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Abstract 
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Doctor of Philosophy 

Optimization-based Techniques for Production Scheduling of 

Continuous and Batch Processes  

By Apostolos P. Elekidis 

 

During the last few years, the significant advances of cutting-edge technologies led to a 

fourth industrial revolution, referred to as Industry 4.0. At the dawn of the new era of 

industrialization, modern production environments attempt to integrate various 

decisional and physical aspects of production processes into automated and 

decentralized systems. Two of the main decision levels in these systems, are production 

planning and scheduling, which constitute a major component for the efficient 

operation of the process industries. Especially in the current competitive globalized 

market, production planning and scheduling are of vital importance to most industries, 

since profit margins are miniscule. Therefore, efficient usage of resources has a critical 

role in the viability and sustainability of all industries. Additionally, efficiency targets 

are increasingly being adapted with sustainable production goals towards a green and 

circular economy. In addition to cost savings, further objectives must be considered, 

such as the reduction of greenhouse gas emissions, the increased usage of renewable 

energy sources and the reduction of waste.  

These objectives can be achieved by exploiting recent advances of computer-aided 

optimization tools and methodologies. During the last 30 years plethora of research 

contributions have been published by the scientific community in the field of production 

scheduling optimization. However, the practical implementation of optimization-based 
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scheduling frameworks in real-life industrial applications is limited. In most industries, 

the optimization of production scheduling constitutes an extremely challenging and 

time-consuming task, since the majority of decision-makers prefer to generate 

scheduling solutions manually, or use simulation-based software, resulting to 

suboptimal solutions.  

This thesis proposes systematic mathematical frameworks for the optimization of a 

wide variety of complex production planning and scheduling problems. The 

optimization-based solutions are based on mixed integer linear programming (MILP) 

frameworks. However, a main drawback of MILP models is their inability to handle 

efficiently large problem instances, since the model size increases exponentially with 

the problem size. To face this challenge, novel MILP-based solution algorithms have 

been also investigated for the solution of real-life industrial problems. 

More specifically, the first chapter considers the scheduling problem of a real-life large-

scale industrial facility of packaged consumer goods. The problem under consideration 

is mainly focused on the packing stage which constitutes the major production 

bottleneck. Two precedence-based MILP mathematical models are proposed to describe 

explicitly the continuous process of the plant. The models rely on allocation, timing and 

sequencing constraints. Additional constraints, referring to the production/formulation 

stage of the plant, are also imposed in order to ensure the generation of feasible 

production schedules. Furthermore, two MILP-based decomposition algorithms are 

proposed for the efficient solution of large-scale problem instances. The applicability of 

the proposed approaches is illustrated by solving several real-life industrial problem 

instances of a multinational consumer goods industry under consideration. The results 

lead to nearly optimal scheduling in reasonable solution times, comparing favorably 

with manually derived schedules by the production engineers. 

The second chapter addresses the scheduling problem of continuous make-and-pack 

industries, including flexible intermediate storage vessels, aiming to provide better 

synchronisation of the production stages. A novel continuous-time, precedence-based, 

MILP model is developed for the problem under consideration. Extending previously 

proposed precedence-based MILP models, multiple campaigns of the same recipe can be 

stored simultaneously in a storage tank. Explicit resource constraints related to the 

generation and recycling of byproduct are introduced, to achieve a better utilization of 
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the available resources. Several case studies, inspired by a large-scale consumer goods 

industry have been solved, to illustrate the applicability of the proposed frameworks. 

Although global optimal solutions cannot be guaranteed, good quality schedules are 

obtained, while the utilisation of intermediate buffers leads to a better synchronisation 

of the production stages and increased productivity. 

The final chapter of the thesis presents an integrated planning and scheduling 

framework for the optimal contract selection problem of Contract Manufacturing 

Organizations (CMOs) under uncertainty in pharmaceutical industry. During the last 20 

years a growing number of pharmaceutical companies outsource part of their 

operations to reduce operational cost and mitigate their risk exposure. Contract 

Manufacturing Organizations (CMOs) utilize their facilities to manufacture products for 

multinational pharmaceutical companies on a contract basis. Considering a multistage, 

multiproduct, batch facility of a secondary pharmaceutical industry, an aggregated MILP 

planning model, including material balances and allocation constraints is firstly 

proposed. Using a rolling horizon approach, the production targets are then provided to 

a precedence-based MILP scheduling model to define batch-sizing and sequencing 

decisions in detail. To model demand uncertainty, a scenario-based approach is 

proposed, considering the Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) 

measures. Since large number of scenarios introduces significant challenges to 

computations, a scenario reduction framework is integrated to reduce the total solution 

time, when considering large-scale problem instances. The proposed methodology 

increases the profitability of CMOs, by selecting the optimal contract combinations, 

depending on their risk tolerance, while considering the availability and optimal 

utilization of underlying production resources. 
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  Περίληψη Abstract in Greek 
Το σύγχρονο βιομηχανικό περιβάλλον χαρακτηρίζεται από υψηλή αστάθεια, λόγω των 

ολοένα και ταχύτερα μεταβαλλόμενων οικονομικών και πολιτικών συνθηκών σε 

παγκόσμια κλίμακα. Έτσι, παρατηρείται μία ισχυρή κλιμάκωση του ανταγωνισμού 

μεταξύ των επιχειρήσεων, οι οποίες επικεντρώνονται ολοένα και περισσότερο στη 

διαρκή βελτίωση των διαδικασιών λήψης αποφάσεων.  

Η ολοένα αυξανόμενη ζήτηση, σε συνδυασμό με τον υψηλό αριθμό τελικών προϊόντων, 

καθιστούν την κάλυψη πολλαπλών παραγγελιών μία σημαντική πρόκληση. Συνεπώς, 

για την επιτυχή ικανοποίηση των αναγκών των πελατών, είναι ιδιαίτερα σημαντική η 

αποτελεσματική χρήση του εξοπλισμού και η αποδοτική αξιοποίηση όλων των 

διαθέσιμων πόρων της παραγωγικής μονάδας, με απώτερο στόχο τη μείωση του 

κόστους παραγωγής. Την ίδια στιγμή, οι βιομηχανίες οφείλουν να συμμορφώνονται με 

τις ολοένα και πιο αυστηρές περιβαλλοντικές νομοθετικές ρυθμίσεις και να εντείνουν 

τις προσπάθειές τους για μείωση του ενεργειακού αποτυπώματος και των εκπομπών 

ρύπων. Με βάση τα παραπάνω, παρατηρείται μία σταδιακά εντεινόμενη προσπάθεια 

αυτοματοποίησης των διαδικασιών λήψης αποφάσεων, σε όλα τα ιεραρχικά επίπεδα, 

βασιζόμενη στην  προοδευτικά αυξανόμενη χρήση νέων υπολογιστικών εργαλείων και 

τεχνολογιών αιχμής.  

Ο χρονοπρογραμματισμός της παραγωγής αποτελεί ένα ζωτικής σημασίας επίπεδο 

λήψης αποφάσεων και διαδραματίζει σημαίνοντα ρόλο στην απόδοση μίας 

βιομηχανικής μονάδας. Αφορά την κατανομή των πόρων μεταξύ ανταγωνιστικών 

δραστηριοτήτων σε συγκεκριμένες χρονικές περιόδους, έχοντας ως στόχο τη 

βελτιστοποίηση ενός ή περισσότερων αντικειμενικών στόχων. Για τη βελτιστοποίηση 

του χρονοπρογραμματισμού παραγωγής καθίσταται απαραίτητη η μελέτη του συνόλου 

των διεργασιών που λαμβάνουν χώρα και οι αλληλεπιδράσεις τους με το ευρύτερο 

βιομηχανικό περιβάλλον.  

Τα τελευταία 30 χρόνια έχει προταθεί ένα ευρύ φάσμα μεθόδων για την αντιμετώπιση 

αυτών των συνδυαστικών προβλημάτων, ωστόσο η πλειονότητα τους επικεντρώνεται 

κυρίως σε προβλήματα που δεν αποτυπώνουν την βιομηχανική πραγματικότητα. Τα 

προβλήματα χρονοπρογραμματισμού των σύγχρονων βιομηχανιών περιλαμβάνουν 

πληθώρα τελικών προϊόντων και μηχανολογικού εξοπλισμού, ενώ η παραγωγική 
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διαδικασία καθίσταται ιδιαίτερα περίπλοκη. Συνήθως τα προβλήματα αυτά υπόκεινται 

σε πολλαπλούς τεχνικούς και λειτουργικούς περιορισμούς, με αποτέλεσμα να 

χαρακτηρίζονται από εξαιρετικά υψηλή υπολογιστική πολυπλοκότητα και ως εκ 

τούτου δεν μπορούν να επιλυθούν σε χρόνους αποδεκτούς από την βιομηχανία. 

Σήμερα, στις περισσότερες βιομηχανικές μονάδες, το πρόγραμμα παραγωγής 

λαμβάνονται χειροκίνητα με τη μέθοδο της δοκιμής και σφάλματος, από 

εξειδικευμένους μηχανικούς παραγωγής, βασιζόμενοι κυρίως στην εμπειρία τους και τη 

χρήση περιορισμένου αριθμού βοηθητικών εργαλείων, όπως λογισμικά προσομοίωσης. 

Ως εκ τούτου, κρίνεται αναγκαία η ανάπτυξη νέων υπολογιστικών τεχνικών, οι οποίες 

θα οδηγούν σε υψηλής ποιότητας λύσεις σε σύντομο χρόνο, και κατά συνέπεια θα 

αποτελέσουν τη βάση για την ανάπτυξη αποτελεσματικών υπολογιστικών εργαλείων 

που θα συμβάλλουν σημαντικά στη βέλτιστη λήψη αποφάσεων. Με βάση τα 

παραπάνω, η παρούσα διατριβή επικεντρώνεται στην ανάπτυξη νέων μαθηματικών 

μοντέλων και τεχνικών, τα οποία λαμβάνουν υπόψιν όλα τα απαραίτητα 

χαρακτηριστικά ρεαλιστικών βιομηχανικών μονάδων, όσο και στην ανάπτυξη νέων 

αλγορίθμων για την επίλυση πολύπλοκων προβλημάτων μεγάλης κλίμακας, σε 

αποδεκτό από τη βιομηχανία υπολογιστικό χρόνο. 

Ο προγραμματισμός παραγωγής αποτελεί ένα μόνο τμήμα της ιεραρχικής διαδικασίας 

λήψης αποφάσεων και περιλαμβάνει ένα μέρος των αποφάσεων που λαμβάνονται σε 

μία βιομηχανική μονάδα.  Ένα ιδιαιτέρως σημαντικό επίπεδο αποφάσεων αποτελεί 

επίσης ο μακροχρόνιος σχεδιασμός παραγωγής (Planning). Σε αντίθεση με το 

χρονοπρογραμματισμό παραγωγής, όπου μελετάται συνήθως ένας χρονικός ορίζοντας 

έως και 2-3 εβδομάδων, ο σχεδιασμός της παραγωγής πραγματεύεται τη μελέτη ενός 

μακροχρόνιου χρονικού ορίζοντα, ο οποίος είναι σύνηθες να κυμαίνεται από μερικές 

εβδομάδες έως και 5 ή 10 έτη. Σε αυτό το επίπεδο, λαμβάνονται κυρίως στρατηγικές 

και οικονομικές αποφάσεις της εταιρείας, σχετικά με το σχεδιασμό και τη 

δυναμικότητα της βιομηχανικής μονάδας, τον προγραμματισμό για την αγορά 

προμηθειών και την παράδοση των παραγγελιών κτλ. Συνήθως, οι αποφάσεις του 

σχεδιασμού παραγωγής αποτελούν δεδομένα εισόδου για το ιεραρχικό επίπεδο του 

χρονοπρογραμματισμού. Η ταυτόχρονη μελέτη των δύο επιπέδων αποφάσεων 

(σχεδιασμός και χρονοπρογραμματισμός παραγωγής), παρουσιάζει σημαντικά 

πλεονεκτήματα έναντι της επιμέρους μελέτης των δύο προβλημάτων και μπορεί να 

οδηγήσει σε λύσεις οι οποίες στην πράξη αποδεικνύονται πιο αποτελεσματικές και 
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περισσότερο εφαρμόσιμες. Μάλιστα, σε αρκετές βιομηχανικές μονάδες η επιμέρους 

μελέτη και επίλυση των δύο προβλημάτων μπορεί να οδηγήσει σε λύσεις οι οποίες είναι 

μη εφικτές στα κατώτερα επίπεδα λήψης αποφάσεων, όπως το επίπεδο του 

χρονοπρογραμματισμού παραγωγής. Στον αντίποδα, ένα σημαντικό μειονέκτημα που 

παρουσιάζουν οι ενοποιημένες προσεγγίσεις για την παράλληλη μελέτη των δύο 

προβλημάτων, είναι η ανάγκη για χρήση αυξημένου αριθμού μεταβλητών και 

περιορισμών, κάτι που επιφέρει υψηλότερη πολυπλοκότητα και καθιστά το 

ενοποιημένο πρόβλημα δύσκολα επιλύσιμο. 

Λόγω της μεγάλης διάρκειας που απαιτείται για την ανάπτυξη νέων φαρμάκων και του 

υψηλού κόστους των κλινικών δοκιμών, το πρόβλημα του ενοποιημένου σχεδιασμού 

και χρονοπρογραμματισμού παραγωγής είναι ιδιαίτερα σημαντικό για τις 

φαρμακευτικές βιομηχανίες. Επιπλέον, κατά τη διάρκεια των τελευταίων 20 ετών, 

λόγω του έντονου ανταγωνισμού, παρατηρείται στη φαρμακευτική βιομηχανία μια 

αυξανόμενη τάση για υπογραφή συμβάσεων μεταξύ μεγάλων πολυεθνικών εταιρειών 

και εξωτερικών συνεργατών για την ανάθεση της παραγωγής των προϊόντων τους 

(Contract Manufacturing). Αυτό επιτρέπει στις φαρμακευτικές βιομηχανίες να 

επικεντρωθούν σε μεγαλύτερο χαρτοφυλάκιο προϊόντων χωρίς να αυξάνουν τις 

δαπάνες που συνδέονται με την κατασκευή νέων εγκαταστάσεων. Ωστόσο, η ζήτηση 

των φαρμακευτικών προϊόντων είναι ιδιαίτερα μεταβλητή, καθώς μπορεί να 

επηρεασθεί σημαντικά από απροσδόκητες παρενέργειες ή από τη χαμηλή 

δραστικότητα των νέων φαρμάκων. Ως εκ τούτου, οι εξωτερικοί συνεργάτες (Contract 

Manufacturing Organizations) οφείλουν να επιλέγουν το βέλτιστο συνδυασμό 

συμβολαίων/προϊόντων, ώστε να μεγιστοποιήσουν τα κέρδη τους λαμβάνοντας όμως 

υπόψιν και το υποκείμενο ρίσκο. Στη βιβλιογραφία, εκτενής αριθμός ερευνητικών 

εργασιών περιορίζεται κυρίως στη μελέτη των επιμέρους προβλημάτων του 

χρονοπρογραμματισμού ή του μακροχρόνιου σχεδιασμού παραγωγής της 

φαρμακευτικής βιομηχανίας. Ωστόσο, δεν εντοπίζεται κάποια εργασία η οποία να 

επικεντρώνεται στη μελέτη του ενιαίου προβλήματος του σχεδιασμού και 

χρονοπρογραμματισμού παραγωγής υπό αβεβαιότητα σε φαρμακευτικές βιομηχανίες 

και ειδικότερα, σε βιομηχανικές μονάδες που λειτουργούν κατ' ανάθεση παραγωγής 

φαρμακευτικών προϊόντων άλλων εταιρειών (Contract Manufacturing Organizations). 

Τα παραπάνω δημιουργούν ένα ερευνητικό κενό μεγάλου ενδιαφέροντος, ιδιαιτέρως 

λόγω των τελευταίων εξελίξεων και της κρίσης της φαρμακευτικής εφοδιαστικής 
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αλυσίδας. Έτσι, στο τελευταίο τμήμα της διδακτορικής διατριβής μελετάται το ενιαίο 

πρόβλημα του σχεδιασμού και του χρονοπρογραμματισμού παραγωγής, σε 

βιομηχανικές μονάδες φαρμάκων υπό αβεβαιότητα της ζήτησης. Μελετάται επίσης το 

πρόβλημα της βέλτιστης επιλογής συμβολαίων για την παραγωγή προϊόντων σε 

βιομηχανικές μονάδες φαρμάκων, οι οποίες λειτουργούν κατ' ανάθεση παραγωγής 

φαρμακευτικών προϊόντων άλλων εταιρειών (Contract Manufacturing Organizations). 

Όλα τα προτεινόμενα μοντέλα και οι αλγόριθμοι επίλυσης υλοποιήθηκαν με χρήση του 

λογισμικού GAMS και του επιλυτή CPLEX. Αναλυτικότερα, η συνεισφορά της παρούσας 

διδακτορικής διατριβής συνοψίζεται παρακάτω. 

Αρχικά, μελετάται το πρόβλημα του βέλτιστου χρονοπρογραμματισμού παραγωγής σε 

βιομηχανίες πολλαπλών σταδίων παραγωγής, που περιλαμβάνουν διεργασίες συνεχούς 

λειτουργίας.  Ειδικότερα, αναπτύχθηκαν δύο μαθηματικά μοντέλα Μεικτού-Ακεραίου 

Γραμμικού Προγραμματισμού (MILP) για την ελαχιστοποίηση του συνολικού χρόνου 

εναλλαγών (changeover minimization). Τα προτεινόμενα μαθηματικά μοντέλα 

αλληλουχίας (precedence-based), επικεντρώνονται στο στάδιο της συσκευασίας 

βιομηχανικών μονάδων καταναλωτικών αγαθών και βασίζονται σε μια σειρά από 

λογικούς αλλά και τεχνικούς περιορισμούς. Επιπλέον περιορισμοί, που αφορούν το 

συνεχές στάδιο παραγωγής των ενδιάμεσων προϊόντων, καθώς και περιορισμοί για 

τους χρόνους παράδοσης των προϊόντων, συμπεριλαμβάνονται προκειμένου να 

διασφαλισθεί η κατασκευή ρεαλιστικών προγραμμάτων παραγωγής. Για την επίλυση 

προβλημάτων προγραμματισμού παραγωγής μεγάλης κλίμακας σε βιομηχανικές 

μονάδες συνεχούς λειτουργίας, αναπτύχθηκαν επίσης δύο αλγόριθμοι 

βελτιστοποίησης. Ο στόχος των αλγορίθμων επίλυσης είναι η διάσπαση του αρχικού 

προβλήματος σε μικρότερα και ευκολότερα επιλύσιμα υποπροβλήματα 

(decomposition-based algorithm). Για την αξιολόγηση των προτεινόμενων 

μαθηματικών μοντέλων, και των αλγορίθμων επίλυσης, εξετάστηκαν διάφορα σενάρια 

ζήτησης και κατασκευάστηκαν προγράμματα παραγωγής για πάνω από 130 τελικά 

προϊόντα που παράγονται εβδομαδιαίως. Οι μελέτες υλοποιήθηκαν με τη χρήση 

ρεαλιστικών δεδομένων μιας βιομηχανικής μονάδας καταναλωτικών προϊόντων της 

εταιρείας Procter and Gamble (P&G). Τα αποτελέσματα αποδεικνύουν πως οι 

προτεινόμενοι αλγόριθμοι βελτιστοποίησης και τα μαθηματικά μοντέλα οδηγούν σε 
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σημαντική μείωση του χρόνου εναλλαγών και συνεπώς σε αύξηση της 

παραγωγικότητας της μονάδας. 

Επιπλέον μελετήθηκε ο βέλτιστος χρονοπρογραμματισμός παραγωγής σε βιομηχανίες 

συνεχούς λειτουργίας με δυνατότητα ενδιάμεσης αποθήκευσης και ανακύκλωσης 

παραπροϊόντων. Προτείνεται ένα νέο μαθηματικό μοντέλο Μεικτού-Ακεραίου 

Γραμμικού Προγραμματισμού (MILP), το οποίο αποτελείται από μια σειρά λογικών και 

τεχνικών περιορισμών, που σχετίζονται με την αλληλουχία των προϊόντων, τη 

διαθεσιμότητα των συσκευών, τους χρόνους παράδοσης των προϊόντων κ.α. Επιπλέον, 

το μαθηματικό μοντέλο βασίζεται σε συνεχή αναπαράσταση του χρονικού ορίζοντα, 

ενώ οι περιορισμοί των ισοζυγίων μάζας ικανοποιούνται μέσω της χρήσης ενός νέου 

συνόλου δυαδικών μεταβλητών. Τέλος, περιλαμβάνονται περιορισμοί για ρεύματα 

ανακύκλωσης των παραπροϊόντων, τα οποία παράγονται κατά τη διάρκεια των 

διεργασιών καθαρισμού των συσκευών. Παράλληλα, αναπτύχθηκε ένας αλγόριθμος 

βελτιστοποίησης (decomposition-based algorithm), για την επίλυση προβλημάτων 

χρονοπρογραμματισμού παραγωγής, βιομηχανικών μονάδων μεγάλης κλίμακας. 

Μελετήθηκαν προβλήματα μεγάλης κλίμακας, χρησιμοποιώντας ρεαλιστικά δεδομένα, 

από μία βιομηχανική μονάδα καταναλωτικών προϊόντων. Από την αξιολόγηση των 

εξαγόμενων λύσεων, συμπεραίνεται πως το προτεινόμενο μαθηματικό μοντέλο σε 

συνδυασμό με τις στρατηγικές επίλυσης, οδηγούν σε λύσεις που βελτιώνουν το 

συγχρονισμό μεταξύ των σταδίων παραγωγής, ενώ παράλληλα αυξάνουν την 

αποδοτικότητα του εξοπλισμού και τη χρήση των πρώτων υλών, μειώνουν το συνολικό 

κόστος και ελαχιστοποιούν τη παραγωγή παραπροϊόντων. 

Στο τελευταίο τμήμα της διδακτορικής διατριβής μελετάται η βελτιστοποίηση του 

ενιαίου προβλήματος του σχεδιασμού και χρονοπρογραμματισμού παραγωγής σε 

βιομηχανικές μονάδες φαρμάκων υπό αβεβαιότητα. Αρχικά προτείνεται ένα μοντέλο 

Μεικτού-Ακέραιου Γραμμικού Προγραμματισμού (MILP), για το επιμέρους πρόβλημα 

του βραχυχρόνιου χρονοπρογραμματισμού παραγωγής σε μονάδες διαλείπουσας 

λειτουργίας. Το μαθηματικό μοντέλο, το οποίο βασίζεται σε συνεχή αναπαράσταση του 

χρονικού ορίζοντα, αποτελείται από μια σειρά περιορισμών, οι οποίοι σχετίζονται με 

την αλληλουχία των προϊόντων, τη δυναμικότητα των συσκευών, κ.α. Επιπροσθέτως, 

αναπτύχθηκε ένα μοντέλο Μεικτού-Ακέραιου Γραμμικού Προγραμματισμού (MILP), για 

το πρόβλημα του μακροχρόνιου σχεδιασμού παραγωγής σε βιομηχανικές μονάδες 
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διαλείπουσας λειτουργίας. Το μαθηματικό μοντέλο, απαρτίζεται από μια σειρά 

περιορισμών, οι οποίοι σχετίζονται με τη διαθεσιμότητα και τη δυναμικότητα  των 

συσκευών, τα ισοζύγια μάζας των υλικών, την αποθηκευτική δυναμικότητα της 

βιομηχανικής μονάδας κ.α. Για την επίλυση προβλημάτων μεγάλης κλίμακας, 

προτάθηκε ένας επαναληπτικός αλγόριθμος, ο οποίος βασίζεται στην τεχνική του 

κυλιόμενου ορίζοντα (rolling horizon). Παράλληλα, για τη μελέτη της αβεβαιότητας 

έγινε χρήση των εργαλείων μέτρησης κινδύνου, Value-at-risk (VaR) και Conditional 

Value-at-Risk (CVaR). Οι προτεινόμενες μαθηματικές τεχνικές εφαρμόστηκαν σε 

προβλήματα σχεδιασμού και  χρονοπρογραμματισμού παραγωγής υπό αβεβαιότητα 

της ζήτησης, σε βιομηχανικές μονάδες παραγωγής φαρμάκων. Ειδικότερα, μελετήθηκε 

το πρόβλημα της βέλτιστης επιλογής συμβολαίων για την παραγωγή προϊόντων σε 

βιομηχανικές μονάδες φαρμάκων, οι οποίες λειτουργούν παράγοντας προϊόντα άλλων 

εταιρειών με εξωτερική ανάθεση (Contract Manufacturing Organizations). 

Μελετήθηκαν προβλήματα μεγάλης κλίμακας τα οποία περιλαμβάνουν πολλαπλά 

στάδια παραγωγής και μεγάλο αριθμό προϊόντων. Από την αξιολόγηση των 

εξαγόμενων λύσεων, συμπεραίνεται πως τα προτεινόμενα μαθηματικά μοντέλα, σε 

συνδυασμό με τις στρατηγικές επίλυσης, οδηγούν σε βέλτιστες λύσεις, λαμβάνοντας 

αποτελεσματικά  υπόψιν το υποκείμενο ρίσκο.  
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1 
1. Introduction  

1.1 Motivation and objectives 

Nowadays, due to the ever-increasing competition, process industries face multiple 

tough challenges. Hence, decision-makers put massive effort to increase profit margins 

by allocating more efficiently the available resources between competing activities and 

reducing the various costs. However, in the new era of manufacturing processes, goals 

of efficiency are now being complemented by sustainable production objectives. Besides 

cost reduction, further benefits can be achieved by using cutting-edge technologies, 

such as time reduction, predictive maintenance, reduction of the environmental 

footprint, and better supply chain visibility. Following the recent advances of the Fourth 

Industrial Revolution (Industry 4.0), modern process industries are obliged to invest in 

research and development to digitalize the various decision-making processes (Rossit et 

al., 2019). Furthermore, due to the tremendous volatility of the global market, the 

coordination of different decision levels has a vital role in the sustainability of process 

industries (Harjunkoski et al., 2014). Production scheduling constitutes a crucial 

decision level, as it has a direct impact on the overall efficiency of all industrial facilities. 

Critical objectives can be achieved via optimal production schedules, according to the 

current needs of the plant, such as the reduction of production cost or production 

downtimes, and the minimization of energy consumption. Hence, during the last three 

decades a plethora of mathematical frameworks has been proposed to face the 

production scheduling optimisation problem. The vast majority of these approaches 

rely on mixed-integer linear programming (MILP) formulations, since it proved to be 

extremely flexible and accurate, while ensuring optimal solutions (Georgiadis et al., 

2019a; Harjunkoski et al., 2014).  

Within the overall current climate of business globalization, modern industrial facilities 

have to satisfy a highly diversified product portfolio that can address the needs of 
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customers. Current real-world industrial applications include hundreds of different final 

products in flexible facilities, under several tight design and operational constraints. As 

a result, several companies from various industrial sectors, such as food and beverages, 

pharmaceuticals, chemicals and fast-moving consumer goods (FMCGs), have adopted 

continuous make-and-pack production layouts (Castro et al., 2018; Méndez et al., 2006).  

The utilization of continuous processes can lead to notable benefits for process 

industries. Firstly, continuous processes can increase the production throughput, by 

reducing the total processing time. Aside from time saved, industries decrease the total 

energy consumption by avoiding shutting down and resetting machines repeatedly. 

Furthermore, once a continuous equipment starts to operate, only a general supervision 

of the machinery is required. This allows for labour costs reduction and therefore 

research and development expenditures can be increased (Harjunkoski et al., 2014).  

Despite the multiple advantages, scheduling optimization of continuous processes is a 

tough task. Usually, the synchronization between stages cannot be easily achieved and 

due to different production rates undesirable idle times are realized. Hence, modern 

industrial facilities consist of complex production layouts that include several 

production routes, flexible storage vessels and recycling streams to increase the overall 

productivity. However, it can be noticed that scheduling optimization of continuous 

processes, has received only a small attention in comparison with batch facilities 

(Castro et al., 2018; Harjunkoski et al., 2014; Méndez et al., 2006). Therefore, the 

development of efficient mathematical frameworks for the optimal production 

scheduling of multistage continuous processes is a known research gap. Concerning the 

above observation, novel mathematical frameworks are proposed in this thesis, for the 

optimal scheduling of multistage continuous processes.  

Although digitalization has attracted a lot of attention within various industrial sectors, 

in terms of production scheduling the reality is not so encouraging. In practice 

production schedules are mainly manually generated, based on the experience of 

production engineers. Therefore, production scheduling is a time-consuming process as 

a lot of manpower is wasted to obtain even a feasible or sub optimal solution. 

Additionally, due to unexpected events, such as order cancelations or equipment 

breakdowns, the initial solution must be updated in weekly or even in daily basis. 

Simulation tools (e.g., SchedulePro™) constitute a useful tool as fast and feasible 
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solutions can be generated, although without ensuring optimality (Koulouris et al., 

2021; Papavasileiou et al., 2007). Concerning the above facts, it is concluded that there 

is a strong need to develop efficient mathematical frameworks that lead to nearly 

optimal solutions in small computational times. Although numerous MILP models can 

be found in the open literature, only a few industrial applications have been reported.  It 

can be noticed that most of the optimization methods have efficiently handled small or 

medium sized problem instances, while only a few of them have been applied in large 

scale industrial problems (Castro et al., 2018; Georgiadis et al., 2019a). Hence, due to 

the lack of real-life applications, this thesis proposes efficient MILP-based solution 

algorithms for the scheduling of real life, large-scale, industrial problems. 

Finally, among different industrial sectors pharmaceutical industry is composed of 

many challenging planning and scheduling problems possessing both industrial and 

academic significance (Sarkis et al., 2021; Shah, 2004). Over the past few years, large 

R&D pharmaceutical companies have increasingly outsourced non-core activities, such 

as manufacturing, to Contract Manufacturing Organisations (CMOs). CMOs are 

companies without their own product portfolio and serve other companies in the 

pharmaceutical industry on a contract basis to provide comprehensive services related 

to drug manufacturing. This policy enables multinational pharmaceutical industries to 

reduce their costs and emphasise on drug discovery and marketing, which are 

considered as key parts for their value chain (Jarvis, 2007). A contract can include 

currently developed products, characterized by highly volatile demand and high selling 

prices, or drugs with less uncertain demand and lower profit margins. Typically, drug 

development is a time-consuming process, as it takes at least 10 years on average for a 

new medicine to be in the marketplace. Additionally, demand of newly developed 

pharmaceutical products is usually highly uncertain. Lower drug efficacy can affect the 

demand and total sales, while in the worst case, it can lead to the suspension or even the 

withdrawal of the drug. Under this dynamic and uncertain environment, a CMO must 

decide the best contract combination to accept, so as to maximize its profits. Although 

multiple research contributions are focused on the short-term scheduling of 

pharmaceutical industries (Kopanos et al., 2010a; Stefansson et al., 2006) or the 

planning of clinical trials (Colvin and Maravelias, 2011; Levis and Papageorgiou, 2004), 

only a handful of them considered the integrated planning and scheduling problem, 

while the optimal contract selection problem of CMOs under uncertainty in the 
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secondary pharmaceutical industry has never been addressed. Hence, the scientific 

knowledge is expected to be broadened with the introduction of an optimization-based 

framework for the optimal contract appraisal of CMOs in the secondary pharmaceutical 

industry under demand uncertainty. 

The main objectives of this thesis are: 

• The development of novel MILP-based models for the optimal production 

scheduling of multistage continuous processes, while considering flexible 

intermediate storage vessels, aiming to provide better synchronization of the 

production stages. 

• The efficient modelling of byproducts recycling streams to reduce waste, 

environmental footprint and production cost. 

• To propose efficient MILP-based solution strategies for the solution of large-

scale industrial problem instances. 

• The development of integrated planning and scheduling optimization 

frameworks considering uncertainty for multistage batch plants of the secondary 

pharmaceutical industry. 

• To propose an efficient MILP-based optimization approach for the optimal 

contract selection problem of Contract Manufacturing Organizations in the 

pharmaceutical industry under demand uncertainty. 

• To reduce the existing gap between scientific research and industrial reality by 

successfully applying the proposed mathematical frameworks in real-life, large-

scale industrial cases studies, either using real industrial data, or data that 

correspond to real-life conditions. 

1.2 Production scheduling 

Scheduling is concerned with the allocation of scarce resources among competing 

activities over time. It is a decision-making process aiming to optimize one or more 

objectives by taking into account the processes taking place and their interactions with 

the environment. Scheduling problems exist in many manufacturing and production 

systems, in transportation and distribution of people and goods, and in other types of 

industries. The three elements which need to be mapped out are time, tasks and 
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resources: The time at which the tasks have to be performed needs to be optimized 

considering the availability and restrictions on the required resources. The resources 

may include processing, material storage and transportation equipment, manpower, 

utilities (e.g., steam, electricity), any supplementary equipment and so on. The tasks 

typically include processing operations (e.g., reaction, separation, blending, packaging) 

as well as other activities like transportation, cleaning in place, changeovers, etc., 

(Kallrath, 2002).  Both external and internal elements of the production need to be 

considered. The external element originates from the need to co-ordinate 

manufacturing and inventory levels based on a given demand, as well as arrival time of 

raw materials and even maintenance activities. The internal element considers the 

execution of tasks in an appropriate sequence and time, while taking into account all 

external considerations and resource availabilities. Overall, the sequencing and timing 

of tasks over time and the assignment of appropriate resources to the tasks must be 

performed in an efficient manner, that will, as far as possible, optimize a given objective. 

Typical objectives include the minimization of cost or maximization of profit, the 

maximization of throughput, the minimization of tardy jobs, etc., (Méndez et al., 2006). 

Flexible multipurpose plants are able to produce a wide range of different products 

using a variety of production routes. This characteristic makes such plants particularly 

effective for the manufacture of classes of products that exhibit a large degree of 

diversity, and which are subject to fast-varying demands. Due to their inherent 

flexibility, the scheduling of such plants is a problem of high complexity. Compared to 

other parts of the supply chain management (e.g., distribution management and 

inventory control), the production scheduling is often by far the most computationally 

demanding part. The most general “multipurpose” plants can be viewed as collections of 

production resources (e.g., raw materials, processing and storage equipment, utilities, 

manpower) shared by several processing operations, that manufacture a number of 

products over a given time horizon. The process may include several intermediates that 

lead to multiple final products, recycles of byproduct materials, and multiple routes to 

the same final product. Single or multiple stage multi-product plants are thus special 

cases of multipurpose plants. Concerning the above facts, even the most trivial 

scheduling problems are NP-hard, thus no known solution algorithms exist that are of 

polynomial complexity in the problem size. This has posed a great challenge to the 

research community, and multiple research contributions have arisen aiming to develop 
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either tailored algorithms for specific problem instances or efficient general-purpose 

methods. Although the first approaches have been focused on providing generic 

mathematical models, during the next years this endeavour has been abandoned, since 

the research community focused on exploitation of problem-specific mathematical 

frameworks.  

1.2.1 Classification of Scheduling Problems 

Usually, scheduling problems are defined by three main elements. The production 

environment, the special characteristics of process industry (production constraints) 

and the main objective under consideration (e.g., minimization of cost). Since the entries 

of these elements are extremely diverse among process industries, many classes of 

scheduling optimization problems exist. In particular, scheduling problems can be 

defined by the following inputs: 

• Data related to production facilities, such as processing stages, production 

equipment, storage vessels, processing rates and unit to task compatibility.  

• Availability of resources such as raw materials, utilities, and manpower 

• Production or inventory targets that need to be satisfied. 

The first terms can be usually considered static since they remain fixed for all problem 

instances of a facility unless any redesign studies are considered. On the other hand, the 

other terms are usually defined by other decision-levels, such as production planning 

and control. Therefore, scheduling is not a standalone problem; it is part of the overall 

manufacturing supply chain, and it is strongly connected to other functions (see Figure 

1.1).  
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Figure 1.1 Information flow towards scheduling level 

 

The scheduling decisions seeks to optimally answer to the following questions: 

• What tasks must be executed to satisfy the given demand and the production 

targets (batching/lot-sizing)? 

• Which resources must be used? 

• How many and what kind of batches/lots must be produced? 

• In what sequence are batches/lots processed? 

The most common objective is the maximization of the total profit, while respecting all 

operational, logistical and technical constraints. However other objectives such as the 

minimization of the total cost, earliness and/or tardiness, and production makespan are 

also considered depending on the current needs of the industry. The main scheduling 

decisions are also illustrated in Figure 1.2. 

 

 

Figure 1.2 Main scheduling decisions 
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It should be noted that depending on the specifics features of each problem, some of the 

aforementioned decisions are not considered in the scheduling level. The development 

of a scheduling model requires the consideration of all essential production features to 

ensure the feasibility of the proposed schedules. However, the production should be 

represented in the simplest way to reduce the computational complexity of the 

problem. This is vital when solving real-life industrial problems, which typically 

includes a huge number of products and constraints that must be satisfied. The 

scheduling problems found in process industries are classified in terms of: (a) the 

production facility and (b) the specific processing characteristics and constraints. As a 

result, several modelling frameworks have been proposed by the research community.  

A short description of these terms is presented in the following subsections, while an 

interested reader can find more details in the excellent reviews of Harjunkoski et al., 

(2014) and Georgiadis et al., (2019a). 

1.2.2 The production facility 

The production facilities can be classified based on the type of the processes and the 

production environment. It should be noted that many scheduling problems consider 

the optimization of material transfer operations rather than production operations. 

Indicative examples are the crude oil and pipeline scheduling. However, these problems 

are out of the scope of this thesis. Therefore, the following analysis is focused on 

production scheduling of process industries.  

1.2.2.1 Process type 

The main types of production process found in the process industries can be defined as 

continuous or batch. In continuous operations, raw materials are continuously provided 

into processing units resulting in a constant flow. Continuous processes are ideal for 

mass production of similar products because they can ensure product quality 

consistency while lowering manufacturing costs due to economies of scale. On the other 

hand, in batch processes all components must be completed at a unit before they 

continue to the next one. Batch processes are often chosen for production of high-added 

value products as they can ensure the required purity and the quality of products. Batch 
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operations are also appropriate for the production of products that described by 

seasonal demand (e.g., large batches of one product are made for sale in the 

summertime). Batch and continuous processes both necessitate the same types of 

decisions in terms of scheduling. Batches in batch processing and lots in continuous 

processing are the two types of tasks. In continuous processes, assignment (of 

batches/lots to units), sequencing (between batches/lots), and timing (of batches/lots) 

decisions are identical, whereas task selection and sizing (batching/lot-sizing) have 

more degrees of freedom. In continuous processes, capacity restrictions refer to 

processing rates and times, which are usually unrestricted, so a given order can be 

fulfilled in a single lot (campaign) or multiple shorter ones. Batch production, on the 

other hand, is limited by the amount of processed material that a unit can handle, 

affecting the number and size of batches that must be scheduled. Another distinction 

lies in the way inventory levels are affected. It's worth noting that many facilities are 

characterized by multiple types of processes. For example, in "make-and-pack" 

production facilities, multiple batch or continuous processing phases are followed by a 

packaging (continuous) stage. This production layout is highly frequent in the food and 

beverage and consumer goods industries, and it necessitates the consideration of both 

batch and continuous manufacturing processes. 

1.2.2.2 Production environment 

Production facilities can be classified as sequential or network, based on material 

balance constraints. In sequential processes each batch/lot follows a set of production 

steps based on a specific recipe. In this industries batch mixing/splitting is not allowed. 

Network facilities are more general and complex, and their topology is usually arbitrary. 

Furthermore, there are no limitations on the handling of input and output materials, so 

mixing and splitting operations are allowed.  

Sequential facilities can be divided into the following categories based on their 

topological characteristics: 

• Single stage: A production facility with only one processing stage, which can be 

a single unit or multiple parallel units. The product-to-unit compatibility can be 

fixed (each batch must be processed in a single unit) or flexible (each batch can 



Introduction 
 

10 
` 

be processed in multiple units), but each batch must be processed in a single unit 

in all cases. 

• Multistage: Each batch must be processed in multiple stages, each of which may 

consist of a single unit or multiple parallel units.  

• Multipurpose: When routings are product-specific, or when a processing unit 

belongs to different processing stages depending on the product, a facility is 

described as multipurpose, and it is equivalent to jobshop environments in 

discrete manufacturing. 

 

  

Figure 1.3 Categorization of scheduling problems based on their topological characteristics 

 

The majority of early research focused on sequential facilities (Egli and Rippin, 1986; 

Vaselenak et al., 1987). Process industries that operate in a sequential environment are 

quite similar to discrete manufacturing, and there are many similarities to be found 

when describing them. Sequential facilities can be simply represented in terms of 

batches and production stages. However, this is not applicable for network facilities, so 

they cannot be modelled in the same way. The representations of the State task network 

(STN) (Kondili, E., Pantelides, C. and Sargent, 1993), and the Resource Task Network 

(RTN), (Pantelides, 1994), were the first to propose general representations of network 

facilities. Both contributions constitute the cornerstone of research advance since most 

existing approaches rely on these concepts. A classification of the scheduling problems 

based on their topological characteristics is illustrated in Figure 1.3. 
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1.2.3 Processing characteristics and constraints 

Scheduling problems may refer to facilities that described by various special processing 

features and constraints. These aspects increase the complexity of the problem but must 

be taken into account, in order to guarantee the feasibility of the generated production 

schedules. A brief presentation of these features is given in this section while a detailed 

description is provided by Méndez et al., (2006). 

Resource considerations, aside from task-unit assignments and task-task sequences, are 

of great importance. These may involve auxiliary units (e.g., storage vessels), utilities 

(e.g. steam and water) and manpower. Resources are mainly classified into renewable 

(recover their capacity after being used in a task, e.g. labor) and non-renewable (their 

capacity is not recovered after being consumed by a task, e.g. raw materials). Renewable 

resources can be further classified into discrete (e.g. manpower) and continuous (e.g. 

electricity, cooling water). Another important characteristic in process industries is the 

handling of storage, which is usually referred to as the storage policy. Depending on the 

duration a material can be stored, the storage policies are described as i) Unlimited 

Intermediate Storage (UIS), ii) Non-Intermediate Storage (NIS), (iii) Finite Intermediate 

Storage (FIS) and (iv) Zero Wait (ZW). Setups are a critical factor in most processing 

facilities as they represent operations like re-tooling of equipment, cleaning or 

transitions between steady states. They are associated with a specific downtime that 

can be sequence-independent or sequence-dependent (changeovers) and a cost is 

induced to the production process. To reduce the complexity associated with the 

consideration of setups, products are categorized into families. In that case setups exist 

only between products of different families. 

This categorization shows the complexity of scheduling problems and the huge diversity 

of characteristics that must be accounted for when facing real-life industrial problems. 

The inherent diversification of scheduling problems in the process industries hindered 

the initial efforts of the academic community to propose a generic mathematical 

framework. Therefore, research turned into the development of less general methods 

that can address industrial cases that share similar characteristics. As a result, a 

multitude of efficient specialized methods for the optimization of scheduling in the 

process industries have been proposed in the last 30 years. 
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1.2.4 Classification of modelling approaches 

As it is described in the previous subsections, scheduling optimization is affected by 

extremely diverse features. The initial attempts of developing a generic mathematical 

model, that would be efficiently applied to all scheduling problems were proven 

unsuccessful and soon the research community focused on the exploitation of more 

problem-specific mathematical formulations and solution algorithms. The 

computational complexity of scheduling problems gave rise to numerous optimization 

approaches. Although this thesis is focused on the MILP-based approaches, it should be 

mentioned that a plethora of alternate approaches is also proposed in the open 

literature. In particular, constraint programming models (Malapert et al., 2012; 

Zeballos, 2010), heuristic (Aguirre et al., 2017; Bilgen et al., 2014) and metaheuristic 

approaches (Subbiah et al., 2009; Zobolas et al., 2009) have been developed. The main 

advantage of these methods is their ability to generate fast and feasible solutions. 

Hence, they constitute a very attractive option for industrial problem instances. 

However, their main drawback is related to their inability to ensure the optimality of 

the generated schedules. To combine the advantages of both MILP models and non-

optimization approaches, hybrid methods have emerged that are able to provide near-

optimal solutions in low computational time (Baumann and Trautmann, 2014; 

Georgiadis et al., 2021; Kopanos et al., 2010a).  

