the generated solution leads to full
demand satisfaction, the underlying contract combination is defined as feasible. On the
contrary, if a contract combination is proven infeasible, then any combination that is a
superset of the former must also be infeasible. For example, if the combination of
contracts C1 and C2 is infeasible then the combination with the contracts C1, C2 and C3

is also infeasible.

2nd phase

According to the second phase, the predominant scenario of each combination that has
been proven feasible in the first phase is solved, using the integrating planning and
scheduling MILP framework. If any iteration of the rolling horizon framework results in
partial demand satisfaction (backlog generation), the contract combination is deemed
infeasible. Furthermore, any combination that is a superset of the former is also deemed

infeasible.

3rd phase

Regarding the third phase of the proposed algorithm, the planning and scheduling
problem of each combination is solved for each combined scenario, by applying the
rolling horizon algorithm. Considering scheduling level decisions, the total profit can be
accurately estimated for all scenarios of a contract combination and thus, the
corresponding profit distribution can be constructed. Depending on their tolerance to
risk, decision-makers can choose the optimal contract combinations that maximize the

total profit.
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Figure 4.3 Schematic representation of the solution strategy.

Assessment of Risk

Nowadays, process industries try to manage various types of risk. Although most
industries try to avoid risks, sometimes a judicious exposure to risk can create a
competitive advantage for a company. Risk can be defined as the volatility of
unexpected outcomes, which can represent the value of assets, costs, or profits.
Understanding and measuring risk means that decision-makers can consciously plan for
the consequences of adverse outcomes. Typically, risk associated with process
industries can be defined as the probability of not meeting a specific profit or cost
target. Various risk measures can be used to assess the risk, such as variance, variability
index, downside risk, Value-At-Risk (VaR) and Conditional Value-At-Risk (CVaR), (Vieira
et al, 2020). In the proposed solution framework, both VaR and CVaR are used to

evaluate the corresponding risk of each contract combination.

Value-at-Risk is a widely used risk measure, which was firstly introduced by the
financial institution ]. P. Morgan (Jorion, 2000). Given a profit distribution and a
specified confidence level (@), Value-at-Risk represents the maximum profit between

the a% worst profit realizations. A more general definition of VaR is given by the profit
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value corresponding to the 1-a-quantile. For a specific profit distribution P, VaR can be

defined as:

VaR,(P) = F5'(1—a) = Qp(1 — q) (4.36)

where, Fp"l(l — a) is the inverse cumulative distribution function that is equal to the
quantile function, Q(1 — a). Although VaR can provide a good approximation of the
corresponding risk it suffers from a major drawback. In particular, VaR cannot capture
the profit levels associated with the extreme data points and the tail of the probability
distribution. Therefore, decision-makers have no indication regarding the profit

distribution beyond the confidence level a.

To face this issue, alternative risk measures, such as Conditional-Value-at-Risk, have
been also introduced. Conditional-Value-at-Risk, which is also called Expected shortfall
or Average Value-at-Risk, is a risk measure that is mainly used in the field of financial
risk measurement. For a given profit distribution P, CVaR represents the average of all
profit levels that are worse than the VAR, at a given level of confidence, a:

a

CVaR,(P) = % j VaR.(P) dc (4.37)

1

For example, the CVaRosy is calculated by taking the average of profit levels in the worst
5% of cases. A graphical representation of VaR and CVaR measures for a confidence

level, a=90%, is shown in Figure 4.4.
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Figure 4.4 Graphical representation of VaR and CVaR measures for a confidence level a=90% and a
profit distribution P

Scenario reduction model

Making accurate decisions usually requires the consideration of numerous scenarios.
Considering combinations of multiple contracts, the rolling horizon framework must be
solved several times according to the proposed solution framework. To cope with this
challenge, a scenario reduction framework proposed by Li and Floudas, (2014), can be
applied. Considering an initial demand distribution of a contract combination, the
scenario reduction model can define a new distribution by removing a user-defined
number of scenarios. The scenario reduction is mainly achieved by minimizing the
probabilistic distance between the initial and the reduced distribution of uncertain
parameters. The probability of each removed scenario is added to the initial probability

of the remaining scenario that is closest to it.

A notable advantage of this framework is that except from the input parameter

distribution, the output distribution is also considered. For instance, considering a
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contract selection problem, both demand and expected profit distributions can be taken

into account and thus, more accurate solutions can be obtained.

A detailed description of the sets, variables and constraints of the scenario reduction
MILP-based model is given in Appendix C.1. To apply the scenario model to the contract
selection problem, a set of input data must be first defined to compute the distance
between any two scenarios s and s’, of a contract combination. In particular, the distance

parameter cg s can be calculated as follows:

Css" = Z Z|dp,s,w - dp,s’,wl +1fs — £yl (4.38)
p w

,where the parameter d,, 5, express the demand of product p in week w and scenario s,
and the parameter f¢ represents the expected profit of scenario s. However, obtaining
the optimal objective value for each scenario of the initial distribution by solving the
proposed rolling horizon framework, would not be an efficient approach, as it is a time-
consuming process. Furthermore, having already obtained the optimal solution of all
scenarios for a combination of contracts, the solution of the scenario reduction model
would be useless, as in this case, the profit distribution could be easily constructed. To
overcome this limitation, the initial profit distribution can be efficiently approximated
by solving the proposed aggregated planning MILP model for each individual scenario.
Even when a large number of scenarios is considered, the proposed planning model can
be easily solved for each scenario and thus, a good profit estimation can be obtained in a

short amount of time.

To summarize, the following preliminary computations must be made, in order to apply

the scenario reduction MILP model:

1) Obtain the optimal objective value for each scenario of the initial discrete
distribution by solving the proposed aggregated planning MILP model
2) Compute the maximum, minimum and expected objective value of all scenarios

of the initial discrete distribution
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3) Compute the distance between any two scenarios s and s’ as described by

equation (4.38)

4.5 Application studies

The efficiency and the applicability of the proposed framework is illustrated considering
two representative case studies. Both problems focus on a multi-stage batch facility of
the secondary pharmaceutical industry, consisting of three individual processing stages
(granulation, compression, and coating). Each stage includes multiple production units
with varying capacity and production rates. The time horizon is equal to 1 year (or 52
weeks), and a weekly demand must be fulfilled for each product.

To model demand uncertainty, four demand scenarios are defined for each contract
(high, target and low demand, and failure), as it is typical in the pharmaceutical industry
(Gatica et al.,, 2003; Marques et al., 2020; Shah, 2004). Usually, demand of mature
products which have been already placed on the market is stable, and it is subject only
to systematic risk. Hence, combinations of contracts with already developed products
consist of the same demand scenarios, including high, target and low demand with the
same realization probabilities. This is a strong assumption as the demand of these
products is mainly affected by major socio-economic or geopolitical issues, such as a
pandemic or a financial crisis. On the other hand, demand of currently developed drugs
is usually more volatile, since unexpected side-effects can cause a significant demand
reduction or even the withdrawal of the drug. Hence, if a combination includes
contracts with new drugs, the probability of combined scenarios is calculated as the
product of the probabilities of the new drugs and the probability of the developed
products.

An illustrative example is firstly presented, considering a medium-sized problem
instance. In section 4.5.2, a realistic large-scale problem is solved, while the capacity
expansion, by installing an additional processing unit in the last processing stage, is
examined in section 4.5.3. The CMO must decide the best contract combination among a
set of available and already agreed contracts in order to maximize its profit and mitigate

the risk.
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4.5.1 Illustrative example

In the first problem instance, the CMO must decide the best contract combination
among 6 contracts. Contact C1 is already agreed. Contracts C1-C3 consist of mature
products with smaller demand fluctuations and lower selling prices, while contracts C4-
C6 include currently developed drugs with higher selling prices. Demand scenarios of
each contract are given in Table 4.2. Furthermore, all data related to the illustrative
example are presented in detail in Tables C1-C15 in the Appendix C.2.

The total number of combinations can be calculated as follows:

agreed contracts

peontracts _ ol 1 Z pContracts—c (4.39)

Since contract C1 is already agreed, the 6 contracts lead to 31 combinations (26-253).
Contract combinations that include only contracts C1-C3 are subject only to systematic
risk and thus, consist only of 3 scenarios (high, target and low demand). On the
contrary, the scenario probability of combinations that include contracts with new
drugs (e.g., C4-C6), is calculated as the product of the probabilities of the new drugs and
the probability of the developed products. For example, the contract combination C1-
C2-C6 consists of 12 (or 3-4) individual scenarios which are presented in detail in Table

4.1.

Table 4.1 Demand scenarios of contract combination C1-C2-C6

Probability 2,5% 20,0% 2,5% 4,0% 32,0% 4,0%
C1 High Target Low High Target Low
C2 High Target Low High Target Low
Cé High Target Target Target Target Target
Probability 12,0% 3,5% 16,0% 3,5% 2,5% 20,0%
C1 High Target Low High Target Low
C2 High Target Low High Target Low
Cé Low Low Low Fail Fail Fail
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To solve this problem, the proposed solution algorithm is utilized. According to the first
phase of the solution algorithm, all combinations are solved using the aggregated
planning model for the corresponding predominant scenario (target demand). The
underlying contract combination is defined as feasible if the solution leads to full
demand satisfaction. On the other hand, if the solution leads to backlog, then the
contract combination is regarded as infeasible and any combination that is a superset of

the former must also be infeasible

In the second phase of the algorithm the set of feasible combinations are solved for
their predominant scenario by using the proposed integrated planning and scheduling
rolling horizon framework. Similarly to phase 1, if the obtained solution leads to
backlog, then the contract combination and any superset of the former are considered
infeasible. In particular, both contract combinations C1-C3-C4 and C1-C4-C5 were

proven feasible in the first, but not in the second stage of the algorithm.

Table 4.2 Contract data

Demand multiplier for each scenario and
Contract availability /

contracts broduct type Products probability of realization
High Target Low Fail
C1 Agreed/developed 1,2 1.2 (10%) 1(80%) 0.8(10%) 0 (0%)
C2 non agreed/developed 3,4 1.2 (10%) 1(80%) 0.8(10%) 0 (0%)
C3 non agreed/developed 56,7 1.2 (10%) 1(80%) 0.8(10%) 0 (0%)
C4 non agreed/developed 8,9,10 1.2 (15%) 1(60%) 0.5(20%) 0 (5%)
C5 non agreed/developed 11,12 1.4(20%) 1(50%) 0.4(20%) 0(10%)
Cé6 non agreed/developed 13,14 1.7 (25%) 1(40%) 0.2(15%) 0(20%)

Finally, the integrated planning and scheduling rolling horizon framework is solved, for
all scenarios of each feasible contract combination. In this phase, the scenario reduction
MILP model is used to reduce computational time by considering up to 10 scenarios for
each combination. The solution CPU time for each scenario ranges from 10 to 15

minutes, depending on the complexity of the problem.

The expected profit, the Value-at-Risk, the Conditional Value-at-Risk, and the maximum

profit for each feasible contract combination are presented in Table 4.3.
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Figure 4.5 Expected profit, VaRsoy and CVaRsy of each contract combination

Table 4.3 Summary of results

Feasible Contract
Exp. Profit VaRooy, VaRosy, CVaRogy, CVaResy, Max. Profit

combination
C1-C3 0.96 0.76 0.76 0.76 0.76 1.15
C1-C4 1.83 1.12 0.43 0.76 0.42 2.46
C1-C5 0.74 0.27 0.27 0.27 0.27 1.09
C1-Ce 1.83 0.42 0.42 0.42 0.41 3.42
C1-C3-C5 1.50 1.15 1.15 1.10 1.06 1.99
C1-C3-Cé6 2.36 1.29 1.29 1.22 1.16 4.30
C1-C5-C6 2.66 0.76 0.76 0.76 0.76 4.23

*The values represent millions of relative monetary units (r.m.u.)

A bubble chart of the expected profit, the VaRooy% and the CVaRooy is also illustrated in
Figure 4.5. In particular, the diameter of each bubble represents the CVaRooy of contract
combinations. A large bubble in the top right-hand corner of the diagram represents a

good contract combination, implying high expected profit, VaRoo% and CVaRooy values.
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Following a risk-neutral approach, the combination C1-C5-C6 seems to be the optimal
one, as it leads to the maximum expected profit. However, the combination C1-C3-C6 is
a more attractive option, when a risk-averse policy is applied. Considering the VaRoo,
in this case the total profit will surpass the 1.29 million of relative monetary units
(r.m.u), with a 90% confidence interval. Furthermore, the mean of the worst 10% of
scenarios will be equal to 1.16 million. Finally, it should be noted that the contract
combination C1-C6 constitutes a sub-optimal choice, as the combination C1-C4 leads to

the same expected profit value with lower risk exposure.

4.5.2 Large problem instance

This problem includes 12 contracts, with contract C1 already signed. The independent
demand scenarios of each contract are summarized in Table 4.4. The production facility
consists of 3 batch stages, while 2 processing units operate in parallel in each stage
(processing units 1-6). All data related to the problem under study are presented in

Tables C16-C31 in Appendix C.3.
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Figure 4.6 Expected profit, CVaRsy and VaRegy of the eight most promising contract combinations
based on the expected profit
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Table 4.4 Contract data

Contract availability /

Demand multiplier for each scenario and

probability of realization

contracts Product type Products
High Target Low Fail
c1 Agreed/developed 1,2 1.2 (10%) 1(80%) 0.8(10%) 0 (0%)
C2 non agreed/developed 3,4 1.2(10%) 1(80%) 0.8(10%) 0(0%)
c3 non agreed/developed 5,6,7 1.2 (10%) 1(80%) 0.8(10%) 0 (0%)
c4 non agreed/developed 8,9,10 1.2(10%) 1(80%) 0.8(10%) 0(0%)
C5 non agreed/developed 11,12 1.2 (10%) 1(80%) 0.8(10%) 0 (0%)
Ccé6 non agreed/developed 13,14 1.2(10%) 1(80%) 0.8(10%) 0 (0%)
Cc7 non agreed/new 15,16,17 1.2(15%) 1(60%) 0.5(20%) 0 (5%)
C8 non agreed/new 18,19,20 1.4 (20%) 1(50%) 0.4(20%) 0 (10%)
Cc9 non agreed/new 21,22,23 1.7 (25%) 1(40%) 0.2 (15%) 0 (20%)
C10 non agreed/new 24,2526 1.8(15%) 1(40%) 0.3(15%) 0(30%)
C11 non agreed/new 27,28 1.7 (20%) 1(40%) 0.4(0%) 0 (40%)
C12 non agreed/new 29,30 1.7(5%) 1(35%) 0.6(15%) 0 (45%)

Table 4.5 Statistical measures of the initial and the reduced profit distribution of contract
combination C1-C7-C8

skewness kurtosis Stdev (105) Mean (105)
Initial Distribution (64 scenarios) 0.2416 2.4924 2.3821 8.1300
Reduced Distribution (12 scenarios) 0.2341 2.3348 2.3809 8.0012
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Figure 4.7 Profit distributions of contract combinations C1-C7-C8 and C1-C2-C5-C12
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Figure 4.8 Initial and reduced profit distribution of contract combination C1-C7-C8

Finally, a detailed comparison between the initial and the reduced profit distribution of
combination C1-C7-C8 is made, in order to assess the efficiency of the scenario
reduction model. Both profit distributions are illustrated in Figure 4.8. Additional
statistical measures such as kurtosis, skewness standard deviation and mean, are
presented in Table 4.5 for both distributions. It is observed that the reduced profit
distribution efficiently approximates the initial one as both upper and lower values of
the tails are taken into account. Furthermore, the slight differences among the statistical

measures also prove the effectiveness of the scenario reduction model.
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Table 4.6 Summary of results for the ten most promising contract combinations based on the
expected profit

Feasible Contract
Exp. Profit VaRogoy, VaRosy, CVaRgey, CVaRosy,  Max. Profit

combination
C1-C7-C8 8.10 6.03 4.34 4.58 3.98 12.64
C1-C2-C5-C11 8.01 5.08 5.08 4.89 4.70 11.73
C1-C2-C5-C12 7.74 5.50 5.50 5.12 4.74 11.75
C1-C2-Ce6-C11 7.57 4.55 4.55 4.43 4.31 11.11
C1-C5-Ce6-C11 7.51 5.05 5.05 4.90 4.74 10.55
C1-C8-C12 7.28 3.64 3.64 3.43 3.23 12.98
C1-C7-C12 7.18 3.96 3.96 3.77 3.59 12.96
C1-C3-C7 7.08 4.36 4.36 4.33 4.30 8.24
C1-C3-C12 7.04 4.40 4.40 4.11 3.82 10.77
C1-C5-C11 7.08 4.36 4.36 4.33 4.30 8.24

*The values represent millions of relative monetary units (r.m.u.)

4.5.3 Large problem instance - Installation of an extra processing
unit
Typically, process industries put huge efforts into improving their profit margins. Thus,
production engineers often examine new alternative and more flexible plant layouts in
order to increase productivity, and optimally allocate the available resources. In this
subsection, a second plant layout is considered that includes an extra processing unit in
the third processing stage. Detailed data for this problem are presented in Tables C16-
C31 in the Appendix C.3. The problem is solved using the proposed solution algorithm.
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Results illustrate that capacity expansions by installing an extra processing unit allows
for signing more contracts. In particular, 9 additional contract combinations are defined
as feasible after executing the first two steps of the solution algorithm. Results are
summarized in Table C33 in the Appendix C.4., while the ten most profitable contract
combinations are presented in Table 4.7. The installation of the new production line
offers extra production capacity, and thus, more profitable combinations can be signed,
such as C1-C6-C7-C11. However, the proposed capacity expansion does not allow for
signing combinations with more than 4 contracts. The new plant layout also seems to be
beneficial for both risk-neutral and risk-averse production policies. According to Table
4.7, the maximum expected profit is increased by 14.9% compared to the current plant
layout. In particular, the combination C1-C6-C7-C11 leads to the maximum expected
profit, which corresponds to 9.31 million r.m.u. Furthermore, the maximum CVaRoso
value is equal to 5.64 million r.m.u. This corresponds to an increase of 23% compared to

the current layout.

Table 4.7 Summary of results for the ten most promising contract combinations based on the
expected profit

Fe::i:iij::::a P'i’(‘)‘;_;t VaRoos,  VaRess,  CVaRoo,  CVaRosy Il,‘:z’tfl't
C1-C6-C7-C11 9.31 5.70 5.70 5.52 534 13.74
C1-C7-C8 8.12 6.03 434 5.64 4.09 12.64
C1-C2-C5-C11 8.01 5.08 5.08 4.89 4.70 11.73
C1-C7-C11 7.85 3.95 3.95 3.78 3.61 12.93
C1-C2-C5-C12 7.74 5.50 5.50 5.12 4.74 11.75
C1-C2-C6-C11 7.57 4.55 455 4.43 431 11.11
C1-C5-C6-C11 7.51 5.05 5.05 4.90 4.74 1055
C1-C8-C12 7.39 3.64 3.64 3.43 3.23 1434
C1-C8-C11 7.38 3.64 3.64 3.43 3.23 13.04
C1-C7-C12 7.20 3.96 3.96 3.77 3.59 13.27

*The values represent millions of relative monetary units (r.m.u.)
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Finally, noticeable improvements are also observed in several contract combinations. A
representative comparison between the two layouts for contract combinations C1-C7-
C8 and C1-C8-C12 is presented in Table 4.8. It is observed that the CVaRooy is
significantly increased by 23% in combination C1-C7-C8, while the maximum profit of

combination C1-C8-C12 is also increased by 10.5%.

Table 4.8 Comparison between the expected profit CVaRsy and the maximum profit of two
representative contract combinations considering the two plant layouts

Feasible Contract EXp. Profit CVaRQO% Max. Pl‘Ofit EXp. Profit CVaRQO% Max. Profit

combination Initial plant layout New plant layout
C1-C7-C8 8.10 4.58 12.64 8.12 5.64 12.64
C1-C8-C12 7.28 3.43 12.98 7.39 3.43 14.34

*The values represent millions of relative monetary units (r.m.u.)