The three main aspects that describe all optimization models for scheduling are: (i) the 

optimization decisions to be made, (ii) the modelling elements and (iii) the 

representation of time. A detailed presentation of the main modelling approaches is 

given by Méndez et al., (2006). 

1.2.4.1  Optimization decisions 

The optimization decisions may differ depending on the needs and the policy of each 

industry. One important aspect is the consideration of batch/lot sizing decisions. In 

particular, the number and the size of batches (or lots) can be either defined in the 

planning or scheduling level. In the first case the number and the size of batches/lots is 

prefixed and constitute one of the main inputs of the scheduling optimization model. On 

the other hand, the consideration of batch or lot sizing decisions in the scheduling 

model allows for further flexibility and can led to better solutions. The number and size 



Introduction 
 

13 
` 

of batches can be also defined heuristically by decision-makers. Then an optimization 

approach for the unit allocation, sequencing and timing decisions can be applied. This 

approach is common in models for sequential environments where batch mixing or 

splitting is not allowed. In contrast, a monolithic approach, consisting of batching/lot-

sizing, unit assignment, sequencing, and timing decisions, is used for network 

environments (Georgiadis et al., 2019a).   

1.2.4.2 Modelling elements 

According to the entity used to handle the mass balance constraints, scheduling models 

are classified into batch-based and material-based. In sequential environments, where 

the identity of each batch remains the same throughout the processing stages, batch-

based approaches are mainly chosen in sequential environments, where the identity of 

each batch remains the same throughout the processing stages. On the other hand, 

material-based approaches tend to be more suitable, when dealing with network 

environments, that includes several mixing operations, recycling streams and more 

complex production routes.  It is important to mention that the modelling elements 

used are also strongly connected to the optimization decisions. In particular, in 

monolithic approaches the scheduling problems are modelled using a material-based 

approach, while a batch-based approach is followed, whenever the batching decisions 

are known a priori. However, batch-based approaches that consider batch sizing 

decisions have been also proposed (Cerdá et al., 2020; Kopanos et al., 2010b; Méndez 

and Cerdá, 2002a) 

Batch-based approaches are mainly relied on the representation of processing stages, 

processing units in each stage and batches or products (depending on whether batching 

decisions are prefixed or not). The second type of representation emerged in the early 

90s from the novel works of Kondili, E., Pantelides, C. and Sargent, (1993), and 

Pantelides, (1994),who introduced the STN and RTN, both based on the modelling of 

materials, tasks, units and states. The STN represents manufacturing processes as a 

collection of material state{s (feeds, intermediate final products) that are consumed or 

produced by tasks. The main difference between STN and RTN is that in the latter states, 

units and utilities are represented uniformly as resources that are produced and 

consumed by tasks. While both STN and RTN representations was initially introduced 
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for scheduling problems in network environments, recent works have addressed 

problems in sequential environments (Lee and Maravelias, 2017). 

1.2.4.3 Time representations 

The most important element and the one that mostly differentiates optimization models 

for scheduling is the representation of time. Modelling frameworks can be mainly 

categorized into two main approaches. The precedence-based and the time-grid-based.  

Precedence-based MILP models relies on binary sequencing variables that denotes the 

sequence of batches or products. Based on the type of the precedence variables, 

precedence-based models can be further divided into general, immediate and unit-

specific general precedence models.  The majority of these models consist of product (or 

batch) to unit allocation, timing and sequencing constraints (Méndez et al., 2006). In 

general precedence models, precedence relationships are established between all pairs 

of batches/lots while in immediate precedence models, the precedence relationship is 

established only between consecutive pairs. Typically, general precedence models 

include fewer binary variables, and therefore they are more computational efficient. 

One of the main drawbacks of general precedence models is their inability to identify 

subsequent tasks, and therefore to consider changeover costs and heuristics, such as 

pre-fixing or forbidding certain processing sequences (Cerdá et al., 2020). To overcome 

this limitation immediate precedence formulations can be utilized. Furthermore, in 

order to combine the advantages of both approaches, unit-specific general precedence 

approaches have been proposed that combines both general and immediate sequencing 

variables (Kopanos et al., 2010a). One of the main disadvantages of precedence-based 

models is the dramatic increase of the size of the model when considering large number 

of batches/products. The use of heuristics such as product families or pre-fixing of 

sequences mitigates this phenomenon and enormously improves the efficiency of these 

models (Kopanos et al., 2010b). 

Time-grid-based models can be classified into discrete and continuous, while 

continuous-time formulation may employ single or multiple-time grids. Although 

numerous discrete and continuous-time models have been presented, the selection of 

time representation is still an open issue. Continuous-time formulations are not 

necessarily more efficient than discrete-time models, since the selection of the most 
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appropriate time representation is strongly dependent on the scheduling problem 

under consideration (Castro et al., 2009c; Maravelias and Grossmann, 2003). A great 

variety of time-grid-based approaches exist depending on the representation of events, 

such as time slots, global periods and time points. In discrete-time models the time-grid 

is divided into a pre-defined number of time periods with a given and known duration, 

both of which need to be specified by the model developer. Most discrete formulations 

use a common time grid for all resources. However, Velez and Maravelias, (2013), 

proposed discrete-time models that utilize multiple time frames. One of the main 

challenges in discrete models is the optimal selection of the number of time periods that 

needs to be employed. A highly discretized grid results to better quality solutions but in 

in computationally intractable models, since the number of variables is highly increased. 

An advantage of discrete-time models is their ability of monitoring mass balances, 

inventory and backlog levels, as well as the availability and consumption of utilities 

without introducing nonlinearity constraints. Moreover, time-dependent utility-pricing 

and holding and backlog costs can be linearly modelled, while integration with higher 

planning levels is straightforward (Maravelias and Sung, 2009). In continuous models, 

the horizon is subdivided into a fixed number of periods of variable length, which is 

defined as part of the optimization procedure. Both single, common and multiple, unit-

specific time frames have been successfully employed to continuous-time models. 

Continuous formulations can mitigate some of the computational issues associated with 

discrete-time models, since fewer variables, are required for same scheduling problem. 

Recently, Lee and Maravelias (2018, 2020), proposed a general framework, combining 

advantages of both discrete and continuous-time representations. The various time 

representations are also depicted in Figure 1.4.  
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Figure 1.4 Categorisation of modelling approaches based on time representation 

 

In the next subsections we demonstrate the basic research contributions in the 

scheduling optimization. More specifically, we present an overview of the models based 

on the problems they are used for and we analyse the basic constraints and variables of 

representative models. Further details on the different mathematical models for 

production scheduling can be found in the excellent reviews of (Méndez et al., 2006), 

Harjunkoski et al., (2014) and Georgiadis et al., (2019a). 

1.2.5 Models for network production environments 

In network environments batches do not maintain their identity, since mixing and 

splitting of batches is allowed. Hence, the problem the majority of the proposed 

scheduling models are based on either the STN or the RTN process representation 

(batch-based approaches). Moreover, the complexity of the production arrangement, 

with tasks consuming or producing multiple materials and materials being processed in 

different tasks and units, requires the proper monitoring of material balances, status of 

units and utility and inventory levels. Therefore, most of the proposed formulations rely 

on time-grid based approaches. 

The introduction of the discrete STN and RTN models by Kondili, E., Pantelides, C. and 

Sargent, (1993), and Pantelides, (1994), emerged  a plethora of modelling formulation. 

Mockus and Reklaitis, (1997) were the first to propose a continuous-time formulation 

based on the STN formulation and exploiting its generality. A common resource grid is 

used, with the timing of the grid points (“event orders” in their terminology) 
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determined by the optimization. The model is a MINLP, which may be simplified to a 

mixed integer bilinear problem by linearizing terms involving binary variables, which is 

solved using an outer-approximation algorithm. Zhang and Sargent, (1996,1998), 

presented a continuous time formulation based on the RTN representation for both 

batch and continuous operations, with the possibility of batch size-dependent 

processing times for batch operations. Again, the interval durations are determined as 

part of the optimization. A MINLP model ensues; this is solved using a local linearization 

procedure combined with what is effectively a column generation algorithm. 

One of the major disadvantages of the first models developed based on the continuous 

STN and RTN mathematical frameworks was the large optimality gap. This issue was 

addressed by Schilling and Pantelides, (1996). They developed a hybrid branch-and-

bound solution procedure which branches in the space of the interval durations as well 

as in the space of the integer variables. A relaxation of Schilling’s formulation (Schilling 

and Pantelides, 1996), has been proposed by Castro et al., (2001). Their model is less 

degenerate since it allows tasks to last longer than the actual processing time. 

Therefore, smaller CPU time is required. Castro et al., (2004) further improved this 

formulation in, allowing the optimization of continuous processes. A novel continuous 

STN-based formulation was introduced by Giannelos and Georgiadis, (2002). They 

utilized a non-uniform time grid, that eliminates any unnecessary time events, thus 

leading to small MILP models. Maravelias and Grossmann, (2003), suggested a general 

continuous STN-model that accounts for various processing characteristics such as, 

different storage policies, shared storage, changeover times and variable batch sizes. 

Another well-known MILP model was proposed by Sundaramoorthy and Karimi, 

(2005). The model is based on a continuous-time representation with synchronous 

slots, while a novel idea of several balances (resource, time, masses etc.) introduced.  

The concept of multiple unit-specific time grids was first proposed by Ierapetritou and 

Floudas, (1998). This approach decouples the task events from the unit events, thus less 

slots are required. As a result, smaller MILP models are generated, leading to a 

significant decrease in computational effort. Multiple works have been proposed ever 

since, improving the computational characteristics and expanding the scope of the 

initial formulation (Janak et al., 2006). 
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Velez and Maravelias, (2013), were the first to introduce the concept of multiple, non-

uniform discrete time grids. The multiple grids can be unit-, task- and material-specific. 

The same authors extended this work  with the consideration of general resources and 

characteristics like changeovers and intermediate storages (Velez et al., 2017). It should 

be noted that while these formulations were initially proposed for network facilities, 

they can be also used for the scheduling of sequential environments. 

1.2.6 Models for sequential production environments 

Scheduling problems of sequential environments do not share the same complexity, in 

terms of problem representation, with the ones encountered in network environments. 

Therefore, both precedence-based and time-grid based approaches can be employed. 

Each of these approaches display specific advantages and drawbacks. On the one hand 

precedence-based models generate smaller, more intuitive models that provide high 

quality solutions, on the other hand time-grid based models are usually tighter and 

computationally superior. As a result, a great variety of models have been proposed to 

address sequential production environments. 

One of the most important time-grid based models was proposed by Pinto and 

Grossmann, (1998). An MILP model has been developed for the minimization of 

earliness of orders for a multiproduct plant with multiple production units at each 

stage. The representation of time is achieved via two types of individual time grids: one 

for production units and one for orders. (Castro and Grossmann, 2005)proposed an 

MILP model, for the scheduling problem of multistage multiproduct plants, based on a 

non-uniform time grid representation. The formulation has been tested on various 

objectives e.g., minimization of makespan, total cost and total earliness and compared it 

with other known formulations. It is concluded that the efficiency of the model is highly 

depended on the objective and the problem features.  

Maravelias and co-workers thoroughly investigated the employment of discrete-time 

models in sequential environments. Sundaramoorthy et al., (2009) proposed a discrete 

time model to integrate utility constraints for the scheduling problem of multistage 

batch processes. Merchan and Maravelias, (2016), proposed two novel formulations, 

based on the STN and RTN representation. Furthermore, they introduced tightening 
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constraints that allowed for significant computational enhancements. Recently, Lee and 

Lee and Maravelias, (2017), presented two new MILP models for scheduling in 

multipurpose environments using network representations. Interestingly, states and 

tasks were defined based on batches instead of materials, making possible the 

consideration of material handling constraints in sequential production environments. 

The authors displayed the potential of the proposed models by incorporating important 

process features, such as time-varying data and limited shared resources, and by solving 

medium-size problem instances to optimality. 

The concept of precedence has been extensively studied by the PSE community. 

Numerous unit-specific immediate (Cerdá et al., 1997),  immediate (Méndez et al., 

2000a)  and general precedence (Méndez and Cerdá, (2002a), models have been 

proposed for scheduling problems in sequential environments. In initial studies the 

batches to be scheduled was predefined and constituted an input data, however later 

contributions suggested models for the simultaneous batching and scheduling problem 

(Cerdá et al., 2020; Kopanos et al., 2011, 2010b). Méndez et al. (2000) initially proposed 

the idea of precedence-based models, while Gupta and Karimi (2003) considered the 

impact of big-M constraints on the solution times and the overall performance of the 

model. The scheduling problem of a semi-continuous process of a yoghurt facility has 

been considered by Kopanos, Puigjaner, and Georgiadis (2010). A general-precedence 

MILP model has been presented for the scheduling of packing stage, while efficient mass 

balance constraints are imposed on batch stages to ensure the feasibility of generated 

schedules. A rescheduling approach, based on the previous MILP model has also been 

applied in a dairy industry by Georgiadis et al. (2019). Liu, Pinto, and Papageorgiou 

(2010), integrated travelling salesman problem (TSP) constraints in a precedence-

based MILP model for the scheduling problem of single-stage batch plants. Recently, 

Cerdá, Cafaro, and Cafaro (2020) considered the scheduling problem of multistage bath 

plants with intermediate storage vessels. A general precedence MILP was proposed 

including batch sizing and new capacity constraints, to allow batch mixing and splitting.  

1.2.7 Scheduling in make-and-pack industries 

Current real-world industrial facilities include hundreds of different final products in 

flexible facilities operating under several tight design and operational constraints. 
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(Georgiadis et al., 2019a). Thus, several companies from various industrial sectors, have 

adopted flexible make-and-pack production processes. Production facilities used for 

such processes consist of a making stage and a pack stage.  Depending on the shelf-life 

duration, they can be further categorized to durable goods (such as detergents) and 

nondurable (e.g. beverages). One category of the main consumer goods is the Fast-

Moving Consumer Goods (FMCG), which are characterized by frequent purchases, rapid 

consumption and low prices. 

Méndez and Cerdá (2002a), developed a general-precedence MILP model for the 

planning and scheduling of multiproduct make-and-pack continuous processes. The 

model includes lot-sizing, timing and sequencing constraints. Intermediate storage 

limitations are taken into account by introducing efficient mass balance constraints, 

without relying on concept of time-slots or event points. Méndez and Cerdá (2002b) 

proposed a general precedence-based MILP model for a make-to stock production 

facility. Unlimited storage capacity has been assumed for both intermediate and final 

products. Giannelos and Georgiadis, (2003), proposed a slot-based, MILP mathematical 

framework for the planning and scheduling of continuous processes. The mathematical 

framework is based on the STN representation and includes efficient intermediate 

storage constraints. The formulation was tested on a medium-size industrial consumer 

goods manufacturing process, considering cases with up to 35 final products and 5 

packing lines. Feasible schedules are generated within a 5–10% integrality gap. 

Janak, Lin, and Floudas (2004) proposed a continuous-time MILP for the scheduling of 

batch processes. The model is based on the STN representation using the idea of event 

time points. Günther, Grunow, and Neuhaus (2006) presented two different approaches 

for the production planning and scheduling problem of a hair dyes industry, by 

introducing the concept of block planning. Castro, Westerlund, and Forssell (2009) 

proposed an RTN-based MILP framework considering the scheduling problem of a 

tissue paper mill. The generation of byproduct waste has been efficiently taken into 

account by introducing novel recycling policies. Elzakker et al., (2012), presented a 

problem-specific model for the short-term scheduling problem, considering a Fast-

Moving Consumer Goods (FMCG) industry. An algorithm based on a unit-specific, 

continuous time interval MILP model is proposed.  Dedicated time intervals to specific 

product types are adapted to decrease the computational time. In order to assess the 
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efficiency and the applicability of the proposed formulation ten industrial case studies 

are considered, as provided by Unilever, related to an ice cream production process. 

Optimal schedules have been generated for problem instance of up to 73 batches of 8 

products allocated to six storage tanks and two packing lines within 170s. The time-

horizon under consideration was 120 hours. The production scheduling problem of an 

ice cream facility has also tackled by Kopanos et al., (2012). A real-life case study of 8 

final ice cream products, 2 packing lines and 6 aging vessels is introduced. The 

simultaneous optimization of all processing stages is achieved, and 50 problem 

instances are optimally solved. An MILP-based decomposition strategy is proposed to 

handle scheduling problems of large scale food process industries. High quality 

solutions were generated for larger cases of up to 24 final products utilizing the 

proposed decomposition technique. 

An MILP-based hybrid method for a large scale consumer goods case study, has been 

developed by Baumann and Trautmann (2014). According to this approach, a subset of 

the final operations was scheduled iteratively, via the solution of a general-precedence 

MILP model (Baumann and Trautmann, 2013). Medium-sized problem instances were 

optimally solved within short CPU times. Aguirre, Liu, and Papageorgiou (2017) 

introduced a decomposition algorithm based on the concept of the rolling horizon 

approach, considering multistage continuous processes. The algorithm is based on a 

general precedence MILP model, assuming unlimited intermediate storage capacity and 

same production sequence throughout all stages. Elekidis, Corominas, and Georgiadis 

(2019) presented two MILP-based solution strategies for the scheduling optimization of 

a real-life, large scale, consumer goods industries. The proposed approaches lead to 

significant productivity gains by reducing the total changeover time. Yfantis et al., 

(2019), presented a discrete-time, MILP-based decomposition algorithm for continuous 

make-and-pack production plants with a large intermediate buffer tank.  Extending this 

approach, Klanke et al. (2020), integrated a precedence-based, pre-sorting MILP model 

to improve the obtained solutions. Georgiadis et al., (2020), studied the integrated 

sterilization and packing stage scheduling problem in a large-scale canned fish Spanish 

industry. An MILP based decomposition algorithm is utilized to tackle the high 

computational cost, as the products are inserted in an iterative way until the final 

schedule is generated. A general precedence model efficiently describes the batch 

(sterilization) and the continuous (packing) processes of the plant. Recently, Elekidis 
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and Georgiadis, (2021), proposed a continuous-time, precedence-based MILP model for 

the scheduling optimization problem of multiproduct make-and-pack continuous 

processes, with intermediate storage facilities. A new set of binary variables is 

introduced to accurately handle material balances and prevent overloading of storage 

vessels, without requiring any type of time horizon discretization. New resource 

constraints related to the generation and recycling of byproduct waste are also 

proposed to improve the utilization of raw materials and minimize byproducts 

management costs. 

1.3 Integration of planning and scheduling 

Among the different decision levels, tactical planning and medium-term scheduling are 

strongly connected. Tactical production planning is mainly concerned with determining 

efficient production targets over time while considering capacity limitations, mass 

balances and other constraints. On the other hand, scheduling level decisions are mostly 

related to timing and sequencing decisions. Planning and scheduling are often confused 

since no distinct differentiation exists between them. However, it is generally accepted 

that planning determines the input of the scheduling problem in terms of production 

targets like order sizes, due dates and release dates. Additionally, batching/lot-sizing 

decisions can be made in the planning level, thus affecting the type of decisions that 

needs to be made in the scheduling level. In that case batching/lot-sizing decisions are 

pre-defined, and the scheduling decisions include only unit to task assignment, 

sequencing and timing of tasks. 

Despite the strong demand fluctuations, it is imperative that facilities satisfy the 

customer’s demand. Thus, equipment capacity must be fully utilized, while production 

targets must also be feasible. To address this challenge, scheduling level decisions can 

be integrated into planning models to enhance accuracy and to guarantee the feasibility 

of the generated solutions (Maravelias and Sung, 2009). 

Taking this consideration into account, a plethora of mathematical frameworks have 

been proposed for the integrated planning and scheduling problem. The major 

modelling approaches for the integration of planning and scheduling decisions are 

presented in detail by Maravelias and Sung, (2009). Although earlier approaches have 
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focused on developing monolithic planning and scheduling MILP formulations that 

include detailed scheduling constraints, this endeavor was soon abandoned since it 

results in computationally intractable models when the time horizon extends to several 

weeks or more months (Maravelias and Sung, 2009).  

1.3.1 Planning and scheduling using monolithic approaches 

The majority of monolithic approaches mainly focus on scheduling problems while 

considering medium-term planning decisions, such as lot or batch sizing. Papageorgiou 

and Pantelides (1996), proposed an integrated campaign planning and scheduling MILP 

model for semicontinuous process industries. To reduce the complexity of the problem, 

the idea of cyclic scheduling have been considered. Méndez and Cerdá, (2002), 

developed a general-precedence MILP model for making scheduling and lot-sizing 

decisions of multiproduct, continuous processes. Novel mass balance constraints are 

introduced for the storage of intermediate products without utilizing any type of time 

horizon discretization. Giannelos and Georgiadis, (2003) have proposed an MILP model 

for the medium-term scheduling of continuous processes, considering also lot-sizing 

decisions. The simultaneous batching and scheduling of single-stage batch plants has 

been addressed by Castro et al., (2008). Two MILP formulations have been developed 

based on either global precedence variables or multiple time grids. The batching and 

scheduling problem has also been considered in multi-stage processes by 

Sundaramoorthy et al., (2009). Kopanos et al., (2010), considered the medium-term 

planning and scheduling problem of a yoghurt facility. A general-precedence MILP 

model has been proposed for the scheduling of packing stage, while lot-sizing decisions 

are made for a weekly time horizon. Recently, Cerdá et al., (2020), proposed a novel 

general-precedence MILP model for the scheduling of multi-stage batch plants. The 

model considers batch sizing decisions, while new capacity constraints are also included 

to allow for batch mixing and splitting. 

Although monolithic approaches can be efficiently applied in small or medium-sized 

problems, only a limited number of them are able to solve large-scale industrial 

problems when the time horizon extends to several weeks or months. Thus, many 

research works have focused on developing hybrid mathematical frameworks by 

combining MILP models with heuristic methods or hierarchical decomposition 
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techniques (Georgiadis et al., 2019a). Günther et al., (2006), incorporated the concept of 

block planning into an MILP model to solve a real-life production planning and 

scheduling problem of a hair dyes industry. Bilgen et al., (2014), proposed a hybrid 

method based on an MILP model and a simulation algorithm for the production and 

distribution planning in the soft drink industry. The integrated lot-sizing and scheduling 

problem of a brewery industry has been addressed by Baldo et al., (2014). In order to 

solve real-life problem instances, a set of efficient heuristic rules are used in parallel 

with an MILP model. The same problem has also been solved by Georgiadis et al., 

(2021).  Large-scale problem instances can be efficiently solved in acceptable by the 

industry computational times, using an MILP-based solution strategy that consists of a 

constructive and an improvement step.  

1.3.2 Planning and scheduling using the rolling horizon framework 

Hierarchical decomposition techniques have also been widely used for long-term 

planning and scheduling problems. In hierarchical methods, a set of high-level decisions, 

such as production targets, are defined at the planning level. Planning level decisions 

constitute the main input of the lower-level scheduling problem that is solved to obtain 

a detailed optimal solution. Among various hierarchical approaches, the idea of the 

rolling horizon has been widely considered by research community to solve long-term 

planning and scheduling problems. The concept of rolling horizon is based on solving a 

detailed scheduling formulation only for a few early periods, while aggregated planning 

models are solved for the rest of the time horizon under consideration. Decisions 

related to the early periods are exact and thus directly implemented, while long-term 

planning decisions can be updated as the time horizon rolls. Dimitriadis et al., (1997), 

introduced both forward and backward rolling horizon approaches for medium-term 

planning and scheduling of multipurpose plants. According to the forward rolling 

horizon approach, successive scheduling periods are solved sequentially in detail. On 

the contrary, in backwards rolling horizon framework, the last time period constitutes 

the first scheduling period that is being solved.  Erdirik-Dogan and Grossmann, (2007), 

addressed the production planning of parallel batch reactors using an MILP-based 

rolling horizon scheme. Sequencing of tasks is accurately taken into account at the 

planning level by integrating a set of travelling salesman constraints. Verderame and 
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Floudas, (2008) developed an MILP-based rolling horizon framework for the integrated 

operational planning and medium-term scheduling of multipurpose batch plants that 

produce both made-to-order and made-to-stock products. Α feedback loop is also 

incorporated into the rolling horizon framework to obtain more accurate solutions,. Li 

and Ierapetritou, (2010) proposed a rolling horizon approach for the integrated 

planning and scheduling of multipurpose facilities. To enhance the efficiency of the 

modeling framework, production capacity information is considered in the planning 

model by using the method of parametric programming.  

1.3.3 Planning and scheduling under uncertainty 

A significant challenge within the field of integrated planning and scheduling is the 

consideration of uncertainty. Various types of uncertainty can be examined. For 

example, customer demand, product prices, demand due times, and raw materials 

availability can be modelled as uncertain parameters. As it is described above, the 

integration of planning and scheduling is typically a challenging problem. Hence, the 

consideration of uncertainty causes a further increase in the complexity of the problem. 

However, several industrial cases have proven that the assessment of uncertainty 

within planning and scheduling can have a massive impact on the profitability of a plant 

as different objectives of a company can be compromised (Verderame et al., 2010). An 

important decision is related to which uncertainties must take into account at the 

planning and the scheduling level. Furthermore, uncertainty can be classified as 

continuous, and discrete distributions. Several techniques can be utilized in order to 

examine different types of uncertainty. A detailed description of the different 

approaches for integrated planning and scheduling under uncertainty is presented by 

Verderame et al., (2010). 

Among them, rolling horizon approaches have been widely proposed. Wu and 

Ierapetritou, (2007), proposed a multi-stage stochastic rolling horizon framework for 

the integrated planning and scheduling under demand uncertainty. The time horizon 

has been discretized into three stages with increasing levels of uncertainty. An efficient 

feedback loop was also integrated into the modelling framework to converge the 

planning and scheduling production targets. Verderame and Floudas, (2010), addressed 

both demand and processing time uncertainty by developing a rolling horizon 
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modelling framework for the operational planning and scheduling of multipurpose 

batch plants. The proposed framework allows for a two-way interaction between 

planning and scheduling decision levels through a feedback loop. 

Usually, methods for modelling uncertainty, such as stochastic programming, can obtain 

a solution that performs optimally over a given set of scenarios. These methodologies 

are very efficient when the decision-maker is risk-neutral since they focus on 

maximizing the potential gains regardless of the risk. This approach is however myopic 

since a risk-averse decision-maker would prefer to avoid the opportunity for a 

significant gain in favor of safety. Taking this into account, the importance of 

considering risk measures in the integrated planning and scheduling model can be 

realized. In particular, risk measures such as Value-at-Risk (VaR) and Conditional Value-

at-Risk (CVaR) can constitute a valuable method to control risk in the decision-making 

process (Cardoso et al., 2016; Vieira et al., 2020). Both VaR and CVaR evaluate the risk 

of a variable under a certain degree of confidence and aim to guard against the adverse 

realization of uncertain parameters. Verderame and Floudas, (2010b) considered the 

problem of operational planning under due date and demand uncertainty of 

multiproduct batch plants, by developing a novel MILP modelling framework based on 

the CVaR measure. A sample average approximation has also been utilized to maintain 

computational tractability when a large set of scenarios is considered. Vieira et al., 

(2020) proposed a two-stage MILP model for the integrated retrofit design and 

scheduling of multipurpose batch plants. The Conditional Value at Risk (CVaR) measure 

was incorporated into the mathematical model to evaluate the risk of experiencing both 

downside losses and upside gains.  

Making realistic decisions while assessing uncertainty may require the consideration of 

numerous scenarios. This issue can significantly increase the size of the optimization 

problem, making it very hard to solve. To overcome this limitation, various scenario 

reduction frameworks have been proposed. Karuppiah et al., (2010) proposed a 

heuristic method for the scenario reduction of discrete distributions. Li and Floudas, 

(2014), also proposed an MILP model for the scenario reduction problem. To enhance 

the quality of the solution, the proposed MILP model takes into account both input and 

output space of the initial distribution.  
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1.3.4 Planning and scheduling in the pharmaceutical industry 

Among different industrial sectors pharmaceutical industry is composed of many 

challenging planning and scheduling problems possessing both industrial and academic 

significance (Shah, 2004; Marques et al., 2020; Sarkis et al., 2021;). Planning of clinical 

trials is one of the most significant and complex problems in the pharmaceutical 

industry, since it lasts several years and costs a tremendous amount of money. A 

schematic representation of drug discovery process is depicted in Figure 1.5. Gatica et 

al., (2003), considered the pharmaceutical capacity planning problem under clinical 

trials uncertainty. Four clinical trial outcomes (high success, target success, low success, 

failure) are taken into account for each product, using a multi-scenario MILP model. A 

risk measure has also been formulated to evaluate risk and potential returns of each 

option. Levis and Papageorgiou, (2004), presented an aggregated, multi-site, planning 

model for pharmaceutical industries in an attempt to integrate drug portfolio 

management and supply chain design problems. The proposed modelling approach 

aims to maximize the patent lifetime of drugs and the total profit. Colvin and Maravelias, 

(2008), also addressed the clinical trial planning in new drug development by solving a 

multi-stage stochastic MILP model. To address larger problem instances a benders 

decomposition algorithm has been proposed by Sundaramoorthy et al., (2012). 

 

 

Figure 1.5 Schematic representation of the drug discovery process. 
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Production of both active pharmaceutical ingredients (APIs) and final products is a 

complex task, as the process industries must comply with strict safety guidelines, 

imposed by regulatory agencies, such as Food and Drug Administration (FDA). Hence, 

several research works have been focused on the scheduling optimization of 

pharmaceutical industries. Stefansson et al., (2006) suggested two MILP models for the 

short-term scheduling of pharmaceutical industries. A temporal decomposition is 

utilized, as the production stages are scheduled sequentially to reduce the complexity of 

the initial problem. The integrated supply chain planning and scheduling of 

pharmaceutical industries has been addressed by Amaro and Barbosa-Póvoa, (2008). 

The two decision levels are solved sequentially, while the consideration of reverse 

product flows allows for further solution improvement. Castro et al., (2009) also 

addressed the scheduling problem of multi-stage batch pharmaceutical industries. To 

overcome the complexity of realistic problem instances, an RTN-based decomposition 

technique is proposed. The modelling framework allows for partial rescheduling 

decisions during each iteration to obtain nearly optimal schedules. An iterative 

decomposition algorithm has also been developed by Kopanos et al., (2010a), for the 

short-term scheduling of large scale, multi-stage, batch pharmaceutical industries. A 

general-precedence MILP model constitutes the main core of the algorithm that consists 

of two main steps. During the first step, a feasible solution is obtained. An improvement 

step is also incorporated to obtain good quality solutions. Stefansson et al., (2011), 

addressed the integrated planning and scheduling problem of secondary 

pharmaceutical industries. An MILP- based solution framework is proposed using a 

moving horizon approach to solve real-life problem instances. Sousa et al., (2011) 

considered the global supply chain planning of pharmaceutical companies. Two MILP-

based decomposition algorithms was proposed to face the complexity of large problem 

instances that include production at primary and secondary sites and product 

distribution to markets. Vieira et al., (2016) proposed a continuous-time, RTN-based, 

MILP model for the campaign planning and scheduling of biopharmaceutical processes. 

The model includes key problem features, such as shelf life and batch mixing or splitting 

constraints. A model-based tool for the production and maintenance planning 

optimization in a biopharmaceutical industry has also been presented by Vieira et al., 

(2019).  
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1.3.5 Contract Manufacturing Organizations in the Pharmaceutical 

Industry 

During the last 20 years, due to the shortening of patent life periods and the intense 

competition, an increasing trend is noted for outsourcing activities in the 

pharmaceutical industry (Jarvis, 2007; Sarkis et al., 2021). One of the main advantages 

of outsourcing is that it allows large multinational companies to focus on their core 

competencies, such as drug discovery and marketing. Furthermore, since CMOs 

manufacture products for multiple customers, they benefit from economies of scale and 

can decrease individual costs regarding purchasing of raw material, production, and 

storage. Outsourcing allows multinational companies to focus on larger product 

portfolio without increasing capital expenses associated with the construction of new 

facilities (Johnson, 2005; Sarkis et al., 2021). Usually, value of drugs typically halves on 

patent expiry. After patent life the competition is more vigorous in the market due to 

the development of generic drugs. The typical life-cycle of pharmaceutical products is 

also illustrated by Figure 1.6. Hence, a contract can be offered to a CMO even before the 

final approval of a drug in order to take full advantage of the patent period. 

Furthermore, potential adverse effects can decrease significantly the value and the 

demand of new drugs. Under this uncertain environment CMOs has to optimally define 

the appropriate contract combination in order to maximize the profit margins and to 

ensure their viability. 

Johnson, (2005), addressed the contract appraisal problem of Contract Manufacturing 

organizations under demand uncertainty in the fine chemicals industry. Based on the 

RTN representation, a modelling framework was introduced for the planning and 

scheduling of multipurpose network-based facilities. Due to the combinatorial nature of 

the problem, each contract combination and each scenario are solved independently, via 

a two-phase solution algorithm. The determination of the optimal contract mixture is 

made considering risk measures such as Value-at-Risk (VaR) and left-side mean 

absolute deviation. 
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Figure 1.6 Demand of pharmaceutical products over time 

 

To the best of our knowledge, there is no previous research work that considers the 

contract selection problem of CMOs under demand uncertainty in the secondary 

pharmaceutical industry in the open literature. Therefore, an optimization framework 

for the contract selection of CMOs is proposed in Section 4. Demand uncertainty is 

modelled via a set of independent scenarios for each contract. To enhance the solution 

accuracy, scheduling level decisions are explicitly taken into account. In particular, an 

MILP-based, rolling horizon framework is proposed for the integrated tactical planning 

and medium-term scheduling of multi-stage batch facilities. Risk measures such as 

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are utilized to evaluate and 

mitigate risk while considering the optimal mixture of tendered contracts to accept. A 

scenario reduction MILP model is also utilized to solve large-scale problem instances 

with multiple scenarios. 

1.4 Thesis Overview 

This thesis is organized as follows: 

In chapter 2, the optimal short-term scheduling of continuous process industries is 

addressed. Firstly, two precedence-based MILP models are proposed. Furthermore, two 

decomposition algorithms are presented to solve large-scale problem instances. The 

proposed optimization methods are applied to real-life industrial problems. More 

specifically, the optimal production scheduling of a continuous consumer goods 
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industrial facility is considered. It is shown that both methods can provide near-optimal 

solutions in low CPU times. Comparing the obtained solution with the manually derived 

schedules by the production engineers, significant benefits are noticed in terms of 

changeover minimization and productivity improvement. 

In chapter 3, the optimal scheduling of continuous make-and-pack processes with 

flexible intermediate storage vessels and byproducts recycling is addressed. The 

process structure under study is commonly met in several industrial sectors, such as 

food and beverages, specialty chamicals and consumer goods industries. Based on a 

continuous-time representation, a novel MILP model is proposed. The model relies on a 

new set of binary variables that enable the efficient consideration of mass balance 

constraints. Constraints related to byproduct recycle streams are also taken into 

account to enhance the general utilization of resources and reduce total waste. An MILP-

based solution strategy is proposed to face complex problem instances. An industrially 

relevant scheduling problem is considered to evaluate the efficiency of the proposed 

modelling frameworks. Results show that the utilization of flexible storage equipment 

allows for better synchronization of production stages, while the consideration of 

byproduct constraints significantly reduces waste and raw material usage. 

Chapter 4 investigates the optimal contract selection problem of Contract 

Manufacturing Organizations in the pharmaceutical industry under uncertainty. The 

problem is mainly focused on secondary pharmaceutical production. Hence, an 

integrated planning and scheduling modelling framework is presented for multistage 

batch facilities. The proposed MILP models are solved via a rolling horizon approach. A 

solution algorithm is introduced based on a set of discrete demand scenarios to model 

demand uncertainty considering risk metrics such as Value-at-Risk (VaR) and 

Conditional Value-at-Risk (CVaR). Results demonstrate that the developed modelling 

framework constitutes a systematic approach for the contract appraisal problem of 

Contract Manufacturing Organizations as it can provide the optimal contract mixture 

depending on the corresponding risk tolerance. 

Chapter 5 provides a synopsis of the research outcomes of this thesis. Possible future 

research directions are also proposed.  
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2. Optimal Production Scheduling of 

Consumer Goods Industries 

2.1 Introduction 

This chapter considers the production scheduling of real-life consumer goods 

industries. In particular, we focus on continuous make-and-pack processes that 

constitute a typical production layout in fast-moving consumer goods industries 

(FMCGs), such as the production of detergents or soft drinks. Most of those industries 

usually consist of a processing stage that prepares the intermediate products based on a 

given recipe, followed by a packing stage. In continuous make-and-pack industries, the 

overall production rate is determined by the slowest production stage, which is 

typically the packing process. Despite the extensive scientific work on the subject of 

optimal production scheduling, these types of facilities were not sufficiently addressed, 

thus underlying a significant gap in the literature. 

Furthermore, over the past 20 years, the literature illustrates a large number of 

scheduling models, which have been mostly applied to generic but relatively small or 

medium problem instances (Castro et al., 2009b; Cerda et al., 2002; Giannelos and 

Georgiadis, 2003; Kopanos et al., 2011). However, current real-world industrial 

applications include hundreds of different final products produced under several tight 

design and operating constraints (Castro et al., 2018; Harjunkoski et al., 2014). 

Therefore, only a few approaches have been used to solve large-scale industrial 

scheduling problems, in continuous process industries (Georgiadis et al., 2019a). 

The main goal of the work, presented in this chapter, is to effectively fill this scientific 

gap, by proposing novel mathematical frameworks that can solve large-scale production 

scheduling problems for continuous processes. An immediate-precedence and a unit-

specific general precedence-based MILP models are proposed that approach the 
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problem at hand. The models focus on the packing stage, taking also into account 

constraints referring to the production/formulation stage, in order to ensure the 

generation of feasible production schedules. Constraints related to maintenance 

restrictions are also considered. Two MILP-based decomposition strategies are also 

proposed to solve realistic problem instances in acceptable computational times, as 

imposed by the industry.  

In order to evaluate the efficiency of the proposed modelling frameworks, the 

scheduling of a real-life consumer goods industry is considered (Elekidis et al., 2019). 

More than 300 products can be produced continuously in parallel packing lines. The 

production process consists of the formulation/production and the packing stage. In the 

formulation stage, multiple intermediate products are produced, while in most cases, 

more than one final product can be produced from the same intermediate product in the 

packing stage. Each packing line is connected to its own production/formulation unit. 

Sequence-dependent changeovers take place in both stages. The changeover times 

differ among the various sequences, depending on the package size, the package color, 

the intermediate product etc. All changeovers, in the two stages, take place 

simultaneously and therefore, the most time-consuming changeover determines the 

total changeover time for a product sequence. In addition, due to technical plant 

restrictions in the formulation stage, the total number of intermediate products’ 

changeovers should not exceed an upper limit. The short-term scheduling horizon of 

interest is one week, and both the packing and the formulation units are available 24 

hours per day. Products’ due dates are considered along with the necessary planned 

maintenance activities. The main objective of the plant is the minimization of total 

changeover time. 

The applicability of the proposed approaches is illustrated by solving several real-life 

industrial problem instances in the consumer goods industry under consideration. 

Scheduling solutions have been validated by the industry and directly compared with 

schedules derived by the operators using simulation tools. Significant changeover time 

reductions are achieved, leading to improvements in the overall plant productivity. The 

proposed solution strategies also provide the basis of an automated tool that allows 

decision-makers to take quick and near-optimal scheduling decisions. 
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2.2 Problem Statement 

The scheduling problem under consideration is inspired by a real-life, large-scale 

industrial plant, of a multi-national consumer goods corporation. More specifically, a 

large variety of fast-moving consumer goods (FMCG) is produced on a daily basis for 

different purposes. The packaged products are distributed to several countries and 

customer centers, depending on their specific features. More than 300 final liquid 

detergent SKUs are produced during a week via production campaigns, in order to 

satisfy customer demand. A plethora of raw materials and base liquids are transformed 

into intermediate products through a continuous production/formulation process. 

Intermediate items are packaged in several sizes and types. The high degree of 

diversification in the raw materials, enables the production of a huge variety of final 

products.  The main production stages are illustrated in Figure 2.1. 

 

Figure 2.1 Plant production stages 

 

According to the current plant layout, fully flexible product allocation is allowed in the 

production stage and each intermediate product can be produced in any of the available 

production units.  Since the production stage is overdesigned, the related scheduling 

decisions do not need to be decided in detail. On the other hand, the packing stage 

consists of several non-identical packing lines. Underlying production policies often 

assign products to selected packing units. Both stages operate in a continuous mode. As 

there is no intermediate storage capacity between the two stages, intermediate 

products are transported directly to a set of parallel packing lines. Due to the lack of 

intermediate storage capacity and according to other design limitations, each 

production unit is strictly connected to only one packing line. The packing stage is 
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described as the most time-consuming process and constitutes the main production 

bottleneck of the plant. The current plant layout is depicted on Figure 2.2. 

 

 

Figure 2.2 Plant overview – Current layout 

 

Due to the wide range of raw materials, the different package types and sizes, the 

diverse kinds of labels, and other product-dependent features, a large number of 

changeovers take place in both stages, thus resulting in large production downtimes, 

higher usage of human resources and unnecessary energy consumption.  Furthermore, 

frequent changes of raw materials, used in the formulation stage, lead to the generation 

and the accumulation of undesirable amounts of byproduct waste. The generated liquid 

waste is recycled, so that small amounts of it are reused into the next production 

campaigns without affecting the product’s quality. The limited storage capacity of liquid 

waste imposes un upper bound on the total number of liquid changeovers on a daily 

basis.  All changeovers take place simultaneously in the two stages and therefore, the 

most time-consuming changeover determines the total changeover time for a product 

sequence. Changeover times should be explicitly considered, as they constitute a key 

feature of the production process. The minimization of the total changeover time is the 

overarching target of the plant, as it significantly improves the plant’s productivity, by 

decreasing the equipment idle time and generation of byproduct liquid waste in the 

production stage. 
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The short-term scheduling horizon of interest is one week (or less) and both the 

packing and the production units operate continuously 24 hours per day. Full demand 

satisfaction must be achieved, and strict due date constraints must be satisfied, since 

products have to be delivered on time to the customer’s centers. Various planned 

maintenance activities take place as determined by the ERP system of the plant. Once a 

product campaign starts, it must be carried out until completion without interruption, 

as the splitting of product orders is not allowed due to the underlying industrial policy. 

One of the main challenges faced by the planning engineers, is the highly volatile 

demand, which makes the production environment extremely dynamic.  Frequent, late-

order arrivals, or sudden order cancelations, impose the need of several modifications 

in the initial production schedule on a daily basis. Consequently, there is a significant 

need for the quick generation of good quality schedules, that will assist the production 

engineers in their effort to develop rigorous scheduling plans under dynamic demand 

changes.  

In general, the large number of products and the high production flexibility increase the 

complexity of the scheduling problem significantly. Although the problem under study 

is focused mainly on the scheduling of the packing stage, which constitutes the main 

production bottleneck, all necessary technical and operational constraints, related to 

the production stage, are also considered. Thus, the generation of infeasible production 

schedules is avoided.  

Since the plant operates continuously 24 hours per day, the main objective function 

under consideration is the minimization of the total changeover time. However, other 

alternative objectives, such as the minimization of makespan, could also be considered, 

depending on the prevailing needs of the plant. 

 

The problem under consideration can be formally defined as follows: 

 

Given: 

• The time horizon of interest 

• A set of products 

• A set of parallel packing lines/units   
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• A multidimensional set describing if a packing line is capable to produce the 

production order. 

• The packing units availability  

• Product due dates and demand  

• Packing rates of units 

• The processing time of each product order 

• The changeover time, expressing the necessary transition time between the 

production of two consecutive orders, in each packing unit. The changeover time 

of final products is precalculated, based on the products’ package types and sizes, 

the package color, the diverse kinds of labels, the related intermediate products 

and other product’s features. 

• An upper limit of intermediate products’ changeovers. Due to the limited plant’s 

resources and the liquid waste generation, this upper limit is determined by the 

scheduling operators. 

• The time window, defining if the completion of an order has to take place during 

a specific time slot. In that case the related starting time has to be greater than a 

lower limit.  

 

Determine: 

• The allocation of products to packing lines,  

• The sequencing of product orders in every packing line,  

• The completion time of each production order,  

 

So as: 

Optimize a given objective function. 
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2.3 Mathematical frameworks   

In this section two MILP models are proposed, to address the real-life industrial 

scheduling problem, described above. Both formulations utilize the concept of the 

precedence variables. The first mathematical framework is based on the immediate 

precedence sequence of product orders in parallel units (Kopanos et al., 2011), while in 

the second one, the idea of global sequencing variables is also adopted, leading to a unit-

specific general precedence model (Kopanos et al., 2010a).  