4.6 Conclusions

This work presents a systematic approach for the optimal contract selection problem of
Contract Manufacturing Organizations (CMOs) under demand uncertainty. A rolling
horizon framework is adapted for the integrated planning and scheduling of multi-stage
batch facilities, typically met in the pharmaceutical industry. Multiple scenarios are
considered to model uncertainty, while a three-stage solution algorithm is proposed to
cope with large-scale problem instances. The first two steps evaluate the feasibility of
each contract combination. . Both systematic and unsystematic risks are considered,
depending on the product types of each contract. In the last stage of the algorithm, the
integrated planning and scheduling problem is solved for all feasible combinations and
all individual scenarios. A scenario reduction approach is utilized to decrease the total
computational time. To assess the applicability of the proposed modelling framework,
two different problem instances have been solved. The consideration of scheduling
decisions can significantly enhance the accuracy of the modelling framework, and
results illustrate that the proposed solution strategy can efficiently maximize the

expected profit depending on the underlying risk tolerance. Furthermore, a capacity
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expansion of the plant leads to notable benefits for both risk-neutral and risk-averse

production policies.

Nomenclature
Planning MILP model
Indices/Sets
cecC Contracts
J€E]J Production units
p,p' €P Products
SES Processing stages
weWw Weeks
Subsets
e Js Production units that are suitable for performing tasks of processing
J €
° stages, (JSs; € )
P Production units that are suitable for processing product p € P, (P], <
J € Pp
J)
Parameters
avl; Total available production time of stage s
bc, Backlog cost of product p
capy s Inventory capacity of product p, in stage s
clp, ; Average cleaning time for product p, in unitj
dp,sw Demand of product p, at stage s, at the end of week w
fr, Fixed raw material cost of product p
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fxy; Fixed processing time of product p, in unitj

h Time horizon of each week w

icy Inventory cost of product p

in, Initial payment of contract ¢

DT, Selling price of product p

q;”“x Maximum capacity of unit j

q}”i” Minimum capacity of unitj

qcp Operational cost of product p

qW]T”i" Minimum weekly production of unit j

qwjmax Maximum weekly production of unit j

re, Variable raw material cost of product p

vty ; Variable processing time of product p, in unitj

wc Maximum storage capacity of the warehouse

U Sequencing factor for stage s

Variables

By sw Backlog of product p, at stage s, in week w

Lysw Inventory of product p, at stage s, at the end of week w
Integer variable denoting the minimum number of batches of product p,

Np.jw . o
that must be processed in unit j, in week w

Ty, jw Processing time of product p, in unitj, in week w
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Qp,jw production amount of product p, in unit j, in week w
WVpjw Binary variable that takes the value 1 only if a product p, is allocated to unit

J, in week w

Scheduling MILP model

Indices/Sets

b,b' €B Product batches

JE] Production units

p,p' €P Products

SES Processing stages

Subsets

JjEJS; Production units that are suitable for performing tasks of processing

stages, (JSs € ))

Production units that are suitable for processing product p € P, (P], <

j € P, N

Parameters

bc, Backlog cost of product p

capy s Inventory capacity of product p, in stage s
Chy Changeover time between product p and p°
dmy, Demand of product p, at stage s

i Fixed raw material cost of product p

fxp, Fixed processing time of product p, in unit j
h The time horizon of each week w
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ic
ninv, ¢

iuc

qcp
tinvy, ¢
tprod,
trsy,

vt

p.Jj

wc

Inventory cost of product p

[nitial inventory of product p, at stage s
Inventory underproduction cost

Selling price of product p

Underproduction cost

Maximum capacity of unit j

Minimum capacity of unit j

Operational cost of product p

Total inventory target of product p, at stage s
Total production target of product p, at stage s
Unit transfer rate of a product p, between consecutive stages
Variable processing time of product p, in unitj

Maximum storage capacity of the warehouse

Continuous Variables

BA, s

CTy s

INV,

1Up s

PU,

QB b,p,s

QBVyyp

Backlog of product p, at stage s

Completion time of batch b, at stage s

Inventory of product p, in stage s, at the end of time horizon

Inventory underproduction of product p, at stage s

Total underproduction of product p, at stage s

Batch size of batch b, of product p, at stage s

Variable batch size of batch b, of product p, in unit j
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STy s Starting time of batch b, at stage s

TP, Processing time of batch b, at stage s

UINV} s Inventory used for batch b, of product p, at stage s

WTp s Waiting time of product p, at stage s

Binary Variables

XBp b1 Takes the value 1 only if batch b’ is operated after batch b in unit j

YIl,, s Takes the value 1 only if batch b of product p is fulfilled by stored amount
YP,, Takes the value 1 only if batch b is allocated to product p

YUpyp,j Takes the value 1 only if batch b, of product p, is allocated to the

processing unit j
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5

Conclusions and future research

5.1 Conclusions

The objective of this thesis has been to develop optimization-based frameworks for the
short-term scheduling of complex industrial processes and the integrated planning and
scheduling problem under uncertainty. Hence, several MILP models have been
developed for the short-term scheduling of continuous make-and-pack process,
typically met in food and consumer goods industries. Moreover, novel MILP-based
decomposition algorithms have been investigated to handle complex real-life industrial
problems in an efficient manner. Results illustrate that the application of the proposed
computer aided frameworks of this thesis to industrial scheduling problems, can lead to

noticeable economic, operational and environmental benefits.

In chapter 2, the scheduling of single-stage continuous industrial facilities is studied.
The problem mainly focuses on the packing stage, which typically constitutes the
production bottleneck in most industries. Two MILP models have been proposed for the
scheduling of packing stage, while constraints related to the previous stages are taken
into account to ensure the feasibility of solutions. Although various research
contributions have been proposed for this problem, the majority of them has not been
applied in complex, large scale problems. To face this challenge, two decomposition
algorithms have been developed. Both approaches consist of two individual steps and
rely on the iterative solution of the MILP models. The first step, aims to generate an
initial feasible solution which can be further improved via the second step. Therefore,
the initial complex problems become tractable, and good quality solutions can be
obtained within acceptable CPU time. The proposed optimization strategies aim to
minimize the total changeover time, while different objectives (such as makespan
minimization) can also be considered, depending on the current need of decision-

makers. In order to assess the applicability and the efficiency of the proposed models
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and solution strategies, several indicative case studies of a multinational consumer
goods industry have been considered. An efficient tool has also been developed in
collaboration with the plant engineers to facilitate data exchange through direct
communication of MILP models and the ERP systems of the plant. Results have been
fully validated by the plant operators, and detailed comparisons with manually
generated schedules or simulation tools have been made. Significant benefits have been
achieved. In particular, the obtained solutions can dramatically decrease the total
changeover time by even 25% on a weekly basis, and therefore, productivity can be
increased by 1.5-2%, depending on the problem case. The proposed solution
approaches can be utilized as the main core of an automated optimization tool that
assists decision-makers in obtaining good quality solutions under the current dynamic
industrial environment. Furthermore, this work provides indisputable evidence for the

benefits of using optimization-based frameworks for challenging industrial problems.

Chapter 3 forms a direct continuation of the previous chapter, as it examines the
production scheduling of multistage continuous, make-and-pack processes with flexible
storage equipment and recycle option. The synchronization of production stages in
continuous processes is usually a challenging problem. Hence, the utilization of
intermediate buffers allows for extra flexibility and aims to increase the total
throughput. Since the continuous make-and-pack layout is common in several industrial
sectors, multiple research contributions have already proposed solution methods to
address this problem. However, most of them rely on discrete-time representations, and
as a result, the corresponding MILP models become intractable when considering large-
scale problems. Also, recent optimization approaches rely on weak assumptions often
leading to suboptimal or even infeasible solutions. A novel continuous time MILP model
is proposed for the problem at hand to fill this gap. A new set of binary variables is
introduced to satisfy mass balance constraints efficiently. Extending previously
proposed mathematical frameworks, multiple lots of the same recipe can be stored

simultaneously in a buffer tank.

Moreover, a key component of the modelling framework is the consideration of
byproduct recycling streams in order to enhance the use of raw materials and
resources. A two-stage decomposition algorithm is proposed for the solution of larger

problems. Several case studies, inspired by consumer goods industries, were solved to
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illustrate the application of the proposed modelling frameworks. Multiple plant layouts
and different storage policies have been examined. Results show that the plant's

economic operation is significantly improved due to the flexible storage policy.

Chapter 4 addresses the optimal contract selection problem of Contract Manufacturing
Organizations (CMOs), under uncertainty in the pharmaceutical industry. Under the
current climate of business globalization, large multinational pharmaceutical companies
often decide to outsource part of the manufacturing process to other industrial facilities
under contract agreements. These companies are known as Contract Manufacturing
Organizations. Since pharmaceutical products are described by highly volatile demand,
CMOs must carefully choose the optimal contract mixture to sign, in order to maximize
their profit margin while mitigating their exposure to risk. To face this challenging
problem, a rolling horizon framework is adapted for the integrated planning and
scheduling of multi-stage batch facilities, typically met in the pharmaceutical industry.
Several discrete scenarios are examined to model demand uncertainty. Both systematic
and unsystematic risks are considered, depending on the product types of each contract.
A solution algorithm that consists of three individual steps is proposed to tackle
realistic problems with multiple contracts, while a scenario reduction MILP model is
utilized to decrease the total computational time. The feasibility of each contract
combination is assessed via the first two steps of the solution algorithm. In the last
stage, the rolling horizon framework is applied to solve the integrated planning and
scheduling problem for all feasible contract combinations and all individual scenarios.
To assess the applicability and efficency of the proposed modelling framework, different
case studies have been examined. Results illustrate that the proposed solution strategy
leads to notable benefits for both risk-neutral and risk-averse policies. Considering a
given risk tolerance, the proposed modelling framework can efficiently maximize the

expected profit of Contract Manufacturing Organizations.

5.2 Main contributions

In summary, the main contributions of this thesis are presented below:
. Two MILP-based mathematical frameworks have been developed for the optimal

short-term production scheduling of continuous processes.
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. Efficient solution strategies are presented for the scheduling of continuous
processes based on the proposed MILP models and decomposition algorithms to
address large-scale case studies. The proposed approaches can assist production

engineers and decision-makers towards fast generation of improved schedules.

. The proposed modelling frameworks have been applied to the scheduling
problem of a real-life consumer goods industry. An efficient tool has been developed by
plant engineers based on the proposed MILP-based frameworks, and comparisons with
manually generated schedules have been realized. Solutions have been fully validated
by the industry, and significant gains have been realized in terms of changeover

minimization and productivity improvement.

. Chapter 2 also highlights the potential benefits of using optimization-based
techniques and the impact of scheduling optimization on the overall performance of
industrial facilities. The introduction of efficient solution strategies and their
implementation in real and complex scheduling problems is an essential step toward

closing the existing gap between scientific knowledge and industrial reality.