It is known that general precedence scheduling models, can be usually solved faster, as 

they rely on a smaller number of variables. It has been shown that general precedence-

based models are generally more efficient compared to immediate precedence models 

(Méndez et al., 2006). However, sequence-dependent objectives, such as the changeover 

minimization, cannot be considered without the incorporation of immediate precedence 

variables. The proposed MILP-based models, described in the next two subsections, can 

be solved directly, or they can provide the core of MILP-based decomposition strategies, 

described in detail in the section 2.4.  

2.3.1 Immediate precedence single-stage MILP-model   

In this subsection, an immediate-precedence, single-stage model, of parallel units is 

described. The model is inspired by an immediate precedence MILP model developed 

by Kopanos et al., (2011), for the integrated planning and scheduling problem of parallel 

continuous processes. Instead of using the idea of the mixed discrete-continuous time 

representation, the proposed MILP model relies on a unified time horizon. Furthermore, 

efficient big-M values have been investigated in order to improve the overall 

computational performance of the model. Except from the typical assignment, timing 

and sequencing constraints, problem-specific constraints have also been included. 

Henceforth, we will also refer to this immediate precedence MILP model as IPM. A 

detailed description of the MILP model is presented below, as follows: 
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Assignment constraints 

 

∑𝑌𝑖,𝑗
𝑗∈𝑖𝑗

= 1   ∀𝑖 (2.1) 

 

Constraints (2.1) guarantee that each product order is assigned to one unit 𝑗 ∈ 𝐽𝑖 .  

 

Product orders sequencing constraints 

∑ 𝑋𝑋𝑖′,𝑖,𝑗 ≤ 𝑌𝑖,𝑗
𝑖′, 𝑖′≠𝑖

   ∀𝑖, 𝑗 ∈ 𝐽𝑖  
(2.2) 

∑ 𝑋𝑋𝑖,𝑖′,𝑗 ≤ 𝑌𝑖,𝑗
𝑖′, 𝑖′≠𝑖

   ∀𝑖, 𝑗 ∈ 𝐽𝑖  
(2.3) 

∑ ∑ 𝑋𝑋𝑖′,𝑖,𝑗 + 1 = ∑ 𝑌𝑖,𝑗
𝑖,𝑖∈𝐽𝑖𝑖′, 𝑖′≠𝑖,𝑖′∈𝐽𝑖𝑖,𝑖∈𝐽𝑖

 

   ∀𝑗 (2.4) 

 

We introduce the binary variable 𝑋𝑋𝑖′,𝑖,𝑗  to define the local immediate precedence 

between two products 𝑖 and 𝑖′. The binary variable takes the value 1, only if a product 

order 𝑖′ is processed immediately after production order 𝑖 in unit 𝑗 ∈ 𝐽. Constraints (2.2) 

and (2.3) ensure that, if production order 𝑖 ∈ 𝐼 is allocated to packing line  𝑗 ∈ 𝐽 , at most 

one production order is processed before and after it, respectively. Apparently, in case 

that the production order is processed first or last then it has no predecessor or 

successor. According to constraint (2.4), the total number of sequences in a packing unit 

𝑗 ∈ 𝐽 has to be equal to the total number of produced orders minus one.  

 

Time window constraints 

𝐶𝑖 − 𝑇𝑖 ≥ 𝐿𝑜𝑤𝑒𝑟𝑖    ∀𝑖, 𝑤𝑖𝑛𝑑𝑜𝑤𝑖 = 1 

 

(2.5) 

According to the underlying inventory constraints of the plant, some products have to 

be produced, during a strictly defined time window. These production campaign cannot 

start before a lower time limit, 𝐿𝑜𝑤𝑒𝑟𝑖, without also exceeding their related due dates 
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𝐷𝐷𝐴𝑇𝐸𝑖 . The parameter 𝑤𝑖𝑛𝑑𝑜𝑤𝑖 takes the value 1, only if a production order has to be 

produced during a specific time window as the value 𝐿𝑜𝑤𝑒𝑟𝑖  is predefined according to 

the industry’s needs. Otherwise, the 𝑤𝑖𝑛𝑑𝑜𝑤𝑖 parameter takes the value 0 and the 

parameter 𝐿𝑜𝑤𝑒𝑟𝑖 is also equal to 0. 

 

Timing constraints 

𝐶𝑖′ ≥ 𝐶𝑖 + 𝑇𝑖′ + 𝑋𝑋𝑖,𝑖′,𝑗𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟𝑖,𝑖′ − 𝐷𝐷𝐴𝑇𝐸𝑖(1 − 𝑋𝑋𝑖,𝑖′,𝑗)  

 ∀𝑖, 𝑖′ ≠ 𝑖, 𝑗 ∈ (𝑖𝑗 ∩ 𝑖
′
𝑗) 

 

(2.6) 

According to the big-M constraints (2.6), the completion time 𝐶𝑖′  of a product order i’ 

has to be greater that the completion time of whichever product i  is produced 

beforehand at the same unit, plus the processing time 𝑇𝑖′  and the corresponding 

changeover time, expressed by the parameter 𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟𝑖,𝑖′ , only if the binary variable 

𝑋𝑋𝑖,𝑖′,𝑗 , is equal to 1. Constraint (2.6) also ensures the avoidance of sequence subcycles 

in the final schedule.  

 

𝐶𝑖′ ≤ 𝐶𝑖 + 𝑇𝑖′ + 𝑋𝑋𝑖,𝑖′,𝑗𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟𝑖,𝑖′ + (𝐷𝐷𝐴𝑇𝐸𝑖′ − 𝑇𝑖′)(1 − 𝑋𝑋𝑖,𝑖′,𝑗)  

∀𝑖, 𝑖′ ≠ 𝑖, 𝑗 ∈ (𝑖𝑗 ∩ 𝑖
′
𝑗), 𝑤𝑖𝑛𝑑𝑜𝑤𝑖 ≠ 1 

 

(2.7) 

Constraints (2.7) enforces the completion time 𝐶𝑖′  of a product order i’ to be smaller or 

equal to the sum of the completion time 𝐶𝑖 of product i  produced prior to order i’ at the 

same unit, the processing time 𝑇𝑖′ , and the changeover time, 𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟𝑖,𝑖′ . Constraints 

(2.7) has to be taken into account if the minimization of changeover times constitutes 

the objective function, since otherwise unnecessary idle times are observed in the 

generated schedules. The production orders, produced in a strict time window, 

(𝑤𝑖𝑛𝑑𝑜𝑤𝑖 = 1), are excluded from constraints (2.7), because infeasible production 

schedules may be generated. 

The selection of the big-M value has a crucial impact on the computational complexity 

(Gupta and Karimi, 2003). Increased big-M values relax the domain of the continuous 
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variables. A same pattern appears also in the solution of the MILP problem. Hence, the 

computational time required, for achieving the global optimum and reducing the 

relative gap between the relaxed and the best integer solution, is getting prohibitively 

high (Aguirre et al., 2017). In the proposed MILP formulation efficient big-M values have 

been chosen, for the purpose of reducing the computational time and providing more 

efficient mathematical models. 

In particular, according to constraints (2.6), the big-M value is equal to the 𝐷𝐷𝐴𝑇𝐸𝑖 . 

Since variable 𝐶𝑖 is smaller or equal than the parameter 𝐷𝐷𝐴𝑇𝐸𝑖  and the binary variable 

𝑋𝑋𝑖,𝑖′,𝑗  is equal to 0, the constraint expresses that  𝐶𝑖′  should be greater than the related 

processing time, 𝑇𝑖′ , minus a small number (equal to 𝐶𝑖 − 𝐷𝐷𝐴𝑇𝐸𝑖  ), which is significant 

smaller than the usually used value of the time horizon under consideration. 

The same concept is also applied in constraint (2.7), as the big-M value is equal to, 

(𝐷𝐷𝐴𝑇𝐸𝑖′ − 𝑇𝑖′). When the binary variable 𝑋𝑋𝑖,𝑖′,𝑗  is equal to 0, the constraint expresses 

that the 𝐶𝑖′  should be smaller than the related due date time (𝐷𝐷𝐴𝑇𝐸𝑖′) plus the value 

of the variable 𝐶𝑖. The proposed value is also significant smaller, than the commonly 

utilized value, equal to the scheduling time horizon of interest. 

 

Formula card constraints (Production stage constraints) 

∑∑ ∑ (𝑋𝑋𝑖′,𝑖,𝑗)

𝑖′, 𝑖′≠𝑖,𝑖′∈𝐽𝑖
𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑖≠𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑖′

𝑖,𝑖∈𝐽𝑖𝑗

≤ 𝐿𝑖𝑚𝑖𝑡        (2.8) 

 

Constraint (2.8) are referred to the production/ formulation stage of the facility. As it 

was described above, several changeovers take place among the production of different 

intermediate products due to cleaning or other activities. Furthermore, a significant 

amount of byproduct waste material is generated, which can be partially reused into the 

next product campaigns. Due to the lack of the necessary resources and the limited 

storage capacity of the occurred waste the total changeovers related to the intermediate 

products with different recipe, 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑖, should not exceed an upper limit, 𝐿𝑖𝑚𝑖𝑡. 
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Due date constraints  

𝐶𝑖 ≤ 𝐷𝐷𝐴𝑇𝐸𝑖    ∀𝑖 (2.9) 

 

Constraints (2.9) forces the completion time of a production order 𝐶𝑖 to be lower or 

equal than its deadline, expressed by the parameter 𝐷𝐷𝐴𝑇𝐸𝑖 . 

 

Objective Functions  

a) Minimization of production makespan 

min𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖          ∀𝑖 (2.10) 

 

b) Minimization of total changeover time 

min𝐶𝑇 =∑∑ ∑ 𝑋𝑋𝑖,𝑖′,𝑗𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟𝑖,𝑖′

𝑖′, 𝑖′≠𝑖,𝑖′∈𝐽𝑖𝑖,𝑖∈𝐽𝑖𝑗

        (2.11) 

 

Objective (2.10) expresses the minimization of the total production makespan, 𝐶𝑚𝑎𝑥, 

while constraint (2.11) expresses the minimization of changeovers and unnecessary 

idle times. 

Planned maintenance activities are also considered. Each maintenance task is 

represented by a dummy product order, which is inserted into the production schedule, 

by fixing their allocation and their completion variables 𝑌𝑖,𝑗 and 𝐶𝑖 . These dummy 

product orders have also to be processed during a time window and therefore their 

related parameter 𝑤𝑖𝑛𝑑𝑜𝑤𝑖 is equal to 1. 

2.3.2 Unit-specific General Precedence Single-Stage MILP Model  

A single stage, unit-specific general precedence MILP model of parallel units is proposed 

here. It is based on an extension of a unit-specific precedence framework developed by 

Kopanos et al., (2012). A continuous time representation has been utilized and problem-

specific constraints have been added. As the main objective under consideration is the 

minimization of the total changeover time, timing constraints (2.15) have been 
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included, in order to avoid the generation of unnecessary idle times in the package 

units. Efficient big-M values have been used in the timing constraints, in order to 

improve the performance of the model. Furthermore, constraints related to the 

formulation/production stage of the plant, as well as due date constraints have also 

been adapted into the MILP model.  Henceforth, we will refer to this MILP model as 

USGP. Constraints are described in detail, according to the type of decision (e.g., 

assignment, timing, sequencing, etc.), as follows: 

 

Assignment constraints 

∑𝑌𝑖,𝑗
𝑗∈𝑖𝑗

= 1   ∀𝑖 (2.12) 

Constraints (2.12) guarantee that each product order is processed in just one unit 𝑗 ∈ 𝐽𝑖 

Timing and sequencing constraints 

𝑋𝑖′,𝑖,𝑗 + 𝑋𝑖,𝑖′,𝑗 + 1 ≥ 𝑌𝑖′,𝑗 + 𝑌𝑖,𝑗           ∀𝑖, 𝑖
′ > 𝑖, 𝑗 ∈ (𝑖𝑗 ∩ 𝑖

′
𝑗) (2.13) 

𝐶𝑖′ ≥ 𝐶𝑖 + 𝑇𝑖′ + 𝛸𝑋𝑖,𝑖′,𝑗𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟𝑖,𝑖′ − 𝐷𝐷𝐴𝑇𝐸𝑖(1 − 𝑋𝑖,𝑖′,𝑗) 

∀𝑖, 𝑖′ ≠ 𝑖, 𝑗 ∈ (𝑖𝑗 ∩ 𝑖
′
𝑗) 

(2.14) 

𝐶𝑖′ ≤ 𝐶𝑖 + 𝑇𝑖′ + 𝑋𝑋𝑖,𝑖′,𝑗𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟𝑖,𝑖′ − (𝐷𝐷𝐴𝑇𝐸𝑖′ − 𝑇𝑖′)(1 − 𝑋𝑖,𝑖′,𝑗)   

∀𝑖, 𝑖′ ≠ 𝑖, 𝑗 ∈ (𝑖𝑗 ∩ 𝑖
′
𝑗), 𝑤𝑖𝑛𝑑𝑜𝑤𝑖 ≠ 1 

(2.15) 

2(𝑋𝑖′,𝑖,𝑗 + 𝑋𝑖,𝑖′,𝑗) ≤ 𝑌𝑖′,𝑗 + 𝑌𝑖,𝑗              ∀𝑖, 𝑖
′ > 𝑖, 𝑗 ∈ (𝑖𝑗 ∩ 𝑖

′
𝑗) (2.16) 

 

Constraints (2.13) - (2.16) provide the relative sequencing of product orders. The big-M 

constraints (2.14) and (2.15) impose the completion time 𝐶𝑖′  of a product order i’ to be 

greater that the completion time and the processing time 𝑇𝑖′  of whichever product i  is 

produced beforehand at the same unit, and greater than the changeover time, 

𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟𝑖,𝑖′ , only if the binary variable 𝑋𝑖,𝑖′,𝑗 is active. The binary variable 𝑋𝑖,𝑖′,𝑗 is 

active only if product i’ is produced after product i. The big-M values are defined, as 
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described in subsection 2.3.1 for the timing equations (2.6) and (2.7). Constraints (2.15) 

ensures the avoidance of unnecessary idle times. Constraints (2.13) and (2.16) state 

that when two products are produced at the same unit, only one global sequencing 

binary variable has to be active and when one of the binary variable 𝑋𝑖′,𝑖,𝑗 and  𝑋𝑖,𝑖′,𝑗 is 

active, at least one of the 𝑌𝑖,𝑗  and 𝑌𝑖′,𝑗 has to be active as well.  

Immediate precedence constraints 

𝑍𝑖,𝑖′,𝑗 + 𝑋𝑋𝑖,𝑖′,𝑗 ≥ 𝑋𝑖,𝑖′,𝑗  ∀𝑖, 𝑖
′, 𝑗 ∈ (𝑖𝑗 ∩ 𝑖

′
𝑗) (2.17) 

𝑍𝑖,𝑖′,𝑗 = ∑ (𝑋𝑖,𝑖′′,𝑗 + 𝑋𝑖′,𝑖′′,𝑗) + 𝑀(1 − 𝑋𝑋𝑖,𝑖′,𝑗)

𝑖′′≠𝑖,𝑖′,𝑗∈(𝑖𝑗∩𝑖
′
𝑗)

 

∀𝑖, 𝑖′, 𝑗 ∈ (𝑖𝑗 ∩ 𝑖
′
𝑗) 

(2.18) 

 

The variables 𝑍𝑖,𝑖′,𝑗 determine the position difference among two products produced in 

the same packing line. When 𝑍𝑖,𝑖′,𝑗  is equal to 0, product i is produced exactly before the 

i’. Variable 𝑍𝑖,𝑖′,𝑗  are then calculated in equation (2.18). As a result, according to 

constraint (2.17) the immediate precedence binary variable 𝑋𝑋𝑖,𝑖′,𝑗 takes the value 1 

only when variables 𝑍𝑖,𝑖′,𝑗  are equal to zero. The binary variable 𝑋𝑋𝑖,𝑖′,𝑗  takes the value 1 

when product i’ is produced exactly after product i. The difference among the 

immediate and the global sequence binary variables is illustrated in Figure 2.3. 

 

 

Figure 2.3 Immediate and general precedence binary variables 
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Formulation/production stage constraint 

∑∑ ∑ (𝑋𝑋𝑖′,𝑖,𝑗)

𝑖′, 𝑖′≠𝑖,𝑖′∈𝐽𝑖
𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑖≠𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑖′

𝑖,𝑖∈𝐽𝑖𝑗

≤ 𝐿𝑖𝑚𝑖𝑡        
(2.19) 

Similarly to constraints (2.8), constraints (2.19) guarantee that the number of 

sequences between products with different recipes, 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑖, does not exceed an 

upper limit (𝐿𝑖𝑚𝑖𝑡)  which is determined by technical restrictions in the plant. To take 

into account the above, the usage of the immediate precedence binary variables is 

necessary.  

Due date constraints  

𝐶𝑖 ≤ 𝐷𝐷𝐴𝑇𝐸𝑖 (2.20) 

 

Constraint (2.20) forces the completion time of a production order 𝐶𝑖 to be lower or 

equal than a deadline, expressed by 𝐷𝐷𝐴𝑇𝐸𝑖 . 

Time window constraints 

𝐶𝑖 − 𝑇𝑖 ≥ 𝐿𝑜𝑤𝑒𝑟𝑖    ∀𝑖, 𝑤𝑖𝑛𝑑𝑜𝑤𝑖 = 1 

 
(2.21) 

Similarly to the constraints (2.5), constraints (2.21) refers to products that have to be 

produced within a strict time slot. 

Objective function 

a) Minimization of makespan 

min𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖          ∀𝑖 (2.22) 

b) Minimization of products changeover time 

min𝐶𝑇 = ∑ ∑ ∑ 𝑋𝑋𝑖,𝑖′,𝑗𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟𝑖,𝑖′

𝑖′, 𝑖′≠𝑖,𝑖′∈𝐽𝑖
𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑖≠𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑖′

𝑖,𝑖∈𝐽𝑖𝑗

        
(2.23) 
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While both objectives are often considered in scheduling problems, the continuous 

operation mode of the plant, determine the minimization of the total changeover time as 

the most appropriate one. Planned maintenance activities are considered as described 

in section 2.3.1. 

2.4 Solution strategies  

In general, the above MILP mathematical models, illustrate a strong advantage 

comparing with other models, due to their ability to provide the best solutions, 

especially for small or medium-sized problem instances. However, they cannot be used 

for the efficient solution of large-scale problem instances. Short solution times are a 

prerequisite for the acceptance of scheduling solutions by the industry. 

Hence,  MILP-based decomposition strategies are necessary, to satisfy the emerging 

industrial needs for practical implementation of scheduling solutions (Georgiadis et al., 

2019a; Harjunkoski, 2016; Harjunkoski et al., 2014). It should be noted that the 

proposed models are suitable for the particular process structure which does not 

include recycle or complex recipes. 

 

 

Figure 2.4 Schematic representation of the solutions strategies’ structure 

 

The MILP formulations, described in section 2.3, constitute the main core of the 

proposed solution strategies. They aim to generate good quality solutions, in short 
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solution times, accepted by the plant. A brief schematic representation of the proposed 

solution strategies is illustrated in Figure 2.4. 

2.4.1 Solution strategy – ST1 

This strategy, consists of i) a unit-specific general precedence single-stage MILP model, 

described in subsection 2.3.2, ii) a constructive step and iii) an improvement step.  

 

Figure 2.5 Schematic representation of the solution strategy – ST1 

 

The key idea is to decompose the initial large-scale industrial scheduling problem into 

smaller tractable subproblems (Kopanos et al., 2010a). Firstly, an initial feasible 

solution is generated via the constructive step. The generated scheduled can be further 

improved via an integrated reordering step. Figure 2.5 illustrates the proposed 

decomposition technique. 

2.4.1.1 Constructive step 

At each iteration a subset of the product orders 𝑖 𝜖 𝑃𝐼  is scheduled. These MILP 

subproblems are solved much easier, as the complexity and the computational time is 

significantly decreased. After each iteration, the global sequencing variables  𝑋𝑖,𝑖′,𝑗 , as 
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well as the allocation variables 𝑌𝑖,𝑗 of the inserted products are fixed. On the contrary, 

the timing variables 𝐶𝑖 and the immediate precedence binary variables 𝑋𝑋𝑖,𝑖′,𝑗  remain 

free. The complete schedule is generated when finally, all products are inserted.  An 

optimality gap of 0% is aimed at each iteration. However, industrial requirements 

impose an upper bound on the total computational time. Hence, a time limit of 3 

minutes, has been set for the solution of each subproblem. 

In order to provide better quality schedules, the last production orders, processed 

before the starting time of the new schedule, are set as the first production campaigns 

on each packing line. This way, the changeover time among the first product of the new 

schedule and the last produced campaign is also taken into account.  

The simultaneous utilization of both general and immediate precedence binary 

variables, increases the flexibility of the algorithm, providing further alternatives during 

the insertion of new production orders. Figure 2.6 illustrates the allowed and the 

forbidden relative sequences of a new production order. 

Furthermore, a set of efficient integer cuts are imposed in order to increase the 

computational efficiency. In particular, if a production order 𝑖 𝜖 𝑃𝐼 is allocated to a 

specific packing unit, then all precedence binary variables, related to other packing lines 

and later inserted products  𝑖′ ∉  𝑃𝐼  are fixed to zero. These integer cuts decrease the 

complexity of the subproblems and improve the overall performance of the method. 

Constraints (2.24), (2.25), (2.26) and (2.27) express explicitly which binary variables 

are enforced to zero. 

 

 

𝑋𝑖′𝑖,,𝑗 = 0           ∀𝑖, 𝑖 𝜖 𝑃𝐼 , 𝑌𝑖,𝑗 = 0 , 𝑖
′ ∉  𝑃𝐼 , 𝑗 ∈ (𝑖𝑗 ∩ 𝑖

′
𝑗) (2.24) 

𝑋𝜄,𝑖′,𝑗 = 0           ∀𝑖, 𝑖 𝜖 𝑃𝐼 , 𝑌𝑖,𝑗 = 0 , 𝑖
′ ∉  𝑃𝐼 , 𝑗 ∈ (𝑖𝑗 ∩ 𝑖

′
𝑗) (2.25) 

𝑋𝑋𝑖′,𝑖,𝑗 = 0        ∀𝑖, 𝑖 𝜖 𝑃𝐼 , 𝑌𝑖,𝑗  = 0 , 𝑖
′ ∉  𝑃𝐼 , 𝑗 ∈ (𝑖𝑗 ∩ 𝑖

′
𝑗) (2.26) 

𝑋𝑋𝜄,𝑖′,𝑗 = 0        ∀𝑖, 𝑖 𝜖 𝑃𝐼 , 𝑌𝑖,𝑗 = 0 , 𝑖
′ ∉  𝑃𝐼 , 𝑗 ∈ (𝑖𝑗 ∩ 𝑖

′
𝑗) (2.27) 
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Figure 2.6 Allowed and forbidden sequences, according to the solution strategy ST1 

 

The insertion policy constitutes a key step for both the computational efficiency and 

more importantly, for the quality of the solution. As a result, various insertion policies 

should be considered (Kopanos et al., 2010a). As the initial problem is solved iteratively, 

the number and sequencing of inserted products have to be decided. Two insertion 

criteria are used in order to avoid the generation of infeasible schedules. According to 

the first criterion, production orders are sorted firstly by the earliest due dates.  

Moreover, it is often observed that by minimizing the total changeover time, some 

packing lines are fully utilized. As a result, by inserting products with limited unit 

allocation flexibility in the last iterations, infeasible production schedules may be 

generated, due to the lack of unit availability. Thus, it is proposed to insert first products 

with limited unit allocation flexibility. In other words, products with limited allocation 

options to packing lines should be scheduled first. The planned maintenance activities 
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are always scheduled first, by inserting a number of dummy product orders and fixing 

the allocation and ending time variable of them.  

The number of inserted products 𝑖 𝜖 𝑃𝐼 , has a huge impact in the initial feasible solution 

and the overall performance of the algorithm. As this number is increased, better 

quality solutions are expected due to larger degrees of freedom. However, more 

complex subproblems have to be solved and thus the computational time in increased. 

Taking into account current industrial requirements regarding the solution time and 

specific problem features, different insertion policies could be employed. Several real 

tests have illustrated, that a 5-by-5 product insertion policy is the optimal one for the 

problem under consideration since by inserting larger groups of products, the solution 

is not improved and the computational cost is increased, as it is discussed in section 

2.5.2. In particular, an indicative comparison between 3 different insertion policies is 

presented in Table 2.8, depicting the advantages of a 5-by-5 insertion policy. 

2.4.1.2 Improvement step – Reinsertion stage 

The initial feasible solution, generated by the constructive step can be further improved 

via an iterative process. Following the main idea of previous research contributions 

(Basán et al., 2019; Kopanos et al., 2010a), a subset of products 𝑖 ∈ 𝐼𝑟𝑒𝑖𝑛 are released 

from the initial schedule, in order to achieve better unit allocation and sequencing 

decisions. The allocation, sequence and timing variables of products 𝑖 ∈ 𝐼𝑟𝑒𝑖𝑛 are 

relaxed. However, the allocation and the relative sequence variables of products 𝑖 ∉

  𝐼𝑟𝑒𝑖𝑛 remain fixed. The products are reinserted iteratively and small subproblems are 

solved. Similarly to the constructive stage, a tradeoff between the computational time 

and the solution quality exists. Since the number of reinserted orders is increased, more 

complex subproblems have to be solved (Basán et al., 2019; Kopanos et al., 2010a). 

Since the proposed solution strategy focuses on solving a large-scale industrial problem, 

high computational times should be avoided as required by the industry. Hence, in this 

approach 5 products are reinserted in each iteration. According to the selected insertion 

policy in the constructive step and the comparison of results presented in Table 2.8 this 

insertion policy is the optimal one. A different number of reinserted products can be 

defined by the scheduler, depending on the underlying scheduling problem features and 

the desired plant policy. To fully satisfy the industrial requirements and to avoid high 
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computational times, a time limit of 1200s is set. As the total computational time 

reaches this limit, the reinsertion stage is terminated, and the best solution found is 

reported. The improvement stage could also be terminated once a better solution is 

achieved, in case the number of production orders is too high. 

2.4.2 Solution strategy – ST2 

The main core of this strategy is the immediate-precedence model, described in 

subsection 2.3.1. Following a similar structure with solution strategy ST1, the proposed 

approach consists of i) the MILP model, ii) a constructive step and iii) an improvement 

step. A schematic representation of the proposed solution strategy is described in 

Figure 2.7. 

2.4.2.1 Constructive step 

A number of smaller-size subproblems is solved iteratively. On the contrary with the 

previously described decomposition technique, higher number of orders 𝑖 𝜖 𝑃𝐼  are 

inserted in each iteration. The product’s allocation binary variables, 𝑌𝑖,𝑗, as well as, the 

immediate precedence binary variables, 𝑋𝑋𝑖,𝑖′,𝑗 , are fixed after the solution of each 

subproblem. In particular, a number of smaller sub-schedules, forms the constituent 

parts of the final schedule, that achieved when all production orders are inserted. 

Contrary to the solution strategy ST1, even a larger number of products can be inserted 

at each iteration. Furthermore, global optimal solutions or solutions with an optimality 

gap of less than 3% are achieved in each subproblem. A limit on the solution time is 

again imposed, to avoid the generation of schedules which are not acceptable by the 

plant operators. 

The size of each subproblem has a crucial impact on the quality of the final solution. 

Taking into account relevant industrial requirements it is of the highest importance to 

guarantee that all subproblems are solved with a small (0% -3%) optimality gap and 

within the time limit of 300 CPU s. The solution of smaller size subproblems tend to 

minimize the complexity, requiring less computational effort. However, at the same 

time, as all binary variables are fixed after the solution of each iteration, low quality 

final schedules are generated. On the other hand, a lower degree of decomposition may 
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result to intractable subproblems, which cannot be solved to optimality in reasonable 

computational times. Hence, medium size subproblems should be preferred, which can 

be solved fast enough without sacrificing the quality of the solution. According to this 

tradeoff, several tests indicate that at maximum 35 products should be scheduled in 

each iteration. As it is demonstrated in Table 2.1, problem instances with even up to 35 

products can be optimally solved by using the immediate precedence MILP model, since 

solutions with small optimality gaps (less than 3%) can be achieved within the 300 CPU 

s. On the contrary, in larger subproblems the intended optimality gaps cannot be 

guaranteed due to the large model sizes. 

 

 

Figure 2.7 Schematic representation of the solution strategy - ST2 

 

The insertion policy has also a huge impact in the performance of the decomposition 

algorithm. In the same concept with the previously described solution strategy ST1, 

products with the earliest due dates are inserted first. As a second criterion, products 

with limited unit allocation flexibility are inserted first. Possible maintenance activities 

are also scheduled before other production orders, by fixing the corresponding 

allocation variables and completion times. The immediate precedence-binary variables 

of the maintenance activities remain free. 
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The last production campaigns, produced before the time horizon of interest, are also 

considered into the final solutions, by taking into account the corresponding 

changeover times. In particular, dummy production orders, with zero production time, 

𝑇𝑖 and the same features with the last production campaigns of the previous schedule, 

constitute the first production orders of each packing line. Hence, possible time-

consuming changeover times, related to the first product sequence of each packing line, 

tend to be avoided, as they are also taken into account. 

Effective integer cuts are imposed after the solution of each subproblem. Unnecessary 

sequencing combinations are eliminated, to reduce the computational effort. According 

to the constraints (2.28) and (2.29), if a production order, 𝑖 𝜖 𝑃𝐼 ,  is not processed in a 

specific packing line 𝑗 𝜖 𝐽𝐼 , ( 𝑌𝑖,𝑗 = 0), then all the related immediate precedence 

variables 𝑋𝑋𝑖′,𝑖,𝑗 and  𝑋𝑋𝜄,𝑖′,𝑗 , for production orders 𝑖′ ∉  𝑃𝐼 are forced to zero. 

 

𝑋𝑋𝑖′,𝑖,𝑗 = 0        ∀𝑖, 𝑖 𝜖 𝑃𝐼 , 𝑌𝑖,𝑗  = 0 , 𝑖
′ ∉  𝑃𝐼 , 𝑗 ∈ (𝑖𝑗 ∩ 𝑖

′
𝑗) (2.28) 

𝑋𝑋𝜄,𝑖′,𝑗 = 0        ∀𝑖, 𝑖 𝜖 𝑃𝐼 , 𝑌𝑖,𝑗 = 0 , 𝑖
′ ∉  𝑃𝐼 , 𝑗 ∈ (𝑖𝑗 ∩ 𝑖

′
𝑗) (2.29) 

2.4.2.2 Improvement step – Reinsertion stage 

An additional step is integrated into the solution algorithm to improve the initial 

generated schedule by the construction step. Given the allocation decisions, sequencing 

decisions of each product can be fully redefined to further reduce the sequence-

dependent changeovers and the corresponding changeover times. Hence, the allocation 

variables of the products 𝑌𝑖,𝑗 are fixed.  Sequencing subproblems, equal to the total 

number of packing units, are solved iteratively. A subset of products 𝑖 ∈ 𝐼𝑟𝑒𝑜𝑟𝑑, which 

have been assigned to the same production unit in the constructive stage, is allowed to 

be reordered by relaxing the related sequencing variables 𝑋𝑋𝑖,𝑖′,𝑗 . Since only the 

sequencing variables are redefined, small subproblems are solved aced in each iteration 

with a 0% optimality gap achieved in less than 30 CPU s. After considering all possible 

sequencing problems of each packing unit, the final schedule is generated. A schematic 

representation of the proposed improvement step is also presented in Figure 2.7.   
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2.5 Industrial case studies 

In order to assess the applicability and the efficiency of the proposed MILP models and 

solution strategies, a number of indicative real-life case studies of a consumer goods 

industry is considered. All models were implemented in GAMS (General Algebraic 

Modeling System), and solved utilizing the IBM ILOG CPLEX 12.0 solver on an 3.60 GHz 

Intel Core i7 7700 processor and 16 GB RAM. 

In collaboration with the plant engineers, an efficient tool has been developed, to 

facilitate data exchange through a direct communication of GAMS and the ERP systems 

of the plant. A middle Microsoft Excel file is generated automatically, which includes 

customers demand, products special features, due dates and other essential 

information. The GAMS files are also called automatically and the problem under 

consideration is solved by utilizing an MILP model or a solution strategy. The generated 

solutions can be illustrated via interactive Gantt charts, or via Microsoft Excel sheets. 

Frequent late order arrivals, force the plant operators to modify the initial schedules in 

order to fully satisfy the demand. Due to the current industrial needs, the optimized 

schedules have to be generated in less than 20 minutes (1200s). 

Several real-life case studies have been studied, and schedules have been generated by 

first solving the monolithic MILP models directly (described in subsection 2.3.1), or by 

implementing the proposed solution strategies ST1 and ST2.  All problem instances are 

real industrial cases based on historical data and product demands. All results have 

been fully validated by the industry, and detailed comparisons, with manually generated 

schedules or with simulation tools have been made by the operators. Data related to the 

specific product features and the capacity of the plant cannot be disclosed due to 

confidentiality issues. Since, the plant operates continuously 24 hours per day the main 

objective is the minimization of the total changeover time. The changeover time savings 

can also lead to productivity improvements by reducing idle times of the production 

units. 

2.5.1 Small and medium size problem instances 

For small problem instances, the direct solution of the immediate precedence, single 

stage MILP model, described in subsection 2.3.1 is considered. Several tests illustrated 
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that the immediate precedence MILP model provides better quality solutions comparing 

with the unit-specific general precedence (USGP) MILP model. A detailed comparison of 

the two proposed MILP models, for 3 indicative problem instances, is presented in Table 

2.1. In particular, detailed information related to the computational features and 

solutions found within the time limit of 1200s CPU time is provided. It is observed that 

for the same problem instances the number of variables is strongly augmented by 

utilizing the USGP MILP model. As a result, the immediate precedence MILP model leads 

to better quality solutions and smaller optimality gaps. It is worth mentioning that for 

the third problem instance not even a feasible solution is reported by utilizing the USGP 

model. 

 

Table 2.1 Comparison between the immediate precedence and the unit specific immediate 
precedence MILP models 

Problem Instance 1 2 3 

Number of Products 35 45 55 

MILP Model IPM USGP IPM USGP IPM USGP 

Constraints 3282 17866 5622 29776 7092 35436 

Binary Variables 1520 3071 2660 5371 3380 6515 

Continuous Variables 2458 10851 4058 18001 5008 21365 

CPU time (s) 560 1200 1200 1200 1200 1200 

Optimality gap (%) 0 3.8 5.6 22.6 8.9 - 

Solution - Total 
changeover time 

(hours) 
7.5 7.79 8.65 10.08 9.38 - 

*IPM= Immediate precedence MILP model 
**USGP = Unit specific general precedence MILP model 

 

The majority of the products are described by high unit allocation flexibility, as most of 

the products packed in more than one packing lines. The generated schedules have been 

compared with the implemented schedules of the plant and results are summarized in 

Table 2.2. An exhaustive list of the computational features and the model sizes of the 

problems under consideration is presented in Table 2.3. As it is observed, significant 

changeover savings are achieved, thus resulting in a noticeably decrease in the total 
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production time. In particular, the total changeover time is decreased by 33 minutes 

(6.72%), in the first case study and goes up to 222 minutes (22,05%) in the seventh one. 

These savings can also be translated to important improvements on the plant’s 

production time, from 0.36% in the first case up to 2.30% in the last one. It should be 

also noted that, the total changeover time is decreased in all the MILP-based schedules 

compared to the schedules realized by the plant operators using simulation tools. In 

addition, higher improvements are observed in larger problem instances.  

It is observed that small optimality gaps are achieved in all cases. Furthermore, in small 

problem instances global optimal solutions can be achieved within the imposed time 

limit. In Figure 2.8, an indicative Gantt chart is depicted including also a planned 

maintenance activity.  

 

Figure 2.8 Indicative Gantt chart including maintenance activities 

 

Two additional industrial case studies, with limited product-allocation flexibility to 

packing units, have been considered. The majority of products can be packed in one 

packing line only. Results are illustrated in the Table 2.4. A significant changeover time 

reduction is achieved in both cases, comparing with the operating policy of the plant. 

The changeover time savings lead to an improvement on the total production time of 

over than 0.5%. It has to be mentioned that 0% optimality gaps have been achieved in 
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all the problem instances under consideration. A detailed list of the computational 

features and the model sizes of the problems under consideration is presented in Table 

2.5. 

 

Table 2.2 Comparison between the immediate precedence MILP model and the plant’s schedules 

Case 
study 

Products 
to be 

scheduled 

Changeover 
time 

reduction 
(minutes) 

% 
Changeover 

time 
reduction 

% 
Improvement 

on the total 
production time 

CPU 
time 
(s) 

Optimallity 
gap (%) 

1 45 33 6,72% 0,36% 461 0 

2 51 68 8,79% 0,61% 1200 3.2 

3 49 75 9.34% 0.69% 1200 1.3 

4 65 189 14,08% 2.32% 1200 6.1 

5 68 201 20,99% 1,47% 1200 9.7 

6 38 124 20.74% 2.16% 480 0 

7 55 222 22.05% 2.30% 1200 5.7 

 

Table 2.3 Computational features of the problem instances under consideration 

Case 
study 

Products to be 
scheduled 

Constraints 
Binary 

variables 
Continuous 

variables 

1 45 8198 3059 6077 

2 51 10628 3,983 7,805 

3 49 9778 3659 7205 

4 65 17194 6447 12677 

5 68 19040 7169 13876 

6 38 5818 2163 4334 

7 55 12448 4679 9077 
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Table 2.4 Comparison between the proposed MILP model and the plant’s schedules 

Case 
study 

Products 
to be 

scheduled 

Changeover 
time 

reduction 
(minutes) 

% Changeover 
time 

reduction 

% improvement 
on the total 

production time 

CPU 
time 
(s) 

Optimallity 
gap (%) 

1 41 78 11.04% 0.53% 536 0 

2 33 69 11.86% 0.72% 351 0 

 

Table 2.5 Computational features of the problem instances under consideration 

Case 
study 

Products to be 
scheduled 

Constraints 
Binary 

variables 
Continuous 

variables 

1 41 2891 1117 4992 

2 33 2110 600 2682 

 

In all cases, solution times are less than 20 CPU minutes and fully acceptable by the 

plant. Strict packing line allocation constraints can affect the efficiency of the model. The 

proposed modeling strategy is able to optimally solve real problems with approximately 

up to 65 products in 3 parallel lines. For larger problem instances, the computational 

cost is prohibitively high and as a result, not even a feasible solution can be generated 

within the imposed time limitation.  

2.5.2 Large industrial problem instances 

Several larger industrial problem instances have been also studied. A detailed 

comparison of the immediate precedence MILP model and the solution strategy ST1 is 

presented in Table 2.6. The initial feasible solutions are also presented in order to 

depict the benefits of the proposed improvement step. The decomposition algorithm 

results to significant savings in the changeover time by sacrificing part of the quality of 

the solution. More specifically, the changeover time is reduced by 57 minutes (5.37%) in 

the first case and by 67 minutes (5.83%) in the second one. These savings are translated 

into an improvement in the total production time, by 0.49% and 0.47% respectively.  
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Table 2.6 Comparison between the proposed MILP model, the solution strategy ST1 and the plant’s 
schedules 

Case 
study 

Products 
to be 

scheduled 
Approach 

CPU 
time 
(s) 

Changeover 
time 

reduction 
(minutes) 

% 
Changeover 

time 
reduction 

% Improvement 
on the 

production time 

1 50 

1st stage 
solution 

405 47 4.43% 0.41% 

Improvement 
step 

795 57 5.37% 0.49% 

IPM 1200 60 5.75% 0.54% 

2 62 

1st stage 
solution 

670 52 4.53% 0.37% 

Improvement 
step 

530 67 5.83% 0.47% 

IPM 1200 104 9.12% 0.75% 

3 73 

1st stage 
solution 

728 356 24.39% 2.22% 

Improvement 
step 

472 378 25.89% 2.35% 

IPM 1200 - - - 

 

Although global optimal solutions cannot be achieved, relatively good quality schedules 

are generated in comparison with schedules obtained via the direct solution of the MILP 

monolithic model. In the first problem instance a 3.4% optimality gap has been achieved 

by utilizing the immediate precedence MILP model, while a solution with a 5.8% 

optimality gap has been obtained in the second one. Nevertheless, the proposed 

monolithic MILP model, can only be used for medium problem instances (case study 1 

and case study 2), since in larger problems, such as case study 3, which involves 73 

products, a feasible solution was not even obtained. In the third case study under 

consideration, a significant improvement in the changeover time is observed by 

applying solution strategy ST1. The total changeover time is reduced by 378 minutes 

(25.89%), which corresponds to an improvement of 2.35% in the total production time. 

The computational features of the case studies under consideration are presented in 

Table 2.7.  
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Table 2.7 Computational features of the problem instances under consideration 

Case 
study 

Products to be 
scheduled 

Constraints 
Binary 

variables 
Continuous 

variables 

1 50 36771 6629 22251 

2 62 55887 9625 34287 

3 73 81396 17203 47597 

 

The evaluation of the various insertion policies, is illustrated via an indicative 

comparison, presented in Table 2.8. This case study includes 50 products and 3 packing 

lines and it is solved using both the construction stage of the decomposition algorithm 

(ST1) and the monolithic MILP model, described in the subsection 2.3.1. The 5-by-5 

insertion policy solution seems to be the optimal one. In addition, the computation time 

is significantly decreased by applying a 1-by-1, or 5-by-5 insertion policy. On the 

contrary, the application of a 10-by-10 insertion policy, increases the complexity of the 

subproblems and an optimality gap of 0% was not achieved under the solution time 

limitations. As a consequence, the computational time is gradually increased, and higher 

changeover time values are obtained.  

 

Table 2.8 Comparison between the MILP model and solution strategy ST1 for different insertion 
policies 

 IPM 

Solution strategy (ST1) 

Insertion policy 
1-by-1 

Insertion 
policy 5-by-5 

Insertion policy 
10-by-10 

Changeover (hrs) 17.9 19.89 18.06 18.9 

Computational Time (s) 3360 360 768 2172 

Optimality gap (%) 0 - - - 

*IPM= Immediate precedence MILP model 

Further representative large-scale, real-life case studies have also been considered and 

solutions were generated by utilizing solution strategy ST2. These case studies include 

more than 60 products, with high product allocation flexibility, and 3 packing lines. The 

insertion policy involves 35 products in each iteration. An extensive comparison 

between solutions obtained by the decomposition algorithm and real schedules realized 
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by a plant is shown in Table 2.9. The computational time for the constructive step (1st 

stage) as well as the total computation time are also included to the same table. A 

significant changeover time reduction is achieved, from 90 minutes (9.01%), in the third 

problem instance, up to 925 (31.20%) minutes in the fifth one. These savings lead to an 

important improvement in the plant productivity. In particular, the total production 

time is decreased from 0.54% in the third case, up to 3.67% in the fifth one. It is worth 

mentioning that the initial feasible solutions can be significantly improved via the 

proposed improvement step. Indicatively, in the fifth problem instance, the total 

changeover time is decreased by 180 minutes (3 hours). Hence, the plant productivity is 

further improved by even 0.57%.  