. A novel MILP model has been developed for the optimal scheduling of multistage
continuous make-and-pack industries with flexible storage tanks. Furthermore, a two-
stage decomposition algorithm has been proposed to face large-scale problems.
Compared with alternative modelling approaches that rely on weak assumptions, the
proposed framework can efficiently generate feasible and nearly optimal solutions for

real-life scheduling problems.

. Considering byproduct recycling streams in consumer goods industries
constitutes an open challenging problem. Hence, this thesis contributes to the decrease
of the current gap. Furthermore, results prove that byproduct recycling constraints

allow for waste reduction and better utilization of resources.

. The contract selection problem of Contract Manufacturing Organizations in the

secondary pharmaceutical industry under demand uncertainty has been introduced in
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the open literature. An integrated planning and scheduling approach has been
developed for multistage batch facilities, based on the rolling horizon framework. A
scenario-based approach has been utilized to model demand uncertainty, while both
systematic and unsystematic risks have been considered. The development of a solution

strategy allows for considering real-life problem instances with multiple scenarios.

. In comparison with aggregated planning frameworks existing in the open
literature, the consideration of scheduling decisions can improve the accuracy and
ensure the feasibility of obtained solutions. The developed mathematical framework
can facilitate Contract Manufacturing Organizations to maximize their profits while

mitigating the underlying risk exposure.

5.3 Recommendations for future directions

A range of issues requiring further investigation have been revealed in the course of this

thesis. In particular:

. The models proposed in Chapter 2 are mainly focused on short-term
scheduling. Lot-sizing decisions are pre-defined, and decisions include only unit
to task assignment, sequencing and timing of tasks. A promising direction for
future extension would be the development of an integrated planning and
scheduling optimisation framework, by including lot-sizing decisions and
inventory constraints.

. This thesis aims to the development of offline scheduling models.
However, production scheduling is highly dynamic. Frequent late-order arrivals,
or sudden order cancelations, impose the need of several modifications in the
initial production schedule on a daily basis. Hence, the consideration of real-time
uncertainties in the developed models is critical for their application in practice.
A computationally efficient method is the introduction of a reactive scheduling
approach that employs the rolling-horizon framework.

. Further extension regarding the optimisation-based approach presented
in chapter 3 seems a promising research task. The proposed MILP model is

focused on industrial layouts that consists of two production stages. Future
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works are envisaged to focus on extending the proposed approach, by
considering multiple production stages with flexible storage tanks.

. Room for improvement exists regarding the solution strategy developed
for the for the optimal contract selection problem of Contract Manufacturing
Organizations (CMOs). The proposed modelling framework considers the
planning and scheduling problem of multistage batch facilities. However, recent
advances in manufacturing technology have prompted several pharmaceutical
industries, to adopt continuous manufacturing. According to regulatory agencies,
such as FDA, continuous manufacturing could address drug shortages and
recalls. Hence, future works could focus on modelling both batch and continuous
processes.

. Another direction for future work is the consideration of multiple types of
uncertainty, associated with the availability and prices of raw materials. Under
the current global supply chain crisis and the shortage of raw materials, the
consideration of the integrated contract and supplier selection problem

constitutes a high priority for decision-makers.
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Pseudocodes for the individual steps of the solution algorithm

Algorithm 1. Pseudo-code for iterative procedure in constructive step

Set step = 5, initial = 5, pos(i) parameter, i € I'N=0;

FOR k= initial to |I| by step
LOOPi el

IF pos(i) <k

['N= [IN U (i}

END IF

END LOOP

SOLVE MILP model

FixY; j & X;7 ; ; binary variables

END FOR

SAVE initial solution SC

SAVE total CPU time
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Algorithm 2. Pseudo-code for iterative procedure in improvement step 1

Seti € I'PN=g;
LOOPs€ S
LOOPi €1
LOOPi' €1:i' #i
IFID;; ¢ >0
JIDN_ [IDN |y {i}
END IF

END LOOP

END LOOP

END LOOP

CLEAR all variables related to i € I'°N (e.g, Y; ;, X;r

g Xitij etc.)
SOLVE MILP model and obtain solution SD

SAVE total CPU time

IF SD <SC

SC=SD

X

Save Solution (e.g.save SC,Y; j, Xy ; i,

etc.)

END IF
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Algorithm 3. Pseudo-code for iterative procedure in improvement step 2

Set step = 5, initial = 5, iter=1, pos (i) parameter, i € [REIN=@;

FOR k= initial to |I| by step
LOOPse S

LOOPi el

LOOPi'"€l:i' #1i

IFLyyg >0

JREINZ[REIN {j (A

END IF

END LOOP

END LOOP

END LOOP

LOOPi €1
IF (pos(i) <k ) AND ( pos(i) >k-step)
[REIN=REIN [ [}
END IF
END LOOP

CLEAR all variables related to IRE'N (e.g., Y; i, X;r

g Xilijo etc.)
SOLVE MILP model and obtain solution SR(iter)

SAVE total CPU

IF SR(iter) <SC

SC= SR(iter)

SAVE Solution (e.g. save SC,Y; i, X;

g Xitijoetc)
END IF

iter=iter +1

IF total CPU> It

k=|I]+1

The algorithm is terminated

END IF
END FOR
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Appendix B presents the data for Chapter 3. The data for the case 1 are summarized in

Tables B1 - B6.

Table B1. Products demand (parameter QALL;)

Product Q(';l{g'i Product Q(';l(g" Product Q(';l(g'i Product Q(ﬁg'i
1 1620 26 1254 51 1620 76 1254
2 1200 27 984 52 1200 77 984
3 1620 28 1353 53 1620 78 1353
4 1680 29 864 54 1680 79 864
5 936 30 2052 55 936 80 2052
6 540 31 1140 56 540 81 1140
7 1050 32 780 57 1050 82 780
8 420 33 294 58 420 83 294
9 1050 34 688,5 59 1050 84 688,5
10 1254 35 496 60 1254 85 496
11 1080 36 450,25 61 1080 86 450,25
12 1080 37 404,5 62 1080 87 404,5
13 717,6 38 358,75 63 717,6 88 358,75
14 945 39 313 64 945 89 313
15 178,2 40 267,25 65 178,2 90 267,25
16 780 41 2215 66 780 91 221,5
17 294 42 780 67 294 92 780
18 688,5 43 294 68 688,5 93 294
19 1827 44 688,5 69 1827 94 688,5
20 1170 45 496 70 1170 95 496
21 1566 46 450,25 71 1566 96 450,25
22 443,7 47 780 72 443,7 97 780
23 1218 48 294 73 1218 98 294
24 2520 49 688,5 74 2520 99 688,5
25 1140 50 496 75 1140 100 496
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Table B2. Products due dates (parameter DD;)

Product (hggxfs) Product (hl())gli's) Product (hl())g li's) Product (hl())gli'S)
1 24 26 80 51 100 76 144
2 24 27 80 52 100 77 144
3 24 28 80 53 100 78 144
4 24 29 80 54 100 79 144
5 24 30 80 55 100 80 144
6 24 31 80 56 100 81 144
7 24 32 80 57 100 82 144
8 24 33 80 58 100 83 144
9 24 34 80 59 100 84 168
10 24 35 80 60 120 85 168
11 48 36 80 61 120 86 168
12 48 37 80 62 120 87 168
13 48 38 80 63 120 88 168
14 48 39 80 64 120 89 168
15 48 40 80 65 120 90 168
16 48 41 80 66 120 91 168
17 48 42 80 67 120 92 168
18 48 43 80 68 120 93 168
19 48 44 80 69 120 94 168
20 48 45 80 70 120 95 168
21 48 46 80 71 120 96 168
22 48 47 80 72 120 97 168
23 48 48 80 73 120 98 168
24 48 49 80 74 144 99 168
25 48 50 80 75 144 100 168
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Table B3. Products recipe type (parameter F;)

F;

Product

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

F;

Product

51

52

53

54
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

F;

Product

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

F;

Product

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
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Table B4. Products maximum throughput at stage s=1 (R; 1)

Product (kg;;lr) Product (kl;i/lilir) Product (k:}lllll‘] Product (kg;lllr)
1 201 26 201 51 201 76 201
2 201 27 201 52 201 77 201
3 201 28 201 53 201 78 201
4 201 29 201 54 201 79 201
5 350 30 201 55 292 80 201
6 369 31 201 56 308 81 201
7 379 32 201 57 316 82 201
8 340 33 201 58 284 83 201
9 369 34 201 59 308 84 201
10 408 35 201 60 340 85 201
11 369 36 292 61 308 86 292
12 369 37 308 62 308 87 308
13 201 38 316 63 201 88 316
14 201 39 284 64 201 89 284
15 201 40 201 65 201 90 201
16 201 41 201 66 201 91 201
17 201 42 201 67 201 92 201
18 201 43 201 68 201 93 201
19 369 44 292 69 308 94 292
20 408 45 308 70 340 95 308
21 369 46 316 71 308 96 316
22 369 47 284 72 308 97 284
23 201 48 201 73 201 98 201
24 201 49 201 74 201 99 201
25 201 50 201 75 201 100 201
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Table B5. Products maximum throughput at stage s=2 (R, ;)

Product (kg;;r) Product (k:;;r) Product (kgﬁﬁr) Product (k:;;r)
1 369 26 308 51 308 76 308
2 408 27 261 52 340 77 261
3 369 28 261 53 308 78 261
4 369 29 235 54 308 79 235
5 201 30 248 55 201 80 248
6 201 31 248 56 201 81 248
7 201 32 308 57 201 82 308
8 201 33 340 58 201 83 340
9 284 34 308 59 284 84 308
10 292 35 308 60 292 85 308
11 211 36 201 61 211 86 201
12 227 37 201 62 227 87 201
13 369 38 201 63 308 88 201
14 408 39 201 64 340 89 201
15 369 40 308 65 308 90 308
16 369 41 340 66 308 91 340
17 253 42 308 67 211 92 308
18 282 43 308 68 235 93 308
19 235 44 201 69 235 94 201
20 235 45 201 70 235 95 201
21 243 46 201 71 243 96 201
22 211 47 201 72 211 97 201
23 219 48 308 73 219 98 308
24 211 49 340 74 211 99 340
25 219 50 308 75 219 100 308
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Table B6. Products allocation flexibility

Units

Formulation

stage

Units

Products

Formulation

stage

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

Products

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
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78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
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C.1. Scenario reduction model

In this section, a scenario reduction MILP model, proposed by Li and Floudas, (2014), is
presented. The model relies on the sets, parameters, and variables, listed in section
C.1.1. The model objective function and the constraints are also presented in section

C.1.2.

C.1.1. Nomenclature

Indices/Sets

s,s'€eS Scenarios

Parameters

Cs,s' Distance between scenario s and s’

p;’rig Probability of scenario s in original discrete distribution

fmax Maximum objective value of all scenarios in original discrete
distribution

fexp Expected objective value of all scenarios in original discrete
distribution

fmin Minimum objective value of all scenarios in original discrete
distribution

£ Optimal objective value under scenario s in original discrete

S

distribution

N Number of scenarios to be removed
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Continuous Variables

DIS,

orig
Fs

Vs,s’

FEmax

FE®P

FEmin

FSmax

FSexP

FSmin

Binary Variables

max
Y

min
Y

Minimum distance of all remaining scenarios to a removed scenario s
Probability of scenario s in original discrete distribution
Takes the value 1 only if scenario s is removed and assigned to scenario s’

absolute error between the best objective value of original and reduced

distribution

absolute error between the expected objective value of original and reduced

distributions

absolute error between the worst objective value of original and reduced

distributions

Maximum objective value of the reduced distribution of the remaining

scenarios

Expected objective value of the reduced distribution of the remaining

scenarios

Minimum objective value of the reduced distribution of the remaining

scenarios

Takes the value 1 only if scenario s, corresponds to the new maximum

objective among the selected scenarios

Takes the value 1 only if scenario s, corresponds to the new minimum

objective among the selected scenarios

Takes the value 1 only if scenario s is removed
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C.1.2. MILP scenario reduction model

Z Y, =N (C1)

Z Ve =Yy Vs€S (C2)

-

0<V,g<1-Y, Vs€S,s€ES (C3)

DIS; = Z VesCss  VSES (C4)

-

DIS; < Y,fma* vseS (C5)

z Vos <1 Vs€ES (C6)

=

PNy = (1 - Y, )po™ + Z Vs 2™ Vs' €S 7)

N

FSO = ) PN, f: (c8)
N

Fsmax — Z Ysmax fs* (Cg)
S

FS™aX > (1 = Y)fs + Y, f™" Vs€S (C10)

Z =1 (C11)

S

ymex <1 —y, (C12)

FSmin — Z Ysmin fs* (C13)
S

FS™M < (1 =Y)f: + Y, f™%* Vs€S (C14)
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Z ymin = 1 (C15)
5
ymn <1 -y, (C16)
FE®™ > FSexp _ fexp (C17)
FE®XP > —FSexp 4 fexp (C18)
FEmax = pmax_pgmax (C19)
FEmin=fgmin _ fmin (C20)
minz DIS,p2"9 + FE™ax 4 FEMn 4 FEexp (C21)
5

Constraints (C1) - (C7) aim to the minimization of the Kantorovich distance between
the initial and the reduced discrete distributions (Kantorovitch, 1958). To quantify the
difference of the expected, best and worst performance of the output measures
constraints (C8)- (C20) are also included. The objective function targets to minimize the
Kantorovich distance and the differences of the output measures. A detailed description

of the MILP scenario reduction model is also given by Li and Floudas, (2014).
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C.2. Data of the first case study - Illustrative example

The data for the illustrative example are summarized in Tables C1 - C15

Table C1 Products to processing units mapping (kg)

Processing units Minimum Capacity Maximum Capacity
1 20 400
2 20 300
3 20 400
4 20 300
5 20 400
6 20 300

Table C2 Units to production stages mapping

Processing stages
Processing units

1 2 3
1 1 0 0
2 1 0 0
3 0 1 0
4 0 1 0
5 0 0 1
6 0 0 1
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Table C3 Selling price of products (relative money units / kg)

Product Selling price Product Selling price
1 3 8 3
2 1 9 4
3 3 10 4
4 4 11 2
5 2 12 2
6 4 13 1
7 5 14 5

Table C4 Backlog cost of products (relative money units / kg)

Product Selling price Product Selling price
1 9 8 9
2 3 9 12
3 9 10 12
4 12 11 6
5 6 12 6
6 12 13 3
7 15 14 15
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Table C5 Inventory cost of products (relative money units / kg)

Product Selling price Product Selling price
1 1.5 8 1.5
2 0.5 9 2
3 1.5 10 2
4 2 11 1
5 1 12 1
6 2 13 0.5
7 2.5 14 2.5
Table C6 Variable raw material cost of products (relative money units / kg)
Product Selling price Product Selling price
1 0.3 8 0.3
2 0.1 9 0.4
3 0.3 10 0.4
4 0.4 11 0.2
5 0.2 12 0.2
6 0.4 13 0.1
7 0.5 14 0.5
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Table C7 Fixed processing time of products in each processing unit (hours)

Processing units

Products

3 4 5 6
1 1.3 1.3 1.1 1.1
2 1.3 1.3 1.1 1.1
3 1.3 1.3 1.1 1.1
4 1.3 1.3 1.1 1.1
5 1.3 1.3 1.1 1.1
6 1.3 1.3 1.1 1.1
7 1.3 1.3 1.1 1.1
8 1.3 1.3 1.1 1.1
9 1.3 1.3 1.1 1.1
10 1.3 1.3 1.1 1.1
11 1.3 1.3 1.1 1.1
12 1.3 1.3 1.1 1.1
13 1.3 1.3 1.1 1.1
14 1.3 1.3 1.1 1.1
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Table C8 Variable processing time of products in each processing unit (kg/hour)

Processing units

Products

1 2 3 4 5 6
1 30 30 40 40 25 25
2 30 30 40 40 25 25
3 40 40 50 50 30 30
4 40 40 50 50 30 30
5 40 40 50 50 30 30
6 40 40 50 50 30 30
7 40 40 50 50 30 30
8 30 30 40 40 25 25
9 30 30 40 40 25 25
10 30 30 40 40 25 25
11 40 40 50 50 30 30
12 40 40 50 50 30 30
13 40 40 50 50 30 30
14 40 40 50 50 30 30
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Table C9 Products to processing units mapping
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Table C10 Demand of target scenario for time periods 1-10 (kg)

week

1 2 3 4 5 6 7 8 9 10
1 | 120 120 132 132 138 120 120 132 132 138
2 | 120 120 132 132 138 120 120 132 132 138
3 | 360 360 360 396 396 360 360 360 396 396
4 | 156 156 172 383 372 156 156 172 383 372
5 | 384 384 384 383 372 384 384 384 383 372
6 | 384 384 384 383 372 384 384 384 383 372
7 | 360 360 360 396 396 360 360 360 396 396
8 | 360 360 360 396 396 360 360 360 396 396
9 | 120 120 120 132 360 120 120 120 132 360
10 | 384 384 384 383 372 384 384 384 383 372
11 | 120 120 132 132 138 120 120 132 132 138
12 | 120 120 132 132 138 120 120 132 132 138
13 | 360 360 360 396 396 360 360 360 396 396
14 | 180 180 180 383 372 180 180 180 383 372
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Table C11 Demand of target scenario for time periods 11-20 (kg)

week

11 12 13 14 15 16 17 18 19 20

1 120 120 132 132 138 120 120 132 132 138

2 120 120 132 132 138 120 120 132 132 138

3 360 360 360 396 396 360 360 360 396 396

4 156 156 172 383 372 156 156 172 383 372

5 384 384 384 383 372 384 384 384 383 372

6 384 384 384 383 372 384 384 384 383 372

7 360 360 360 396 396 360 360 360 396 396

8 360 360 360 396 396 360 360 360 396 396

9 120 120 120 132 360 120 120 120 132 360

10 384 384 384 383 372 384 384 384 383 372

11 120 120 132 132 138 120 120 132 132 138

12 120 120 132 132 138 120 120 132 132 138

13 360 360 360 396 396 360 360 360 396 396

14 180 180 180 383 372 180 180 180 383 372
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Table C12 Demand of target scenario for time periods 21-30 (kg)

week

21 22 23 24 25 26 27 28 29 30

1 120 120 132 132 138 120 120 132 132 138

2 120 120 132 132 138 120 120 132 132 138

3 360 360 360 396 396 360 360 360 396 396

4 156 156 172 383 372 156 156 172 383 372

5 384 384 384 383 372 384 384 384 383 372

6 384 384 384 383 372 384 384 384 383 372

7 360 360 360 396 396 360 360 360 396 396

8 360 360 360 396 396 360 360 360 396 396

9 120 120 120 132 360 120 120 120 132 360

10 384 384 384 383 372 384 384 384 383 372

11 120 120 132 132 138 120 120 132 132 138

12 120 120 132 132 138 120 120 132 132 138

13 360 360 360 396 396 360 360 360 396 396

14 180 180 180 383 372 180 180 180 383 372

15 120 120 132 132 138 120 120 132 132 138
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Table C13 Demand of target scenario for time periods 31-40 (kg)

week

31 | 32 33 34 35 36 37 38 39 40
1 120 120 132 132 138 120 120 132 132 138
2 120 120 132 132 138 120 120 132 132 138
3 360 360 360 396 396 360 360 360 396 396
4 156 156 172 383 372 156 156 172 383 372
5 384 384 384 383 372 384 384 384 383 372
6 384 384 384 383 372 384 384 384 383 372
7 360 360 360 396 396 360 360 360 396 396
8 360 360 360 396 396 360 360 360 396 396
9 120 120 120 132 360 120 120 120 132 360
10 384 384 384 383 372 384 384 384 383 372
11 120 120 132 132 138 120 120 132 132 138
12 120 120 132 132 138 120 120 132 132 138
13 | 360 360 360 396 396 360 360 360 396 396
14 180 180 180 383 372 180 180 180 383 372
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Table C14 Demand of target scenario for time periods 41-52 (kg)

week

41 42 43 44 45 46 47 48 49 50 51 52
1 120 120 132 132 138 120 120 132 132 138 120 120
2 120 120 132 132 138 120 120 132 132 138 120 120
3 360 360 360 396 396 360 360 360 396 396 408 408
4 | 156 156 172 383 372 156 156 172 383 372 311 301
5 (384 384 384 383 372 384 384 384 383 311 250 250
6 |384 384 384 383 372 384 384 384 383 311 250 250
7 [360 360 360 396 396 360 360 360 396 311 250 250
8 |[360 360 360 396 396 360 360 360 396 396 360 360
9 |120 120 120 132 360 120 120 120 132 360 396 436
10 | 384 384 384 383 372 384 384 384 383 372 311 301
11 | 120 120 132 132 138 120 120 132 132 138 120 120
12 | 120 120 132 132 138 120 120 132 132 138 120 120
13 | 360 360 360 396 396 360 360 360 396 396 360 360
14 | 180 180 180 383 372 180 180 180 383 372 311 301
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Table C15 Changeover times (hours)