 

Table 2.9 Comparison between the proposed solution strategy ST2 and the plant’s schedules 

Case 
study 

Products 
to be 

scheduled 

 
CPU 
time 
(s) 

Changeover 
time 

reduction 
(minutes) 

% 
Changeover 

time 
reduction 

% 
Improvement 

on the 
production time 

1 74 

1st stage 
solution 

781 106 7.96% 0.73% 

Improvement 
step 

148 180 13.51% 1.19% 

2 66 

1st stage 
solution 

764 258 23.16% 2.43% 

Improvement 
step 

192 301 27.02% 2.56% 

3 63 

1st stage 
solution 

722 49 4.90% 0.31% 

Improvement 
step 

106 90 9.01% 0.54% 

4 66 

1st stage 
solution 

792 251 22.53% 2.36% 

Improvement 
step 

212 317 28.47% 2.70% 

5 119 

1st stage 
solution 

880 745 25.14% 3.10% 

Improvement 
step 

314 925 31.20% 3.67% 
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The computational features of the case studies under consideration are presented in 

Table 2.10.  In particular, the total number of equations and the large number of binary 

and continuous variables depicts the necessity to utilize decomposition algorithms in 

order to provide good quality solutions for larger problem instances. Indicatively, the 

fifth case study under consideration consists of even 42538 binaries and 29048 

continuous variables 

 

Table 2.10 Computational features of the problem instances under consideration 

Case study 
Products to be 

scheduled 
Equations 

Binary 
variables 

Continuous 
variables 

1 74 19480 6960 16421 

2 66 17690 6629 13070 

3 63 12928 4443 11895 

4 66 17386 6588 12994 

5 119 72386 42538 29048 

 

2.5.3 Comparisons between the solution approaches 

An extensive comparison between the two proposed solution strategies (ST1 and ST2) 

and the immediate precedence MILP model is presented. Three indicative medium-size 

case studies are considered, and an explicit comparison of the three methods is 

summarized in Table 2.11. As expected, the direct solution of the MILP model leads to 

good quality solutions with acceptable optimality gaps and within the time limit of 

1200s. Furthermore, solution strategy ST2 provides better solutions than the ST1, with 

smaller computational times and therefore schedules are better than the ones 

implemented in the plant by the operators.  
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Table 2.11 Comparison between the proposed MILP model, solution strategies ST1 and ST2 and the 
plant schedules 

Case 
study 

 IPM* ST1 ST2 
Planners 
schedule 

1 

Number of products 49 

Changeover time 
(hours) 

13,39 15.8 15,32 16,8 

Total CPU time (s) 1200 1200 730 - 

Optimality gap 12% - - - 

2 

Number of products 55 

Changeover time 
(hours) 

12.17 12.6 12.59 12.71 

Total CPU time (s) 1200 820 601 - 

Optimality gap 8% - - - 

3 

Number of products 62 

Changeover time 
(hours) 

12.55 13.31 13.18 15.29 

Total CPU time (s) 1200 1200 820 - 

Optimality gap 9.3% - - - 

*IPM= Immediate precedence MILP model 

 

A further comparison between the two proposed solution strategies for larger-scale 

problem instances is illustrated in Table 2.12. Although, both techniques are able to 

decrease the total changeover time, strategy ST2 leads to higher reduction in the total 

changeover time with less computational effort. In addition, smaller optimality gaps are 

achieved in the solution of subproblems using strategy ST2, thus affecting the quality of 

the final solution. It is worth mentioning that no solution is reported from the MILP 

model within the time limit of 1200s. 

The generated schedules, related to the third case study of the Table 2.11, are visualized 

via Gannt charts in Figure 2.9. In this problem instance, 62 products are scheduled 

within a time horizon of 90 hours. According to Table 2.11, the total changeover time is 

decreased by even 17.9% (2.7 hours) by utilizing the MILP model. A significant 

changeover time reduction is also achieved by using the solution strategies ST1 and ST2 

(1.97 and 2.1 hours respectively). 
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Table 2.12 Comparison between solution strategies ST1 and ST2 and the plant schedules 

Case study  ST1 ST2 IPM* 
Planners 
schedule 

1 

Number of products 66 

Changeover time 
(minutes) 

871 855 - 1114 

Total CPU time (s) 839 886 1200  

2 

Number of products 79 

Changeover time 
(minutes) 

932 863 1200 1115 

Total CPU time (s) 984 860 - - 

*IPM= Immediate precedence MILP model 

 

Given the huge production throughputs in the plant, the aforementioned savings 

correspond to a notable improvement of the overall profitability. The minimization of 

the total changeover time leads to an increased plant. The product dependent 

changeovers correspond to Cleaning-In-Place (CIP) and/or setup operations. Hence, the 

minimization of changeovers represents also savings in the utilization of plant 

resources, such as manpower, steam and energy consumption. Since the available 

production time is increased, maintenance activities could be planned more efficiently 

to avoid the unexpected units’ breakdowns. As a result, the generated schedules lead to 

significant improvements in the overall plant efficiency something that has been also 

acknowledged by the underlying industry 
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Figure 2.9 Gannt Charts for the plant schedule and optimized schedules 

2.5.4 Real-time tests in the plant 

For the purpose of fully validating the proposed methods, several real-time tests have 

been made in the plant. These tests are concerned with the arrival of new orders or 

order modification at real-time. As such, there is no comparison with existing 

scheduling approaches in the plant. Depending on the problem’s complexity, different 

solution methods have been used. For smaller problem instances the direct solution of 

the immediate precedence MILP model is chosen, while the use of the ST2 method is 
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preferred for larger instances. The generated optimized schedules fully satisfy all 

technical and operational constraints of the plant and they have been used to modify the 

manually generated schedule of the planners. 

2.6 Conclusions 

This work presents two MILP models and two solution strategies for the short-term 

scheduling of a real-life, large-scale, continuous process plant, of a multi-national 

consumer goods corporation. Emphasis is placed on the packing stage which constitute 

the main bottleneck of the plant. An extension of a previously proposed immediate 

precedence MILP model is used, for the efficient solution of medium size problem 

instances within solution time limitations imposed by the industry. The model takes 

into account all constraints relevant to the formulation stage in order to avoid infeasible 

schedules in the packing stage. Furthermore, two MILP-based decomposition strategies 

are developed for the solution of larger problem instances.  Both techniques constitute 

problem-specific methods, resulting in relatively good quality solutions which compare 

favorably with schedules realized on the plant. Significant benefits related to the 

productivity of the plant are achieved, for a large set of realistic problems. All generated 

schedules have been fully validated by the industry. As expected for small or even 

medium size problems the direct solution of the immediate precedence MILP model is 

preferred. For larger problem instances solution strategy ST2 compares favorably with 

solution strategy ST1. The proposed approaches can provide significant support to 

scheduling decision makers in order to cope with challenging scheduling problems 

typically met in industrial facilities. This work illustrates the impact of scheduling 

optimization on the overall performance of an industrial facility and provides clear 

evidence for the need of using optimization-based techniques for challenging scheduling 

problems. Finally, this work highlights some serious obstacles that have to be 

confronted in order to successfully implement scheduling optimization methods in the 

industrial environment. The accuracy of the data is vital for the solution quality, hence 

the direct connection of the scheduling methods with the EPR system via integrated 

tools is critical.  In the course of this study it was revealed that often the generated 

schedules should be easily modified by the plant operators, due to frequent unexpected 

events occurred, such as new order arrivals or order cancellations. For this end, the 
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solution visualization via interactive Gannt charts provides the decision makers with 

flexibility and allows necessary adjustments prior to the final application of the 

proposed schedules. 

 

Nomenclature 

Indices/Sets 

𝑖 ∈ 𝐼 Production orders 

𝑗 ∈ 𝐽 Production units 

𝐼𝐽 Production orders that can be produced in unit j 

𝑃𝐼 
Subset of production orders, inserted in the production schedule 

generated by a solution strategy 

Parameters 

𝐻𝑜𝑟 The scheduling horizon under consideration 

 𝑇𝑖  processing time of each product order 𝑖 ∈ 𝐼 

𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟𝑖,𝑖′  
Changeover time between two consecutive production orders 𝑖 ∈ 𝐼 and 
𝑖′ ∈ 𝐼 

𝐷𝐷𝐴𝑇𝐸𝑖  Due dates of product order 𝑖 ∈ 𝐼 

𝐿𝑖𝑚𝑖𝑡 
Upper limit of intermediate product’s changeovers, coming from 
different formula types 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑖   

𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑖 Formula type of intermediate product 𝑖 ∈ 𝐼 

𝐷𝑖  Demand of product order 𝑖 ∈ 𝐼 

𝑃𝑅𝑖 Packing rate of product order 𝑖 ∈ 𝐼 

𝑤𝑖𝑛𝑑𝑜𝑤𝑖 
Parameter, taking the value 1, if a product campaign has to take place 
during a specific time window. 

𝐿𝑜𝑤𝑒𝑟𝑖 The lower limit of a production order’s 𝑖 ∈ 𝐼 starting time  

Variables 

𝑌𝑖,𝑗 binary variable denoting that order 𝑖 ∈ 𝐼 is allocated to unit j 
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𝐶𝑖 completion time of order 𝑖 ∈ 𝐼 

𝑋𝑖,𝑖′,𝑗 
global sequencing of product orders that is activated when order 𝑖 ∈ 𝐼 is 

processed before order 𝑖′ ∈ 𝐼 

𝑋𝑋𝑖,𝑖′,𝑗  
immediate sequencing binary variable that is activated when order 𝑖 ∈ 𝐼 is 

processed exactly before order 𝑖′ ∈ 𝐼 

𝐶𝑚𝑎𝑥 total production makespan 

𝐶𝑇 
total changeover time 

 

𝑍𝑖,𝑖′,𝑗  
Position difference of products 𝑖 ∈ 𝐼 and 𝑖′ ∈ 𝐼 which are both assigned to 

the same production unit j 



Production scheduling of flexible continuous make-and-pack processes with byproducts 
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3 
3. Production scheduling of 

continuous make-and-pack processes 

with byproducts recycling 

3.1 Introduction 

Nowadays, several companies from various industrial sectors, such as food and 

beverages, pharmaceuticals, chemicals and fast-moving consumer goods (FMCGs), have 

adopted make-and-pack production processes. Due to variable production rates, a 

challenge typically met in continuous make-and-pack processes is the necessity to 

synchronize the production rates of consecutive stages (Elekidis and Georgiadis, 2021; 

Klanke et al., 2021). Thus, continuous stages are often decoupled by deploying 

intermediate storage vessels (Méndez and Cerdá, 2002).  

Several early research contributions addressed the scheduling optimization problem of 

continuous make-and-pack processes, with intermediate storage facilities (Giannelos 

and Georgiadis, 2002; Méndez and Cerdá, 2002). However these approaches can only 

applied to small or medium sized problems  Furthermore, later approaches are based 

on non-realistic assumptions and as a result they lead to infeasible or suboptimal 

solutions (Klanke et al., 2020, 2021; Yfantis et al., 2019). Hence, the development of 

efficient mathematical frameworks for the scheduling of large-scale continuous make-

and-pack industries with flexible intermediate storage vessels constitutes a significant 

research gap.  

Additionally, product-dependent changeovers, mainly occurred by cleaning operations, 

have to be minimized to increase the productivity of production facilities. In cases when 

cleaning with water can affect the quality of products, an undesirable amount of 

byproduct waste is generated between two consecutive campaigns. Usually, the 
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byproducts can be recycled into the next production campaigns. This industrial policy is 

typically met in liquid detergents industries (Elekidis et al., 2019; Elekidis and 

Georgiadis, 2021). However, according to the best of our knowledge the modelling of 

byproducts recycling streams has not been addressed in consumer goods industries, 

while only a few research contributions have been focused on modelling the generation 

of byproduct waste in the paper industry (Castro et al., 2009c) 

In this chapter, a new continuous-time, precedence-based MILP model is proposed for 

the scheduling optimization problem of multiproduct make-and-pack continuous 

processes, with intermediate storage facilities. The model includes allocation, timing 

and sequencing constraints. In the vast majority of scheduling models, a time horizon 

discretization approach is employed to efficiently handle material balance constraints 

(Klanke et al., 2021; Stefansson et al., 2011).  This work introduces a new set of binary 

variables to accurately handle material balances and prevent overloading of storage 

vessels, without requiring any type of time horizon discretization. Furthermore, 

multiple production orders, produced by the same intermediate product type, are 

allowed to simultaneously be stored in the same storage vessel, via new explicit mass 

balance constraints. These constraints are based on extensions of previous precedence-

based frameworks (Méndez and Cerdá 2002a). Additionally, in recently proposed MILP 

frameworks (Klanke et al., 2021, 2020; Yfantis et al., 2019), it is assumed that all types 

of intermediate products can be stored simultaneously in a single buffer tank, by 

considering only an aggregated capacity constraint.  However, this assumption is not 

realistic, and it can lead to production schedules which cannot be implemented in 

practice. In the proposed MILP model explicit mass balance constraints are included for 

each buffer tank without relying on this assumption. Moreover,  in the work of  Klanke 

et al., (2021), it is assumed that all intermediate products are obligatorily stored into a 

buffer tank. This work relaxes this assumption by allowing, a more flexible storage and 

processing policy, since an intermediate product can either be temporarily stored into a 

buffer tank, or it can be routed directly to a packing line, bypassing the storage vessels. 

This flexible storage policy can lead to significant productivity benefits. Finally, new 

resource constraints related to the generation and recycling of byproduct waste are 

introduced to improve the utilization of raw materials and minimize byproducts 

management costs. A decomposition-based strategy is also proposed for the solution of 
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real-life, large-scale industrial problem instances. Several case studies inspired by 

consumer goods industries have been solved, to illustrate the efficiency and 

applicability of the proposed framework using different objectives. 

3.2 Problem statement 

The process under consideration consists of two main continuous stages and it has been 

mainly inspired by multinational, large-scale, consumer goods industries (Elekidis et al., 

2019). These industrial facilities operate as a make-and-pack production process. A 

plethora of raw materials is transformed into intermediate products through a 

continuous production/formulation process. The intermediate products are packaged 

in several package sizes or types and numerous final products are distributed to 

customers.  

Depending on the specific product features, the bottleneck of the process could be 

either detected in the formulation or the packing stage. Since there is usually no clear 

production bottleneck, both stages have to be scheduled in detail. The utilization of 

intermediate buffers can provide the necessary flexibility to overcome these limitations 

and to synchronize both stages. The production time of each product can be modified, 

depending on the utilization of buffer tanks. An intermediate product can be 

temporarily stored in a buffer tank, or it can be directly transferred to packing lines 

bypassing storage. If an intermediate product is transferred to a buffer tank, both stages 

can operate at their highest throughput. Otherwise, the slowest stage determines the 

rate of both stages. Once a product campaign starts, it must be carried out until 

completion without interruption, as the splitting of product orders is not allowed.  

Furthermore, frequent changes of raw materials, used in the formulation stage, lead to 

the generation and accumulation of undesirable amounts of byproduct waste. The 

generated liquid waste is recycled, so that small portions of it are reused into one of the 

next production campaigns without affecting the quality of products. This policy is 

typically met in liquid detergent production plants, as cleaning with water or air can 

cause the generation of undesirable amount of foam. Furthermore, if liquids are filed 

into tablets, even small amounts of water can dissolve the tablet film.  A schematic 

representation of the plant layout is illustrated in Figure 3.1. 
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Figure 3.1 Plant layout 

  

The problem under consideration can be formally stated as follows: 

 

Given: 

• A set of production orders 𝑖, 𝑖′ ∈ 𝐼, produced by an intermediate product type 

(recipe), given by parameter  𝑓𝑖  

• A set of processing units,  𝑗 ∈ 𝐽 

• A set of processing stages, 𝑠 ∈ 𝑆 

• A set of flexible intermediate storage tanks, 𝑣 ∈ 𝑉, and their corresponding 

capacity, 𝑒𝑣  
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• Due dates of production orders, 𝑑𝑖 

• Demand of product orders, 𝑑𝑚𝑖 

• Maximum production rates of production orders at each stage, 𝑟𝑖,𝑠 

• Changeover times, between the production of two consecutive production orders 

in each stage 𝑛𝑖,𝑖′,𝑠 

• Capacity of byproduct tanks of each processing unit of stage 1, 𝑐𝑝𝑗 . 

 

Determine: 

• The allocation of products to processing units, 𝑌𝑖,𝑗 

• The allocation of products to intermediate storage tanks, 𝑌𝑉𝑖,𝑣 

• The sequencing of product orders in the processing units, 𝑋𝑖′,𝑖,𝑗 

• The starting time, 𝑆𝑇𝑖,𝑠, the processing time, 𝑇𝑖,𝑠, and the completion time, 𝐶𝑇𝑖,𝑠, of 

each production order at each stage. 

• The produced, 𝑂𝑖,  and the recycled, 𝑊𝑖 , amount of byproduct   

• The total production cost, TC 

3.3 MILP model 

In this section, an immediate-precedence, multi-stage model, of continuous processes is 

described. Instead of using a discrete-time horizon, a set of binary variables is 

introduced to correctly handle mass balance constraints. Product orders made of the 

same intermediate product may coexist in the same buffer tank for a period of time. An 

intermediate product can be temporarily stored in a storage vessel or it can be 

transferred directly to a packing line. However, a product campaign cannot be split.  

Previous research works (Méndez and Cerdá 2002a; Giannelos and Georgiadis 2003), 

illustrated that several product campaigns are consecutively operated in the same unit, 

but at different processing rates. This policy is not typically met in real-life industrial 
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facilities, since it leads to higher demand for manpower and generates unnecessary idle 

times (Méndez and Cerdá 2002a). In this work, if an intermediate product is transferred 

to a buffer tank, both stages operate at their highest speed. Otherwise, the slowest stage 

determines the rate of both stages. Constraints are grouped according to the type of 

decision (e.g., assignment, timing, sequencing, etc.) as follows. A detailed description of 

model sets, variables and parameters is presented in the nomenclature section at the 

end of the chapter. 

 

Assignment constraints 

 

∑ 𝑌𝑖,𝑗
𝑗𝜖 (𝐽𝐼𝑖 ∩ 𝐽𝑆𝑠)

= 1   ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (3.1) 

 

Constraints (3.1) guarantee that each product order, 𝑖 is assigned to one processing unit 

j, (𝑗 ∈ 𝐽𝐼𝑖),  at each production stage 𝑠, (𝑗 ∈ 𝐽𝑆𝑠). 

Product orders sequencing constraints 

∑ 𝑋𝑖′,𝑖,𝑗 ≤ 𝑌𝑖,𝑗
𝑖′∈ 𝐼∶ 𝑖′≠𝑖

   ∀𝑖 ∈ 𝐼, 𝑗 ∈  𝐽𝐼𝑖  
(3.2) 

∑ 𝑋𝑖,𝑖′,𝑗 ≤ 𝑌𝑖,𝑗
𝑖′∈ 𝐼∶ 𝑖′≠𝑖

   ∀𝑖 ∈ 𝐼, 𝑗 ∈  𝐽𝐼𝑖  
(3.3) 

∑   ∑ 𝑋𝑖,𝑖′,𝑗 + 1 = ∑ 𝑌𝑖,𝑗
𝑖∈𝐼𝐽𝑗𝑖′∈𝐼𝐽𝑗 : 𝑖

′≠𝑖𝑖∈𝐼𝐽𝑗
 

   ∀𝑗 ∈ 𝐽 (3.4) 

 

Binary variables 𝑋𝑖′,𝑖,𝑗  define the local immediate precedence between two products 𝑖 

and 𝑖′. They are equal to 1, only if a product order 𝑖′ comes immediately after production 

order 𝑖 in processing unit 𝑗. Constraints (3.2) and (3.3) ensure that, if production order 𝑖 

is allocated to packing line  𝑗 , at most one production order comes before and after it, 

respectively. If a production order is processed first or last, then it has no predecessor 
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or successor. According to constraints (3.4), the total number of sequences in a 

processing unit 𝑗 has to be equal to the total number of produced orders minus one. 

Timing constraints 

𝐶𝑇𝑖,𝑠 = 𝑇𝑖.𝑠 + 𝑆𝑇𝑖,𝑠     ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 

 

(3.5) 

𝑇𝑖,𝑠 =∑𝑌𝑉𝑖,𝑣
𝑣∈𝑉

𝑝𝑚𝑖,𝑠 + 𝑝𝑙𝑖 (1 −∑𝑌𝑉𝑖,𝑣
𝑣∈𝑉

)     ∀ 𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 
(3.6) 

∑𝑌𝑉𝑖,𝑣
𝑣∈𝑉

 ≤ 1           ∀ 𝑖 ∈ 𝐼 (3.7) 

 

According to constraints (3.6), if an intermediate product is transferred to a buffer tank, 

both stages operate at their highest speed and the processing time is equal to the 

minimum processing time. Otherwise, the slowest stage determines the rate of both 

stages and therefore the processing time is equal to the maximum 𝑝𝑙𝑖. In addition, 

constraints (3.5) express that the completion time of each product is equal to the 

starting time plus the processing time. Constraints (3.7), guarantee that each product 

order is assigned at most in one storage vessel. 

 

𝑆𝑇𝑖′,𝑠 ≥ 𝐶𝑇𝑖,𝑠 + 𝑋𝑖,𝑖′,𝑗𝑛𝑖,𝑖′,𝑠 − ℎ(1 − 𝑋𝑖,𝑖′,𝑗)  

 ∀ 𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑗 ∈ ( 𝐽𝑆𝑠 ∩ (𝐽𝐼𝑖 ∩  𝐽𝛪𝑖′) ) ∶ 𝑖
′ ≠ 𝑖 

 

(3.8) 

𝑆𝑇𝑖′,𝑠 ≤ 𝐶𝑇𝑖,𝑠 + 𝐿𝑖,𝑖′,𝑠 + 𝑋𝑖,𝑖′,𝑗𝑛𝑖,𝑖′,𝑠 + ℎ(1 − 𝑋𝑖,𝑖′,𝑗)   

∀ 𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼, 𝑠 ∈ 𝑆, 𝑗 ∈ ( 𝐽𝑆𝑠 ∩ ( 𝐽𝛪𝑖 ∩  𝐽𝛪𝑖′) ) ∶ 𝑖
′ ≠ 𝑖 

(3.9) 

 

The big-M constraints (3.8) define the timing decisions of each product order. Since a 

product order 𝑖′  is operated immediately after product order 𝑖, in stage 𝑠,  the starting 

time 𝑆𝑇𝑖′,𝑠 has to be larger than the sum of the completion time 𝐶𝑇𝑖,𝑠 and the related 
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changeover time 𝑛𝑖,𝑖′,𝑠. On the other hand, if binary variable 𝑋𝑖,𝑖′,𝑗, is equal to 0 and the 

specified sequence does not take place, the constraints are relaxed.   

Extending previous precedence-based frameworks (Méndez and Cerdá 2002a; Elekidis, 

Corominas, and Georgiadis 2019; Cerdá, Cafaro, and Cafaro 2020), constraint (3.9) is 

also included in the model framework, to examine possibly generated idle times. Thus, 

the starting time of each product order 𝑆𝑇𝑖′,𝑠 has to be larger than the sum of the ending 

time of the previously operated product 𝐶𝑇𝑖,𝑠, the related changeover time 𝑛𝑖,𝑖′,𝑠 and the 

idle time between the consecutive campaigns, 𝐿𝑖,𝑖′,𝑠. 

Buffer timing constraints 

Constraints (3.10) and (3.11) and establish the sequence of production orders, 

containing different intermediate products (𝑓𝑖 ≠ 𝑓𝑖′), that are temporarily stored in the 

same intermediate buffer tank. If a production run 𝑖′ is stored in a storage vessel 𝑣 after 

a production run 𝑖 , the starting time 𝑆𝑇𝑖′,1 has to be bigger than the completion time 

𝐶𝑇𝑖,2. 

 

𝐶𝑇𝑖,2 ≤ 𝑆𝑇𝑖′,1 + ℎ(2 − 𝑌𝑉𝑖,𝑣 − 𝑌𝑉𝑖′,𝑣)  + ℎ(1 − 𝑋𝑉𝑖,𝑖′,𝑣)  

 ∀ 𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼, 𝑣 ∈ 𝑉 ∶ 𝑖′ > 𝑖 

 

(3.10) 

𝐶𝑇𝑖′,2 ≤ 𝑆𝑇𝑖,1 + ℎ(2 − 𝑌𝑉𝑖,𝑣 − 𝑌𝑉𝑖′,𝑣)  + ℎ𝑋𝑉𝑖,𝑖′,𝑣  

 ∀ 𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼, 𝑣 ∈ 𝑉: 𝑖′ > 𝑖 

 

(3.11) 

Usually, production orders that are made by the same intermediate product may coexist 

in the same buffer tank for some period of time. Extending previous precedence-based 

frameworks (Méndez and Cerdá 2002a; Cerdá, Cafaro, and Cafaro 2020), constraints 

(3.12) and (3.13) are introduced to account for this case. 

𝑆𝑇𝑖′,1 ≤ 𝑆𝑇𝑖,1 + ℎ(2 − 𝑌𝑉𝑖,𝑣 − 𝑌𝑉𝑖′,𝑣)  + ℎ(1 − 𝑋𝑉𝑖′,𝑖,𝑣)  (3.12) 
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 ∀𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼, 𝑣 ∈ 𝑉 ∶ 𝑖′ > 𝑖, 𝑓𝑖 = 𝑓𝑖′   

 

𝑆𝑇𝑖,1 ≤ 𝑆𝑇𝑖′,1 + ℎ(2 − 𝑌𝑉𝑖,𝑣 − 𝑌𝑉𝑖′,𝑣)  + ℎ𝑋𝑉𝑖′,𝑖,𝑣  

 ∀𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼, 𝑣 ∈ 𝑉 ∶ 𝑖′ > 𝑖, 𝑓𝑖 = 𝑓𝑖′   

(3.13) 

 

In particular, since the two product orders are made by the same recipe (𝑓𝑖 = 𝑓𝑖′), they 

can be simultaneously stored in the same tank. In that case, product 𝑖 can be filled into 

the storage tank before the completion of packing stage of product 𝑖′ and the starting 

time 𝑆𝑇𝑖,1   has to be greater than the starting time 𝑆𝑇𝑖′1 , if they are sequentially stored 

in the same vessel (𝑋𝑉𝑖′,𝑖,𝑣 =1). 

Definition of auxiliary binary variables 𝒀𝑶𝒊,, 𝒁𝒊,𝒊′ , 𝑷𝒊,𝒊′  and 𝑲𝒊,𝒊′  

An auxiliary binary variably, 𝑌𝑂𝑖, is introduced to satisfy the necessary mass balance 

constraints for each product order. Binary variables, 𝑌𝑂𝑖, take the value 1, only if a 

product order starts packing, 𝑆𝑇𝑖,2, later than completing the formulation stage (𝐶𝑇𝑖,1).  

𝑆𝑇𝑖,2 ≥ 𝑆𝑇𝑖,1 − ℎ(1 − 𝑌𝑂𝑖)   ∀𝑖 ∈ 𝐼 (3.14) 

𝑆𝑇𝑖,2 ≥ 𝐶𝑇𝑖,1 − ℎ(1 − 𝑌𝑂𝑖)   ∀𝑖 ∈ 𝐼 (3.15) 

A new set of binary variables is furthermore introduced to efficiently satisfy storage 

capacity constraints, for products that may coexist in the same buffer tank.  The binary 

variables 𝑍𝑖,𝑖′  take the value 1, only if a product order 𝑖 starts packing (𝑆𝑇𝑖,2) earlier than 

the completion time of the formulation stage (𝐶𝑇𝑖′,1 ) of product order 𝑖′. 

𝑆𝑇𝑖,2 ≥ 𝐶𝑇𝑖′,1 − ℎ𝑍𝑖,𝑖′    ∀𝑖 ∈ 𝐼, 𝑖
′ ∈ 𝐼 ∶ 𝑖′ ≠ 𝑖  

 

(3.16) 

𝑆𝑇𝑖,2 ≤ 𝐶𝑇𝑖′,1 + ℎ(1 − 𝑍𝑖,𝑖′  )  ∀𝑖 ∈ 𝐼, 𝑖
′ ∈ 𝐼 ∶ 𝑖′ ≠ 𝑖  (3.17) 

 

The binary variables 𝑃𝑖,𝑖′  take the value 1, only if a product order 𝑖 starts packing (𝑆𝑇𝑖,2) 

earlier than the starting time of the packing stage (𝑆𝑇𝑖′,2 ) of product order 𝑖′. 
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𝑆𝑇𝑖,2 ≥ 𝑆𝑇𝑖′,2 − ℎ𝑃𝑖,𝑖′    ∀𝑖 ∈ 𝐼, 𝑖
′ ∈ 𝐼 ∶ 𝑓𝑖 = 𝑓𝑖′   (3.18) 

𝑆𝑇𝑖,2 ≤ 𝑆𝑇𝑖′,2 + ℎ(1 − 𝑃𝑖,𝑖′  )  ∀𝑖 ∈ 𝐼, 𝑖
′ ∈ 𝐼 ∶  𝑓𝑖 = 𝑓𝑖′    

 

(3.19) 

The binary variables 𝐾𝑖,𝑖′  take the value 1, only if a product order 𝑖 completes 

formulation (𝐶𝑇𝑖,1) earlier than the completion time of the formulation stage (𝐶𝑇𝑖′,1 ) of 

product order 𝑖′. 

 

𝐶𝑇𝑖,1 ≥ 𝐶𝑇𝑖′,1 − ℎ𝐾𝑖,𝑖′    ∀𝑖 ∈ 𝐼, 𝑖
′ ∈ 𝐼 ∶ 𝑓𝑖 = 𝑓𝑖′    

 

(3.20) 

𝐶𝑇𝑖,1 ≤ 𝐶𝑇𝑖′,1 + ℎ(1 − 𝐾𝑖,𝑖′  )  ∀𝑖 ∈ 𝐼, 𝑖
′ ∈ 𝐼 ∶  𝑓𝑖 = 𝑓𝑖′     

 

(3.21) 

Mass balance constraints 

Since all storage tanks have finite capacities, the net amount of material stored in a tank 

should never exceed its capacity. Assuming that the production rate of an intermediate 

is greater than the overall consumption rate (packing rate), the capacity constraints 

should only be enforced at the completion time of the formulation stage; see the yellow 

arrows in Figure 3.2. However, one cannot guarantee that the production rate in the 

formulation stage will be greater than or equal to the overall consumption rate for any 

product. Thus, the capacity constraints must also be enforced at the starting time of 

every packing order; see the red arrow in Figure 3.2, (Méndez and Cerdá 2002a).  

Figure 3.2 illustrates the profile of the buffer level when multiple products belonging to 

the same product family (they are produced by the same intermediate product) can be 

stored simultaneously in the same tank.  The production rate of product 1 is higher than 

its packing rate. Therefore, the capacity constraints have to be enforced at the 

completion time of its formulation stage (t1). On the contrary, the packing rate of 

product 2 is higher than the rate of its formulation stage and therefore capacity 
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constraints must also be enforced at the starting time of the packing order of product 2 

(t3). 

 

Figure 3.2 Buffer level where the coexistence of multiple product orders is allowed 

 

The variable 𝑄𝑖, expresses the maximum stored amount of product order 𝑖, if product 𝑖 

does not coexist with other product orders in the same storage tank. 

𝑄𝑖 ≤  ∑𝑒𝑣 𝑌𝑉𝑖,𝑣
𝑣∈𝑉

    ∀𝑖 ∈ 𝐼 (3.22) 

 

Constraint (3.22) ensures that the stored amount of a product order (𝑄𝑖, ), does not 

exceed the capacity of the storage vessel (𝑒𝑣), only if this product is allocated to a 

storage vessel v. 

Constraints, (3.23), (3.24) and (3.25) define the value of variable 𝑄𝑖, . The auxiliary 

binary variable 𝑌𝑂𝑖 has a vital role in mass balance constraints. According to constraints 

(3.14) and (3.15),  𝑌𝑂𝑖, takes the value 1, only if a product order starts packing (𝑆𝑇𝑖,2) 

later than completing the formulation stage (𝐶𝑇𝑖,1). In this case, storage constraints are 

forced at the end of the formulation stage. In Figure 3.2, variable 𝑌𝑂1 is 0 while variable 

𝑌𝑂2 is 1.  
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𝑄𝑖 ≥ 𝑝𝑚𝑖,1 𝑟𝑖,1  ∑𝑌𝑉𝑖,𝑣
𝑣∈𝑉

− 𝑝𝑚𝑖,1 𝑟𝑖,1(1 − 𝑌𝑂𝑖)    ∀𝑖 ∈ 𝐼 
(3.23) 

 

 

Figure 3.3 Illustrative example where the two stages do not operate simultaneously 

 

Constraints (3.23) are activated when there is no overlapping between the two stages 

(𝑌𝑂𝑖, = 1). Under these circumstances, the stored amount 𝑄𝑖 should be equal to 𝑝𝑚𝑖,1𝑟𝑖,1 

, as it is depicted in Figure 3.3. Constraint (3.23) is activated only if product i is stored in 

one of the available buffers (∑ 𝑌𝑉𝑖,𝑣𝑣 = 1) . If variable 𝑌𝑂𝑖, = 0, the term 𝑝𝑚𝑖,1𝑟𝑖,1 is 

utilized as big-M value and the RHS value of the constraint is forced to zero. 

On the other hand, if a packing operation starts while the related intermediate product 

is still filled into a buffer tank (𝑌𝑂𝑖, = 1), constraints (3.24) and (3.25) are activated. 

Two separate cases are examined. Constraints (3.24) define the stored amount 𝑄𝑖, in 

cases where the main bottleneck is detected in the first stage (𝑟𝑖,2 > 𝑟𝑖,1 , 𝑝𝑚𝑖,2 < 𝑝𝑚𝑖,1 ). 

Under these circumstances, the stored amount is equal to the term (𝑆𝑇𝑖,2 − 𝑆𝑇𝑖,1)𝑟𝑖,1. An 

illustrative example is presented in Figure 3.4. 
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Figure 3.4 Indicative example where formulation stage constitutes the main bottleneck 

 

 Furthermore, the term (𝑑𝑖−𝑝𝑚𝑖,2) 𝑟𝑖,1 plays the role of big-M value, in constraints 

(3.24). The selection of the big-M values has a crucial impact on the computational 

complexity of a MILP model and the selected values should be as small as possible. Since 

variable 𝑆𝑇𝑖,2 is less than or equal to the corresponding due date (𝑑𝑖) minus its 

corresponding minimum processing time 𝑝𝑚𝑖,2,  (𝑆𝑇𝑖,2 ≤ 𝑑𝑖 − 𝑝𝑚𝑖,2) and variable 

𝑆𝑇𝑖,1 is greater than zero (𝑆𝑇𝑖,1 ≥ 0), the first term of the RHS is less than or equal to the 

term (𝑑𝑖−𝑝𝑚𝑖,2) 𝑟𝑖,1. 

 

𝑄𝑖 ≥ (𝑆𝑇𝑖,2 − 𝑆𝑇𝑖,1)𝑟𝑖,1 − (𝑑𝑖−𝑝𝑚𝑖,2) 𝑟𝑖,1 𝑌𝑂𝑖 −  

−(𝑑𝑖−𝑝𝑚𝑖,2) 𝑟𝑖,1(1 −∑𝑌𝑉𝑖,𝑣
𝑣∈𝑉

)      ∀𝑖 ∈ 𝐼 ∶ 𝑝𝑚𝑖,2 < 𝑝𝑚𝑖,1 

 

(3.24) 



Production scheduling of flexible continuous make-and-pack processes with byproducts 

recycling 

 

82 
` 

 

𝑄𝑖 ≥ 𝑝𝑚𝑖,1𝑟𝑖,1∑  𝑌𝑉𝑖,𝑣
𝑣∈𝑉

− (𝐶𝑇𝑖,1 − 𝑆𝑇𝑖,2)𝑟𝑖,2 − 

−[𝑝𝑚𝑖,1𝑟𝑖,1 +(𝑑𝑖−𝑝𝑚𝑖,2 − 𝑝𝑚𝑖,1) 𝑟𝑖,2]𝑌𝑂𝑖         ∀𝑖 ∈ 𝐼 ∶ 𝑝𝑚𝑖,1 ≤ 𝑝𝑚𝑖,2 

 

(3.25) 

 

Figure 3.5 Illustrative example where the main bottleneck is detected in the packing stage 

 

In cases like the one illustrated in Figure 3.5, where the main bottleneck is detected in 

the packing stage (𝑟𝑖,1 ≥ 𝑟𝑖,2 , 𝑝𝑚𝑖,1 ≤ 𝑝𝑚𝑖,2), the stored amount 𝑄𝑖, is defined by 

constraint (3.25). Then the stored amount is equal to the inserted product ( 𝑝𝑚𝑖,1𝑟𝑖,1) 

minus the exported quantity which is equal to the term (𝐶𝑇𝑖,1 − 𝑆𝑇𝑖,2)𝑟𝑖,2.  

The term [𝑝𝑚𝑖,1𝑟𝑖,1  + (𝑑𝑖−𝑝𝑚𝑖,2 − 𝑝𝑚𝑖,1) 𝑟𝑖,2] is used as a big-M value and is activated if 

variable 𝑌𝑂𝑖=1. In particular, the term 𝑝𝑚𝑖,1𝑟𝑖,1 is included to cancel the term of the 

inserted amount while the term (𝑑𝑖−𝑝𝑚𝑖,2 − 𝑝𝑚𝑖,1) 𝑟𝑖,1 is used to cancel the term of the 

exported amount. If variable 𝑌𝑂𝑖=1 then (𝑆𝑇𝑖,2 ≥ 𝐶𝑇𝑖,1) and therefore the term −(𝐶𝑇𝑖,1 −
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𝑆𝑇𝑖,2)𝑟𝑖,2 ≥ 0. Since 𝑆𝑇𝑖,2 ≤ 𝑑𝑖 − 𝑝𝑚𝑖,2 and 𝐶𝑇𝑖,1 ≥ 𝑝𝑚𝑖,1, it is concluded that  −(𝐶𝑇𝑖,1 −

𝑆𝑇𝑖,2)𝑟𝑖,2 ≤(𝑑𝑖−𝑝𝑚𝑖,2 − 𝑝𝑚𝑖,1) 𝑟𝑖,2. 

 

Mass balance constraints for product orders produced by the same intermediate 

product type (recipe)   

As has been previously mentioned, production orders which are made by the same 

intermediate product (𝑓𝑖 = 𝑓𝑖′), may be stored simultaneously in the same buffer tank 

for some period of time.  To ensure that the net amount of storage material does not 

exceed the capacity of storage vessels, explicit mass balance constraints are enforced 

both at the completion time of formulation stage and at the starting time of packing 

stage of each product.  

Mass balance constraints at the completion time of formulation stage 

 

𝑄𝑇𝑖 ≥ ∑ 𝑄𝐼𝑖′,𝑖 

𝑖′∈ 𝐼∶   𝑓𝑖=𝑓𝑖′  

− ∑ 𝑄𝐸𝑖′,𝑖
𝑖′∈ 𝐼∶  𝑓𝑖=𝑓𝑖′  

      ∀𝑖 ∈ 𝐼   (3.26) 

𝑄𝑇𝑖 ≤  ∑𝑒𝑣𝑌𝑉𝑖,𝑣
𝑣∈𝑉

    ∀𝑖 ∈ 𝐼  (3.27) 

 

The variable 𝑄𝑇𝑖 is introduced to define the net amount stored, at the completion time 

of formulation stage of product 𝑖, (𝐶𝑇𝑖,1). According to constraints (3.26) the 

accumulated amount is greater than the total inserted amount, 𝑄𝐼𝑖′,𝑖, minus the total 

exported quantity, 𝑄𝐸𝑖′,𝑖. The orders 𝑖′ are made by the same recipe ( 𝑓𝑖 = 𝑓𝑖′) and may 

coexist in the same buffer tank with product 𝑖. Constraints (3.27) guarantee that the 

stored amount (𝑄𝑇𝑖,), will not exceed the related capacity of vessel 𝑣,  (𝑒𝑣).  

To satisfy capacity constraints (3.27), the mathematical model tends both to decrease 

the total inserted amount and increase the exported amount. Thus, a set of inequalities 

are additionally introduced to impose the required bounds on both variables 𝑄𝐼𝑖′,𝑖 and 

𝑄𝐸𝑖′,𝑖. The corresponding inequality constraints are presented below.  



Production scheduling of flexible continuous make-and-pack processes with byproducts 

recycling 

 

84 
` 

 

𝑄𝐸𝑖′,𝑖 ≤ 𝑑𝑚𝑖′∑(𝑋𝑉𝑖′,𝑖,𝑣 + 𝑋𝑉𝑖,𝑖′,𝑣)

𝑣∈𝑉

     ∀𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼 ∶ 𝑓𝑖 = 𝑓𝑖′  
(3.28) 

𝑄𝐸𝑖′,𝑖 ≤ (𝐶𝑇𝑖,1 − 𝑆𝑇𝑖′,2)𝑟𝑖′,2 + 𝑑𝑖𝑟𝑖′,2(1 − 𝑍𝑖′,𝑖)          ∀𝑖 ∈ 𝐼, 𝑖
′ ∈ 𝐼 ∶ 𝑓𝑖 = 𝑓𝑖′  (3.29) 

 

Variables 𝑄𝐼𝑖′,𝑖 are defined by a set of big-M constraints (3.28) and (3.29). The auxiliary 

variable 𝐾𝑖′,𝑖, plays a significant role in mass balance constraints. More specifically, 

variable 𝐾𝑖,𝑖′  takes the value 1, only if a product order 𝑖′ completes its formulation 

(𝐶𝑇𝑖,1) earlier than the completion time of the formulation stage (𝐶𝑇𝑖′,1 ) of product 

order 𝑖′. 

 Similar to constraints (3.24) the term 𝑑𝑖𝑟𝑖′,1 plays the role of a big-M value in 

constraints (3.29). Variable 𝐶𝑇𝑖,1 is less than or equal to the corresponding due time, 

(𝐶𝑇𝑖,1 ≤ 𝑑𝑖), while variable 𝑆𝑇𝑖′,1is greater than o equal to zero (𝑆𝑇𝑖′,1 ≥ 0). Therefore, 

the value of the term  (𝐶𝑇𝑖,1 − 𝑆𝑇𝑖′,1)𝑟𝑖′,1 is less than or equal to 𝑑𝑖𝑟𝑖′,1. 

 

Figure 3.6 Illustration of the role of 𝑄𝐼𝑖,𝑖′  and  𝑄𝐸𝑖,𝑖′  variables 
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Once the variable 𝐾𝑖,𝑖′  is equal to 1, the inserted amount should be equal to the total 

amount 𝑑𝑚𝑖′ , according to constraints (3.28). Otherwise, constraints (3.29) are 

activated and the inserted amount is forced to be equal to the term (𝐶𝑇𝑖,1 − 𝑆𝑇𝑖′,1)𝑟𝑖′,1. 

Both constraints (3.28) and (3.29) should be activated only if both products 𝑖 and 𝑖′ are 

stored at the same tank, (∑ (𝑋𝑉𝑖′,𝑖,𝑣 + 𝑋𝑉𝑖,𝑖′,𝑣)𝑣
= 1). For the sake of the clarity of this 

idea, an illustrative example is shown in Figure 3.6.  

 

𝑄𝐸𝑖′,𝑖 ≤ 𝑑𝑚𝑖′∑(𝑋𝑉𝑖′,𝑖,𝑣 + 𝑋𝑉𝑖,𝑖′,𝑣)

𝑣∈𝑉

     ∀𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼 ∶ 𝑓𝑖 = 𝑓𝑖′  
(3.30) 

𝑄𝐸𝑖′,𝑖 ≤ (𝐶𝑇𝑖,1 − 𝑆𝑇𝑖′,2)𝑟𝑖′,2 + 𝑑𝑖𝑟𝑖′,2(1 − 𝑍𝑖′,𝑖)          ∀𝑖 ∈ 𝐼, 𝑖
′ ∈ 𝐼 ∶ 𝑓𝑖 = 𝑓𝑖′  (3.31) 

𝑄𝐸𝑖′,𝑖 ≤ 𝑑𝑚𝑖′𝑍𝑖′,𝑖     ∀𝑖 ∈ 𝐼, 𝑖
′ ∈ 𝐼 ∶ 𝑓𝑖 = 𝑓𝑖′  (3.32) 

 

To define variables 𝑄𝐸𝑖′,𝑖, auxiliary variable  𝑍𝑖′,𝑖 , is utilized. Constraints (3.30) and 

(3.32) ensure that the amount of 𝑄𝐸𝑖′,𝑖 does not exceed the total amount of product 𝑖′, 

(𝑑𝑚𝑖′). If a product 𝑖′ either starts packing (𝑆𝑇𝑖′,2) later than the completion time of the 

formulation stage (𝐶𝑇𝑖,1 ) of product 𝑖, (𝑍𝑖′,𝑖 = 0), or it is not allocated to the same buffer 

tank  (∑ (𝑋𝑉𝑖′,𝑖,𝑣 + 𝑋𝑉𝑖,𝑖′,𝑣)𝑣 = 0), variables 𝑄𝐸𝑖′,𝑖 are forced to zero. In case that a 

packing operation has not been completed until the time point under consideration, the 

variable 𝑄𝐸𝑖′,𝑖 is limited by the term (𝐶𝑇𝑖,1 − 𝑆𝑇𝑖′,2)𝑟𝑖′,2, as it is guaranteed by 

constraints (3.31). Similar to constraints (3.29) the term 𝑑𝑖𝑟𝑖′,2  is utilized as a big-M 

value in constraint (3.31). 