1 2 3 4 5 6 7 8 9 10 | 11 12 13 | 14
1 60 14 18 18 14 18 14 14 18 18 14 18 18 1.7
2 14 00 18 18 14 18 14 14 18 18 14 18 18 1.7
3 18 14 00 18 14 18 14 14 18 18 14 18 18 1.7
4 18 14 18 00 14 18 14 14 18 18 14 18 18 1.7
5 14 14 18 18 00 18 14 14 18 18 14 18 18 1.7
6 18 14 18 18 14 00 14 14 18 18 14 18 18 1.7
7 14 14 18 18 14 18 00 14 18 18 14 18 18 1.7
8 15 14 18 18 14 18 14 00 18 18 14 18 18 17
9 5 14 18 18 14 18 14 14 00 18 14 18 18 17
0 ( 15 14 18 18 14 18 14 14 18 00 14 18 18 17
11 (15 14 18 18 14 18 14 14 18 18 00 18 18 17
12 (15 14 18 18 14 18 14 14 18 18 14 00 18 17
13 (15 14 18 18 14 18 14 14 18 18 14 18 00 17
14 (15 14 18 18 14 18 14 14 18 18 14 18 18 0.0
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C.3. Data of the second case study- Large-scale problem

The data for the large-scale problem instance are summarized in Tables C16 - C31

Table C16 Products to processing units mapping (kg)

Processing units Minimum Capacity Maximum Capacity
1 20 400
2 20 300
3 20 400
4 20 300
5 20 400
6 20 300
7 20 400

Table C17 Units to production stages mapping

Processing stages
Processing units

1 4 3
1 1 0 0
2 1 0 0
3 0 1 0
4 0 1 0
5 0 0 1
6 0 0 1
7 0 0 1
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Table C18 Selling price of products (relative monetary units / kg)

Product Selling price Product Selling price
1 8 16 8
2 4 17 12
3 8 18 14
4 7 19 12
5 8 20 11.4
6 6.2 21 10.8
7 7.2 22 11.2
8 5.6 23 7.8
9 5.2 24 16
10 4.8 25 18
11 12 26 16
12 6 27 17
13 7 28 16
14 7 29 19
15 12 30 22
Table C19 Backlog cost of products (relative money units / kg)
Product Selling price Product Selling price
1 24 16 0.8
2 12 17 0.4
3 24 18 0.8
4 21 19 0.7
5 24 20 0.8
6 18.6 21 0.62
7 21.6 22 0.72
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8 16.8 23 0.56
9 15.6 24 0.52
10 14.4 25 0.48
11 36 26 1.2
12 18 27 0.6
13 21 28 0.7
14 21 29 0.7
15 36 30 1.2

Table C20 Inventory cost of products (relative money units / kg)

Product Selling price Product Selling price
1 4 16 4
2 2 17 6
3 4 18 7
4 3.5 19 6
5 4 20 5.7
6 3.1 21 5.4
7 3.6 22 5.6
8 2.8 23 3.9
9 2.6 24 8
10 2.4 25 9
11 6 26 8
12 3 27 8.5
13 3.5 28 8
14 3.5 29 9.5
15 6 30 11
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Table C21 Variable raw material cost of products (relative money units / kg)

Product Selling price Product Selling price

1 0.8 16 0.8

2 0.4 17 1.2

3 0.8 18 1.4

4 0.7 19 1.2

5 0.8 20 1.14

6 0.62 21 1.08

7 0.72 22 1.12

8 0.56 23 0.78

9 0.52 24 1.6

10 0.48 25 1.8

11 1.2 26 1.6

12 0.6 27 1.7

13 0.7 28 1.6

14 0.7 29 1.9

15 1.2 30 2.2

Table C22 Fixed processing time of products in each processing unit (hours)
Processing units
Products
2 3 4 5 6 7

1 1 1.3 1.3 1.1 1.1 0.2
2 1 1.3 1.3 1.1 1.1 0.2
3 1 1.3 1.3 1.1 1.1 0.2
4 1 1.3 1.3 1.1 1.1 0.2
5 1 1.3 1.3 1.1 1.1 0.2
6 1 1.3 1.3 1.1 1.1 0.2
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7 1.3 1.3 1.1 1.1 0.2
8 1.3 1.3 1.1 1.1 0.2
9 1.3 1.3 1.1 1.1 0.2
10 1.3 1.3 1.1 1.1 0.2
11 1.3 1.3 1.1 1.1 0.2
12 1.3 1.3 1.1 1.1 0.2
13 1.3 1.3 1.1 1.1 0.2
14 1.3 1.3 1.1 1.1 0.2
15 1.3 1.3 1.1 1.1 0.2
16 1.3 1.3 1.1 1.1 0.2
17 1.3 1.3 1.1 1.1 0.2
18 1.3 1.3 1.1 1.1 0.2
19 1.3 1.3 1.1 1.1 0.2
20 1.3 1.3 1.1 1.1 0.2
21 1.3 1.3 1.1 1.1 0.2
22 1.3 1.3 1.1 1.1 0.2
23 1.3 1.3 1.1 1.1 0.2
24 1.3 1.3 1.1 1.1 0.2
25 1.3 1.3 1.1 1.1 0.2
26 1.3 1.3 1.1 1.1 0.2
27 1.3 1.3 1.1 1.1 0.2
28 1.3 1.3 1.1 1.1 0.2
29 1.3 1.3 1.1 1.1 0.2
30 1.3 1.3 1.1 1.1 0.2
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Table C23 Variable processing time of products in each processing unit (kg/hour)

Processing units
Products

1 2 3 4 5 6 7
1 30 30 40 40 25 25 25
2 30 30 40 40 25 25 25
3 40 40 50 50 30 30 30
4 40 40 50 50 30 30 30
5 40 40 50 50 30 30 30
6 40 40 50 50 30 30 30
7 40 40 50 50 30 30 30
8 30 30 40 40 25 25 25
9 30 30 40 40 25 25 25
10 30 30 40 40 25 25 25
11 40 40 50 50 30 30 30
12 40 40 50 50 30 30 30
13 40 40 50 50 30 30 30
14 40 40 50 50 30 30 30
15 40 40 50 50 30 30 30
16 40 40 50 50 30 30 30
17 40 40 50 50 30 30 30
18 30 30 40 40 25 25 25
19 30 30 40 40 25 25 25
20 30 30 40 40 25 25 25
21 30 30 40 40 25 25 25
22 30 30 40 40 25 25 25
23 30 30 40 40 25 25 25
24 40 40 50 50 30 30 30
25 40 40 50 50 30 30 30
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26 40 40 50 50 30 30 30
27 40 40 50 50 30 30 30
28 40 40 50 50 30 30 30
29 30 30 40 40 25 25 25
30 30 30 40 40 25 25 25
Table C24 Products to processing units mapping
Processing units
Products

1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
3 0 1 0 1 0 1 1
4 0 1 0 1 0 1 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1
8 1 0 1 0 0 1 1
9 1 0 1 0 0 1 1
10 1 0 1 0 0 1 1
11 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1
15 0 1 0 1 0 1 1
16 0 1 0 1 0 1 1
17 0 1 0 1 0 1 1
18 1 0 1 0 1 0 1
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19 1 0 1 0 1 0 1
20 1 0 1 0 1 0 1
21 0 1 0 1 0 1 1
22 0 1 0 1 0 1 1
23 0 1 0 1 0 1 1
24 0 1 0 1 0 1 1
25 0 1 0 1 0 1 1
26 0 1 0 1 0 1 1
27 1 1 1 1 1 1 1
28 1 1 1 1 1 1 1
29 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1

Table C25 Demand of target scenario for time periods 1-10 (kg)

week

1 2 3 4 5 6 7 8 9 10

1 120 120 132 132 138 120 120 132 132 138

2 120 120 132 132 138 120 120 132 132 138

3 360 360 360 396 396 360 360 360 396 396

4 156 156 171.6  382.93 372 156 156 171.6 382.9 372

5 384 384 384 382.93 372 384 384 384 382.9 372

6 | 384 384 384 382.93 372 384 384 384 3829 372

7 360 360 360 396 396 360 360 360 396 396

8 360 360 360 396 396 360 360 360 396 396

9 120 120 120 132 360 120 120 120 132 360

10 | 384 384 384 382.9 372 384 384 384 382.9 372
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11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

345

170

360

180

384

384

360

384

132

360

384

264

240

120

132

384

240

264

360

156

345

170

360

180

384

384

360

384

132

360

384

264

240

120

132

384

240

264

360

156

345

185.6

360

180

384

384

360

384

145.2

360

384

290.4

264

132

145.2

384

264

290.4

360

171.6

381

396.9

396

382.9

382.9

382.9

396

382.9

382.93

396

382.93

316.8

288

144

158.4

382.93

288

316.8

396

382.93

381

386

396

372

372

372

396

372

372

396

372

316

288

360

158

372

288

316.8

396

372

345

170

360

180

384

384

360

362.

362.

396

362.

343

312

360

171

362

312

343.2

360

156

345

170

360

180

384

384

360

3519

35191

435.6

35191

396

360

360

198

3519

360

396

360

156

345

185.6

360

180

384

384

360

362.4

341.64

360

341.6

448.8

408

360

2244

341.6

408

448.8

360

171.6

381

396.9

396

382.9

382.9

382.9

396

331.