To illustrate the role of variables 𝑄𝐼𝑖,𝑖′  and  𝑄𝐸𝑖,𝑖′  an indicative example is depicted in 

Figure 3.6. The mass balance constraints can be applied at the end of product 4 (𝐶𝑇4,1). 

Since all the amount of product 1 has already been filled into the buffer tank at the time 

under consideration (𝐾1,4, = 1), the variable 𝑄𝐼1,4 should be equal to the total amount of 

product 1 (𝑑𝑚1). The aforementioned approach is applicable in the case of product 2 as 

well. On the other hand, only the line-shaded part of product 3 has been filled into the 

tank at the time under consideration (𝐾3,4, = 0). This amount is expressed by the term 
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(𝐶𝑇4,1 − 𝑆𝑇3,1)𝑟3,1. The variables 𝑄𝐸𝑖′,𝑖 can also be defined at the completion time 

(𝐶𝑇4,1). Since all the amount of product 1 has been packaged up until the time point 

under consideration, the variable 𝑄𝐸1,4 should be equal to 𝑑𝑚1. On the other hand, only 

the line-shaded part of product 2 has been packed up until the time under 

consideration. This amount is expressed by the term (𝐶𝑇4,1 − 𝑆𝑇2,1)𝑟2,2. 

 

 

Mass balance constraints at the starting time of packing stage 

As it has been mentioned above, mass balance constraints are also imposed at the 

starting time of packing stage of each product order.  

𝑄𝑃𝑖 ≥ ∑ 𝑃𝐼𝑖,𝑖′  

𝑖′∈ 𝐼∶  𝑓𝑖=𝑓𝑖′  

− ∑ 𝑃𝐸𝑖′,𝑖
𝑖′∈ 𝐼∶ 𝑓𝑖=𝑓𝑖′:  

      ∀ 𝑖 ∈ 𝐼  (3.33) 

𝑄𝑃𝑖 ≤  ∑𝑒𝑣𝑌𝑉𝑖,𝑣
𝑣∈𝑉

        ∀𝑖 ∈ 𝐼  (3.34) 

 

The net stored amount (𝑄𝑃𝑖) at the starting of packing operation of product 𝑖 is 

determined by constraints (3.33). The first term refers to the total imported amount, 

while the second term is related to the total consumed of the buffer tank. Constraints 

(3.34) guarantee that the stored amount (𝑄𝑃𝑖), will not exceed the related capacity of 

vessel 𝑣,  (𝑒𝑣). Similarly to the constraints (3.28)-(3.32), a set of inequalities are 

introduced to impose the required bounds on both variables 𝑃𝐼𝑖,𝑖′  and 𝑃𝐸𝑖,𝑖′ . 

 

𝑃𝐼𝑖,𝑖′ ≥ 𝑑𝑚𝑖′(1 − 𝑍𝑖,𝑖′) − 𝑑𝑚𝑖′ (1 −∑(𝑋𝑉𝑖′,𝑖,𝑣 + 𝑋𝑉𝑖,𝑖′,𝑣)

𝑣∈𝑉

) 

∀𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼 ∶ 𝑓𝑖 = 𝑓𝑖′  

(3.35) 
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𝑃𝐼𝑖,𝑖′ ≥ (𝑆𝑇𝑖,2 − 𝑆𝑇𝑖′,1)𝑟𝑖′,1 − (𝑑𝑖−𝑝𝑚𝑖,2) 𝑟𝑖′,1 (1 − 𝑍𝑖,𝑖
′) − 

(𝑑𝑖−𝑝𝑚𝑖,2) 𝑟𝑖′,1 
(1 −∑(𝑋𝑉𝑖′,𝑖,𝑣 + 𝑋𝑉𝑖,𝑖′,𝑣)

𝑣∈𝑉

)    ∀𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼 ∶ 𝑓𝑖 = 𝑓𝑖′  

(3.36) 

Constraints (3.35) and (3.36) determine variables 𝑃𝐼𝑖,𝑖′ ,by utilizing an auxiliary variable 

𝑍𝑖′,𝑖 . According to constraints (3.16) and (3.17), variables 𝑍𝑖,𝑖′  take the value 1, only if a 

product order 𝑖′ completes the formulation stage later than the starting time of packing 

operation of product 𝑖. As variables 𝑍𝑖,𝑖′  are equal to 1, it is implied that all the amount 

of product has been inserted into the buffer up until the time point under consideration. 

Thus, constraint (3.35) imposes the total amount of product 𝑖′, 𝑑𝑚𝑖′ ,  as lower limit for 

the variable 𝑃𝐼𝑖,𝑖′ . In the opposite case, constraint (3.36) guarantee that only a portion of 

the product order 𝑖 has been filled into the storage vessel up until the considered time 

point. This amount is given by the term (𝑆𝑇𝑖,2 − 𝑆𝑇𝑖′,1)𝑟𝑖′,1. Similar to constraints (3.24) 

the term (𝑑𝑖−𝑝𝑚𝑖,2) 𝑟𝑖′,1  plays the role of a big-M value.  

An illustrative example for variable 𝑃𝐼𝑖,𝑖′   is shown in Figure 3.7, whereas the mass 

balance expression at the starting time of packing operation of product 4 is considered. 

Variables 𝑍4,2 and 𝑍4,3 are equal to 1 while variable 𝑍4,1 is zero. Although, all the 

produced amount of product 1 has been filled into the buffer tank, only the line-shaded 

portion of product 2 has been inserted up until the time under consideration. This 

portion is given by the term (𝑆𝑇4,2 − 𝑆𝑇2,1)𝑟2,1. Since zero amount of product 3 has been 

filled into the tank so far, the related term, (𝑆𝑇4,2 − 𝑆𝑇3,1)𝑟2,1, is negative and therefore 

the lower bound of variable 𝑃𝐼4,3 is forced to zero as well. 

 

Figure 3.7 Indicative example of variable 𝑃𝐼𝑖,𝑖′  
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𝑃𝐸𝑖,𝑖′ ≤ 𝑑𝑚𝑖′𝑃𝑖′,𝑖,     ∀𝑖 ∈ 𝐼, 𝑖
′ ∈ 𝐼 ∶ 𝑓𝑖 = 𝑓𝑖′  (3.37) 

𝑃𝐸𝑖,𝑖′ ≤ (𝑆𝑇𝑖,2 − 𝑆𝑇𝑖′,2)𝑟𝑖′,2 + (𝑑𝑖−𝑝𝑚𝑖,2) 𝑟𝑖′,2 (1 − 𝑃𝑖
′,𝑖)  

  ∀𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼 ∶ 𝑓𝑖 = 𝑓𝑖′  

(3.38) 

𝑃𝐸𝑖,𝑖′ ≤ 𝑑𝑚𝑖′∑(𝑋𝑉𝑖′,𝑖,𝑣 + 𝑋𝑉𝑖,𝑖′,𝑣)

𝑣∈𝑉

     ∀𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼 ∶ 𝑓𝑖 = 𝑓𝑖′  
(3.39) 

Constraints (3.37)- (3.39) determine variables 𝑃𝐸𝑖,𝑖′  .For this purpose, variable 𝑃𝑖′,𝑖, is 

utilized. As it has been described earlier, 𝑃𝑖′,𝑖, takes the value 1, only if product 𝑖′ has 

completed its packing before product 𝑖. Constraints (3.37) and (3.39) ensure that the 

amount of 𝑃𝐸𝑖,𝑖′  does exceed the total amount of product 𝑖′, (𝑑𝑚𝑖′).  If a product order 𝑖′ 

starts its packing after the packing operation of product order 𝑖, (𝑃𝑖′ ,𝑖 = 0), variables 

𝑃𝐸𝑖,𝑖′  are forced to zero. This is also the case if products  𝑖 and 𝑖′ are not assigned to the 

same buffer tank (∑ (𝑋𝑉𝑖′,𝑖,𝑣 + 𝑋𝑉𝑖,𝑖′,𝑣)𝑣 = 0). If a packing operation has not been 

completed by the specific time point, only a portion of product order 𝑖′ is removed from 

the storage vessel. Thus, variable 𝑃𝐸𝑖,𝑖′  is further bounded by the term (𝑆𝑇𝑖,2 −

𝑆𝑇𝑖′,2)𝑟𝑖′,2, as it is imposed by constraints (3.38). Similar to constraints (3.24) the term 

(𝑑𝑖−𝑝𝑚𝑖,2) 𝑟𝑖′,1  plays the role of a big-M value in constraint (3.38).  

An illustrative example for variable 𝑃𝐸𝑖′,𝑖  is shown in Figure 3.8, where the mass 

balance constraints at the starting time of packing operation of product 4 are 

considered. Variables 𝑃1,4 and 𝑃2,4 are equal to 1 while variable 𝑃3,4 takes a zero value. 

Even though all the produced amount of product 1 has been packaged, only the line-

shaded portion of product 2 has completed its packing operation by the time under 

consideration. This portion is defined by the term (𝑆𝑇4,2 − 𝑆𝑇2,2)𝑟2,2. Furthermore, the 

packing operation of product 3 starts later and therefore the variable𝑃𝐸𝑖′,𝑖 is forced to 

zero. 
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Figure 3.8 Indicative example of variable 𝑃𝐸𝑖′,𝑖  

 

Relationship between the starting and completion time of product orders 

 

𝐺𝑃𝑖 = 𝑆𝑇𝑖,2  − 𝑆𝑇𝑖,1   ∀ 𝑖 ∈ 𝐼 (3.40) 

𝐺𝑃𝑖 ≥ (𝑝𝑚𝑖,1  − 𝑝𝑚𝑖,2 ) ∑ 𝑌𝑉𝑖,𝑣
𝑣 ∈ 𝑉

      ∀ 𝑖 ∈ 𝐼: 𝑝𝑚𝑖,2 < 𝑝𝑚𝑖,1 (3.41) 

𝐺𝑃𝑖 ≥ 0    ∀ 𝑖 ∈ 𝐼: 𝑝𝑚𝑖,2 ≥ 𝑝𝑚𝑖,1 (3.42) 

𝐺𝑃𝑖 ≤ 𝑔 ∑ 𝑌𝑉𝑖,𝑣
𝑣 ∈ 𝑉

      ∀ 𝑖 ∈ 𝐼 (3.43) 

𝐶𝑇𝑖,2  − 𝑆𝑇𝑖,1 ≤ 𝑟𝑠𝑖    ∀ 𝑖 ∈ 𝐼 (3.44) 

𝐶𝑇𝑖,2 ≤ 𝑑𝑖      ∀ 𝑖 ∈ 𝐼  (3.45) 

If the formulation stage is slower than the packing stage, it should be ensured that 

enough amount of product has already been filled into the buffer tank before the 

packing operation starts (Figure 3.9). Otherwise, the storage vessel will become empty 

and the packing process must be aborted. One way of satisfying this, is by utilizing the 

auxiliary variable 𝐺𝑃𝑖 , which expresses the difference of starting times between the two 

stages of product 𝑖. The variable 𝐺𝑃𝑖  has to be greater than the term (𝑝𝑚𝑖,1  − 𝑝𝑚𝑖,2 ) , in 

case the production bottleneck is the formulation stage. On the other hand, if the 

formulation process operates in a time-consuming fashion, similar to the packing 
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operation, this constraint is relaxed. Usually, depending on the specific industrial 

policies, an upper bound could be also set to the 𝐺𝑃𝑖 ,  or to the total residence time of a 

product, 𝑟𝑠𝑖. in a buffer tank. If there is no limitation on the maximum residence time, 

the parameter  𝑟𝑠𝑖 have to be equal to the time horizon h. Constraints (3.43) also 

guarantee that if a product bypasses the storage tank, the process of the two stages will 

start simultaneously. Finally, constraints (3.45) ensure that each final product is 

produced earlier than its due date 𝑑𝑖. 

 

Figure 3.9 Definition of variable 𝐺𝑃𝑖 

Byproducts constraints 

The constraints described in this subsection are referred to the formulation stage of the 

plant. Usually, several product-dependent changeovers take place among the 

production of different intermediate products. The majority of these changeovers is due 

to cleaning activities. In many cases, such as the production of detergents, the industrial 

practice does not permit cleaning with water, since water can affect the quality of the 

products. As a result, a significant amount of byproduct waste material is generated, 

which is usually stored in storage vessels and can be partially recycled into one of the 

next product orders without violating product quality specification.  

The accumulated byproduct waste cannot exceed the storage capacity of the storage 

vessels. Explicit material balance constraints are introduced to prevent the overloading 

of storage vessels without using further binary variables or utilizing a discrete-time 

horizon.  
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As illustrated in Figure 3.10, during a changeover time an amount of byproduct is 

generated. Variables  𝑂𝑖 express the amount of byproduct which is stored in the storage 

vessel at the end of the changeover which takes place after the production of 

intermediate product of production order 𝑖. A specific part of this amount (𝑊𝑖) can be 

potentially recycled into one of the following orders. The recycled amount depends on 

the campaign length and the specific recipe of the intermediate product. If mixing is not 

allowed then the byproduct remains in the storage vessel. The remained amount can be 

recycled into the next production campaigns or remains into the vessel as the final 

waste (𝑅𝑊𝑗), in case there are no further product campaigns to recycle it. 

 

 

Figure 3.10 Byproducts recycling policy in a processing unit of formulation stage 

 

𝑂𝑖 = 𝐿𝐼𝑖 + ∑    ∑ 𝑋𝑖,𝑖′,𝑗𝑛𝑖,𝑖′𝑟𝑖′,1
𝑗∈( 𝐽𝑆1∩ 𝐽𝐼𝑖∩ 𝐽𝐼𝑖′  )𝑖′∈ 𝐼∶𝑖′≠𝑖

− 𝑊𝑖   ∀ 𝑖 ∈ 𝐼 

 

(3.46) 

 

Constraints (3.46) express the mass balances of byproduct storage vessels. The amount 

of byproduct waste  𝑂𝑖 at the end of the changeover which takes place after the 

formulation of intermediate product of product order 𝑖, is equal to the previously 

accumulated material 𝐿𝐼𝑖 , plus the generated byproduct during the changeover, minus 

the amount which is recycled by the intermediate product of product order 𝑖, (𝑊𝑖). 
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𝐿𝐼𝑖 ≤ 𝑂𝑖′ + 𝑑𝑚𝑖  (1 − ∑ 𝑋𝑖′,𝑖,𝑗
𝑗∈( 𝐽𝑆1∩ 𝐽𝐼𝑖∩ 𝐽𝐼𝑖′  )

 )    ∀𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼 ∶ 𝑖′ ≠ 𝑖  

(3.47) 

𝐿𝐼𝑖 ≥ 𝑂𝑖′ − 𝑑𝑚𝑖  (1 − ∑ 𝑋𝑖′,𝑖,𝑗
𝑗∈( 𝐽𝑆1∩ 𝐽𝐼𝑖∩ 𝐽𝐼𝑖′  )

 )    ∀ 𝑖 ∈ 𝐼, 𝑖′ ∈ 𝐼 ∶ 𝑖′ ≠ 𝑖  

(3.48) 

𝐿𝐼𝑖 ≤ 𝑖𝑤𝑗 𝑌𝑖,𝑗  +  𝑑𝑚𝑖 ∑  𝑋𝑖′,𝑖,𝑗  

𝑖′∈  𝐼𝐽𝑗 ∶ 𝑖
′≠𝑖

       ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ ( 𝐽𝑆1 ∩  𝐽𝐼𝑖 ) 
(3.49) 

𝐿𝐼𝑖 ≥ 𝑖𝑤𝑗 𝑌𝑖,𝑗 − 𝑑𝑚𝑖 ∑  𝑋𝑖′,𝑖,𝑗  

𝑖′∈  𝐼𝐽𝑗 ∶ 𝑖
′≠𝑖

       ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ ( 𝐽𝑆1 ∩  𝐽𝐼𝑖 ) 
(3.50) 

 

Constraints (3.47)-(3.50), define the accumulated amount of byproduct (𝐿𝐼𝑖), at the 

beginning of each product 𝑖. In particular, constraints (3.47) and (3.48), force variable 

𝐿𝐼𝑖  equal to variable 𝑂𝑖′ , only if intermediate of product 𝑖′ is produced exactly before 

product 𝑖, (𝑋𝑖′,𝑖,𝑗 = 1). Furthermore, the initial stored amount of byproduct of each unit 

(𝑖𝑤𝑗) is taken into account. Constraints (3.49) and (3.50) ensure that the accumulated 

amount of byproduct at the beginning of the first campaign of (𝑋𝑖′,𝑖,𝑗 = 0), are equal to 

zero or equal to the initial byproduct amount (𝑖𝑤𝑗)  at the beginning of the time horizon 

under consideration. The demand parameter 𝑑𝑚𝑖 is used as a big-M value in constraints 

(3.47-3.50) 

𝑊𝑖 ≤ 𝑑𝑚𝑖 𝑎𝑖          ∀ 𝑖 ∈ 𝐼 (3.51) 

𝑊𝑖 ≤ 𝐿𝐼𝑖     ∀ 𝑖 ∈ 𝐼 (3.52) 

Constraints (3.51) and (3.52) ensure that the amount of byproduct (𝑊𝑖) which can be 

recycled into campaign 𝑖, must not exceed a specific maximum percentage of the total 

amount (𝑑𝑚𝑖). This percentage is defined by parameter  𝑎𝑖 and depends on the quality 

specification of each intermediate product. 

𝑂𝑖 ≤ 𝑐𝑝𝑗  𝑌𝑖,𝑗               ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ ( 𝐽𝑆1 ∩  𝐽𝐼𝑖  ) (3.53) 
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Constraints (3.53) guarantee that the stored amount of byproduct in the vessel of each 

unit, will not exceed the related capacity (𝐶𝐴𝑃𝑗).  

 

𝑅𝑊𝑗 ≥ 𝑂𝑖 − 𝑐𝑝𝑗 (1 − 𝑌𝑖,𝑗) − 𝑐𝑝𝑗  ∑ 𝑋𝑖,𝑖′,𝑗
𝑖′∈ 𝐼𝐽𝑗 ∶ 𝑖

′≠𝑖

 

∀ 𝑖 ∈ 𝐼, 𝑗 ∈ ( 𝐽𝑆1 ∩  𝐽𝐼𝑖 ) 

(3.54) 

According to constraints (3.54), the final remained amount of byproduct waste in the 

storage vessel of a unit j (𝑅𝑊𝑗), is forced to be equal to the byproduct amount (𝑂𝑖) of the 

last operated campaign (𝑌𝑖,𝑗 = 1, 𝑋𝑖,𝑖′,𝑗 = 0) at this unit. An inequality constraint is 

utilized, since variable 𝑅𝑊𝑗  is minimized by being part of cost minimization objective 

function. Industrial policies may also impose an upper bound on the remained unused 

amount of byproduct. In this case, a capacity constraint could also be used for variables 

𝑅𝑊𝑗 . The maximum capacity parameter 𝑐𝑝𝑗   is used as a big-M value in constraints 

(3.54) 

 

Objective function  

min 𝑇𝐶 = ( 𝑐𝑐∑ ∑   ∑   ∑ 𝑋𝑖,𝑖′,𝑗𝑛𝑖,𝑖′,𝑠 +

𝑖′∈𝐼𝐽𝑗∶ 𝑖
′≠𝑖𝑖∈𝐼𝐽𝑗𝑗 ∈ 𝐽𝑆𝑠𝑠∈𝑆

 + 

𝑖𝑐∑   ∑  ∑ 𝐿𝑖,𝑖′,𝑠
𝑖′∈𝐼∶ 𝑖′≠𝑖𝑖∈𝐼𝑠∈𝑆

++𝑝𝑐 ∑ ∑𝑇𝑖,𝑠
𝑖∈𝐼𝑠∈𝑆

+  𝑏𝑐 ∑ 𝑅𝑊𝑗
𝑗 ∈ 𝐽𝑆1

 ) 

 

(3.55) 

Objective (3.55) expresses the minimization of total costs. The first term represents the 

total changeover cost, while the second term expresses the total cost of idle times. The 

last two terms are related to the total production cost and the cost of the generated 

byproduct waste. 
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3.4 Solution strategy 

Due to the highly increasing demand and the high diversification of the product 

portfolio, in the vast majority of process industries, a plethora of different products are 

scheduled weekly. Although monolithic MILP approaches can generate optimal or 

nearly optimal solutions for small or medium-sized scheduling problems, they are not 

efficient for larger problem instances. To cope with this limitation, a decomposition-

based solution algorithm is proposed. Similarly with previous research works (Kopanos, 

Méndez, and Puigjaner 2010; Elekidis, Corominas, and Georgiadis 2019) the solution 

strategy consists of a constructive and an improvement step. A brief schematic 

representation of the proposed solution strategy is illustrated in Figure 3.11. 

3.4.1 Constructive step 

The main idea of the constructive step is to decompose the initial problem into smaller 

subproblems which can be solved iteratively. At each iteration, a subset of product 

orders  

𝑖 ∈ 𝐼𝐼𝑁 is scheduled by using the proposed MILP model.  Product orders are inserted 

based on a selected insertion policy. The related unit allocation variables, as well as the 

related sequencing variables, are fixed after each iteration. On the contrary, the timing 

variables and the sequencing variables of storage vessels remain free. Once all 

production orders have been inserted, an initial feasible solution is generated. 

According to the selected insertion policy, products with the earliest due time are 

inserted first. The number of inserted products could vary, depending on the specific 

scheduling problem. Regarding the problem under consideration a 5-by-5 product 

insertion policy seems to be the optimal one, since by inserting more products, the 

solution is not improved while the computational cost is dramatically increased.  

3.4.2 Improvement steps 

To enhance the initial solution generated by the constructive step, two improvement 

steps are implemented sequentially. According to those, some production orders are 

extracted from the initial schedule and reinserted to further improve the solution. The 
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marked products are exported from the initial schedule by relaxing the corresponding 

allocation and sequencing variables. The two proposed improvement steps are 

described below.  

 

Improvement step 1 

Usually, the synchronization of stages in continuous production plants is a challenging 

task and due to different production rates undesirable idle times are realized.  Thus, the 

first improvement step is mainly focused on eliminating the idle times of the initial 

schedule. In particular, all production sequences that lead to idle times are identified 

and the related products 𝑖 ∈ 𝐼𝐼𝐷𝑁  are reinserted. The MILP model is then solved and if 

the solution obtained is better than the solution of the constructive stage, the 

corresponding variables are updated.  

Improvement step 2 

To further improve the solution, part of the remaining products 𝑖 ∈ 𝐼𝑅𝐸𝐼𝑁 is reinserted 

iteratively. In particular, 5 products are chosen lexicographically from set I and all 

related variables are relaxed in each iteration. At the same time, the remained product 

sequences that lead to idle times are detected as well and the related products 𝑖 are also 

included into set  𝑖 ∈ 𝐼𝑅𝐸𝐼𝑁 and reinserted. The MILP model is then solved at each 

iteration and if a better solution is found all variables and the objective function are 

updated. 

Furthermore, industrial requirements usually impose an upper bound on the total 

solution time. Hence, an upper limit in the total CPU time, (𝑙𝑡), could be set as a stopping 

criterion. If the total CPU time exceeds this limit or all product orders have been 

reinserted, the algorithm is terminated, and the best solution found is reported. In this 

way, good quality solutions could be generated within reasonable computational times. 

A different stopping criterion could be set once the solution is improved by a specified 

percentage (in comparison with the previous stage). Finally, detailed pseudo-codes for 

the constructive and the improvement steps of the proposed solution strategy, are 

provided in in Appendix A. 
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Figure 3.11 Schematic representation of the solution strategy 

 

3.5 Case studies 

To assess the applicability and the efficiency of the proposed MILP model and solution 

strategy, several problem instances are considered. Most problems simulate real-life 

industrial data of a large-scale consumer goods industry (Elekidis et al., 2019). The 

problem instances are based on 5 different cases, considering different product types 

and processing times. The data related to the  first case are presented in Appendix B. 

Data for the rest of the cases under consideration are provided by Elekidis and 

Georgiadis, (2021). The proposed mathematical framework has been implemented in 

GAMS (General Algebraic Modeling System) and was solved using the IBM ILOG CPLEX 
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12.0 solver with default settings and 8 threads, on 3.60 GHz Intel Core i7 7700 

processor and 16 GB RAM.  

3.5.1 Illustrative example 

This problem consists of 15 final products, 3 packing lines, 3 production lines and 2 

storage buffers. The time horizon of interest is 1 day (24 hours). Table 3.1 summarizes 

the capacities of storage vessels, while the individual cost coefficients are given in Table 

3.2. For this example, the first 15 products of case 1 have been utilized. 

 

Table 3.1 Capacity of vessels 

Vessel Capacity (kg) 

Storage vessel 1 3000 

Storage vessel 2 1600 

Byproduct vessel 1 120 

Byproduct vessel 2 160 

Byproduct vessel 3 120 

 

Table 3.2 Individual costs 

Cost Relative Money Units (RMU) 

Changeover time cost 10 rmu/h 

Idle time cost 30 rmu/h 

Processing time cost 1 rmu/h 

Byproduct waste cost 0.5 rmu/kg 

 

The optimal schedule is depicted in Figure 3.12, corresponding to a total cost of 

177.2857 relative money units (rmu). The cost distribution is presented via a pie chart 

in Figure 3.14. Since realistic cost data were not available, indicative cost values have 

been utilized. It is observed that the total idle time is forced to zero, since the higher 

cost is related to it. On the other hand, the largest percentage of the total cost, reflects 

the processing time. The buffer levels of the two intermediate storage tanks are 

illustrated in Figure 3.13.  
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Figure 3.12 Gantt chart of the generated schedule for the illustrative example 

 

Figure 3.13 Total stored amount in buffer tanks 
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Figure 3.14 Cost distribution 

 

Figure 3.15 illustrates the profile of generated amount of byproduct waste for each line. 

Due to the imposed byproduct cost, all the generated waste is recycled in lines 1 and 2. 

However, an amount of 20,5 kg remains in the storage tank of line 2. This amount 

represents 17% of the total costs, as shown in Figure 3.14. 
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Figure 3.15  Total stored amount of byproduct in line tanks 

3.5.2 Comparison between two plant layouts 

A common issue in continuous process facilities is the necessity to synchronize the 

production rates of both stages. Usually, in continuous make-and-pack processes, the 

maximum production rate varies with the type of product and the slowest stage poses a 

varying production bottleneck. The utilization of intermediate storage tanks aims to 

improve the synchronization of production stages and thus, to increase the overall plant 

productivity.  

To evaluate the benefits of the intermediate storage tanks, several case studies have 

been examined, by considering two different plant layouts: a decoupled layout with 

intermediate storage and a coupled layout without any storage. Both layouts use the 

same number of processing units (3 formulation and 3 packing lines) and their 
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difference relies on the use of intermediate buffer tanks. The proposed MILP model and 

solution strategy have been used to solve several problem instances for the second 

plant layout (decoupled layout), while a single-stage, precedence-based MILP model, 

presented in section 2.3.1, has been used for the first plant layout (coupled layout). A 

total CPU time limit of 3600s has been imposed for all cases. 

Since the majority of the make-and-pack facilities operates continuously 24 hours per 

day, the minimization of the total operational time often constitutes one of the main 

objectives (Elekidis et al., 2019).. The extra available time can be used to increase the 

total produced amount thus increasing the profits of the plant. Also, the reduction of the 

operational time is crucial since the extra time can be utilized to schedule more often 

maintenance tasks and it can provide additional flexibility if rescheduling decisions 

should be made. Often, cost data are not available in the process industries, since the 

calculation of individual costs is a time-consuming and challenging task. In those cases 

the minimisation of total operational time constitutes an alternative industrial objective 

(Elekidis et al., 2019). Thus, schedules have been generated for both layouts and 

detailed comparisons have been made between the total operational time of all 

processing units, which constitutes the objective function for this study. The total 

operational time includes the total processing time, the changeover time and the idle 

times of all production units. In other words, total operational time expresses the total 

makespan of each production unit. 

The results are summarized in Table 3.3. It is observed that the intermediate storage 

vessels can provide significant flexibility, resulting in a notable improvement of the 

productivity of the plant. More specifically, productivity is increased, from 1.10% (case 

4 with 25 products) to 33.75% (case 4 with 20 products). For problem instances with 

up to 50 products, optimal schedules have been generated for the coupled layout, by 

solving directly the monolithic MILP model (Elekidis et al., 2019). On the other hand, 

only problem instances with up to 20 products can be optimally solved for the 

decoupled layout by using the monolithic MILP model, while optimality gaps within the 

range of 5-10% are obtained within the CPU time limit, in cases with 25 products. 

Hence, the proposed decomposition strategy is utilized for the larger problem instances 

under consideration. As a result, smaller productivity gains are realised since 

suboptimal solutions are obtained in cases with 35 and 50 products. Problem instances 
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with 70 products, have been solved by using the proposed decomposition strategies for 

both layouts. As it was expected, higher productivity gains are obtained for the 

decoupled layout in the range of 16.64% to 20.74%.  

Table 3.3 Comparison between the total operational time (in hours) of the two layouts 

Number 
of 

Products 
Case 

Decoupled plant layout Coupled plant layout 
Productivity 

gain 
(%) Objective  

(h) 

CPU (s) / 
Optimality gap 

Objective 
 (h) 

CPU (s) / 
Optimality 

gap 

15 

Case 1 124.75 212 / 0% 170.13 112 / 0% 26.67% 

Case 2 82.07 226 / 0% 113.18 126 / 0% 27.49% 

Case 3 119.43 234 / 0% 136.92 134 / 0% 12.77% 

Case 4 100.22 267 / 0% 120.27 167 / 0% 16.67% 

Case 5 124.54 233 / 0% 173.05 133 / 0% 28.34% 

20 

Case 1 186.63 427 / 0% 225.63 127 / 0% 17.29% 

Case 2 127.34 462 / 0% 147.35 134 / 0% 13.58% 

Case 3 142.23 583 / 0% 170.55 183 / 0% 16.60% 

Case 4 104.22 692 / 0% 157.31 192 / 0% 33.75% 

Case 5 200.44 785 / 0% 240.54 185 / 0% 17.00% 

25 

Case 1 249.92 3600 / 5.6% 261.99 312 / 0% 4.61% 

Case 2 213.25 3600 / 9.7% 220.73 326 / 0% 3.39% 

Case 3 220.25 3600 / 6,2% 222.70 334 / 0% 1.10% 

Case 4 199.10 3600 / 6.4% 215.34 367 / 0% 7.54% 

Case 5 202.46 3600 / 5.1% 236.88 313 / 0% 14.53% 

35 

Case 1 355.34 299 /- 371.82 367 / 0% 4.43% 

Case 2 269.61 2603 /- 274.50 343 / 0% 1.78% 

Case 3 261.05 2603 /- 309.71 357 / 0% 15.71% 

Case 4 261.05 2603 /- 304.15 382 / 0% 14.17% 

Case 5 231.22 2603 /- 310.23 327 / 0% 25.47% 

50 

Case 1 422.14 2587 /- 442.70 562 / 0% 4.64% 

Case 2 288.92 2165 /- 335.24 578 / 0% 13.82% 

Case 3 362.20 1927 /- 377.41 614 / 0% 4.03% 

Case 4 366.59 1874 /- 374.48 582 / 0% 2.11% 

Case 5 342.46 2579 /- 381.97 627 / 0% 10.34% 

70 

Case 1 596.23 3484 /- 725.88 212 / - 17.86% 
Case 2 443.96 2462 /- 532.58 216 / - 16.64% 
Case 3 534.62 2194 /- 674.52 263 / - 20.74% 
Case 4 508.24 3295 /- 632.09 294 / - 19.59% 
Case 5 468.92 3571 /- 542.73 213 / - 13.60% 
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3.5.3 Larger problem instances 

In the vast majority of process industries, a large variety of final products is scheduled 

on a weekly or even on a daily basis. Thus, there is a strong necessity to develop 

efficient solution techniques, which can generate good quality schedules in low 

computational times for complex and challenging problems. To assess the efficiency and 

the applicability of the proposed modelling framework and solution strategy, a set of 

larger problem instances have been solved. The minimization of the total cost 

constitutes the objective. All cases consist of 3 packing lines, 3 production lines and 2 

intermediate storage vessels.  The individual cost coefficients are depicted in Table 3.2, 

for all cases. Results are summarized in Tables 3.4 and 3.5. A CPU time limit of 3600s is 

imposed to the algorithm, while a zero-optimality gap has been achieved in each 

iteration.  

Table 3.4. Results for large problem instances – Comparison between the constructive and the 
improved solutions 

Products  Case 1 Case 2 Case 3 Case 4 Case 5 

50 

TC 

Constructive 
step 

1326.87 707.91 768.06 665.73 699.87 

Improvement 
step 

1301.67 

(-1.9%) 

675.35 

(-4.6%) 

745.40 

(-2.9%) 

622.43 

(-6.5%) 

648.14 

(-7.3%) 

CPU time 
(s) 

Constructive 
step 

1684 2032 1753 2071 1719 

Total 2603 2746 2780 2649 2736 

Relaxed solution 975.75 436.73 489.13 397.14 397.14 

60 

TC 

Constructive 
step 

2561.49 679.86 946.74 878.15 910.50 

Improvement 
step 

1999.60 

(-21.9%) 

664.88 

(-2.2%) 

919.96 

(-2.8%) 

827.52 

(-5.7%) 

849.81 

(-6.6%) 

CPU time 
(s) 

Constructive 
step 

2103 2124 2101 1839 2099 

Total 2639 2800 2632 2783 2635 

Relaxed solution 1299.35 404.07 498.95 477.72 479.96 

*TC=Total cost in monetary units 
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Table 3.5. Results for large problem instances – Comparison between the constructive and the 
improved solutions 

Products  Case 1 Case 2 Case 3 Case 4 Case 5 

70 

TC 

Constructive step 3505.94 811.47 1091.66 1087.62 1124.40 

Improvement 
step 

3378.55 

(-3.6%) 

794.67 

(-2.1%) 

1064.86 

(-2.8%) 

1045.75 

(-3.8%) 

1056.92 

(-6.0%) 

CPU time 
(s) 

Constructive step 2155 2467 2633 2686 2792 

Total 3600 3365 3600 3600 3600 

Relaxed solution 2297.04 589.92 677.62 701.11 786.39 

100 

TC 

Constructive step 5455.10 1499.83 1568.30 1870.55 1939.96 

Improvement 
step 

5117.08 

(-6.6%) 

1415.93 

(-5.5%) 

1558.30 

(-0.6%) 

1857.71 

(-0.6%) 

1847.83 

(-4.7%) 

CPU time 
(s) 

Constructive step 2805 2895 2907 2865 2898 

Total 3600 3600 3600 3600 3600 

Relaxed solution 3859.82 915.61 1046.52 1192.75 1126.36 

*TC=Total cost in monetary units 

 

The proposed improvement step leads to notable benefits in terms of total cost 

reduction. In particular, the total cost is reduced from 0.64% (case 3 with 100 products) 

up to 21.9% (case 1 with 60 products). The relaxed solution of each problem is also 

presented in Table 3.4 and Table 3.5 in order to provide a bound on the value of the 

optimal objective. The computational time of both stages is provided as well. The 

improvement is mainly achieved by reducing the idle time cost as it illustrated in Tables 

3.6 – 3.9, where the individual costs of each problem instance are presented.  
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Table 3.6 Results for large problem instances – Comparison between the constructive and the 
improved solutions for cases with 50 products 

Case Algorithm step TC* COC* ITC* PTC* WC* 

Case 
1 

Constructive 
step 

1326.87 210.10 651.79 385.47 79.50 

Improvement 
step 

1301.67 

(-1.90%) 

221.80 

(+5.28%) 

614.89 

(-6.00%) 

385.47 

(0.00%) 

79.50 

(0.00%) 

Case 
2 

Constructive 
step 

707.91 161.50 136.32 256.96 153.13 

Improvement 
step 

675.35 

(-4.6%) 

162.80 

(+0.80%) 

127.23 

(-6.67%) 

256.96 

(0.00%) 

128.37 

(-16.17%) 

Case 
3 

Constructive 
step 

768.06 174.50 169.72 295.39 128.45 

Improvement 
step 

745.40 

(-2.95%) 

186.20 

(+6.70%) 

153.12 

(-9.78%) 

289.84 

(-1.88%) 

116.24 

(-9.50%) 

Case 
4 

Constructive 
step 

665.73 168.26 86.85 279.82 130.80 

Improvement 
step 

622.43 

(-6.50%) 

179.1 

(+6.44%) 

40.56269 

(-53.30%) 

279.82 

(0.00%) 

122.9489 

(-6.00%) 

Case 
5 

Constructive 
step 

699.87 179.00 92.39 297.68 130.79 

Improvement 
step 

648.14 

(-7.39%) 

179.10 

(+0.06%) 

40.56 

(-56.10%) 

297.68 

(0.00%) 

130.79 

(0.00%) 

*TC=Total cost, COC=Changeover cost, ITC=Idle time cost, PTC=Processing time cost, WC=Waste cost 

**The costs represent monetary units 
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Table 3.7 Results for large problem instances – Comparison between the constructive and the 
improved solutions for cases with 60 products 

Case Algorithm step TC* COC* ITC* PTC* WC* 

Case 
1 

Constructive 
step 

2561.49 221.10 1812.12 470.69 57.58 

Improvement 
step 

1999.60 

(-21.90%) 

231.90 

(+4.66%) 

1224.17 

(-48.03%) 

470.69 

(0.00%) 

72.84 

(+20.95%) 

Case 
2 

Constructive 
step 

679.86 201.60 148.90 329.36 0.00 

Improvement 
step 

664.88 

(-2.2%) 

210.00 

(+4.2%) 

123.70 

(-16.9%) 

329.36 

(0.00%) 

0.00 

(0.00%) 

Case 
3 

Constructive 
step 

946.74 195.50 377.27 373.96 0.0 

Improvement 
step 

919.96 

(-2.83%) 

211.90 

(+8.39%) 

334.07 

(-11.45%) 

373.96 

(0.00%) 

0.00 

(0.00%) 

Case 
4 

Constructive 
step 

878.15 196.74 309.96 366.30 5.16 

Improvement 
step 

827.52 

(-5.77%) 

229.80 

(+16.80%) 

248.55 

(-19.81%) 

344.32 

(-6.00%) 

4.85 

(-6.00%) 

Case 
5 

Constructive 
step 

910.50 209.3 329.74 366.30 5.16 

Improvement 
step 

849.81 

(-6.67%) 

229.80 

(9.79%) 

248.55 

(-24.62%) 

366.30 

(0.00%) 

5.16 

(0.00%) 

*TC=Total cost, COC=Changeover cost, ITC=Idle time cost, PTC=Processing time cost, WC=Waste cost 

**The costs represent monetary units 
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Table 3.8 Results for large problem instances – Comparison between the constructive and the 
improved solutions for cases with 70 products 

Case Algorithm step TC* COC* ITC* PTC* WC* 

Case 
1 

Constructive 
step 

3505.94 299.00 2592.56 541.69 72.70 

Improvement 
step 

3378.55 

(-3.6%) 

304.60 

(+1.84%) 

2459.57 

(-5.41%) 

541.69 

(0.00%) 

72.70 

(0.00%) 

Case 
2 

Constructive 
step 

811.47 242.00 159.64 378.25 31.58 

Improvement 
step 

794.67 

(-2.07%) 

250.40 

(+3.47%) 

134.44 

(-15.79%) 

378.25 

(0.00%) 

31.58 

(0.00%) 

Case 
3 

Constructive 
step 

1091.66 239.30 391.37 433.40 27.58 

Improvement 
step 

1064.86 

(-2.83%) 

255.70 

(+6.85%) 

348.17 

(-11.04%) 

433.40 

(0.00%) 

27.58 

(0.00%) 

Case 
4 

Constructive 
step 

1087.62 243.65 332.66 421.32 89.98 

Improvement 
step 

1045.75 

(-3.85%) 

259.50 

(+6.51%) 

347.22 

(-4.38%) 

421.32 

(0.00%) 

17.71 

(-80.32%) 

Case 
5 

Constructive 
step 

1124.40 259.20 353.90 421.32 89.98 

Improvement 
step 

1056.92 

(-6.00%) 

255.60 

(-1.39%) 

344.77 

(-2.58%) 

421.32 

(0.00%) 

35.22 

(-60.86%) 

*TC=Total cost, COC=Changeover cost, ITC=Idle time cost, PTC=Processing time cost, WC=Waste cost 

**The costs represent monetary units 
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Table 3.9 Results for large problem instances – Comparison between the constructive and the 
improved solutions for cases with 100 products 

Case Algorithm step TC* COC* ITC* PTC* WC* 

Case 
1 

Constructive 
step 

5455.10 422.29 4193.11 757.67 82.03 

Improvement 
step 

5117.08 

(-6.61%) 

409.20 

(+3.20%) 

3868.19 

(8.41%) 

757.67 

(0.00%) 

82.03 

(0.00%) 

Case 
2 

Constructive 
step 

1499.83 381.40 397.37 532.52 188.54 

Improvement 
step 

1415.93 

(-5.59%) 

391.32 

(+2.60%) 

381.63 

(-3.96%) 

532.52 

(0.00%) 

110.46 

(-41.41%) 

Case 
3 

Constructive 
step 

1568.30 342.10 481.39 608.29 136.53 

Improvement 
step 

1558.30 

(-0.64%) 

350.10 

(+2.34%) 

463.39 

(-3.74%) 

608.29 

(0.00%) 

136.53 

(0.00%) 

Case 
4 

Constructive 
step 

1870.55 364.53 783.24 549.87 172.92 

Improvement 
step 

1857.71 

(-0.69%) 

389.90 

(+6.96%) 

731.33 

(-6.63%) 

584.96 

(+6.38%) 

151.51 

(-12.38%) 

Case 
5 

Constructive 
step 

1939.96 387.80 783.24 584.96 183.95 

Improvement 
step 

1847.83 

(-4.75%) 

391.10 

(+0.85%) 

720.26 

(-8.04%) 

584.96 

(0.00%) 

151.51 

(-17.63%) 

*TC=Total cost, COC=Changeover cost, ITC=Idle time cost, PTC=Processing time cost, WC=Waste cost 

**The costs represent monetary units 

 

Figure 3.16 presents the Gantt chart of an illustrative example focusing on the 

improvement step. The first Gannt chart illustrates the initial solution, obtained by the 

constructive step. The first feasible solution can be further improved by implementing 

an additional improvement step, as it is shown in the second Gantt chart. In particular, 

since the improvement step aims to decrease the total cost, unnecessary idle times are 

detected, and better solutions are obtained by reinserting a set of products. In the 

example of Figure 3.16 an idle time is detected in the initial schedule in line 5. The idle 
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time is eliminated by reinserting a set of products via the improvement step, as it is 

shown in the second Gannt chart. 

 

 

Figure 3.16 Indicative Gannt chart of the schedules of constructive and improvement steps 

 

Furthermore, in order to assess the quality of solutions obtained using the proposed 

solution algorithm, a detailed comparison of the monolithic MILP model and the 

proposed solution strategy is presented in Table 3.10. It is observed that for problem 

instances with up to 25 products near optimal solutions can be generated by using the 

proposed solution algorithm in small computational times. For larger problem 

instances, even a feasible solution cannot be generated using the monolithic MILP 

model under the specified time limits. 
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Table 3.10 Comparison between the monolithic MILP model and the proposed solution strategy 
considering the minimization of total cost 

Number 
of 

Products 
Case 

MILP Solution approach 

Objective 
(rmu) 

Optimality 
gap 

CPU time 
(s) 

Objective 
(rmu) 

CPU time 
(s) 

15 

Case 2 102.68 0.00% 209 119.49 109 

Case 3 119.43 0.00% 217 128.56 117 

Case 4 107.09 0.00% 198 137.27 98 

Case 5 124.54 0.00% 238 139.68 100 

20 

Case 2 152.42 0.00% 424 156.96 256 

Case 3 157.19 0.00% 359 171.79 267 

Case 4 105.39 0.00% 533 199.97 198 

Case 5 200.44 0.00% 686 204.97 238 

25 

Case 2 311.16 1.29% 3600 313.36 288 

Case 3 330.60 0.67% 3600 350.56 296 

Case 4 378.65 6.34% 3600 417,12 263 

Case 4 332.48 7.83% 3600 378.27 257 

 

3.5.4 Comparison between different storage policies 

The proposed MILP model allows the implementation of flexible-storage policies, 

according to which each intermediate product can be stored temporarily in a buffer 

tank or transferred directly to the packing stage bypassing the storage tanks.  To assess 

potential benefits of this flexible-storage policy, two problem instances are considered, 

in which different storage policies are compared. Both cases include 3 packing lines and 

3 production lines. Except from the aforementioned flexible-storage policy, an 

obligatory-storage policy is also considered. According to this, all product orders are 

stored obligatorily into an intermediate buffer tank before their packing. The results are 

summarized in Table 3.11 for problem instances with 50 products and in Table 3.12 for 

problem instances with 70 products.  

 

 



Production scheduling of flexible continuous make-and-pack processes with byproducts 

recycling 

 

111 
` 

Table 3.11. Results of different storage policies in problem instances with 50 products 

Case 
Storage 

policy 

Buffer 

tanks 
TC* COC* ITC* PTC* WC* 

Case 1 

Obligatory 
storage 

2 4604.94 387.98 3625.01 517.97 73.99 

Obligatory 
storage 

3 
3320.62 

(-20.64%) 

331.64 

(-12.5%) 

2724.56 

(-24.8%) 

517.97 

(0.00%) 

72.70 

(-1.74%) 

Flexible 
storage 

2 
3378.55 

(-26.63%) 

304.60 

(-21.4%) 

2459.57 

(-32.1%) 

541.69 

(+4.58%) 

72.70 

(-1.74%) 

Case 2 

Obligatory 
storage 

2 769.74 199.41 200.84 239.14 130.35 

Obligatory 
storage 

3 
689.86 

(-10.38%) 

174.29 

(-12.6%) 

147.43 

(-26.5%) 

239.14 

(0.00%) 

129.00 

(-1.0%) 

Flexible 
storage 

2 
675.35 

(-12.26%) 

162.8 

(-18.3%) 

127.23 

(-36.6%) 

256.96 

(+7.45%) 

128.37 

(-1.52%) 

Case 3 

Obligatory 
storage 

2 896.09 240.48 232.78 289.84 133.00 

Obligatory 
storage 

3 
778.82 

(-13.09%) 

200.75 

(-16.5%) 

163.83 

(-29.6%) 

289.84 

(0.00%) 

124.41 

(-6.46%) 

Flexible 
storage 

2 
745.4 

(-16.82%) 

186.2 

(-22.7%) 

153.12 

(-34.2%) 

289.84 

(0.00%) 

116.24 

(-12.6%) 

Case 4 

Obligatory 
storage 

2 687.20 243.91 70.79 248.49 124.02 

Obligatory 
storage 

3 
638.62 

(-7.07%) 

195.30 

(-19.9%) 

48.12 

(-32.0%) 

271.99 

(+9.46%) 

123.22 

(-0.64%) 

Flexible 
storage 

2 
622.43 

(-9.4%) 

179.1 

(-26.5%) 

40.56 

(-42.7%) 

279.82 

(+12.61%) 

122.94 

(-0.86%) 

Case 5 

Obligatory 
storage 

2 707.32 229.29 70.91 271.26 135.86 

Obligatory 
storage 

3 
662.93 

(-6.28%) 

191.65 

(-16.4%) 

48.15 

(-32.1%) 

291.07 

(+7.31%) 

132.06 

(-2.81%) 

Flexible 
storage 

2 
648.14 

(-8.37%) 

179.10 

(-21.9%) 

40.56 

(-42.8%) 

297.68 

(+9.74%) 

130.79 

(-3.73%) 

*TC=Total cost. COC=Changeover cost. ITC=Idle time cost. PTC=Processing time cost. WC=Waste cost 

**The costs represent monetary units 
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Table 3.12 Results of different storage policies for cases with 70 products 

Case 
Storage 
policy 

Buffer 
tanks 

TC* COC* ITC* PTC* WC* 

Case 1 

Obligatory 
storage 

2 4971.26 372.64 3990.22 532.06 76.34 

Obligatory 
storage 

3 
3706.39 

(-25.44%) 

318.98 

(-14.40%) 

2777.19 

(-30.4%) 

536.32 

(+0.82%) 

73.90 

(-3.21%) 

Flexible 
storage 

2 
3378.55 

(-32.04%) 

304.60 

(-18.26%) 

2459.57 

(-38.3%) 

541.69 

(+1.81%) 

72.70 

(-4.77%) 

Case 2 

Obligatory 
storage 

2 942.91 321.03 240.07 350.23 31.58 

Obligatory 
storage 

3 
825.49 

(-12.45%) 

274.80 

(-14.4%) 

167.09 

(-30.3%) 

353.03 

(+0.78%) 

30.57 

(-3.27%) 

Flexible 
storage 

2 
794.67 

(-15.72%) 

250.40 

(-22.1%) 

134.44 

(-44.6%) 

378.25 

(+8.04%) 

31.58 

(0.00%) 

Case 3 

Obligatory 
storage 

2 1458.74 309.00 693.84 426.07 29.82 

Obligatory 
storage 

3 
1138.81 

(-21.93%) 

261.03 

(-15.53%) 

417.30 

(-39.86) 

432.67 

(+1.55%) 

27.80 

(-6.77%) 

Flexible 
storage 

2 
1064.86 

(-27.12%) 

255.70 

(-17.25%) 
348.17 

(-49.8%) 

433. 67 
(+1.55%) 

27.58 

(7.52%) 

Case 4 

Obligatory 
storage 

2 1314.69 244.35 631.31 421.32 17.71 

Obligatory 
storage 

3 
1083.95 

(-17.55%) 

240.88 

(-1.42%) 

404.04 

(-36.1%) 

421.32 

(0.00%) 

17.71 

(0.00%) 

Flexible 
storage 

2 
1045.75 

(-20.46%) 

259.50 

(+6.21%) 

347.22 

(-45.0%) 

421.32 

(0.00%) 

17.71 

(0.00%) 

Case 5 

Obligatory 
storage 

2 1190.52 283.18 450.80 421.32 35.22 

Obligatory 
storage 

3 
1094.52 

(-8.06%) 

271.12 

(-4.26%) 

366.86 

(-18.6%) 

421.32 

(0.00%) 

35.22 

(0.00%) 

Flexible 
storage 

2 
1056.92 

(-11.2%) 

255.60 

(-9.74%) 

344.77 

(-23.5%) 

421.32 

(0.00%) 

35.22 

(0.00%) 

*TC=Total cost. COC=Changeover cost. ITC=Idle time cost. PTC=Processing time cost. WC=Waste cost 

**The costs represent monetary units 
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Results illustrate clearly a significant reduction in the total cost, by implementing a 

flexible-storage policy. In particular, the total cost is decreased by 26.63% in cases with 

50 products, while a decrease of 32,04% is realized in cases with 70 products. It is 

noticed that the improvements are mainly due to the idle-time cost reduction.  

3.5.5 Consideration of byproducts 

The impact of byproduct recycling is studied here, using the problem instances with 50, 

60, 70 and 100 products form case 1. The capacity of byproducts vessel tanks is equal to 

160 kg and the stored amount should not exceed this limit. Figure 3.17 shows, the total 

amount of recycles for each case. It is noticed that the byproduct recycles constitute a 

significant percentage of the total produced amount, which ranges from 6.1% (Case 1 

with 50 products) to 7.57% (Case 4 with 100 products). It is therefore clear that the 

usage of this policy leads to better utilization of raw materials and significant reduction 

of material cost.  

 

Figure 3.17 Recycled amount 

 

Furthermore, Case 1 has been solved with and without the proposed byproducts 

constraints. It is noticed that the generated waste violates the storage capacity in all 

vessels if capacity constraints are ignored. On the other hand, storage limitations are 
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fully respected by considering the proposed byproduct constraints. The profile of stored 

amount for both cases is illustrated in Figure 3.18 and Figure 3.19. 

 

 

Figure 3.18 Case 1 - Total stored amount of byproduct in tanks considering byproducts constraints 
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Figure 3.19 Case 1 - Total stored amount of byproduct in tanks without considering byproducts 
constraints 

 

3.6 Conclusions 

This chapter presents a precedence-based MILP model framework, for the scheduling of 

continuous, make-and-pack industries. Intermediate buffers are considered to achieve a 

better synchronization between the two production stages. Instead of using a discrete 

time horizon, a set of auxiliary binary variables are introduced, to correctly handle mass 

balance constraints. A salient feature of the modelling framework is the recycling of 

byproducts waste, to achieve a better utilization of raw material and resources. For the 

solution of large problem instances, a two-stage decomposition algorithm is proposed. 

Several case studies have been solved, to consider the application of the proposed 
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modelling frameworks and solution strategy. Results illustrate significant 

improvements in the economic operation of the plant. To evaluate the benefits of 

intermediate storage tanks, different plant layouts have been studied. The intermediate 

storage tanks provide better synchronization of the production stages and lead to 

significant productivity gains, while flexible-storage policies result in higher cost 

savings in comparison with obligatory storage. The proposed two-stage decomposition 

strategy can provide good-quality schedules for large-scale problems and can 

potentially constitute an important tool for engineers to derive fast and rigorous 

scheduling decisions in a dynamic environment. Further extension of the proposed 

optimization-based approach seems a promising research task. Future works are 

envisaged to focus on extending the proposed approach, by considering multiple 

production stages with flexible storage tanks. Moreover, another direction for future 

extension would be the development of an integrated planning and scheduling 

optimization framework, by including lot-sizing decisions and inventory constraints. 

 

Nomenclature 

 

MILP model 

Indices/sets  

𝑖, 𝑖′ ∈ 𝐼 Production orders 

𝑗 ∈ 𝐽 Production units 

𝑠 ∈ 𝑆 Processing stages 

𝑣 ∈ 𝑉 Storage vessels 
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Subsets  

𝐽𝐼𝑖  Processing units 𝑗 ∈ 𝐽 available to process production orders 𝑖 ∈

𝐼, ( 𝐽𝐼𝑖 ⊆ 𝐽 )  

𝐼𝐽𝑗  production orders 𝑖 ∈ 𝐼 that can be processed by processing 

units 𝑗 ∈ 𝐽,  ( 𝐼𝐽𝑗 ⊆ 𝐼 ) 

𝐽𝑆𝑠 Available processing units 𝑗 ∈ 𝐽 to process stage 𝑠 ∈ 𝑆, (𝐽𝑆𝑆 ⊆ 𝐽 ) 

 

Parameters  

𝑎𝑖 upper percentage of the total amount of product 𝑖 that can be 

recycled  

𝑐𝑐 Changeover cost  

𝑐𝑝𝑗  Capacity of byproduct vessel of unit j 

𝑑𝑖 due date for product order 𝑖 

𝑑𝑚𝑖 Demand of product 𝑖 

𝑒𝑣 Capacity of vessel v 

𝑓𝑖  Recipe of product 𝑖 

𝑔 maximum difference of starting times between the two stages 

of the products 

ℎ The time horizon under consideration 

𝑖𝑐 Idle-time cost 

𝑖𝑤𝑗 The initial stored amount of byproduct at the storage tank of 

each processing unit j 
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M A big number 

𝑛𝑖,𝑖′,𝑠 changeover time between two consecutive production orders 𝑖 

and 𝑖′ at stage s 

𝑝𝑐 production time cost 

𝑝𝑙𝑖 Maximum processing time of product 𝑖 in both stages 

𝑝𝑚𝑖,𝑠 Minimum processing time of product 𝑖 at stage 𝑠 

𝑟𝑖,𝑠 Maximum production rate of product 𝑖 at stage 𝑠  

𝑟𝑠𝑖 Maximum residence time of a product i at a storage tank 

𝑤𝑐 Byproduct cost 

 

Continuous 

Variables 

 

𝐶𝑇𝑖,𝑠 Completion time of product i at production stage s 

𝐺𝑃𝑖  Difference of starting times between the two stages of product 𝑖 

𝐿𝑖,𝑖′,𝑠 Idle time between product i and 𝑖′ at production stage s 

𝐿𝐼𝑖  Accumulated amount of byproduct waste in the unit that 

operates product i at the starting time of formulation stage 

𝑂𝑖 Accumulated amount of byproduct waste in the unit that 

operates product i at the ending time of formulation stage 

𝑃𝐸𝑖′,𝑖 Exported amount of product 𝑖′ in a storage vessel up until the 

starting time of packing stage of product i  

𝑃𝐼𝑖,𝑖′  Inserted amount of product 𝑖′ in a storage vessel up until the 
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starting time of packing stage of product i  

𝑄𝑖 Stored amount of product i 

𝑄𝐸𝑖′,𝑖 Exported amount of product 𝑖′in a storage vessel up until the 

end of formulation stage of product i  

𝑄𝐼𝑖′,𝑖 Inserted amount of product 𝑖′ in a storage vessel up until the 

end of formulation stage of product i  

𝑄𝑃𝑖 Stored amount up until the starting time of packing stage of 

product i  

𝑄𝑇𝑖 Stored amount up until the end of formulation stage of product 

i  

𝑅𝑊𝑗  Remained amount of byproduct waste at the end of time 

horizon in unit j 

𝑆𝑇𝑖,𝑠 Starting time of product, i at production stage s 

𝑇𝑖,𝑠 Processing time of product i at production stage s 

TC Total cost 

𝑊𝑖 Amount of waste which is recycled by product  𝑖 

 

Binary 

Variables 

 

𝐾𝑖,𝑖′  Takes the value 1 only if a production order i completes 

formulation earlier than the completion time of the formulation 

stage of production order 𝑖′. 

𝑃𝑖,𝑖′  Takes the value 1 only if a product production order i starts 

packing earlier than the starting time of the packing stage of 

production order 𝑖′. 
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𝑋𝑉𝑖,𝑖′,𝑣 Takes the value 1 only if production order 𝑖 stored before 

production order 𝑖′ at in the storage tank v 

𝑋𝑖′,𝑖,𝑗 Takes the value 1 only if production order 𝑖 is processed exactly 

before order 𝑖′ in unit j 

𝑌𝑖,𝑗 Takes the value 1 only if a production order 𝑖 is allocated to 

unit j 

𝑌𝑂𝑖 Takes the value 1 only if a production order i starts packing 

later than the completion time of its formulation stage 

𝑌𝑉𝑖,𝑣 Takes the value 1 only if a production order 𝑖 is allocated to 

vessel v 

𝑍𝑖,𝑖′  Takes the value 1 only if a production order i starts packing 

earlier than the completion time of the formulation stage of 

production order 𝑖′ 

 

Solution strategy 

Indices/sets  

𝑖 ∈ 𝐼𝐼𝑁 Subset of production orders, which are inserted into the 

schedule of the constructive step of solution strategy (𝐼𝐼𝑁 ⊆ 𝐼) 

𝑖 ∈ 𝐼𝐼𝐷𝑁 Subset of production orders, which are reinserted during the 

first improvement step of solution strategy, since an idle time is 

detected before or after its processing (𝐼𝐼𝐷𝑁 ⊆ 𝐼) 

𝑖 ∈ 𝐼𝑅𝐸𝐼𝑁 Subset of production orders, which are reinserted during the 

second improvement step of solution strategy (𝐼𝑅𝐸𝐼𝑁 ⊆ 𝐼) 
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Parameters  

𝑝𝑜𝑠𝑖 The relative position of element 𝑖 in set I 

𝑙𝑡 The total CPU time limit of solution algorithm 
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4. Optimal Contract Selection for 

Contract Manufacturing 

Organizations in the Pharmaceutical 

Industry Under Demand Uncertainty 

4.1 Introduction 

Over the past few years, large R&D pharmaceutical companies have increasingly 

outsourced non-core activities, such as manufacturing, to Contract Manufacturing 

Organisations (CMOs), which are companies without their own product portfolio. 

Contract Manufacturing Organizations utilize their facilities to manufacture products for 

multinational pharmaceutical companies on a contract basis. This policy enables R&D 

multinationals to reduce costs and emphasise on drug discovery and marketing, which 

are the key parts for their value chain. Typically, drug development is a time-consuming 

process, as it takes at least 10 years on average for a new medicine to be in the 

marketplace. Additionally, demand of newly developed pharmaceutical products is 

usually highly uncertain. Lower drug efficacy can affect the demand and total sales, 

while in the worst case, it can lead to the suspension or even the withdrawal of drugs. 

Under this dynamic and uncertain environment, CMOs must define which contracts to 

accept to maximize their profit while considering their risk tolerance (Marques et al., 

2020). 

Although several research contributions have been focused on the scheduling of 

pharmaceutical industries and on the planning of clinical trials (Sundaramoorthy et al., 

2012), the contract selection problem of Contract Manufacturing Organizations has not 

been considered in the open literature. Hence, in this chapter an integrated tactical 

planning and medium-term scheduling framework is proposed for the optimal contract 
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appraisal problem of Contract Manufacturing Organizations in the secondary 

pharmaceutical industry under demand uncertainty.  

First, an aggregated MILP-based planning model is proposed, including material 

balances, time horizon and allocation constraints. A general precedence MILP model for 

the scheduling of multistage, multiproduct, batch industries is also proposed. The 

production targets are defined in the planning decision level using a rolling horizon 

framework, while the scheduling MILP model makes batch-sizing and sequencing and 

timing decisions in detail. A three-phase, scenario-based solution algorithm is 

introduced to model demand uncertainty considering Value-at-Risk (VaR) and 

Conditional Value-at-Risk (CVaR) measures, while both systematic and unsystematic 

risk are considered.  Results illustrate that the proposed modelling framework can 

constitute a systematic approach for the contract appraisal problem of CMOs as it can 

select the optimal contract mixture depending on the corresponding risk tolerance. 

Finally, the proposed modelling approach can constitute the basis for a computer aided 

tool that evaluates the feasibility and the profitability of different contract 

combinations. 

4.2 Problem Statement 

Contract Manufacturing Organizations 

Pharmaceutical industry constitutes one of the most important industrial sectors, since 

it has an enormous impact on the quality of life of population. Furthermore, 

pharmaceutical industry, has a vital role in the economies of developed countries. This 

is also confirmed by the fact that the revenue of the worldwide pharmaceutical market 

at the end of 2020 reached $1.27 trillion. The necessity to transfer new medicines and 

vaccines to all over the world, leads to global supply chains, including primary and 

secondary manufacturers, warehouses, suppliers, etc. Hence, under this complex supply 

chain network, an ever-expanding number of multinational companies decide to 

outsource part of their manufacturing processes in order to reduce costs and increase 

their overall productivity (Jarvis, 2007). Nowadays, the pharmaceutical companies can 

be categorized as follows: i) R&D based multinationals, focused on the whole product 

life cycle (from discovery to distribution), ii) generic manufacturers, iii) biotechnology 
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companies (mainly focused on research and drug discovery activities) and iv) Contract 

Manufacturing Organizations (CMOs).  

Contract Manufacturing Organizations provide outsourcing services to multinational 

companies on a contract basis. Typically, the vast majority of CMOs is focused on 

secondary manufacturing when active pharmaceutical ingredients (APIs) are combined 

with a plethora of excipients and transformed into final products.  Although CMOs don’t 

have their own product portfolio, they play a key role in the supply chain of 

pharmaceutical products. Contract Manufacturing market is projected to grow at a 

compound annual growth rate of 9.4% and therefore to reach $188 billion by 2026, 

from $ 92.42 billion in 2018. (Healthcare Contract Manufacturing Outsourcing (CMO) 

Market - Forecasts from 2016 to 2021, 2016) 

One of the main advantages of outsourcing, is that it allows large multinational 

companies to focus on their core competencies such as drug discovery and marketing. 

Furthermore, since CMOs manufacture products for multiple customers, they are 

benefited from economies of scale and they can decrease individual costs, regarding to 

the purchasing of raw material, production, and storage. Besides the above, outsourcing 

allows multinationals for larger product portfolio without increasing capital expenses 

associated with the construction of new facilities.  

Main Challenges - Uncertainty 

Both pharmaceutical products and processes must comply with strict guidelines, 

stipulated by regulatory agencies such as Food and Drug Administration (FDA) or 

European Medicines Agency (EMA). Thus, drug development is usually a time-

consuming process. Although a drug patent usually expires 20 years after the date a 

company applies for it, it can take several years only for development and testing before 

a drug reaches the market. In particular, clinical trials alone take 2-10 years on average.  

As a result, pharmaceutical multinational companies typically aim to get products into 

the market as soon as possible to take advantage of the “market life under patent”. After 

a patent expires, pharmaceutical products have to face strong competition from generic 

drugs and as a result, both value and sales typically halve. 
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In order to reduce their risk exposure, multinationals approach CMOs to outsource part 

of their manufacturing process.  Since pharmaceutical products must be placed on the 

market as soon as possible, a contract can be often offered to a CMO even before the 

final approval of the regulatory agencies. However, the approval process can last more 

time than it is expected. Furthermore, if the new drug application is not successful, it 

must be revised and resubmitted. As a result, a CMO has to decide if it is a good choice to 

reserve part of its plant capacity to produce a set of currently developed products, 

whose demand window is uncertain.  

In addition, even after a drug approval, the drug maker is required to perform further 

clinical trials (Phase IV- Post Approval Monitoring), to confirm the benefits of the drug. 

Often, the initial estimations of the drug effectiveness can be proven wrong or not fully 

accurate. Lower drug efficacy can affect the demand and the total sales. In the worst 

case, unexpected side-effects of a new drug can lead the regulatory agencies to decide 

the temporary suspension or even the withdrawal of the drug (Aronson, 2017). 

Demand of currently developed drugs is affected by unsystematic risk, which is unique 

to each specific pharmaceutical product. In particular,  four clinical trial outcomes (high 

success, target success, low success, failure) can be considered for these products as it is 

typical in the industry (Gatica et al., 2003). Although recently developed drugs are 

characterized by high demand uncertainty and high risk, usually they are sold at higher 

prices, and they are related to higher profit margins.  

On the other hand, “mature” drugs, which have been already placed on the market and 

have been proved effective over time, are characterized by less volatile demand, since 

they are affected only by systematic risk. Systematic risk is inherent to the market as a 

whole, reflecting the impact of economic, geo-political and financial factors. At the same 

time, the profit margin of these products is lower since they face strong competition due 

to generic drugs. The demand volatility range of different types of products is also 

illustrated in Figure 4.1. 
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Figure 4.1 Demand uncertainty for mature and currently developed products 

 

Under this dynamic environment, a CMO must decide the best contact combination to 

accept, so as to maximize the total profit while considering its tolerance to risk. When a 

CMO allocates its resources, the so far agreed contracts, as well as the set of available 

contacts, which have not been accepted yet, should be taken into consideration. The 

selection of the optimal contract mixture is also called as “contract appraisal problem”. 

Secondary Pharmaceutical Manufacturing 

Pharmaceutical production can be divided into two major subsectors. Primary 

manufacturing is mainly focused on the production of active pharmaceutical ingredients 

(APIs). On the contrary, secondary manufacturing is related to the conversion of APIs 

into final and suitable for usage products, such as tablets, capsules, injections etc. 

Typically, a secondary pharmaceutical industry operates as a multistage batch facility. 

In each stage, the production takes place in multiple parallel lines, The main operations 

that take place, usually include granulation, compression, and coating (Stefansson et al., 

2011).   During granulation, APIs are mixed with plethora of excipients and the mixed 

powder is transformed into multiparticle entities, called granules. Granulation aims to 

generate homogenized mixtures and contributes to cross-contamination reduction. 

Powder mixtures are then compressed to form final products, such as tablets. 

Throughout compression, key attributes such as hardness, friability, and thickness, can 

be monitored and controlled. Finally, the surface of intermediate products is typically 

covered by a thin continuous layer of solid. The main purposes of film coating are the 

increase of drug shelf life, the taste-masking, and the aesthetic enhancement. Coating 

also plays an important role in the moderation of the release profile of drug substances. 
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It should be mentioned that recent advances in manufacturing technology have 

prompted several pharmaceutical industries, to adopt continuous manufacturing 

(Ierapetritou et al., 2016). This movement has also been encouraged by regulatory 

agencies, such as FDA, to address drug shortages and recalls. However, the transition to 

continuous manufacturing has been proven ineffective in practice and therefore, batch 

operations still prevail in secondary pharmaceutical manufacturing (Marques et al., 

2020). 

In each production stage, multiple units operate in parallel. After each stage, production 

typically stops, in order to collect samples and to test the quality of products. Product-

depended changeovers also occur between consecutive batches, due to required 

cleaning operations. Furthermore, batch integrity must be preserved. Hence, batch 

mixing or splitting is not allowed, in order to ensure the purity and the quality of final 

products (Sundaramoorthy and Maravelias, 2011). Although there are no intermediate 

storage units between stages, intermediate products can be stored as inventory in 

warehouse of the plant. Additionally, product batches can remain in a processing unit 

after completing their process, as long as it is required. The pharmaceutical plant 

operates 24 hours per day, for five days a week, to satisfy a weekly order-driven 

demand. 

The problem can be formally stated as follows: 

Given: 

• A set of available and already agreed contracts with uncertain demand level 

• A set of demand scenarios for each contract  

• A set of processing stages with parallel processing units with limited capacity 

• A time horizon 

• Product-dependent changeover times 

• Selling price of products 

• Raw materials, operational, inventory and backorder costs 

• The fixed and the batch-size dependent processing rates of products 
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Determine: 

• The optimal contract mixture 

• the detailed production plan  

so as to:  

• maximize the expected profit while mitigating the corresponding risk 

4.3 Planning and scheduling using the Rolling Horizon 

framework 

 

In this section, an hierarchical modelling framework for the integrated planning and 

scheduling of multistage batch pharmaceutical industries is proposed. An aggregated 

MILP planning model is firstly proposed considering capacity, mass balance and time 

horizon constraints. Planning-level decisions are made, including the determination of 

weekly production and inventory targets. A continuous time, general precedence, MILP 

scheduling model is also proposed, inspired by the work of Cerdá et al., (2020). The 

model focuses on the detailed scheduling of multistage batch facilities and relies on 

batch-sizing, unit allocation, sequencing, and timing constraints. A feedback loop is also 

integrated into the optimization framework so as to converge the solutions of both 

decision levels. 

Typically, a CMO must define the best contract mixture to accept in order to maximize 

its profits, while considering its tolerable risk exposure. Demand uncertainty of each 

contract can be modelled by considering several independent scenarios. Each scenario 

represents a possible demand instance and is associated with a given weight, indicating 

the probability of its realization.  

Considering multiple available contracts, and several demand scenarios, a contract 

selection problem is described as highly combinatorial. However, since all contract 

combinations and all individual scenarios are independent, the integrated planning and 

scheduling problem of each scenario can be solved and evaluated separately 

(Dimitriadis, 2000; Johnson, 2005). 
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Furthermore, a major challenge for a contract selection problem is typically the 

consideration of long-term time horizons. Hence, the solution of planning and 

scheduling is addressed through an hierarchical framework, based on the idea of the 

rolling horizon approach (Dimitriadis, 2000; Verderame and Floudas, 2008; Wu and 

Ierapetritou, 2007). In sections 4.3.1 and 4.3.2 the aggregated planning and the detailed 

scheduling models are proposed. Finally, the hierarchical framework, based on the 

rolling horizon approach is presented in Section 4.3.3.  

4.3.1 Planning MILP model 

The model constraints are presented below: 

Allocation constraints 

 

𝑞𝑤𝑗
𝑚𝑖𝑛𝑊𝑉𝑝,𝑗,𝑤 ≤ 𝑄𝑝,𝑗,𝑤 ≤ 𝑞𝑤𝑗

𝑚𝑎𝑥𝑊𝑉𝑝,𝑗,𝑤     ∀ 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑃𝐽𝑝, 𝑤 ∈ 𝑊 (4.1) 

 

Constraints (4.1) impose an upper (𝑞𝑤𝑗
𝑚𝑎𝑥) and a lower (𝑞𝑤𝑗

𝑚𝑖𝑛)  bound on the 

production of each product Qp,j,w, in production unit j, during week w.  

 

Mass balance constraints 

𝐼𝑝,𝑠,𝑤−1 + ∑ 𝑄𝑝,𝑗,𝑤
𝑗∈(𝐽𝑆𝑠∩𝑃𝐽𝑝)

 = 𝐼𝑝,𝑠,𝑤 + ∑ 𝑄𝑝,𝑗,𝑤
𝑗∈(𝐽𝑆𝑠+1∩𝑃𝐽𝑝)

+  

+ 𝑑𝑝,𝑠,𝑤 − 𝐵𝑝,𝑠,𝑤 + 𝐵𝑝,𝑠,𝑤−1       ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑤 ∈ 𝑊 

 

(4.2) 

 

Constraints (4.2) express the material mass balances. In particular, the total produced 

and stored amount of product p from the previous week (𝐼𝑝,𝑠,𝑤−1), must be equal to the 

weekly demand (dp,s,w), the produced amount at the next production stage (s+1) and the 

new stored amount, 𝐼𝑝,𝑠,𝑤. If the demand cannot be fully satisfied, then that amount is 

denoted as backlog (or backorder), and it is represented by variable 𝐵𝑝,𝑠,𝑤. The 

unsatisfied demand is penalized in the objective function by considering an associated 

cost term.  The last term of the mass balance constraints is related to the backlog of the 
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previous week, (𝐵𝑝,𝑠,𝑤−1). Since backorders must be satisfied as soon as possible, 

variable 𝐵𝑝,𝑠,𝑤−1 is added into the market demand for the current week. 

 

∑ 𝑄𝑝,𝑗,𝑤
𝑗∈𝐽𝑆𝑠

≤ ∑ 𝑄𝑝,𝑗,𝑤
𝑗∈𝐽𝑆𝑠−1

+ 𝐼𝑝,𝑠,𝑤−1     ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆,𝑤 ∈ 𝑊: 𝑠 > 1 (4.3) 

 

Constraints (4.3), ensure that the total production of product p at stage s, at the end of 

week w, should not exceed the amount that has been produced at the previous stage, 

plus the amount being stored from the previous week, Ip,s,w-1. Obviously, the above 

restriction doesn’t affect the first production stage, where production is limited only by 

the capacity of production units.  

 

Duration constraints 

 

𝑁𝑝,𝑗,𝑤 ≥
𝑄𝑝,𝑗,𝑤

𝑞𝑗
𝑚𝑎𝑥 

      ∀ 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑃𝐽𝑝, 𝑤 ∈ 𝑊 (4.4) 

 

The minimum number of batches for each product p, in unit j, is denoted by integer 

variable 𝑁𝑝,𝑗,𝑤. According to constraints (4.4), the minimum number of batches is at 

least equal to the quotient of the division of the produced amount 𝑄𝑝,𝑗,𝑤, and the 

maximum capacity of unit j, 𝑞𝑗
𝑚𝑎𝑥 . Using an inequality constraint, if the quotient of the 

division leads to a non-integer number, variable 𝑁𝑝,𝑗,𝑤 is rounded up to the next higher 

integer.  

 

𝑇𝑝,𝑗,𝑤 = 𝑓𝑥𝑝,𝑗𝑁𝑝,𝑗,𝑤 +
𝑄𝑝,𝑗,𝑤

𝑣𝑡𝑝,𝑗
     ∀ 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑃𝐽𝑝, 𝑤 ∈ 𝑊 (4.5) 

  

The processing time of each product p, 𝑇𝑝,𝑗,𝑤, is given by constraints (4.5), including two 

terms. The first term is related to the fixed processing time, while the second is 

associated with the size-dependent processing time. The fixed processing time typically 

includes the time needed for filling and emptying the processing units, as well as the 
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required time for quality control.  The terms fxp,j and vtp,j express the fixed and variable 

processing time coefficients, respectively.  

 

Storage constraints 

 

𝐼𝑝,𝑠,𝑤 ≤ 𝑐𝑎𝑝𝑝,𝑠      ∀ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆,𝑤 ∈ 𝑊 (4.6) 

 

∑∑𝐼𝑝,𝑠,𝑤
𝑠

≤ 𝑤𝑐      ∀ 𝑤 ∈ 𝑊

𝑝

 (4.7) 

 

Storage capacity limitations are satisfied via constraints (4.6) and (4.7). In particular, 

constraints (4.7) guarantee that the stored amount cannot exceed the total warehouse 

capacity of the plant, wc, while constraints (4.6), impose a capacity limitation for the 

stored amount of product p, at stage s, given by the parameter, capp,s. 

 

Time horizon constraints 

 

∑𝑇𝑝,𝑗,𝑤
𝑝

+∑𝑐𝑙𝑝,𝑗𝑊

𝑝

𝑉𝑝,𝑗,𝑤 ≤ ℎ       ∀ 𝑗 ∈ 𝐽, 𝑤 ∈ 𝑊 (4.8) 

 

∑ ∑ 𝑇𝑝,𝑗,𝑤
𝑗∈(𝐽𝑆𝑠∩𝑃𝐽𝑝)𝑝

≤ 𝑎𝑣𝑙𝑠 𝜇𝑠        ∀ 𝑠 ∈ 𝑆, 𝑤 ∈ 𝑊 (4.9) 

 

To enhance the accuracy of the planning model, time horizon constraints (4.8) and (4.9) 

are also considered. According to constraints (4.8), the total processing time and the 

average cleaning time clp,j of each production unit must be lower than the available time 

horizon, ℎ. Additionally, constraints (4.9) state that the total production time of each 

production stage, must not exceed an upper limit, given by the parameter avls. Usually, 

parameter avls is equal to the time horizon, h multiplied by the number of parallel lines 

of stage s. Parameter 𝜇𝑠 is a sequencing factor and it has a vital role in the proposed 

solution framework (Verderame and Floudas, 2008; Wu and Ierapetritou, 2007). The 

initial value of the sequencing factor equals 1, but it can be modified during the rolling 
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horizon algorithm. Since the planning model doesn’t include timing and sequencing 

constraints, in some cases, the production targets provided to the scheduling level are 

proven infeasible. To converge the production amounts of the two models, the upper 

bound is adjusted to the maximum production time defined by the scheduling level. 

Hence, the MILP planning model is more accurate. A detailed description of the use of 

sequence factor is provided in section 4.3.3  

 

 

Objective function 

 

𝑚𝑎𝑥 ∑𝑖𝑛𝑐
𝑐

⏞    
initial contarct payment

+∑∑∑ ∑ 𝑊𝑝,𝑗,𝑤
𝑗∈(𝐽𝑆𝑠∩𝑃𝐽𝑝)𝑝𝑤

𝑑𝑝,𝑠,𝑤𝑝𝑟𝑝
𝑠

⏞                        
total sales

−

∑∑𝐵𝑝,3,𝑤𝑏𝑐𝑝
𝑝𝑤

⏞          
backlog cost

−∑∑∑𝐼𝑝,𝑠,𝑤
𝑠𝑝𝑤

𝑖𝑐𝑝
⏞            

inventory cost

−∑∑ ∑ 𝑄𝑝,𝑗,𝑤
𝑗∈𝑃𝐽𝑝𝑝𝑤

𝑞𝑐𝑝
⏞              

production cost

−

∑𝑓𝑟𝑝𝑟𝑐𝑝
𝑝

⏞      
raw material fixed cost

−  ∑𝑟𝑐𝑝( ∑ ∑(𝑄𝑝,𝑗,𝑤) −

𝑤𝑗∈𝑃𝐽𝑝𝑝

𝑓𝑟𝑝)
⏞                    

raw material variable cost

                                

 
 

 (4.10) 

The objective function aims at maximizing the total profit. The main income of the 

company is related to the initial payment of each signed contract (𝑖𝑛𝑐), and the total 

revenue of sales. On the other hand, expenses include backlog, inventory, production, 

and raw material costs. It is assumed that if a contract is signed, a minimum amount of 

raw materials must be purchased regardless of the actual demand and the final 

production level. Thus, a term related to the fixed cost of raw materials is considered as 

well. 

4.3.2 Scheduling MILP model 

In this section, a general precedence-based MILP is proposed,  inspired by the work of  

Cerdá et al., (2020). The model is focused on the scheduling of multistage, multiproduct 

batch processes, typically met in secondary pharmaceutical industries. A description of 

model sets, variables and parameters is presented below, while constraints are 
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categorized based on the type of decision (e.g. allocation, batch sizing, timing, 

sequencing, etc.). 

 

Allocation constraints 

 

∑𝑌𝑃𝑏,𝑝
𝑝∈𝑃

≤ 1  Ɐ 𝑏 ∈ 𝐵 (4.11) 

∑ 𝑌𝑈𝑏,𝑝,𝑗
𝑗∈(𝐽𝑆𝑠∩𝑃𝐽𝑝)

≤ 𝑌𝑃𝑏,𝑝  Ɐ 𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (4.12) 

 

Constraints (4.11) ensure that any batch is assigned to at most one product p. 

Furthermore, as it is stated by constraints (4.12), each batch b is allocated to at most 

one processing unit j, in each production stage s. 

 

Mass balance constraints 

𝑖𝑛𝑖𝑛𝑣𝑝,𝑠 +∑𝑄𝐵𝑏,𝑝,𝑠
𝑏∈𝐵

= 𝑑𝑚𝑝,𝑠 − 𝐵𝐴𝑝,𝑠 + 𝐼𝑁𝑉𝑝,𝑠   +∑𝑄𝐵𝑏,𝑝,𝑠+1
𝑏∈𝐵

 Ɐ  𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (4.13) 

 

Mass balances are expressed for each product p and production stage s, using 

constraints (4.13). In particular, the initial inventory, 𝑖𝑛𝑖𝑛𝑣𝑝,𝑠 , plus the total production 

of product batches, must be equal to the customer’s demand, 𝑑𝑚𝑝,𝑠, the amount 

processed in the next production stage s+1 and the new stored amount 𝐼𝑁𝑉𝑝,𝑠. If 

demand cannot be fully satisfied, it is backlogged by utilizing variable 𝐵𝐴𝑝,𝑠. 

 

Timing constraints 

𝑇𝑃𝑏,𝑠 =∑ ∑ 𝑌𝑈𝑏,𝑝,𝑗𝑓𝑥𝑝,𝑗 +
𝑄𝐵𝑉𝑏,𝑝,𝑗

𝑣𝑡𝑝,𝑗
𝑗∈(𝐽𝑆𝑠 ∩ 𝑃𝐽𝑝)𝑝

     Ɐ 𝑏 ∈ 𝐵, 𝑠 ∈ 𝑆 (4.14) 
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The processing time of batch b of product p, 𝑇𝑃𝑏,𝑠, is expressed by constraints (4.14). 

Similarly to constraints (4.5), the processing time has two contributions. The first term 

is associated with the fixed processing time, whereas the second one with the size-

dependent processing time. Variable, 𝑄𝐵𝑉𝑏,𝑝,𝑗 represents the variable component of 

batch size.  

 

𝐶𝑇𝑏,𝑠 = 𝑆𝑇𝑏,𝑠 + 𝑇𝑃𝑏,𝑠 +𝑊𝑇𝑏,𝑠   Ɐ 𝑏 ∈ 𝐵, 𝑠 ∈ 𝑆 

 
(4.15) 

According to constraints (4.15) the completion time of batch b, 𝐶𝑇𝑏,𝑠, must be equal to 

the sum of the corresponding starting time, 𝑆𝑇𝑏,𝑠 and the processing time, 𝑇𝑃𝑏,𝑠. In some 

cases, a waiting time is allowed between sequential stages. The waiting time of batch b 

in stage s, is represented by variable 𝑊𝑇𝑏,𝑠. In case of zero-wait storage policy, variable 

𝑊𝑇𝑏,𝑠 is set to zero.  

𝐶𝑇𝑏,𝑠 + 𝑐ℎ𝑝,𝑝′ ≤ 𝑆𝑇𝑏′,𝑠 + ℎ(2 − 𝑌𝑈𝑏,𝑝,𝑗 − 𝑌𝑈𝑏′,𝑝′,𝑗) + ℎ(1 − 𝑋𝐵𝑏,𝑏′,𝑗) 

Ɐ 𝑏 ∈ 𝐵, 𝑏′ ∈ 𝐵, 𝑝 ∈ 𝑃, 𝑝′ ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑗 ∈ (𝐽𝑆𝑠  ∩  𝑃𝐽𝑝): 𝑝
′ ≠ 𝑝, 𝑏′ > 𝑏 

 

(4.16) 

𝐶𝑇𝑏′,𝑠 + 𝑐ℎ𝑝′,𝑝 ≤ 𝑆𝑇𝑏,𝑠 + ℎ(2 − 𝑌𝑈𝑏,𝑝,𝑗 − 𝑌𝑈𝑏′,𝑝′,𝑗) + ℎ𝑋𝐵𝑏,𝑏′,𝑗    

Ɐ 𝑏 ∈ 𝐵, 𝑏′ ∈ 𝐵, 𝑝 ∈ 𝑃, 𝑝′ ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑗 ∈ (𝐽𝑆𝑠  ∩  𝑃𝐽𝑝): 𝑝
′ ≠ 𝑝, 𝑏′ > 𝑏 

 

(4.17) 

Constraints (4.16) and (4.17) define the relative sequencing of batches at each 

processing unit j (Kopanos et al., 2010a). Since batch b’ is processed after batch b, in unit 

j of stage s, (𝑋𝐵𝑏,𝑏′,𝑗 = 1), the starting time, 𝑆𝑇𝑏′,𝑠, must be greater than the sum of the 

completion time 𝐶𝑇𝑏,𝑠 and the corresponding changeover time 𝑐ℎ𝑝,𝑝′ . On the other hand, 

if the general precedence variable is equal to 0, constraints (4.17) force variable 𝑆𝑇𝑏,𝑠 to 

be greater than the sum of variables 𝐶𝑇𝑏′,𝑠 and 𝑐ℎ𝑝,𝑝′ . If batches b and b’ are not 

processed in the same unit j, (𝑌𝑈𝑏,𝑝,𝑗 = 𝑌𝑈𝑏′,𝑝′,𝑗 = 0), constraints (4.16) and (4.17) are 

relaxed.  

𝐶𝑇𝑏,𝑠 ≤ 𝐶𝑇𝑏′,𝑠 + ℎ(2 − 𝑌𝑈𝑏,𝑝,𝑗 − 𝑌𝑈𝑏′,𝑝,𝑗) 

Ɐ 𝑏 ∈ 𝐵, 𝑏′ ∈ 𝐵, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑗 ∈ (𝐽𝑆𝑠  ∩  𝑃𝐽𝑝): 𝑏
′ > 𝑏, 𝑠 = |𝑆| 

(4.18) 
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To avoid symmetric solutions, the processing of batches that contain the same product p 

can be preordered. According to constraints (4.18), batches assigned to the same 

product p and the same unit j, must be processed in the same order as they appear in set 

B. Constraints (4.18) is applied only to the last production stage since otherwise, a 

subset of feasible solutions could not be detected in the solution search space (Cerdá et 

al., 2020). 

𝑆𝑇𝑏,𝑠+1 = 𝐶𝑇𝑏,𝑠 + 𝑡𝑟𝑠𝑝∑𝑄𝐵𝑏,𝑝,𝑠
𝑝

   Ɐ 𝑏 ∈ 𝐵, 𝑠 ∈ 𝑆: 𝑠 < |𝑆| (4.19) 

Constraints (4.19) determine the timing of batches between consecutive stages. The 

starting time of batch b, in stage s+1, must be equal to its completion time in the 

previous stage s, plus the necessary transferring time, which is given by the parameter 

𝑡𝑟𝑠𝑝.  

𝐶𝑇𝑏,𝑠 ≤  ℎ∑ ∑ 𝑌𝑈𝑏,𝑝,𝑗
𝑗∈(𝐽𝑆𝑠 ∩ 𝑃𝐽𝑝)𝑝

   Ɐ 𝑏 ∈ 𝐵, 𝑠 ∈ 𝑆 (4.20) 

𝑆𝑇𝑏,𝑠 ≤  ℎ∑ ∑ 𝑌𝑈𝑏,𝑝,𝑗
𝑗∈(𝐽𝑆𝑠 ∩ 𝑃𝐽𝑝)𝑝

   Ɐ 𝑏 ∈ 𝐵, 𝑠 ∈ 𝑆 (4.21) 

𝑊𝑇𝑏,𝑠 ≤ ℎ ∑ ∑ 𝑌𝑈𝑏,𝑝,𝑗
𝑗∈(𝐽𝑆𝑠 ∩ 𝑃𝐽𝑝)𝑝

   Ɐ 𝑏 ∈ 𝐵, 𝑠 ∈ 𝑆 (4.22) 

 

Constraints (4.20)-(4.22), guarantee that variables 𝐶𝑇𝑏,𝑠, 𝑆𝑇𝑏,𝑠 and 𝑊𝑇𝑏,𝑠  are forced to 

zero if batch b is not allocated to any product p, or any unit j at stage s.  