331.38

360

331.3

408

408

228

250.8

331.38

408

408

396

382.93

381

386

396

372

372

372

396

3211

3211

360

3211

408

408

240

264

321.11

408

408

396

372
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Table C26 Demand of target scenario for time periods 11-20 (kg)

week
11 12 13 14 15 16 17 18 19 20
1 120 120 132 132 138 120 120 132 132 138
2 120 120 132 132 138 120 120 132 132 138
3 360 360 360 396 396 360 360 360 396 396
4 156 156 171.6 38293 372 156 156 171.6 3829 372
5 384 384 384 382.98 372 384 384 384 3829 372
6 384 384 384 382.98 372 384 384 384 382.93 372
7 360 360 360 396 396 360 360 360 396 396
8 360 360 360 396 396 360 360 360 396 396
9 120 120 120 132 360 120 120 120 132 360
10 384 384 384 382.93 372 384 384 384 382931 372
11 345 345 345 381 381 345 345 345 381 381
12 170 170 185.6 396.9 386 170 170 185.6 396.91 386
13 360 360 360 396 396 360 360 360 396 396
14 180 180 180 382.93 372 180 180 180 382.93 372
15 384 384 384 382.93 372 384 384 384 382.93 372
16 384 384 384 382.93 372 384 384 384 382.93 372
17 360 360 360 396 396 360 360 360 396 396
18 | 310.8 300.58 290.3 280.0 269.78 384 384 384 382.93 312
19 | 3104 300.5 382.93 372 3624 3519 341.8 3313 382.9 382.9
20 360 360 396 396 396 360 360 360 396 312
21 | 310.8 300.5 290.3 280.05 269.78 384 384 384 382.93 408
22 408 408 408 408 408 408 408 408 408 408
23 408 408 408 408 408 408 408 408 408 408
24 264 300 306 312 312 312 312 312 312 312
25 | 2904 330 336.6 343.2 343.2 343.2 343.2 343.2 343.2 343.2
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26 | 310.8 300.5 290.35 280.05 269.4 384 384 384 382.9 312
27 | 408 408 408 408 408 408 408 408 408 408
28 | 408 408 408 408 408 408 408 408 408 408
29 360 360 360 396 396 360 360 360 396 396
30 156 156 171.6 3829 372 156 156 171.6 38293 372
Table C27 Demand of target scenario for time periods 21-30 (kg)
week
21 22 23 24 25 26 27 28 29 30

1 (120.0 120.0 1320 132.0 138.0 120.0 120.0 132.0 132.0 138.0
2 [120.0 120.0 132.0 1320 138.0 120.0 120.0 132.0 132.0 138.0
3 |360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0
4 | 156.0 156.0 171.6 3829 3720 156.0 156.0 171.6 3829 372.0
5 [384.0 384.0 384.0 3829 372.0 384.0 384.0 384.0 382.9 372.0
6 |384.0 384.0 384.0 3829 372.0 384.0 384.0 384.0 382.9 372.0
7 | 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0
8 [360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0
9 | 120.0 120.0 120.0 1320 360.0 120.0 120.0 120.0 132.0 360.0
10 | 384.0 384.0 384.0 3829 372.0 384.0 384.0 384.0 382.9 372.0
11 | 345.0 345.0 345.0 381.0 381.0 345.0 345.0 345.0 381.0 381.0
12 | 170.0 170.0 1856 3969 386.0 170.0 170.0 185.6 396.9 386.0
13 | 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0
14 | 180.0 180.0 180.0 3829 372.0 180.0 180.0 180.0 382.9 372.0
15 | 384.0 384.0 384.0 3829 372.0 384.0 384.0 384.0 382.9 372.0
16 | 384.0 384.0 384.0 3829 372.0 384.0 384.0 384.0 382.9 372.0
17 | 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0
18 | 312.0 312.0 3120 312.0 312.0 3120 3120 312.0 312.0 312.0
19 | 343.2 343.2 3432 343.2 3432 3432 3432 343.2 343.2 343.2
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20 | 312.0 312.0 3120 3120 312.0 3120 3120 312.0 312.0 312.0

21| 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0

22 | 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0

23 | 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0

24| 312.0 3120 312.0 3120 312.0 3120 312.0 312.0 312.0 312.0

25 | 343.2 3432 3432 3432 3432 3432 3432 343.2 343.2 343.2

26 | 312.0 312.0 3120 3120 312.0 3120 3120 312.0 312.0 312.0

27 | 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0

28 | 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0

29 | 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0

30 | 156.0 156.0 171.6 3829 372.0 156.0 156.0 171.6 382.9 372.0

Table C28 Demand of target scenario for time periods 31-40 (kg)

week

31 32 33 34 35 36 37 38 39 40

1 |120.0 120.0 1320 132.0 138.0 120.0 120.0 132.0 132.0 138.0

2 1200 120.0 132.0 1320 138.0 120.0 120.0 132.0 132.0 138.0

3 |360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0

4 | 156.0 156.0 171.6 3829 372.0 156.0 156.0 171.6 382.9 372.0

5 [384.0 384.0 384.0 3829 372.0 384.0 384.0 384.0 382.9 372.0

6 | 384.0 384.0 384.0 3829 372.0 384.0 384.0 384.0 382.9 372.0

7 | 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0

8 | 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0

9 | 120.0 120.0 120.0 1320 360.0 120.0 120.0 120.0 132.0 360.0

10 | 384.0 384.0 384.0 3829 372.0 384.0 384.0 384.0 382.9 372.0

11 | 345.0 345.0 3450 381.0 381.0 3450 3450 345.0 381.0 381.0

12 | 170.0 170.0 1856 3969 386.0 170.0 170.0 185.6 396.9 386.0

13 | 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0
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14 | 180.0 180.0 180.0 3829 372.0 180.0 180.0 180.0 382.9 372.0
15 | 384.0 384.0 384.0 3829 372.0 384.0 384.0 384.0 382.9 372.0
16 | 384.0 384.0 384.0 3829 372.0 384.0 384.0 384.0 382.9 372.0
17 | 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0
18 | 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0
19 | 343.2 343.2 3432 343.2 3432 3432 3432 343.2 343.2 343.2
20 | 312.0 312.0 3120 312.0 312.0 312.0 312.0 312.0 312.0 312.0
21 | 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0
22 | 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0
23 | 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0
24 | 312.0 312.0 3120 3120 312.0 3120 3120 312.0 312.0 312.0
25 | 343.2 3432 3432 3432 343.2 3432 3432 343.2 343.2 343.2
26 | 312.0 312.0 3120 3120 312.0 312.0 312.0 312.0 312.0 312.0
27 | 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0
28 | 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0
29 | 360 360 360 396 396 360 360 360 396 396
30| 156 156 171.6 3829 372 156 156 171.6 382.9 372
Table C29 Demand of target scenario for time periods 41-52 (kg)
week
41 42 43 44 45 46 47 48 49 50 51 52
1 120 120 132 132 138 120 120 132 132 138 120 120
2 120 120 132 132 138 120 120 132 132 138 120 120
3 360 360 360 396 396 360 360 360 396 396 408 408
4 156 156 171.6 3829 372 156 156 171.6 3829 372 310.8 300.6
5 384 384 384 3829 372 384 384 384 3829 310.8 249.7 249.7
6 | 384 384 384 3829 372 384 384 384 3829 310.8 249.7 249.7
7 360 360 360 396 396 360 360 360 396 310.8 249.7 249.7
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8 360
9 120
10 | 384
11 | 345
12 | 170
13 | 360
14 | 180
15 | 384
16 | 384
17 | 360
18 | 312

19 | 343.2 343.2

20 | 312
21 | 360
22 | 360
23 | 360
24 | 312

25 | 343.2 3432

26 | 312
27 | 360
28 | 360
29 | 360
30 | 156

360

120

384

345

170

360

180

384

384

360

312

312

360

360

360

312

312

360

360

360

156

360 396
120 132
384 3829
345 381
185.6 396.9
360 396
180 382.9
384 3829
384 3829
360 396
312 312
343.2 343.2
312 312
360 360
360 360
360 360
312 312

343.2 343.2 343.2 343.2 343.2

312 312
360 360
360 360
360 396
171.6 3829

396

360

372

381

386

396

372

372

372

396

312

343.2 3432 3432

312

336

336

336

312

312

336

336

396

372

360

120

384

345

170

360

180

384

384

360

312

312

336

336

336

312

312

336

336

360

156

360

120

384

345

170

360

180

384

384

360

312

312

336

336

336

312

312

336

336

360

156

360 396
120 132
384 3829
345 381
185.6 396.9
360 396
180 382.9
384 3829
384 3829
360 396
312 312
343.2 343.2
312 312
336 336
336 336
336 336
312 312

396

360

372

381

386

396

372

310.8

310.8

310.8

312

343.2

312

336

336

336

312

360 360
396 435.6
310.8 300.6
393 393
3248 314.6
360 360
310.8 300.6
249.7 249.7
249.7 249.7
249.7 249.7
312 312
343.2 343.2
312 312
336 336
336 336
336 336
312 312

343.2 343.2 343.2 343.2 343.2

312 312
336 336
336 336
360 396
171.6 3829

312

336

336

396

372

312 312
336 336
336 336
408 408
310.8 300.6
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Table C30 Changeover times between products (hours)