 

Batch sizing constraints 

𝑄𝐵𝑏,𝑝,𝑠 = ∑ (𝑌𝑈𝑏,𝑝,𝑗
𝑗∈𝐽𝑆𝑠

𝑞𝑗
𝑚𝑖𝑛 + 𝑄𝐵𝑉𝑏,𝑝,𝑗)     Ɐ 𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (4.23) 

𝑄𝐵𝑉𝑏,𝑝,𝑗 ≤ (𝑞𝑗
𝑚𝑎𝑥 − 𝑞𝑗

𝑚𝑖𝑛)𝑌𝑈𝑏,𝑝,𝑗      Ɐ 𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑗 ∈ (𝐽𝑆𝑠  ∩  𝑃𝐽𝑝) (4.24) 
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The size of batch b, which consists of two individual terms, is defined by constraints 

(4.23). The fixed component is equal to the minimum capacity of the corresponding 

processing unit, 𝑞𝑗
𝑚𝑖𝑛. On the other hand, the variable batch size is expressed by variable 

𝑄𝐵𝑉𝑏,𝑝,𝑗. Furthermore, as it stated by constraint (4.24), the variable batch size must not 

exceed the maximum capacity 𝑞𝑗
𝑚𝑎𝑥, minus the minimum capacity of processing unit j. 

∑ 𝑌𝑈𝑏,𝑝,𝑗
𝑗∈(𝐽𝑆𝑠 ∩ 𝑃𝐽𝑝)

= ∑ (𝑌𝑈𝑏,𝑝,𝑗
𝑗∈(𝐽𝑆𝑠−1 ∩ 𝑃𝐽𝑝)

) + 𝑌𝐼𝐼𝑏,𝑝,𝑠−1    

Ɐ 𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 ∶ 𝑠 > 1 

(4.25) 

 

Additionally, a batch b, in stage s, can be either produced by a processing unit j or it can 

be fulfilled by the inventory being stored in the warehouse. To take this issue into 

account, an auxiliary binary variable 𝑌𝐼𝐼𝑏,𝑝,𝑠 is introduced, which is equal to 1 only if 

batch b in stage s is covered by stored amount. Constraints (4.25) ensure that a batch b 

can be allocated to unit j in stage s, only if it has been previously produced or it has been 

covered by the stored amount in previous stage, s-1.  

𝑄𝐵𝑏,𝑝,𝑠 ≤ 𝑈𝐼𝑁𝑉𝑏,𝑝,𝑠−1 + 𝑄𝐵𝑏,𝑝,𝑠−1       Ɐ 𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 ∶ 𝑠 > 1 (4.26) 

𝑈𝐼𝑁𝑉𝑏,𝑝,𝑠 ≤ 𝑌𝐼𝐼𝑏,𝑝,𝑠𝑖𝑛𝑖𝑛𝑣𝑝,𝑠  Ɐ 𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (4.27) 

∑𝑈𝐼𝑁𝑉𝑏,𝑝,𝑠
𝑏∈𝐵

≤ 𝑖𝑛𝑖𝑛𝑣𝑝,𝑠   Ɐ 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (4.28) 

 

Furthermore, variables 𝑈𝐼𝑁𝑉𝑏,𝑝,𝑠 are introduced, to express the stored amount of 

product p, that is being used to fulfil batch b, in stage s. According to constraints (4.26), 

the batch size of batch b in stage s, should be less than the produced amount of the 

previous stage, 𝑄𝐵𝑏,𝑝,𝑠−1, and the amount received by the warehouse, 𝑈𝐼𝑁𝑉𝑏,𝑝,𝑠−1. 

Constraints (4.27), ensure that the stored amount of product p in stage s, used for 

satisfying batch b, does not exceed the total inventory of product p, 𝑖𝑛𝑖𝑛𝑣𝑝,𝑠. Finally, 

constraints (4.28) guarantee that the total used inventory, cannot exceed the initially 

stored amount of product p at stage s.  
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Storage constraints 

𝐼𝑁𝑉𝑝,𝑠 ≤ 𝑐𝑎𝑝𝑝,𝑠  Ɐ  𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (4.29) 

∑∑𝐼𝑁𝑉𝑝,𝑠
𝑠

≤ 𝑤𝑐

𝑝

 (4.30) 

 

Similar to constraints (4.6) and (4.7), constraints (4.29) and (4.30) ensure that the net 

amount of storage material does not exceed the storage capacity of the plant. In 

particular, constraints (4.29) determine the storage capacity for each individual product 

at each stage s, while the warehouse capacity limitations are imposed by constraints 

(4.30).  

 

Underproduction constraints 

∑𝑄𝐵𝑏,𝑝,𝑠
𝑏∈𝐵

+ 𝑃𝑈𝑝,𝑠  ≥ 𝑡𝑝𝑟𝑜𝑑𝑝,𝑠      Ɐ  𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (4.31) 

𝐼𝑁𝑉𝑝,𝑠 + 𝐼𝑈𝑝,𝑠 ≤ 𝑡𝑖𝑛𝑣𝑝,𝑠      Ɐ  𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 (4.32) 

 

The decisions made by the proposed MILP planning model define the production targets 

for the scheduling level. However, the capacity of the plant could be overestimated by 

the planning model, and thus the production targets would be proven infeasible. Hence, 

we introduce two slack variables 𝑃𝑈𝑝,𝑠 and 𝐼𝑈𝑝,𝑠, expressing the total underproduction 

and inventory underproduction of product p in stage s, respectively. Constraints (4.31) 

and (4.32) are included to allow for potential violation of the production targets and 

maintain the robustness of the model.  Additionally, both slack variables are penalized 

in the objective function. It should be noted that both constraints (4.31) and (4.32) can 

be written as equalities. However, the usage of inequality constraints can potentially 

improve the CPU time without affecting the quality of the solution.  
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Objective function 

𝑚𝑎𝑥∑𝑝𝑟𝑝𝑑𝑚𝑝,3

𝑝

⏞        
total sales

−∑𝑏𝑐𝑝𝐵𝐴𝑝,3
𝑝

⏞        
backlog cost

−∑∑𝑖𝑐𝑝𝐼𝑁𝑉𝑝,𝑠
𝑠𝑝

⏞          
inventory cost

 

∑∑∑𝑞𝑐𝑝𝑄𝐵𝑏,𝑝,𝑠
𝑠𝑝𝑏

⏞              
production cost

− 𝑝𝑢𝑐∑∑𝑃𝑈𝑝,𝑠
𝑝𝑠

⏞          
underproduction cost

−  𝑖𝑢𝑐∑∑𝐼𝑈𝑝,𝑠
𝑝𝑠

⏞        
inventory underproduction costt

 

 

(4.33) 

In accordance with the objective of the planning model, the maximization of total profit 

is considered as the main target of the scheduling model. The objective function takes 

into account the various individual costs, such as backlog, inventory and production 

cost, along with the total sales of final products. The two final terms aim to minimize the 

slack variables related to the total underproduction, and inventory underproduction. 

4.3.3 Rolling horizon framework 

Among the different decision levels, tactical planning and medium-term scheduling are 

strongly connected. One of the main challenges in the integration of production 

planning and scheduling is the development of computationally effective formulations 

for complex production facilities, which include multiple product routes, and sequence-

dependent changeovers. The major modelling approaches for the integration of 

planning and scheduling decisions are presented in detail by Maravelias and Sung, 

(2009). Furthermore, modern process industries must satisfy multiple customer orders, 

considering frequent demand fluctuations. Hence, processing equipment has to be fully 

utilized, while at the same time, production targets must be feasible (Georgiadis et al., 

2019a).  

To address this challenge, the integrated planning and scheduling problem can be 

solved via an hierarchical framework, based on a rolling horizon approach. The main 

idea of the rolling horizon algorithm is the division of the initial long-term time horizon, 

h, into a sequence of N smaller subperiods, (i.e., weeks).  Each subperiod can be 

optimized in an iterative way. Two new subsets, Ts and Tp are also introduced, to 

represent the scheduling and the planning time-blocks, respectively. In each iteration, 

only decisions related to the scheduling time block, Ts, are made in detail, while the rest 
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subperiods are considered in an aggregate manner. Typically, in process industries the 

scheduling horizon is equal to one week, but this could vary depending on the specific 

problem features. 

In the first iteration of the rolling horizon algorithm, the planning time-block consists of 

the overall planning horizon (Tp= {𝑛1, . . 𝑛𝑁}), while subset Ts includes only the first time 

period (Ts ={𝑛1}). Hence, the aggregated planning model is solved, considering the 

entire planning horizon Tp, and the solution determines production targets for each 

subperiod. Then, the medium-term scheduling model is solved for solely the first 

subperiod and detailed decisions are made.  

In the second iteration, the subset Ts is updated so that Ts ={𝑛2}, while Tp= {𝑛1, . . 𝑛𝑁}. 

Hence, the aggregated planning model is solved again for the entire planning horizon, h. 

However, decisions related to the first subperiod are considered fixed, since they have 

already been taken by the scheduling model in the first iteration. Considering the 

updated production targets, the scheduling model is solved for the second subperiod, Ts 

={𝑛2}, and the related scheduling decisions are also fixed. 

The procedure described above, is repeated until all subperiods are solved in detail by 

the medium-term scheduling model. Production targets can be revised in each iteration. 

A brief schematic representation of the rolling horizon framework is illustrated in 

Figure 4.2. 
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Figure 4.2 Rolling horizon framework 

 

One of the main drawbacks of the rolling horizon framework is that the production 

capacity of the plant cannot be represented so accurately by the aggregated planning 

model (Li and Ierapetritou, 2010). Thus, the defined production targets may be often 

proven suboptimal or even infeasible by the scheduling model. To address this issue, 

the rolling horizon framework should allow for feedback between scheduling and 

planning models. This can be achieved by including additional feasibility constraints 

into the planning model, in order to reduce the feasible solution space and impose 

accurate enough capacity upper bounds (Verderame and Floudas, 2008; Wu and 

Ierapetritou, 2007). In particular, time horizon constraints (4.9) are included in the 

proposed planning model. To allow for feedback between the two optimization levels, a 

sequence factor 𝜇𝑠 is also introduced (Wu and Ierapetritou, 2007). The sequence factor 
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has a significant role in the rolling horizon algorithm, as it represents the impact of 

sequencing constraints in the planning model.  Thus, an accurate value of the sequence 

factor can lead to convergence between planning and scheduling solutions. The initial 

value of the sequence factor equals 1. However, if there is a gap between planning and 

scheduling production levels, the sequence factor is updated for the subsequent 

iterations as follows: 

𝜇𝑠
𝑖𝑡𝑒𝑟 = 𝜇𝑠

𝑖𝑡𝑒𝑟−1
𝑃𝑠
𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑

𝑃𝑠
𝑝𝑙𝑎𝑛𝑛𝑒𝑑

    Ɐ  𝑠 ∈ 𝑆 (4.34) 

 

Parameters 𝑃𝑠
𝑝𝑙𝑎𝑛𝑛𝑒𝑑 and 𝑃𝑠

𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 ,  denote the total production targets for production 

stage s, as defined by the planning and the scheduling optimization levels, respectively. 

Apparently, the sequence factor cannot exceed the value of 1, as in that case, the time 

horizon constraints would be relaxed and deactivated. If the plant capacity is 

overestimated by the planning model, the production targets may be proven infeasible 

by the scheduling model (𝑃𝑠
𝑝𝑙𝑎𝑛𝑛𝑒𝑑 > 𝑃𝑠

𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑). In this case the sequencing factor will 

be adjusted to a smaller value, for the following iterations of the algorithm. Rarely, the 

plant capacity can be even underestimated by the planning model, and therefore the 

sequence factor is forced to an increased value. It should be noted that if there is a gap 

between planning and scheduling production levels, an iterative procedure could be 

applied in order to obtain the optimal value of the sequencing factor. However, this is 

not a major target, as parameter 𝜇𝑠 can be modified at each iteration (Verderame and 

Floudas, 2008; Wu and Ierapetritou, 2007).  

4.4 Solution framework  

In this section, a systematic approach for the contract appraisal problem is proposed, 

aiming to determine decisions on which contract to accept, while considering resource 

allocation and demand uncertainty. In particular, given a set of available and already 

agreed contracts, a CMO must define the best contract mixture to maximize its profits, 

while considering the corresponding risk exposure. However, the consideration of 

multiple contracts and several demand scenarios for each individual contract, renders 
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the contract selection problem a complex task. The development of a two-stage 

stochastic model for the strategic planning of CMOs could be proven inaccurate, as 

sequencing decisions cannot be considered in detail by an aggregated planning model. 

Additionally, the examination of long-term time horizons also imposes limitations on 

developing tractable integrated planning and scheduling MILP formulations. To address 

this issue, a solution framework is proposed. 

Typically an MILP model can be written in the following form: 

max𝑎𝑇𝑥 + 𝑏𝑇𝑦 

𝑠. 𝑡.  

𝐴𝑥 + 𝐵𝑦 ≤ 𝑐 

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈  

𝑥 ∈ ℝ𝑛 

𝑦 ∈ {0,1} 

(4.35) 

 

Dimitriadis (2000), shows that if variable vectors x and y can be partitioned into p 

independent vectors, the problem (4.35) is decomposable. Furthermore, each individual 

P-MILPs can be solved in parallel to reduce the required computational time.  

It should be noted that in the contract appraisal problem, all contract combinations, as 

well as all scenarios, are independent. Thus, instead of considering all contracts and 

scenarios as part of a single MILP model, each one of them can be evaluated 

independently (Dimitriadis, 2000; Johnson, 2005). In particular, the proposed rolling 

horizon framework for the integrated planning and scheduling can be solved for each 

individual contract combination and each combined scenario. Afterwards, the generated 

solutions can be utilized to construct the profit distribution of each combination of 

contracts. To address large problem instances that involve numerous  scenarios, an 

MILP-based  scenario reduction framework can also be employed (Li and Floudas, 

2014). The proposed solution framework consists of three phases, which are thoroughly 

described below. A schematic representation of the proposed solution strategy is also 

illustrated in Figure 4.3. 
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1st phase 

The first phase is focused on the assessment of the feasibility of each contract 

combination. In particular, the predominant scenario of each combination is considered 

by solving the aggregated planning MILP model. If the generated solution leads to full 

demand satisfaction, the underlying contract combination is defined as feasible. On the 

contrary, if a contract combination is proven infeasible, then any combination that is a 

superset of the former must also be infeasible. For example, if the combination of 

contracts C1 and C2 is infeasible then the combination with the contracts C1, C2 and C3 

is also infeasible.  

2nd phase 

According to the second phase, the predominant scenario of each combination that has 

been proven feasible in the first phase is solved, using the integrating planning and 

scheduling MILP framework. If any iteration of the rolling horizon framework results in 

partial demand satisfaction (backlog generation), the contract combination is deemed 

infeasible. Furthermore, any combination that is a superset of the former is also deemed 

infeasible. 

3rd phase 

Regarding the third phase of the proposed algorithm, the planning and scheduling 

problem of each combination is solved for each combined scenario, by applying the 

rolling horizon algorithm. Considering scheduling level decisions, the total profit can be 

accurately estimated for all scenarios of a contract combination and thus, the 

corresponding profit distribution can be constructed. Depending on their tolerance to 

risk, decision-makers can choose the optimal contract combinations that maximize the 

total profit. 
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Figure 4.3 Schematic representation of the solution strategy. 

 

Assessment of Risk 

Nowadays, process industries try to manage various types of risk. Although most 

industries try to avoid risks, sometimes a judicious exposure to risk can create a 

competitive advantage for a company. Risk can be defined as the volatility of 

unexpected outcomes, which can represent the value of assets, costs, or profits. 

Understanding and measuring risk means that decision-makers can consciously plan for 

the consequences of adverse outcomes. Typically, risk associated with process 

industries can be defined as the probability of not meeting a specific profit or cost 

target. Various risk measures can be used to assess the risk, such as variance, variability 

index, downside risk, Value-At-Risk (VaR) and Conditional Value-At-Risk (CVaR), (Vieira 

et al., 2020). In the proposed solution framework, both VaR and CVaR are used to 

evaluate the corresponding risk of each contract combination. 

Value-at-Risk is a widely used risk measure, which was firstly introduced by the 

financial institution J. P. Morgan (Jorion, 2000). Given a profit distribution and a 

specified confidence level (α), Value-at-Risk represents the maximum profit between 

the α% worst profit realizations. A more general definition of VaR is given by the profit 
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value corresponding to the 1-α-quantile. For a specific profit distribution P, VaR can be 

defined as: 

𝑉𝑎𝑅𝑎(𝑃) =  𝐹𝑃
−1(1 − 𝛼) = 𝑄𝑃(1 − 𝑎) (4.36) 

 

where, 𝐹𝑃
−1(1 − 𝛼) is the inverse cumulative distribution function that is equal to the 

quantile function, 𝑄(1 − 𝑎). Although VaR can provide a good approximation of the 

corresponding risk it suffers from a major drawback. In particular, VaR cannot capture 

the profit levels associated with the extreme data points and the tail of the probability 

distribution. Therefore, decision-makers have no indication regarding the profit 

distribution beyond the confidence level α.  

To face this issue, alternative risk measures, such as Conditional-Value-at-Risk, have 

been also introduced. Conditional-Value-at-Risk, which is also called Expected shortfall 

or Average Value-at-Risk, is a risk measure that is mainly used in  the field of financial 

risk measurement. For a given profit distribution P, CVaR represents the average of all 

profit levels that are worse than the VAR, at a given level of confidence, α: 

𝐶𝑉𝑎𝑅𝑎(𝑃) =
1

𝛼
∫𝑉𝑎𝑅𝑐(𝑃)

𝑎

1

𝑑𝑐 (4.37) 

 

For example, the CVaR95% is calculated by taking the average of profit levels in the worst 

5% of cases. A graphical representation of VaR and CVaR measures for a confidence 

level, α=90%, is shown in Figure 4.4. 

 

https://en.wikipedia.org/wiki/Risk_measure
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Figure 4.4 Graphical representation of VaR and CVaR measures for a confidence level α=90% and a 
profit distribution P 

 

Scenario reduction model  

Making accurate decisions usually requires the consideration of numerous scenarios. 

Considering combinations of multiple contracts, the rolling horizon framework must be 

solved several times according to the proposed solution framework. To cope with this 

challenge, a scenario reduction framework proposed by Li and Floudas, (2014), can be 

applied. Considering an initial demand distribution of a contract combination, the 

scenario reduction model can define a new distribution by removing a user-defined 

number of scenarios.  The scenario reduction is mainly achieved by minimizing the 

probabilistic distance between the initial and the reduced distribution of uncertain 

parameters. The probability of each removed scenario is added to the initial probability 

of the remaining scenario that is closest to it. 

A notable advantage of this framework is that except from the input parameter 

distribution, the output distribution is also considered. For instance, considering a 
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contract selection problem, both demand and expected profit distributions can be taken 

into account and thus, more accurate solutions can be obtained.  

A detailed description of the sets, variables and constraints of the scenario reduction 

MILP-based model is given in Appendix C.1. To apply the scenario model to the contract 

selection problem, a set of input data must be first defined to compute the distance 

between any two scenarios s and s΄, of a contract combination. In particular, the distance 

parameter 𝑐𝑠,𝑠΄ can be calculated as follows: 

 

𝑐𝑠,𝑠΄ =∑∑|𝑑𝑝,𝑠,𝑤 − 𝑑𝑝,𝑠΄,𝑤|

𝑤𝑝

+ |𝑓 𝑠
∗ − 𝑓 𝑠΄

∗ | (4.38) 

 

,where the parameter 𝑑𝑝,𝑠,𝑤 express the demand of product p in week w and scenario s, 

and the parameter 𝑓 𝑠
∗ represents the expected profit of scenario s. However, obtaining 

the optimal objective value for each scenario of the initial distribution by solving the 

proposed rolling horizon framework, would not be an efficient approach, as it is a time-

consuming process. Furthermore, having already obtained the optimal solution of all 

scenarios for a combination of contracts, the solution of the scenario reduction model 

would be useless, as in this case, the profit distribution could be easily constructed. To 

overcome this limitation, the initial profit distribution can be efficiently approximated 

by solving the proposed aggregated planning MILP model for each individual scenario. 

Even when a large number of scenarios is considered, the proposed planning model can 

be easily solved for each scenario and thus, a good profit estimation can be obtained in a 

short amount of time.  

To summarize, the following preliminary computations must be made, in order to apply 

the scenario reduction MILP model: 

1) Obtain the optimal objective value for each scenario of the initial discrete 

distribution by solving the proposed aggregated planning MILP model 

2) Compute the maximum, minimum and expected objective value of all scenarios 

of the initial discrete distribution 
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3) Compute the distance between any two scenarios s and s΄ as described by 

equation (4.38) 

4.5 Application studies  

The efficiency and the applicability of the proposed framework is illustrated considering 

two representative case studies. Both problems focus on a multi-stage batch facility of 

the secondary pharmaceutical industry, consisting of three individual processing stages 

(granulation, compression, and coating). Each stage includes multiple production units 

with varying capacity and production rates. The time horizon is equal to 1 year (or 52 

weeks), and a weekly demand must be fulfilled for each product.  

To model demand uncertainty, four demand scenarios are defined for each contract 

(high, target and low demand, and failure), as it is typical in the pharmaceutical industry 

(Gatica et al., 2003; Marques et al., 2020; Shah, 2004). Usually, demand of mature 

products which have been already placed on the market is stable, and it is subject only 

to systematic risk. Hence, combinations of contracts with already developed products 

consist of the same demand scenarios, including high, target and low demand with the 

same realization probabilities. This is a strong assumption as the demand of these 

products is mainly affected by major socio-economic or geopolitical issues, such as a 

pandemic or a financial crisis. On the other hand, demand of currently developed drugs 

is usually more volatile, since unexpected side-effects can cause a significant demand 

reduction or even the withdrawal of the drug. Hence, if a combination includes 

contracts with new drugs, the probability of combined scenarios is calculated as the 

product of the probabilities of the new drugs and the probability of the developed 

products. 

An illustrative example is firstly presented, considering a medium-sized problem 

instance. In section 4.5.2, a realistic large-scale problem is solved, while the capacity 

expansion, by installing an additional processing unit in the last processing stage, is 

examined in section 4.5.3. The CMO must decide the best contract combination among a 

set of available and already agreed contracts in order to maximize its profit and mitigate 

the risk.  
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4.5.1 Illustrative example 

In the first problem instance, the CMO must decide the best contract combination 

among 6 contracts. Contact C1 is already agreed. Contracts C1-C3 consist of mature 

products with smaller demand fluctuations and lower selling prices, while contracts C4-

C6 include currently developed drugs with higher selling prices. Demand scenarios of 

each contract are given in Table 4.2. Furthermore, all data related to the illustrative 

example are presented in detail in Tables C1–C15 in the Appendix C.2. 

The total number of combinations can be calculated as follows: 

 

2𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑠 −𝑚𝑎𝑥(1, ∑ 2𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑠−𝑐
𝑎𝑔𝑟𝑒𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑠

𝑐=1

) (4.39) 

 
Since contract C1 is already agreed, the 6 contracts lead to 31 combinations (26–25). 

Contract combinations that include only contracts C1-C3 are subject only to systematic 

risk and thus, consist only of 3 scenarios (high, target and low demand). On the 

contrary, the scenario probability of combinations that include contracts with new 

drugs (e.g., C4-C6), is calculated as the product of the probabilities of the new drugs and 

the probability of the developed products. For example, the contract combination C1-

C2-C6 consists of 12 (or 3·4) individual scenarios which are presented in detail in Table 

4.1.  

 

Table 4.1 Demand scenarios of contract combination C1-C2-C6 

Probability 2,5% 20,0% 2,5% 4,0% 32,0% 4,0% 

C1 High Target Low High Target Low 

C2 High Target Low High Target Low 

C6 High Target Target Target Target Target 

Probability 12,0% 3,5% 16,0% 3,5% 2,5% 20,0% 

C1 High Target Low High Target Low 

C2 High Target Low High Target Low 

C6 Low Low Low Fail Fail Fail 
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To solve this problem, the proposed solution algorithm is utilized. According to the first 

phase of the solution algorithm, all combinations are solved using the aggregated 

planning model for the corresponding predominant scenario (target demand). The 

underlying contract combination is defined as feasible if the solution leads to full 

demand satisfaction. On the other hand, if the solution leads to backlog, then the 

contract combination is regarded as infeasible and any combination that is a superset of 

the former must also be infeasible 

 In the second phase of the algorithm the set of feasible combinations are solved for 

their predominant scenario by using the proposed integrated planning and scheduling 

rolling horizon framework. Similarly to phase 1, if the obtained solution leads to 

backlog, then the contract combination and any superset of the former are considered 

infeasible. In particular, both contract combinations C1-C3-C4 and C1-C4-C5 were 

proven feasible in the first, but not in the second stage of the algorithm. 

 

Table 4.2 Contract data 

contracts 
Contract availability / 

Product type 
Products 

Demand multiplier for each scenario and 

probability of realization 

High Target Low Fail 

C1 Agreed/developed 1,2 1.2 (10%) 1 (80%) 0.8 (10%) 0 (0%) 

C2 non agreed/developed 3,4 1.2 (10%) 1 (80%) 0.8 (10%) 0 (0%) 

C3 non agreed/developed 5,6,7 1.2 (10%) 1 (80%) 0.8 (10%) 0 (0%) 

C4 non agreed/developed 8,9,10 1.2 (15%) 1 (60%) 0.5 (20%) 0 (5%) 

C5 non agreed/developed 11,12 1.4 (20%) 1 (50%) 0.4 (20%) 0 (10%) 

C6 non agreed/developed 13,14 1.7 (25%) 1 (40%) 0.2 (15%) 0 (20%) 

 

Finally, the integrated planning and scheduling rolling horizon framework is solved, for 

all scenarios of each feasible contract combination. In this phase, the scenario reduction 

MILP model is used to reduce computational time by considering up to 10 scenarios for 

each combination. The solution CPU time for each scenario ranges from 10 to 15 

minutes, depending on the complexity of the problem. 

The expected profit, the Value-at-Risk, the Conditional Value-at-Risk, and the maximum 

profit for each feasible contract combination are presented in Table 4.3. 
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Figure 4.5 Expected profit, VaR90% and CVaR90% of each contract combination 

 

Table 4.3 Summary of results 

Feasible Contract 

 combination 
Exp. Profit VaR90% VaR95% CVaR90% CVaR95% Max. Profit 

C1-C3 0.96 0.76 0.76 0.76 0.76 1.15 

C1-C4 1.83 1.12 0.43 0.76 0.42 2.46 

C1-C5 0.74 0.27 0.27 0.27 0.27 1.09 

C1-C6 1.83 0.42 0.42 0.42 0.41 3.42 

C1-C3-C5 1.50 1.15 1.15 1.10 1.06 1.99 

C1-C3-C6 2.36 1.29 1.29 1.22 1.16 4.30 

C1-C5-C6 2.66 0.76 0.76 0.76 0.76 4.23 

*The values represent millions of relative monetary units (r.m.u.) 

 

A bubble chart of the expected profit, the VaR90% and the CVaR90% is also illustrated in 

Figure 4.5. In particular, the diameter of each bubble represents the CVaR90% of contract 

combinations. A large bubble in the top right-hand corner of the diagram represents a 

good contract combination, implying high expected profit, VaR90% and CVaR90% values. 
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Following a risk-neutral approach, the combination C1-C5-C6 seems to be the optimal 

one, as it leads to the maximum expected profit. However, the combination C1-C3-C6 is 

a more attractive option, when a risk-averse policy is applied. Considering the VaR90%, 

in this case the total profit will surpass the 1.29 million of relative monetary units 

(r.m.u), with a 90% confidence interval. Furthermore, the mean of the worst 10% of 

scenarios will be equal to 1.16 million. Finally, it should be noted that the contract 

combination C1-C6 constitutes a sub-optimal choice, as the combination C1-C4 leads to 

the same expected profit value with lower risk exposure.  

4.5.2 Large problem instance 

This problem includes 12 contracts, with contract C1 already signed. The independent 

demand scenarios of each contract are summarized in Table 4.4. The production facility 

consists of 3 batch stages, while 2 processing units operate in parallel in each stage 

(processing units 1-6). All data related to the problem under study are presented in 

Tables C16-C31 in Appendix C.3.  

 

Figure 4.6 Expected profit, CVaR90% and VaR90% of the eight most promising contract combinations 
based on the expected profit 
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Table 4.4 Contract data 

contracts 
Contract availability / 

Product type 
Products 

Demand multiplier for each scenario and 
probability of realization 

High Target Low Fail 

C1 Agreed/developed 1,2 1.2 (10%) 1 (80%) 0.8 (10%) 0 (0%) 

C2 non agreed/developed 3,4 1.2 (10%) 1 (80%) 0.8 (10%) 0 (0%) 

C3 non agreed/developed 5,6,7 1.2 (10%) 1 (80%) 0.8 (10%) 0 (0%) 

C4 non agreed/developed 8,9,10 1.2 (10%) 1 (80%) 0.8 (10%) 0 (0%) 

C5 non agreed/developed 11,12 1.2 (10%) 1 (80%) 0.8 (10%) 0 (0%) 

C6 non agreed/developed 13,14 1.2 (10%) 1 (80%) 0.8 (10%) 0 (0%) 

C7 non agreed/new 15,16,17 1.2 (15%) 1 (60%) 0.5 (20%) 0 (5%) 

C8 non agreed/new 18,19,20 1.4 (20%) 1 (50%) 0.4 (20%) 0 (10%) 

C9 non agreed/new 21,22,23 1.7 (25%) 1 (40%) 0.2 (15%) 0 (20%) 

C10 non agreed/new 24,25,26 1.8 (15%) 1 (40%) 0.3 (15%) 0 (30%) 

C11 non agreed/new 27,28 1.7 (20%) 1 (40%) 0.4 (0%) 0 (40%) 

C12 non agreed/new 29,30 1.7 (5%) 1 (35%) 0.6 (15%) 0 (45%) 

 

 

Table 4.5 Statistical measures of the initial and the reduced profit distribution of contract 
combination C1-C7-C8 

 skewness kurtosis Stdev (105) Mean (105) 

Initial Distribution (64 scenarios) 0.2416 2.4924 2.3821 8.1300 

Reduced Distribution (12 scenarios) 0.2341 2.3348 2.3809 8.0012 
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Figure 4.7 Profit distributions of contract combinations C1-C7-C8 and C1-C2-C5-C12 
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Figure 4.8 Initial and reduced profit distribution of contract combination C1-C7-C8 

 

Finally, a detailed comparison between the initial and the reduced profit distribution of 

combination C1-C7-C8 is made, in order to assess the efficiency of the scenario 

reduction model. Both profit distributions are illustrated in Figure 4.8. Additional 

statistical measures such as kurtosis, skewness standard deviation and mean, are 

presented in Table 4.5 for both distributions. It is observed that the reduced profit 

distribution efficiently approximates the initial one as both upper and lower values of 

the tails are taken into account. Furthermore, the slight differences among the statistical 

measures also prove the effectiveness of the scenario reduction model.  
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Table 4.6 Summary of results for the ten most promising contract combinations based on the 
expected profit 

Feasible Contract 

combination 
Exp. Profit VaR90% VaR95% CVaR90% CVaR95% Max. Profit 

C1-C7-C8 8.10 6.03 4.34 4.58 3.98 12.64 

C1-C2-C5-C11 8.01 5.08 5.08 4.89 4.70 11.73 

C1-C2-C5-C12 7.74 5.50 5.50 5.12 4.74 11.75 

C1-C2-C6-C11 7.57 4.55 4.55 4.43 4.31 11.11 

C1-C5-C6-C11 7.51 5.05 5.05 4.90 4.74 10.55 

C1-C8-C12 7.28 3.64 3.64 3.43 3.23 12.98 

C1-C7-C12 7.18 3.96 3.96 3.77 3.59 12.96 

C1-C3-C7 7.08 4.36 4.36 4.33 4.30 8.24 

C1-C3-C12 7.04 4.40 4.40 4.11 3.82 10.77 

C1-C5-C11 7.08 4.36 4.36 4.33 4.30 8.24 

*The values represent millions of relative monetary units (r.m.u.) 

4.5.3 Large problem instance – Installation of an extra processing 

unit 

Typically, process industries put huge efforts into improving their profit margins. Thus, 

production engineers often examine new alternative and more flexible plant layouts in 

order to increase productivity, and optimally allocate the available resources.  In this 

subsection, a second plant layout is considered that includes an extra processing unit in 

the third processing stage. Detailed data for this problem are presented in Tables C16-

C31 in the Appendix C.3. The problem is solved using the proposed solution algorithm. 
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Results illustrate that capacity expansions by installing an extra processing unit allows 

for signing more contracts. In particular, 9 additional contract combinations are defined 

as feasible after executing the first two steps of the solution algorithm. Results are 

summarized in Table C33 in the Appendix C.4., while the ten most profitable contract 

combinations are presented in Table 4.7. The installation of the new production line 

offers extra production capacity, and thus, more profitable combinations can be signed, 

such as C1-C6-C7-C11. However, the proposed capacity expansion does not allow for 

signing combinations with more than 4 contracts. The new plant layout also seems to be 

beneficial for both risk-neutral and risk-averse production policies. According to Table 

4.7, the maximum expected profit is increased by 14.9% compared to the current plant 

layout. In particular, the combination C1-C6-C7-C11 leads to the maximum expected 

profit, which corresponds to 9.31 million r.m.u. Furthermore, the maximum CVaR90% 

value is equal to 5.64 million r.m.u. This corresponds to an increase of 23% compared to 

the current layout.  

 

Table 4.7 Summary of results for the ten most promising contract combinations based on the 
expected profit 

Feasible Contract 

combination 

Exp. 
Profit 

VaR90% VaR95% CVaR90% CVaR95% 
Max. 

Profit 

C1-C6-C7-C11 9.31 5.70 5.70 5.52 5.34 13.74 

C1-C7-C8 8.12 6.03 4.34 5.64 4.09 12.64 

C1-C2-C5-C11 8.01 5.08 5.08 4.89 4.70 11.73 

C1-C7-C11 7.85 3.95 3.95 3.78 3.61 12.93 

C1-C2-C5-C12 7.74 5.50 5.50 5.12 4.74 11.75 

C1-C2-C6-C11 7.57 4.55 4.55 4.43 4.31 11.11 

C1-C5-C6-C11 7.51 5.05 5.05 4.90 4.74 10.55 

C1-C8-C12 7.39 3.64 3.64 3.43 3.23 14.34 

C1-C8-C11 7.38 3.64 3.64 3.43 3.23 13.04 

C1-C7-C12 7.20 3.96 3.96 3.77 3.59 13.27 

*The values represent millions of relative monetary units (r.m.u.) 



Optimal Contract Selection for Contract Manufacturing Organizations in the 

Pharmaceutical Industry Under Demand Uncertainty 

 

158 
` 

Finally, noticeable improvements are also observed in several contract combinations. A 

representative comparison between the two layouts for contract combinations C1-C7-

C8 and C1-C8-C12 is presented in Table 4.8.  It is observed that the CVaR90% is 

significantly increased by 23% in combination C1-C7-C8, while the maximum profit of 

combination C1-C8-C12 is also increased by 10.5%. 

 

Table 4.8 Comparison between the expected profit CVaR90% and the maximum profit of two 
representative contract combinations considering the two plant layouts 

Feasible Contract 

combination 

Exp. Profit CVaR90% Max. Profit Exp. Profit CVaR90% Max. Profit 

Initial plant layout New plant layout 

C1-C7-C8 8.10 4.58 12.64 8.12 5.64 12.64 

C1-C8-C12 7.28 3.43 12.98 7.39 3.43 14.34 

*The values represent millions of relative monetary units (r.m.u.) 

4.6 Conclusions 

This work presents a systematic approach for the optimal contract selection problem of 

Contract Manufacturing Organizations (CMOs) under demand uncertainty. A rolling 

horizon framework is adapted for the integrated planning and scheduling of multi-stage 

batch facilities, typically met in the pharmaceutical industry. Multiple scenarios are 

considered to model uncertainty, while a three-stage solution algorithm is proposed to 

cope with large-scale problem instances. The first two steps evaluate the feasibility of 

each contract combination. . Both systematic and unsystematic risks are considered, 

depending on the product types of each contract.  In the last stage of the algorithm, the 

integrated planning and scheduling problem is solved for all feasible combinations and 

all individual scenarios. A scenario reduction approach is utilized to decrease the total 

computational time. To assess the applicability of the proposed modelling framework, 

two different problem instances have been solved. The consideration of scheduling 

decisions can significantly enhance the accuracy of the modelling framework, and 

results illustrate that the proposed solution strategy can efficiently maximize the 

expected profit depending on the underlying risk tolerance. Furthermore, a capacity 
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expansion of the plant leads to notable benefits for both risk-neutral and risk-averse 

production policies. 

 

Nomenclature 

 

Planning MILP model 

Indices/Sets 

𝑐 ∈ 𝐶 Contracts 

𝑗 ∈ 𝐽 Production units 

𝑝, 𝑝′ ∈ 𝑃 Products 

𝑠 ∈ 𝑆 Processing stages 

𝑤 ∈ 𝑊 Weeks 

Subsets 

𝑗 ∈ 𝐽𝑆𝑠 
Production units that are suitable for performing tasks of processing 

stage s, (𝐽𝑆𝑠 ⊆ 𝐽) 

𝑗 ∈ 𝑃𝐽𝑝 
Production units that are suitable for processing product 𝑝 ∈ 𝑃, (𝑃𝐽𝑝 ⊆

𝐽) 

Parameters 

𝑎𝑣𝑙𝑠 Total available production time of stage s 

𝑏𝑐𝑝 Backlog cost of product p 

𝑐𝑎𝑝𝑝,𝑠 Inventory capacity of product p, in stage s 

𝑐𝑙𝑝,𝑗  Average cleaning time for product p, in unit j 

𝑑𝑝,𝑠,𝑤 Demand of product p, at stage s, at the end of week w 

𝑓𝑟𝑝 Fixed raw material cost of product p 
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𝑓𝑥𝑝,𝑗 Fixed processing time of product p, in unit j 

ℎ Time horizon of each week w 

𝑖𝑐𝑝 Inventory cost of product p 

𝑖𝑛𝑐 Initial payment of contract c 

𝑝𝑟𝑝 Selling price of product p 

𝑞𝑗
𝑚𝑎𝑥  Maximum capacity of unit j 

𝑞𝑗
𝑚𝑖𝑛 Minimum capacity of unit j 

𝑞𝑐𝑝 Operational cost of product p 

𝑞𝑤𝑗
𝑚𝑖𝑛 Minimum weekly production of unit j 

𝑞𝑤𝑗
𝑚𝑎𝑥 Maximum weekly production of unit j 

𝑟𝑐𝑝 Variable raw material cost of product p 

𝑣𝑡𝑝,𝑗 Variable processing time of product p, in unit j 

𝑤𝑐       Maximum storage capacity of the warehouse  

𝜇𝑠 Sequencing factor for stage s 

Variables 

𝐵𝑝,𝑠,𝑤 Backlog of product p, at stage s, in week w 

𝐼𝑝,𝑠,𝑤 Inventory of product p, at stage s, at the end of week w 

𝑁𝑝,𝑗,𝑤 
Integer variable denoting the minimum number of batches of product p, 

that must be processed in unit j, in week w 

𝑇𝑝,𝑗,𝑤 Processing time of product p, in unit j, in week w 
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𝑄𝑝,𝑗,𝑤 production amount of product p, in unit j, in week w 

𝑊𝑉𝑝,𝑗,𝑤  Binary variable that takes the value 1 only if a product p, is allocated to unit 

j, in week w 

 

Scheduling MILP model 

Indices/Sets 

𝑏, 𝑏′ ∈ 𝐵 Product batches 

𝑗 ∈ 𝐽 Production units 

𝑝, 𝑝′ ∈ 𝑃 Products 

𝑠 ∈ 𝑆 Processing stages 

Subsets 

𝑗 ∈ 𝐽𝑆𝑠 Production units that are suitable for performing tasks of processing 

stage s, (𝐽𝑆𝑠 ⊆ 𝐽) 

𝑗 ∈ 𝑃𝐽𝑝 
Production units that are suitable for processing product 𝑝 ∈ 𝑃, (𝑃𝐽𝑝 ⊆

𝐽) 

Parameters 

𝑏𝑐𝑝 Backlog cost of product p 

𝑐𝑎𝑝𝑝,𝑠 Inventory capacity of product p, in stage s 

𝑐ℎ𝑝,𝑝′ Changeover time between product p and p΄ 

𝑑𝑚𝑝,𝑠 Demand of product p, at stage s 

𝑓𝑟𝑝 Fixed raw material cost of product p 

𝑓𝑥𝑝,𝑗 Fixed processing time of product p, in unit j 

ℎ The time horizon of each week w 
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𝑖𝑐𝑝 Inventory cost of product p 

𝑖𝑛𝑖𝑛𝑣𝑝,𝑠 Initial inventory of product p, at stage s 

𝑖𝑢𝑐 Inventory underproduction cost 

𝑝𝑟𝑝 Selling price of product p 

𝑝𝑢𝑐 Underproduction cost 

𝑞𝑗
𝑚𝑎𝑥  Maximum capacity of unit j 

𝑞𝑗
𝑚𝑖𝑛 Minimum capacity of unit j 

𝑞𝑐𝑝 Operational cost of product p 

𝑡𝑖𝑛𝑣𝑝,𝑠 Total inventory target of product p, at stage s 

𝑡𝑝𝑟𝑜𝑑𝑝,𝑠 Total production target of product p, at stage s 

𝑡𝑟𝑠𝑝 Unit transfer rate of a product p, between consecutive stages 

𝑣𝑡𝑝,𝑗 Variable processing time of product p, in unit j 

𝑤𝑐       Maximum storage capacity of the warehouse  

Continuous Variables 

𝐵𝐴𝑝,𝑠 Backlog of product p, at stage s 

𝐶𝑇𝑏,𝑠 Completion time of batch b, at stage s 

𝐼𝑁𝑉𝑝,𝑠 Inventory of product p, in stage s, at the end of time horizon 

𝐼𝑈𝑝,𝑠 Inventory underproduction of product p, at stage s 

𝑃𝑈𝑝,𝑠 Total underproduction of product p, at stage s 

𝑄𝐵𝑏,𝑝,𝑠 Batch size of batch b, of product p, at stage s 

𝑄𝐵𝑉𝑏,𝑝,𝑗 Variable batch size of batch b, of product p, in unit j 
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𝑆𝑇𝑏,𝑠 Starting time of batch b, at stage s 

𝑇𝑃𝑏,𝑠 Processing time of batch b, at stage s 

𝑈𝐼𝑁𝑉𝑏,𝑝,𝑠 Inventory used for batch b, of product p, at stage s 

𝑊𝑇𝑏,𝑠 Waiting time of product p, at stage s 

 

Binary Variables 

𝑋𝐵𝑏,𝑏′,𝑗 Takes the value 1 only if batch b΄ is operated after batch b in unit j   

𝑌𝐼𝐼𝑏,𝑝,𝑠 Takes the value 1 only if batch b of product p is fulfilled by stored amount   

𝑌𝑃𝑏,𝑝 Takes the value 1 only if batch b is allocated to product p 

𝑌𝑈𝑏,𝑝,𝑗  Takes the value 1 only if batch b, of product p, is allocated to the 

processing unit j 
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5. Conclusions and future research 

5.1 Conclusions 

The objective of this thesis has been to develop optimization-based frameworks for the 

short-term scheduling of complex industrial processes and the integrated planning and 

scheduling problem under uncertainty. Hence, several MILP models have been 

developed for the short-term scheduling of continuous make-and-pack process, 

typically met in food and consumer goods industries. Moreover, novel MILP-based 

decomposition algorithms have been investigated to handle complex real-life industrial 

problems in an efficient manner. Results illustrate that the application of the proposed 

computer aided frameworks of this thesis to industrial scheduling problems, can lead to 

noticeable economic, operational and environmental benefits.  

In chapter 2, the scheduling of single-stage continuous industrial facilities is studied. 