1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
1 /00 14 18 18 14 18 14 14 18 18 14 18 18 17 17
2 14 00 18 18 14 18 14 14 18 18 14 18 18 1.7 1.7
3 18 14 00 18 14 18 14 14 18 18 14 18 18 1.7 1.7
4 18 14 18 00 14 18 14 14 18 18 14 18 18 17 1.7
5 14 14 18 18 00 18 14 14 18 18 14 18 18 1.7 1.7
6 |18 14 18 18 14 00 14 14 18 18 14 18 18 1.7 1.7
7 {14 14 18 18 14 18 00 14 18 18 14 18 18 1.7 1.7
8 (15 14 18 18 14 18 14 00 18 18 14 18 18 17 17
9 15 14 18 18 14 18 14 14 00 18 14 18 18 17 1.7
10 (1.5 14 18 18 14 18 14 14 18 00 14 18 18 1.7 17
11 (15 14 18 18 14 18 14 14 18 18 00 18 18 1.7 17
12 |15 14 18 18 14 18 14 14 18 18 14 00 18 1.7 17
13 |15 14 18 18 14 18 14 14 18 18 14 18 00 17 17
14 |15 14 18 18 14 18 14 14 18 18 14 18 18 00 1.7
15 {14 14 18 18 14 18 14 14 18 18 14 18 18 1.7 0.0
16 {14 14 18 18 14 18 14 14 18 18 14 18 18 18 1.8
17 {14 14 18 18 14 18 14 14 18 18 14 18 18 18 18
8 14 14 18 18 14 18 14 14 18 18 14 18 18 18 1.8
19 (14 14 18 18 14 18 14 14 18 18 14 18 18 18 1.8
20 |14 18 18 14 18 14 14 18 18 14 18 18 18 18 1.8
21 |15 16 19 18 15 17 14 14 18 16 14 17 16 16 16
22 |15 16 19 18 15 18 14 14 18 16 14 17 16 16 16
23 |15 16 20 18 15 18 14 14 18 16 14 17 16 16 16
24 |15 16 20 18 15 18 14 15 18 16 14 17 16 16 16
25 |16 16 20 18 16 18 14 15 18 16 14 17 16 16 16
26 |16 17 20 19 16 18 14 15 18 16 14 16 16 16 15
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27 |16 17 20 19 16 18 14 15 18 16 14 16 16 16 1.5
28 16 17 21 19 16 18 14 15 18 16 14 16 16 16 15
29 (16 17 21 19 16 18 14 15 18 16 14 16 16 16 15
30 |16 18 21 19 16 18 14 15 18 16 14 16 16 16 1.5
Table C31 Changeover times between products (hours)
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30
1 (18 14 18 18 14 18 19 19 19 19 20 20 20 20 21
2 |14 14 18 18 14 17 18 18 18 18 19 19 19 19 19
3 (18 14 18 18 14 18 18 18 18 19 19 19 19 19 20
4 |14 14 18 18 14 17 17 17 17 17 18 18 18 18 1.8
5|15 14 18 18 14 17 17 17 18 18 18 18 18 18 19
6 |15 14 18 18 14 16 1.7 17 17 17 17 17 17 17 17
7 |15 14 18 18 14 17 1.7 17 17 17 17 17 17 18 1.8
8 |15 14 18 18 14 16 16 16 16 16 17 1.7 17 1.7 1.7
9 |15 14 18 18 14 16 16 16 16 16 16 16 16 16 1.6
10 | 1.5 14 18 18 14 16 16 16 16 16 16 16 16 16 1.6
11 |15 14 18 18 14 16 16 16 16 16 16 16 16 16 1.6
12 | 14 14 18 18 14 15 15 15 15 15 15 15 15 15 15
13|14 14 18 18 14 15 15 15 15 15 15 14 14 14 14
14 | 14 14 18 18 14 15 14 14 14 14 14 14 14 14 14
15 | 14 14 18 18 14 14 14 14 14 14 14 14 14 14 14
16 | 00 14 18 18 14 15 15 14 14 14 14 14 14 14 14
17 | 14 00 18 18 14 14 14 14 14 14 14 14 14 14 14
18| 18 14 00 18 14 14 14 14 14 14 13 13 13 13 13
19 | 18 14 18 00 14 14 14 13 13 13 13 13 13 13 1.2
20 | 14 14 18 18 00 14 14 13 13 13 13 13 13 12 1.2
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21

22

23

24

25

26

27

28

29

30

1.3

1.3

1.3

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.0

1.0

1.5

1.5

1.5

1.4

1.4

1.4

1.4

1.4

1.3

1.3

1.5

1.4

1.4

1.4

1.4

1.4

1.3

1.3

1.3

1.3

1.1

1.1

1.0

1.0

1.0

1.0

1.0

0.9

0.9

0.9

0.0

1.3

1.3

1.3

1.2

1.2

1.2

1.2

11

1.1

1.3

0.0

1.2

1.2

1.2

1.2

1.1

1.1

11

1.1

1.3

1.3

0.0

1.2

1.2

1.1

1.1

1.1

1.1

1.0

1.3

1.2

1.2

0.0

1.1

1.1

1.1

1.1

1.0

1.0

1.2

1.2

1.2

1.1

0.0

1.1

1.0

1.0

1.0

1.0

1.2

1.2

1.2

1.1

1.1

0.0

1.0

1.0

0.9

0.9

1.2

1.2

1.1

1.1

1.1

1.0

0.0

0.9

0.9

0.9

1.2

1.1

1.1

1.1

1.0

1.0

1.0

0.0

0.9

0.8

1.2

1.1

1.1

1.0

1.0

1.0

0.9

0.9

0.0

0.8

1.1

1.1

1.1

1.0

1.0

0.9

0.9

0.8

0.8

0.0
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C4. Results for the second case study- Initial and new plant layout

Table C32 Summary of results for all contract combinations (initial plant layout)

Feasible Contact

et Exp. Profit VaRgoy, VaRosy, CVaRogoy,  CVaRosy,  Max. Profit
C1-C7-C8 8.10 6.03 4.34 4.58 3.98 12.64
C1-C2-C5-C11 8.01 5.08 5.08 4.89 4.70 11.73
C1-C2-C5-C12 7.74 5.50 5.50 5.12 4.74 11.75
C1-C2-C6-C11 7.57 4.55 4.55 443 431 11.11
C1-C5-C6-C11 7.51 5.05 5.05 490 4.74 10.55
C1-C8-C12 7.28 3.64 3.64 3.43 3.23 12.98
C1-C7-C12 7.18 3.96 3.96 3.77 3.59 12.96
C1-C3-C7 7.08 4.36 4.36 4.33 4.30 8.24
C1-C3-C12 7.04 4.40 4.40 411 3.82 10.77
C1-C5-C11 6.91 3.61 3.61 3.46 3.30 10.07
C1-C5-C12 6.61 3.62 3.62 3.62 3.62 10.23
C1-C2-C11 6.25 3.13 3.13 298 2.83 10.12
C1-C6-C11 6.14 3 3 2.88 2.75 9.54
C1-C2-C12 5.98 3.14 2.64 291 2.69 10.24
C1-C6-C12 5.89 3.01 3.01 2.82 2.64 9.69
C1-C6-C8 5.87 2.99 297 293 2.89 8.12
C1-C2-C7 5.85 3.10 3.10 3.07 3.05 7.58
C1-C6-C7 5.79 2.97 297 2.95 2.93 7.12
C1-C2-C5-C6 5.66 4.30 4.30 4.30 4.30 6.46
C1-C5-C16 5.30 3.13 3.13 2.88 2.64 9.36
C1-C11 4.76 1.25 1.25 1.22 1.19 8.16
C1-C8 4.52 1.24 1.24 1.23 1.22 6.72
C1-C12 4.49 1.26 1.16 1.21 1.16 8.28
C1-C7 4.18 1.22 1.22 1.21 1.21 5.60
C1-C2-C5 4.17 3.26 3.26 3.26 3.26 4.83
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C1-C3-C5 410 2.83 2.83 2.83 2.83 4.82
C1-C2-Cé 3.61 2.45 2.45 2.45 2.45 4.33
C1-C3-Cé 3.60 2.71 2.71 2.71 2.71 413
C1-C3 3.25 2.60 2.60 2.60 2.60 3.90
C1-C5 2.57 2.06 2.06 2.06 2.06 3.09
C1-C2 2.15 1.72 1.72 1.72 1.72 2.58
C1-Ceé 2.04 1.63 1.63 1.63 1.63 2.45
*The values represent millions of relative monetary units (r.m.u.)
Table C33 Summary of results for all contract combinations (new plant layout)
Feasible Contact
S Exp. Profit VaRooy, VaRosy, CVaRgoy,  CVaRosy,  Max. Profit
C1-C6-C7-C11 9.31 5.70 5.70 5.52 5.34 13.74
C1-C7-C8 8.12 6.03 4.34 5.64 4.09 12.64
C1-C2-C5-C11 8.01 5.08 5.08 4.89 4.70 11.73
C1-C7-C11 7.85 3.95 3.95 3.78 3.61 12.93
C1-C2-C5-C12 7.74 5.50 5.50 5.12 4.74 11.75
C1-C2-C6-C11 7.57 4.55 4.55 4.43 4.31 11.11
C1-C5-C6-C11 7.51 5.05 5.05 4.90 4.74 10.55
C1-C8-C12 7.39 3.64 3.64 3.43 3.23 14.34
C1-C8-C11 7.38 3.64 3.64 3.43 3.23 13.04
C1-C7-C12 7.20 3.96 3.96 3.77 3.59 13.27
C1-C5-C6-C8 7.17 5.35 5.35 4.97 4.92 9.21
C1-C3-C7 7.08 4.36 4.36 4.33 4.30 8.86
C1-C3-C12 7.04 4.40 4.40 411 3.82 10.77
C1-C5-C11 691 3.61 3.61 3.46 3.30 10.07
C1-C5-C12 6.61 3.62 3.62 3.62 3.62 10.23
C1-C2-C11 6.25 3.13 3.13 2.98 2.83 10.12
C1-C4-C11 6.21 3.12 3.12 2.99 2.86 9.44
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Appendix C

C1-Cé6-C11

C1-C5-C8

C1-C2-C12

C1-Cé-C12

C1-C6-C8

C1-C2-C7

C1-C6-C7

C1-C2-C5-C6

C1-C4-C12

C1-C3-C5

C1-C2-C3

C1-C12

C1-C8

C1-C11

C1-C2-C5

C1-C7

C1-C4-C5

C1-C2-C4

C1-C2-Ce

C1-C4

C1-C3

C1-C5

C1-C2

C1-Ce

6.14

6.12

5.98

5.89

5.87

5.85

5.79

5.71

5.30

5.29

4.85

4.76

4.52

4.52

4.20

4.18

4.17

3.67

3.66

3.65

3.25

2.57

2.15

2.04

3

3.12

3.14

3.01

2.99

3.10

2.97

4.46

3.13

4.24

3.64

1.25

1.24

1.24

3.26

1.22

3.15

2.39

291

2.84

2.60

2.06

1.72

1.63

3

3.12

3.14

3.01

2.99

3.10

2.97

4.46

3.13

4.24

3.64

1.25

1.24

1.24

3.26

1.22

3.15

2.39

291

2.84

2.60

2.06

1.72

1.63

2.88

3.07

291

2.82

2.93

3.07

2.95

4.46

2.88

4.24

3.64

1.22

1.23

1.23

3.26

1.21

3.15

2.39

291

2.84

2.60

2.06

1.72

1.63

2.75

3.03

2.69

2.64

2.89

3.05

2.93

4.46

2.64

4.24

3.64

1.19

1.22

1.22

3.26

1.21

3.15

2.39

291

2.84

2.60

2.06

1.72

1.63

9.54

8.56

10.24

9.69

8.12

7.58

7.12

6.87

9.36

6.27

5.79

8.16

6.72

6.72

5.05

5.60

4.89

431

4.40

4.33

3.90

3.09

2.58

2.45

*The values represent millions of relative monetary units (r.m.u.)
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