The problem mainly focuses on the packing stage, which typically constitutes the 

production bottleneck in most industries. Two MILP models have been proposed for the 

scheduling of packing stage, while constraints related to the previous stages are taken 

into account to ensure the feasibility of solutions. Although various research 

contributions have been proposed for this problem, the majority of them has not been 

applied in complex, large scale problems. To face this challenge, two decomposition 

algorithms have been developed. Both approaches consist of two individual steps and 

rely on the iterative solution of the MILP models. The first step, aims to generate an 

initial feasible solution which can be further improved via the second step. Therefore, 

the initial complex problems become tractable, and good quality solutions can be 

obtained within acceptable CPU time. The proposed optimization strategies aim to 

minimize the total changeover time, while different objectives (such as makespan 

minimization) can also be considered, depending on the current need of decision-

makers. In order to assess the applicability and the efficiency of the proposed models 
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and solution strategies, several indicative case studies of a multinational consumer 

goods industry have been considered. An efficient tool has also been developed in 

collaboration with the plant engineers to facilitate data exchange through direct 

communication of MILP models and the ERP systems of the plant. Results have been 

fully validated by the plant operators, and detailed comparisons with manually 

generated schedules or simulation tools have been made. Significant benefits have been 

achieved. In particular, the obtained solutions can dramatically decrease the total 

changeover time by even 25% on a weekly basis, and therefore, productivity can be 

increased by 1.5-2%, depending on the problem case. The proposed solution 

approaches can be utilized as the main core of an automated optimization tool that 

assists decision-makers in obtaining good quality solutions under the current dynamic 

industrial environment. Furthermore, this work provides indisputable evidence for the 

benefits of using optimization-based frameworks for challenging industrial problems.   

Chapter 3 forms a direct continuation of the previous chapter, as it examines the 

production scheduling of multistage continuous, make-and-pack processes with flexible 

storage equipment and recycle option. The synchronization of production stages in 

continuous processes is usually a challenging problem. Hence, the utilization of 

intermediate buffers allows for extra flexibility and aims to increase the total 

throughput. Since the continuous make-and-pack layout is common in several industrial 

sectors, multiple research contributions have already proposed solution methods to 

address this problem. However, most of them rely on discrete-time representations, and 

as a result, the corresponding MILP models become intractable when considering large-

scale problems. Also, recent optimization approaches rely on weak assumptions often 

leading to suboptimal or even infeasible solutions. A novel continuous time MILP model 

is proposed for the problem at hand to fill this gap. A new set of binary variables is 

introduced to satisfy mass balance constraints efficiently. Extending previously 

proposed mathematical frameworks, multiple lots of the same recipe can be stored 

simultaneously in a buffer tank. 

Moreover, a key component of the modelling framework is the consideration of 

byproduct recycling streams in order to enhance the use of raw materials and 

resources. A two-stage decomposition algorithm is proposed for the solution of larger 

problems. Several case studies, inspired by consumer goods industries, were solved to 
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illustrate the application of the proposed modelling frameworks. Multiple plant layouts 

and different storage policies have been examined. Results show that the plant's 

economic operation is significantly improved due to the flexible storage policy.  

Chapter 4 addresses the optimal contract selection problem of Contract Manufacturing 

Organizations (CMOs), under uncertainty in the pharmaceutical industry. Under the 

current climate of business globalization, large multinational pharmaceutical companies 

often decide to outsource part of the manufacturing process to other industrial facilities 

under contract agreements. These companies are known as Contract Manufacturing 

Organizations. Since pharmaceutical products are described by highly volatile demand, 

CMOs must carefully choose the optimal contract mixture to sign, in order to maximize 

their profit margin while mitigating their exposure to risk. To face this challenging 

problem, a rolling horizon framework is adapted for the integrated planning and 

scheduling of multi-stage batch facilities, typically met in the pharmaceutical industry. 

Several discrete scenarios are examined to model demand uncertainty. Both systematic 

and unsystematic risks are considered, depending on the product types of each contract. 

A solution algorithm that consists of three individual steps is proposed to tackle 

realistic problems with multiple contracts, while a scenario reduction MILP model is 

utilized to decrease the total computational time. The feasibility of each contract 

combination is assessed via the first two steps of the solution algorithm. In the last 

stage, the rolling horizon framework is applied to solve the integrated planning and 

scheduling problem for all feasible contract combinations and all individual scenarios. 

To assess the applicability and efficency of the proposed modelling framework, different 

case studies have been examined. Results illustrate that the proposed solution strategy 

leads to notable benefits for both risk-neutral and risk-averse policies. Considering a 

given risk tolerance, the proposed modelling framework can efficiently maximize the 

expected profit of Contract Manufacturing Organizations. 

5.2 Main contributions 

In summary, the main contributions of this thesis are presented below: 

• Two MILP-based mathematical frameworks have been developed for the optimal 

short-term production scheduling of continuous processes.  
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• Efficient solution strategies are presented for the scheduling of continuous 

processes based on the proposed MILP models and decomposition algorithms to 

address large-scale case studies. The proposed approaches can assist production 

engineers and decision-makers towards fast generation of improved schedules. 

 

• The proposed modelling frameworks have been applied to the scheduling 

problem of a real-life consumer goods industry. An efficient tool has been developed by 

plant engineers based on the proposed MILP-based frameworks, and comparisons with 

manually generated schedules have been realized. Solutions have been fully validated 

by the industry, and significant gains have been realized in terms of changeover 

minimization and productivity improvement.   

 

• Chapter 2 also highlights the potential benefits of using optimization-based 

techniques and the impact of scheduling optimization on the overall performance of 

industrial facilities. The introduction of efficient solution strategies and their 

implementation in real and complex scheduling problems is an essential step toward 

closing the existing gap between scientific knowledge and industrial reality. 

 

• A novel MILP model has been developed for the optimal scheduling of multistage 

continuous make-and-pack industries with flexible storage tanks. Furthermore, a two-

stage decomposition algorithm has been proposed to face large-scale problems. 

Compared with alternative modelling approaches that rely on weak assumptions, the 

proposed framework can efficiently generate feasible and nearly optimal solutions for 

real-life scheduling problems.  

 

• Considering byproduct recycling streams in consumer goods industries 

constitutes an open challenging problem. Hence, this thesis contributes to the decrease 

of the current gap. Furthermore, results prove that byproduct recycling constraints 

allow for waste reduction and better utilization of resources. 

 

• The contract selection problem of Contract Manufacturing Organizations in the 

secondary pharmaceutical industry under demand uncertainty has been introduced in 
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the open literature. An integrated planning and scheduling approach has been 

developed for multistage batch facilities, based on the rolling horizon framework. A 

scenario-based approach has been utilized to model demand uncertainty, while both 

systematic and unsystematic risks have been considered. The development of a solution 

strategy allows for considering real-life problem instances with multiple scenarios.  

 

• In comparison with aggregated planning frameworks existing in the open 

literature, the consideration of scheduling decisions can improve the accuracy and 

ensure the feasibility of obtained solutions. The developed mathematical framework 

can facilitate Contract Manufacturing Organizations to maximize their profits while 

mitigating the underlying risk exposure. 

5.3 Recommendations for future directions 

A range of issues requiring further investigation have been revealed in the course of this 

thesis. In particular: 

• The models proposed in Chapter 2 are mainly focused on short-term 

scheduling. Lot-sizing decisions are pre-defined, and decisions include only unit 

to task assignment, sequencing and timing of tasks. A promising direction for 

future extension would be the development of an integrated planning and 

scheduling optimisation framework, by including lot-sizing decisions and 

inventory constraints.   

• This thesis aims to the development of offline scheduling models. 

However, production scheduling is highly dynamic. Frequent late-order arrivals, 

or sudden order cancelations, impose the need of several modifications in the 

initial production schedule on a daily basis. Hence, the consideration of real-time 

uncertainties in the developed models is critical for their application in practice. 

A computationally efficient method is the introduction of a reactive scheduling 

approach that employs the rolling-horizon framework. 

• Further extension regarding the optimisation-based approach presented 

in chapter 3 seems a promising research task. The proposed MILP model is 

focused on industrial layouts that consists of two production stages. Future 
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works are envisaged to focus on extending the proposed approach, by 

considering multiple production stages with flexible storage tanks.  

•  Room for improvement exists regarding the solution strategy developed 

for the for the optimal contract selection problem of Contract Manufacturing 

Organizations (CMOs). The proposed modelling framework considers the 

planning and scheduling problem of multistage batch facilities. However, recent 

advances in manufacturing technology have prompted several pharmaceutical 

industries, to adopt continuous manufacturing. According to regulatory agencies, 

such as FDA, continuous manufacturing could address drug shortages and 

recalls. Hence, future works could focus on modelling both batch and continuous 

processes.  

• Another direction for future work is the consideration of multiple types of 

uncertainty, associated with the availability and prices of raw materials. Under 

the current global supply chain crisis and the shortage of raw materials, the 

consideration of the integrated contract and supplier selection problem 

constitutes a high priority for decision-makers.  
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Appendix A 

Pseudocodes for the individual steps of the solution algorithm  

 

Algorithm 1. Pseudo-code for iterative procedure in constructive step 

Set step = 5, initial = 5, pos(𝑖) parameter, 𝑖 ∈ 𝐼𝐼𝑁=∅; 

FOR k= initial to |𝐼| by step 

     LOOP 𝑖 ∈ 𝐼 

IF pos(𝑖) ≤ k 

𝐼𝐼𝑁= 𝐼𝐼𝑁  U {𝑖} 

END IF 

END LOOP 

SOLVE MILP model 

Fix 𝑌𝑖,𝑗 & 𝑋𝑖′,𝑖,𝑗 binary variables  

END FOR 

SAVE initial solution SC 

SAVE total CPU time 
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Algorithm 2. Pseudo-code for iterative procedure in improvement step 1 

Set 𝑖 ∈ 𝐼𝐼𝐷𝑁=∅; 

LOOP s ∈ 𝑆     

 LOOP 𝑖 ∈ 𝐼 

LOOP 𝑖′ ∈ 𝐼 : 𝑖′ ≠ 𝑖 

IF 𝐼𝐷𝑖,𝑖′,𝑠  > 0 

𝐼𝐼𝐷𝑁= 𝐼𝐼𝐷𝑁 U {𝑖} 

END IF 

END LOOP 

END LOOP 

END LOOP 

CLEAR all variables related to 𝑖 ∈ 𝐼𝐼𝐷𝑁 (e.g., 𝑌𝑖,𝑗 , 𝑋𝑖′ ,𝑖,𝑗 , etc.) 

SOLVE MILP model and obtain solution SD 

SAVE total CPU time 

IF SD <SC  

SC=SD 

      Save Solution (e.g. save SC, 𝑌𝑖,𝑗 , 𝑋𝑖′,𝑖,𝑗 , etc.) 

END IF 
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Algorithm 3. Pseudo-code for iterative procedure in improvement step 2 

Set step = 5, initial = 5, iter=1, pos (𝑖) parameter, 𝑖 ∈ 𝐼𝑅𝐸𝐼𝑁=∅; 

FOR k= initial to |𝐼| by step 

  LOOP s ∈ 𝑆     

 LOOP 𝑖 ∈ 𝐼  

LOOP 𝑖′ ∈ 𝐼 : 𝑖′ ≠ 𝑖 

IF 𝐿𝑖,𝑖′,𝑠  > 0 

𝐼𝑅𝐸𝐼𝑁=𝐼𝑅𝐸𝐼𝑁 U {𝑖} 

END IF 

END LOOP 

END LOOP 

END LOOP 

 

LOOP 𝑖 ∈ 𝐼 

IF (pos(𝑖) < k ) AND ( pos(𝑖) >k-step ) 

𝐼𝑅𝐸𝐼𝑁=𝐼𝑅𝐸𝐼𝑁 U {𝑖} 

               END IF 

END LOOP 

CLEAR all variables related to 𝐼𝑅𝐸𝐼𝑁 (e.g., 𝑌𝑖,𝑗 , 𝑋𝑖′,𝑖,𝑗 , etc.) 

SOLVE MILP model and obtain solution SR(iter) 

SAVE total CPU 

IF SR(iter) <SC  

SC= SR(iter) 

      SAVE Solution (e.g. save SC , 𝑌𝑖,𝑗 , 𝑋𝑖′,𝑖,𝑗 , etc.) 

END IF 

iter=iter +1 

IF total CPU> lt 

k= |𝐼|+1 

The algorithm is terminated 

END IF 

END FOR 
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Appendix B 

Appendix B presents the data for Chapter 3. The data for the case 1 are summarized in 

Tables B1 – B6. 

Table B1. Products demand (parameter 𝑄𝐴𝐿𝐿𝑖) 

Product 
𝑸𝑨𝑳𝑳𝒊 

(kg) 
Product 

𝑸𝑨𝑳𝑳𝒊 
(kg) 

Product 
𝑸𝑨𝑳𝑳𝒊 

(kg) 
Product 

𝑸𝑨𝑳𝑳𝒊 
(kg) 

1 1620 26 1254 51 1620 76 1254 

2 1200 27 984 52 1200 77 984 

3 1620 28 1353 53 1620 78 1353 

4 1680 29 864 54 1680 79 864 

5 936 30 2052 55 936 80 2052 

6 540 31 1140 56 540 81 1140 

7 1050 32 780 57 1050 82 780 

8 420 33 294 58 420 83 294 

9 1050 34 688,5 59 1050 84 688,5 

10 1254 35 496 60 1254 85 496 

11 1080 36 450,25 61 1080 86 450,25 

12 1080 37 404,5 62 1080 87 404,5 

13 717,6 38 358,75 63 717,6 88 358,75 

14 945 39 313 64 945 89 313 

15 178,2 40 267,25 65 178,2 90 267,25 

16 780 41 221,5 66 780 91 221,5 

17 294 42 780 67 294 92 780 

18 688,5 43 294 68 688,5 93 294 

19 1827 44 688,5 69 1827 94 688,5 

20 1170 45 496 70 1170 95 496 

21 1566 46 450,25 71 1566 96 450,25 

22 443,7 47 780 72 443,7 97 780 

23 1218 48 294 73 1218 98 294 

24 2520 49 688,5 74 2520 99 688,5 

25 1140 50 496 75 1140 100 496 
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Table B2. Products due dates (parameter 𝐷𝐷𝑖) 

Product 
𝑫𝑫𝒊 

(hours) 
Product 

𝑫𝑫𝒊 
(hours) 

Product 
𝑫𝑫𝒊 

(hours) 
Product 

𝑫𝑫𝒊 
(hours) 

1 24 26 80 51 100 76 144 

2 24 27 80 52 100 77 144 

3 24 28 80 53 100 78 144 

4 24 29 80 54 100 79 144 

5 24 30 80 55 100 80 144 

6 24 31 80 56 100 81 144 

7 24 32 80 57 100 82 144 

8 24 33 80 58 100 83 144 

9 24 34 80 59 100 84 168 

10 24 35 80 60 120 85 168 

11 48 36 80 61 120 86 168 

12 48 37 80 62 120 87 168 

13 48 38 80 63 120 88 168 

14 48 39 80 64 120 89 168 

15 48 40 80 65 120 90 168 

16 48 41 80 66 120 91 168 

17 48 42 80 67 120 92 168 

18 48 43 80 68 120 93 168 

19 48 44 80 69 120 94 168 

20 48 45 80 70 120 95 168 

21 48 46 80 71 120 96 168 

22 48 47 80 72 120 97 168 

23 48 48 80 73 120 98 168 

24 48 49 80 74 144 99 168 

25 48 50 80 75 144 100 168 
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Table B3. Products recipe type (parameter 𝐹𝑖) 

Product 𝑭𝒊 Product 𝑭𝒊 Product 𝑭𝒊 Product 𝑭𝒊 

1 1 26 5 51 1 76 5 

2 1 27 5 52 1 77 5 

3 1 28 6 53 1 78 6 

4 1 29 6 54 1 79 6 

5 1 30 6 55 1 80 6 

6 2 31 6 56 2 81 6 

7 2 32 7 57 2 82 7 

8 2 33 7 58 2 83 7 

9 2 34 7 59 2 84 7 

10 2 35 7 60 2 85 7 

11 3 36 7 61 3 86 7 

12 3 37 7 62 3 87 7 

13 3 38 7 63 3 88 7 

14 3 39 7 64 3 89 7 

15 3 40 7 65 3 90 7 

16 4 41 8 66 4 91 8 

17 4 42 8 67 4 92 8 

18 4 43 8 68 4 93 8 

19 4 44 8 69 4 94 8 

20 4 45 8 70 4 95 8 

21 4 46 8 71 4 96 8 

22 5 47 9 72 5 97 9 

23 5 48 9 73 5 98 9 

24 5 49 9 74 5 99 9 

25 5 50 9 75 5 100 9 
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Table B4. Products maximum throughput at stage s=1 (𝑹𝑖,1) 

Product 
𝑹𝒊,𝟏 

(kg/hr) 
Product 

𝑹𝒊,𝟏𝒊 

(kg/hr) 
Product 

𝑹𝒊,𝟏 
(kg/hr) 

Product 
𝑹𝒊,𝟏 

(kg/hr) 

1 201 26 201 51 201 76 201 

2 201 27 201 52 201 77 201 

3 201 28 201 53 201 78 201 

4 201 29 201 54 201 79 201 

5 350 30 201 55 292 80 201 

6 369 31 201 56 308 81 201 

7 379 32 201 57 316 82 201 

8 340 33 201 58 284 83 201 

9 369 34 201 59 308 84 201 

10 408 35 201 60 340 85 201 

11 369 36 292 61 308 86 292 

12 369 37 308 62 308 87 308 

13 201 38 316 63 201 88 316 

14 201 39 284 64 201 89 284 

15 201 40 201 65 201 90 201 

16 201 41 201 66 201 91 201 

17 201 42 201 67 201 92 201 

18 201 43 201 68 201 93 201 

19 369 44 292 69 308 94 292 

20 408 45 308 70 340 95 308 

21 369 46 316 71 308 96 316 

22 369 47 284 72 308 97 284 

23 201 48 201 73 201 98 201 

24 201 49 201 74 201 99 201 

25 201 50 201 75 201 100 201 
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Table B5. Products maximum throughput at stage s=2 (𝑹𝑖,2) 

Product 
𝑹𝒊,𝟐 

(kg/hr) 
Product 

𝑹𝒊,𝟐 
(kg/hr) 

Product 
𝑹𝒊,𝟐 

(kg/hr) 
Product 

𝑹𝒊,𝟐 
(kg/hr) 

1 369 26 308 51 308 76 308 

2 408 27 261 52 340 77 261 

3 369 28 261 53 308 78 261 

4 369 29 235 54 308 79 235 

5 201 30 248 55 201 80 248 

6 201 31 248 56 201 81 248 

7 201 32 308 57 201 82 308 

8 201 33 340 58 201 83 340 

9 284 34 308 59 284 84 308 

10 292 35 308 60 292 85 308 

11 211 36 201 61 211 86 201 

12 227 37 201 62 227 87 201 

13 369 38 201 63 308 88 201 

14 408 39 201 64 340 89 201 

15 369 40 308 65 308 90 308 

16 369 41 340 66 308 91 340 

17 253 42 308 67 211 92 308 

18 282 43 308 68 235 93 308 

19 235 44 201 69 235 94 201 

20 235 45 201 70 235 95 201 

21 243 46 201 71 243 96 201 

22 211 47 201 72 211 97 201 

23 219 48 308 73 219 98 308 

24 211 49 340 74 211 99 340 

25 219 50 308 75 219 100 308 
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Table B6. Products allocation flexibility  

Products 

Units 

Products 

Units 

Formulation 

stage 

Packing 

stage 

Formulation 

stage 

Packing 

stage 

 1 2 3 4 5 6  1 2 3 4 5 6 

1 1 1 1 1 0 1 51 1 1 1 1 0 1 

2 1 1 1 1 1 1 52 1 1 1 1 1 1 

3 1 1 1 1 1 1 53 1 1 1 1 1 1 

4 1 1 1 1 1 1 54 1 1 1 1 1 1 

5 1 1 1 1 1 1 55 1 1 1 1 1 1 

6 1 1 1 1 1 1 56 1 1 1 1 1 1 

7 1 1 1 1 1 0 57 1 1 1 1 1 0 

8 1 1 1 0 1 0 58 1 1 1 0 1 0 

9 1 1 1 0 1 1 59 1 1 1 0 1 1 

10 1 1 1 0 1 1 60 1 1 1 0 1 1 

11 1 1 1 1 0 1 61 1 1 1 1 0 1 

12 1 1 1 1 0 1 62 1 1 1 1 0 1 

13 1 1 1 1 1 1 63 1 1 1 1 1 1 

14 1 1 1 1 1 1 64 1 1 1 1 1 1 

15 1 1 1 1 1 1 65 1 1 1 0 1 1 

16 1 1 1 1 1 1 66 1 1 1 0 1 1 

17 1 1 1 1 1 1 67 1 1 1 0 1 1 

18 1 1 1 1 1 1 68 1 1 1 1 1 1 

19 1 1 1 1 1 1 69 1 1 1 1 1 1 

20 1 1 1 1 1 1 70 1 1 1 1 1 1 

21 1 1 1 1 1 1 71 1 1 1 1 1 1 

22 1 1 1 1 1 1 72 1 1 1 1 1 1 

23 1 1 1 1 1 1 73 1 1 1 1 1 1 

24 1 1 1 1 0 1 74 1 1 1 1 0 1 

25 1 1 1 1 0 1 75 1 1 1 1 0 1 

26 1 1 1 1 0 1 76 1 1 1 1 0 1 

27 1 1 1 1 0 1 77 1 1 1 1 0 1 
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28 1 1 1 1 0 1 78 1 1 1 1 0 1 

29 1 1 1 1 0 1 79 1 1 1 1 0 1 

30 1 1 1 1 0 1 80 1 1 1 1 0 1 

31 1 1 1 1 0 1 81 1 1 1 1 0 1 

32 0 1 1 1 1 1 82 0 1 1 1 1 1 

33 0 1 1 1 1 1 83 0 1 1 1 1 1 

34 0 1 1 1 1 1 84 0 1 1 1 1 1 

35 0 1 1 1 1 1 85 0 1 1 1 1 1 

36 0 1 1 1 1 1 86 0 1 1 1 1 1 

37 0 1 1 1 1 1 87 0 1 1 1 1 1 

38 0 1 1 1 1 1 88 0 1 1 1 1 1 

39 0 1 1 1 1 1 89 0 1 1 1 1 1 

40 0 1 1 1 1 1 90 0 1 1 1 1 1 

41 1 1 1 1 1 1 91 1 1 1 1 1 1 

42 1 1 1 0 1 1 92 1 1 1 0 1 1 

43 1 1 1 0 1 1 93 1 1 1 0 1 1 

44 1 1 1 0 1 1 94 1 1 1 0 1 1 

45 1 1 1 1 1 1 95 1 1 1 1 1 1 

46 1 1 1 1 1 1 96 1 1 1 1 1 1 

47 1 1 1 1 1 1 97 1 1 1 1 1 1 

48 1 1 1 1 1 1 98 1 1 1 1 1 1 

49 1 1 0 1 1 1 99 1 1 1 1 1 1 

50 1 1 0 1 1 1 100 1 1 1 1 1 1 
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Appendix C 

C.1. Scenario reduction model 

In this section, a scenario reduction MILP model, proposed by Li and Floudas, (2014), is 

presented. The model relies on the sets, parameters, and variables, listed in section 

C.1.1. The model objective function and the constraints are also presented in section 

C.1.2. 

 

C.1.1. Nomenclature 

Indices/Sets 

𝑠, 𝑠′ ∈ 𝑆 Scenarios 

Parameters 

𝑐𝑠,𝑠΄ Distance between scenario s and s΄ 

𝑝𝑠
𝑜𝑟𝑖𝑔

 Probability of scenario s in original discrete distribution 

𝑓 
𝑚𝑎𝑥 

Maximum objective value of all scenarios in original discrete 

distribution 

𝑓 
𝑒𝑥𝑝 

Expected objective value of all scenarios in original discrete 

distribution 

𝑓 
𝑚𝑖𝑛 

Minimum objective value of all scenarios in original discrete 

distribution 

𝑓 𝑠
∗ 

Optimal objective value under scenario s in original discrete 

distribution 

N Number of scenarios to be removed 
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Continuous Variables 

𝐷𝐼𝑆𝑠 Minimum distance of all remaining scenarios to a removed scenario s 

𝑃𝑠
𝑜𝑟𝑖𝑔

 Probability of scenario s in original discrete distribution 

𝑉𝑠,𝑠΄ Takes the value 1 only if scenario s is removed and assigned to scenario s΄ 

𝐹𝐸𝑚𝑎𝑥  
absolute error between the best objective value of original and reduced 

distribution 

𝐹𝐸 
𝑒𝑥𝑝 

absolute error between the expected objective value of original and reduced 

distributions 

𝐹𝐸 
𝑚𝑖𝑛 

absolute error between the worst objective value of original and reduced 

distributions 

𝐹𝑆 
𝑚𝑎𝑥  

Maximum objective value of the reduced distribution of the remaining 

scenarios 

𝐹𝑆 
𝑒𝑥𝑝 

Expected objective value of the reduced distribution of the remaining 

scenarios 

𝐹𝑆 
𝑚𝑖𝑛 

Minimum objective value of the reduced distribution of the remaining 

scenarios 

Binary Variables 

𝑌𝑠
𝑚𝑎𝑥  Takes the value 1 only if scenario s, corresponds to the new maximum 

objective among the selected scenarios 

𝑌𝑠
𝑚𝑖𝑛 Takes the value 1 only if scenario s, corresponds to the new minimum 

objective among the selected scenarios 

𝑌𝑠
  Takes the value 1 only if scenario s is removed 
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C.1.2. MILP scenario reduction model  

 

∑𝑌𝑠
 

𝑠

= 𝑁 (C1) 

∑𝑉𝑠,𝑠΄
𝑠΄

≥ 𝑌𝑠
     ∀𝑠 ∈ 𝑆 (C2) 

0 ≤ 𝑉𝑠,𝑠΄ ≤ 1 − 𝑌𝑠΄
     ∀𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆 (C3) 

𝐷𝐼𝑆𝑠 =∑𝑉𝑠,𝑠΄𝑐𝑠,𝑠΄
𝑠΄

      ∀𝑠 ∈ 𝑆 (C4) 

𝐷𝐼𝑆𝑠 ≤ 𝑌𝑠
 𝑓 
𝑚𝑎𝑥     ∀𝑠 ∈ 𝑆 (C5) 

∑𝑉𝑠,𝑠΄
𝑠΄

≤ 1      ∀𝑠 ∈ 𝑆 (C6) 

𝑃𝑁𝑠΄
 = (1 − 𝑌𝑠΄

 )𝑝𝑠΄
𝑜𝑟𝑖𝑔

+∑𝑉𝑠,𝑠΄
𝑠

𝑝𝑠
𝑜𝑟𝑖𝑔

   ∀𝑠′ ∈ 𝑆 (C7) 

𝐹𝑆 
𝑒𝑥𝑝 =∑𝑃𝑁𝑠

 

𝑠

𝑓 𝑠
∗ (C8) 

𝐹𝑆 
𝑚𝑎𝑥 =∑𝑌𝑠

𝑚𝑎𝑥

𝑠

𝑓 𝑠
∗ (C9) 

𝐹𝑆 
𝑚𝑎𝑥 ≥ (1 − 𝑌𝑠

 )𝑓 𝑠
∗ + 𝑌𝑠

 𝑓 
𝑚𝑖𝑛    ∀𝑠 ∈ 𝑆 (C10) 

∑𝑌𝑠
𝑚𝑎𝑥

𝑠

= 1 (C11) 

𝑌𝑠
𝑚𝑎𝑥 ≤ 1 − 𝑌𝑠

  (C12) 

𝐹𝑆 
𝑚𝑖𝑛 =∑𝑌𝑠

𝑚𝑖𝑛

𝑠

𝑓 𝑠
∗ (C13) 

𝐹𝑆 
𝑚𝑖𝑛 ≤ (1 − 𝑌𝑠

 )𝑓 𝑠
∗ + 𝑌𝑠

 𝑓 
𝑚𝑎𝑥     ∀𝑠 ∈ 𝑆 (C14) 
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  ∑𝑌𝑠
𝑚𝑖𝑛

𝑠

= 1 (C15) 

𝑌𝑠
𝑚𝑖𝑛 ≤ 1 − 𝑌𝑠

  (C16) 

𝐹𝐸 
𝑒𝑥𝑝 ≥ 𝐹𝑆 

𝑒𝑥𝑝 − 𝑓 
𝑒𝑥𝑝 (C17) 

𝐹𝐸 
𝑒𝑥𝑝 ≥ −𝐹𝑆 

𝑒𝑥𝑝 + 𝑓 
𝑒𝑥𝑝 (C18) 

𝐹𝐸𝑚𝑎𝑥=𝑓 
𝑚𝑎𝑥-𝐹𝑆 

𝑚𝑎𝑥  (C19) 

𝐹𝐸 
𝑚𝑖𝑛=𝐹𝑆 

𝑚𝑖𝑛 − 𝑓 
𝑚𝑖𝑛 (C20) 

min∑𝐷𝐼𝑆𝑠
𝑠

𝑝𝑠
𝑜𝑟𝑖𝑔

+ 𝐹𝐸𝑚𝑎𝑥   +  𝐹𝐸 
𝑚𝑖𝑛 + 𝐹𝐸 

𝑒𝑥𝑝   (C21) 

Constraints (C1) – (C7) aim to the minimization of the Kantorovich distance between 

the initial and the reduced discrete distributions (Kantorovitch, 1958). To quantify the 

difference of the expected, best and worst performance of the output measures 

constraints (C8)- (C20) are also included. The objective function targets to minimize the 

Kantorovich distance and the differences of the output measures. A detailed description 

of the MILP scenario reduction model is also given by Li and Floudas, (2014). 
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C.2. Data of the first case study – Illustrative example 

 

The data for the illustrative example are summarized in Tables C1 – C15 

 

Table C1 Products to processing units mapping (kg) 

Processing units Minimum Capacity Maximum Capacity 

1 20 400 

2 20 300 

3 20 400 

4 20 300 

5 20 400 

6 20 300 

 

Table C2 Units to production stages mapping 

Processing units 
Processing stages 

1 2 3 

1 1 0 0 

2 1 0 0 

3 0 1 0 

4 0 1 0 

5 0 0 1 

6 0 0 1 
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Table C3 Selling price of products (relative money units / kg) 

Product Selling price Product Selling price 

1 3 8 3 

2 1 9 4 

3 3 10 4 

4 4 11 2 

5 2 12 2 

6 4 13 1 

7 5 14 5 

 

 

Table C4 Backlog cost of products (relative money units / kg) 

Product Selling price Product Selling price 

1 9 8 9 

2 3 9 12 

3 9 10 12 

4 12 11 6 

5 6 12 6 

6 12 13 3 

7 15 14 15 
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Table C5 Inventory cost of products (relative money units / kg) 

Product Selling price Product Selling price 

1 1.5 8 1.5 

2 0.5 9 2 

3 1.5 10 2 

4 2 11 1 

5 1 12 1 

6 2 13 0.5 

7 2.5 14 2.5 

 

Table C6 Variable raw material cost of products (relative money units / kg) 

Product Selling price Product Selling price 

1 0.3 8 0.3 

2 0.1 9 0.4 

3 0.3 10 0.4 

4 0.4 11 0.2 

5 0.2 12 0.2 

6 0.4 13 0.1 

7 0.5 14 0.5 
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Table C7 Fixed processing time of products in each processing unit (hours) 

Products 
Processing units 

1 2 3 4 5 6 

1 1 1 1.3 1.3 1.1 1.1 

2 1 1 1.3 1.3 1.1 1.1 

3 1 1 1.3 1.3 1.1 1.1 

4 1 1 1.3 1.3 1.1 1.1 

5 1 1 1.3 1.3 1.1 1.1 

6 1 1 1.3 1.3 1.1 1.1 

7 1 1 1.3 1.3 1.1 1.1 

8 1 1 1.3 1.3 1.1 1.1 

9 1 1 1.3 1.3 1.1 1.1 

10 1 1 1.3 1.3 1.1 1.1 

11 1 1 1.3 1.3 1.1 1.1 

12 1 1 1.3 1.3 1.1 1.1 

13 1 1 1.3 1.3 1.1 1.1 

14 1 1 1.3 1.3 1.1 1.1 
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Table C8 Variable processing time of products in each processing unit (kg/hour) 

Products 

Processing units 

1 2 3 4 5 6 

1 30 30 40 40 25 25 

2 30 30 40 40 25 25 

3 40 40 50 50 30 30 

4 40 40 50 50 30 30 

5 40 40 50 50 30 30 

6 40 40 50 50 30 30 

7 40 40 50 50 30 30 

8 30 30 40 40 25 25 

9 30 30 40 40 25 25 

10 30 30 40 40 25 25 

11 40 40 50 50 30 30 

12 40 40 50 50 30 30 

13 40 40 50 50 30 30 

14 40 40 50 50 30 30 
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Table C9 Products to processing units mapping 

Products 
Processing units 

1 2 3 4 5 6 

1 1 1 1 1 1 1 

2 1 1 1 1 1 1 

3 0 1 0 1 0 1 

4 0 1 0 1 0 1 

5 1 1 1 1 1 1 

6 1 1 1 1 1 1 

7 1 1 1 1 1 1 

8 1 0 1 0 0 1 

9 1 0 1 0 0 1 

10 1 0 1 0 0 1 

11 1 1 1 1 1 1 

12 1 1 1 1 1 1 

13 1 1 1 1 1 1 

14 1 1 1 1 1 1 
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Table C10 Demand of target scenario for time periods 1-10 (kg) 

 

week 

1 2 3 4 5 6 7 8 9 10 

1 120 120 132 132 138 120 120 132 132 138 

2 120 120 132 132 138 120 120 132 132 138 

3 360 360 360 396 396 360 360 360 396 396 

4 156 156 172 383 372 156 156 172 383 372 

5 384 384 384 383 372 384 384 384 383 372 

6 384 384 384 383 372 384 384 384 383 372 

7 360 360 360 396 396 360 360 360 396 396 

8 360 360 360 396 396 360 360 360 396 396 

9 120 120 120 132 360 120 120 120 132 360 

10 384 384 384 383 372 384 384 384 383 372 

11 120 120 132 132 138 120 120 132 132 138 

12 120 120 132 132 138 120 120 132 132 138 

13 360 360 360 396 396 360 360 360 396 396 

14 180 180 180 383 372 180 180 180 383 372 
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Table C11 Demand of target scenario for time periods 11-20 (kg) 

 
week 

11 12 13 14 15 16 17 18 19 20 

1 120 120 132 132 138 120 120 132 132 138 

2 120 120 132 132 138 120 120 132 132 138 

3 360 360 360 396 396 360 360 360 396 396 

4 156 156 172 383 372 156 156 172 383 372 

5 384 384 384 383 372 384 384 384 383 372 

6 384 384 384 383 372 384 384 384 383 372 

7 360 360 360 396 396 360 360 360 396 396 

8 360 360 360 396 396 360 360 360 396 396 

9 120 120 120 132 360 120 120 120 132 360 

10 384 384 384 383 372 384 384 384 383 372 

11 120 120 132 132 138 120 120 132 132 138 

12 120 120 132 132 138 120 120 132 132 138 

13 360 360 360 396 396 360 360 360 396 396 

14 180 180 180 383 372 180 180 180 383 372 

 

 

 

 

 

 

 

 

 

 

 



Appendix C  

206 
` 

Table C12 Demand of target scenario for time periods 21-30 (kg) 

 
week 

21 22 23 24 25 26 27 28 29 30 

1 120 120 132 132 138 120 120 132 132 138 

2 120 120 132 132 138 120 120 132 132 138 

3 360 360 360 396 396 360 360 360 396 396 

4 156 156 172 383 372 156 156 172 383 372 

5 384 384 384 383 372 384 384 384 383 372 

6 384 384 384 383 372 384 384 384 383 372 

7 360 360 360 396 396 360 360 360 396 396 

8 360 360 360 396 396 360 360 360 396 396 

9 120 120 120 132 360 120 120 120 132 360 

10 384 384 384 383 372 384 384 384 383 372 

11 120 120 132 132 138 120 120 132 132 138 

12 120 120 132 132 138 120 120 132 132 138 

13 360 360 360 396 396 360 360 360 396 396 

14 180 180 180 383 372 180 180 180 383 372 

15 120 120 132 132 138 120 120 132 132 138 
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Table C13 Demand of target scenario for time periods 31-40 (kg) 

 

week 

31 32 33 34 35 36 37 38 39 40 

1 120 120 132 132 138 120 120 132 132 138 

2 120 120 132 132 138 120 120 132 132 138 

3 360 360 360 396 396 360 360 360 396 396 

4 156 156 172 383 372 156 156 172 383 372 

5 384 384 384 383 372 384 384 384 383 372 

6 384 384 384 383 372 384 384 384 383 372 

7 360 360 360 396 396 360 360 360 396 396 

8 360 360 360 396 396 360 360 360 396 396 

9 120 120 120 132 360 120 120 120 132 360 

10 384 384 384 383 372 384 384 384 383 372 

11 120 120 132 132 138 120 120 132 132 138 

12 120 120 132 132 138 120 120 132 132 138 

13 360 360 360 396 396 360 360 360 396 396 

14 180 180 180 383 372 180 180 180 383 372 
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Table C14 Demand of target scenario for time periods 41-52 (kg) 

 

week 

41 42 43 44 45 46 47 48 49 50 51 52 

1 120 120 132 132 138 120 120 132 132 138 120 120 

2 120 120 132 132 138 120 120 132 132 138 120 120 

3 360 360 360 396 396 360 360 360 396 396 408 408 

4 156 156 172 383 372 156 156 172 383 372 311 301 

5 384 384 384 383 372 384 384 384 383 311 250 250 

6 384 384 384 383 372 384 384 384 383 311 250 250 

7 360 360 360 396 396 360 360 360 396 311 250 250 

8 360 360 360 396 396 360 360 360 396 396 360 360 

9 120 120 120 132 360 120 120 120 132 360 396 436 

10 384 384 384 383 372 384 384 384 383 372 311 301 

11 120 120 132 132 138 120 120 132 132 138 120 120 

12 120 120 132 132 138 120 120 132 132 138 120 120 

13 360 360 360 396 396 360 360 360 396 396 360 360 

14 180 180 180 383 372 180 180 180 383 372 311 301 
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Table C15 Changeover times (hours) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.0 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 

2 1.4 0.0 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 

3 1.8 1.4 0.0 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 

4 1.8 1.4 1.8 0.0 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 

5 1.4 1.4 1.8 1.8 0.0 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 

6 1.8 1.4 1.8 1.8 1.4 0.0 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 

7 1.4 1.4 1.8 1.8 1.4 1.8 0.0 1.4 1.8 1.8 1.4 1.8 1.8 1.7 

8 1.5 1.4 1.8 1.8 1.4 1.8 1.4 0.0 1.8 1.8 1.4 1.8 1.8 1.7 

9 1.5 1.4 1.8 1.8 1.4 1.8 1.4 1.4 0.0 1.8 1.4 1.8 1.8 1.7 

10 1.5 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 0.0 1.4 1.8 1.8 1.7 

11 1.5 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 0.0 1.8 1.8 1.7 

12 1.5 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 0.0 1.8 1.7 

13 1.5 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 0.0 1.7 

14 1.5 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 0.0 
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C.3. Data of the second case study– Large-scale problem 

 

The data for the large-scale problem instance are summarized in Tables C16 – C31 

 

Table C16 Products to processing units mapping (kg) 

Processing units Minimum Capacity Maximum Capacity 

1 20 400 

2 20 300 

3 20 400 

4 20 300 

5 20 400 

6 20 300 

7 20 400 

 

Table C17 Units to production stages mapping 

Processing units 
Processing stages 

1 2 3 

1 1 0 0 

2 1 0 0 

3 0 1 0 

4 0 1 0 

5 0 0 1 

6 0 0 1 

7 0 0 1 
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Table C18 Selling price of products  (relative monetary units / kg) 

Product Selling price Product Selling price 

1 8 16 8 

2 4 17 12 

3 8 18 14 

4 7 19 12 

5 8 20 11.4 

6 6.2 21 10.8 

7 7.2 22 11.2 

8 5.6 23 7.8 

9 5.2 24 16 

10 4.8 25 18 

11 12 26 16 

12 6 27 17 

13 7 28 16 

14 7 29 19 

15 12 30 22 

 

 

Table C19 Backlog cost of products (relative money units / kg) 

Product Selling price Product Selling price 

1 24 16 0.8 

2 12 17 0.4 

3 24 18 0.8 

4 21 19 0.7 

5 24 20 0.8 

6 18.6 21 0.62 

7 21.6 22 0.72 
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8 16.8 23 0.56 

9 15.6 24 0.52 

10 14.4 25 0.48 

11 36 26 1.2 

12 18 27 0.6 

13 21 28 0.7 

14 21 29 0.7 

15 36 30 1.2 

 

Table C20 Inventory cost of products (relative money units / kg) 

Product Selling price Product Selling price 

1 4 16 4 

2 2 17 6 

3 4 18 7 

4 3.5 19 6 

5 4 20 5.7 

6 3.1 21 5.4 

7 3.6 22 5.6 

8 2.8 23 3.9 

9 2.6 24 8 

10 2.4 25 9 

11 6 26 8 

12 3 27 8.5 

13 3.5 28 8 

14 3.5 29 9.5 

15 6 30 11 
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Table C21 Variable raw material cost of products (relative money units / kg) 

Product Selling price Product Selling price 

1 0.8 16 0.8 

2 0.4 17 1.2 

3 0.8 18 1.4 

4 0.7 19 1.2 

5 0.8 20 1.14 

6 0.62 21 1.08 

7 0.72 22 1.12 

8 0.56 23 0.78 

9 0.52 24 1.6 

10 0.48 25 1.8 

11 1.2 26 1.6 

12 0.6 27 1.7 

13 0.7 28 1.6 

14 0.7 29 1.9 

15 1.2 30 2.2 

 

 

Table C22 Fixed processing time of products in each processing unit (hours) 

Products 
Processing units 

1 2 3 4 5 6 7 

1 1 1 1.3 1.3 1.1 1.1 0.2 

2 1 1 1.3 1.3 1.1 1.1 0.2 

3 1 1 1.3 1.3 1.1 1.1 0.2 

4 1 1 1.3 1.3 1.1 1.1 0.2 

5 1 1 1.3 1.3 1.1 1.1 0.2 

6 1 1 1.3 1.3 1.1 1.1 0.2 
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7 1 1 1.3 1.3 1.1 1.1 0.2 

8 1 1 1.3 1.3 1.1 1.1 0.2 

9 1 1 1.3 1.3 1.1 1.1 0.2 

10 1 1 1.3 1.3 1.1 1.1 0.2 

11 1 1 1.3 1.3 1.1 1.1 0.2 

12 1 1 1.3 1.3 1.1 1.1 0.2 

13 1 1 1.3 1.3 1.1 1.1 0.2 

14 1 1 1.3 1.3 1.1 1.1 0.2 

15 1 1 1.3 1.3 1.1 1.1 0.2 

16 1 1 1.3 1.3 1.1 1.1 0.2 

17 1 1 1.3 1.3 1.1 1.1 0.2 

18 1 1 1.3 1.3 1.1 1.1 0.2 

19 1 1 1.3 1.3 1.1 1.1 0.2 

20 1 1 1.3 1.3 1.1 1.1 0.2 

21 1 1 1.3 1.3 1.1 1.1 0.2 

22 1 1 1.3 1.3 1.1 1.1 0.2 

23 1 1 1.3 1.3 1.1 1.1 0.2 

24 1 1 1.3 1.3 1.1 1.1 0.2 

25 1 1 1.3 1.3 1.1 1.1 0.2 

26 1 1 1.3 1.3 1.1 1.1 0.2 

27 1 1 1.3 1.3 1.1 1.1 0.2 

28 1 1 1.3 1.3 1.1 1.1 0.2 

29 1 1 1.3 1.3 1.1 1.1 0.2 

30 1 1 1.3 1.3 1.1 1.1 0.2 
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Table C23 Variable processing time of products in each processing unit (kg/hour) 

Products 
Processing units 

1 2 3 4 5 6 7 

1 30 30 40 40 25 25 25 

2 30 30 40 40 25 25 25 

3 40 40 50 50 30 30 30 

4 40 40 50 50 30 30 30 

5 40 40 50 50 30 30 30 

6 40 40 50 50 30 30 30 

7 40 40 50 50 30 30 30 

8 30 30 40 40 25 25 25 

9 30 30 40 40 25 25 25 

10 30 30 40 40 25 25 25 

11 40 40 50 50 30 30 30 

12 40 40 50 50 30 30 30 

13 40 40 50 50 30 30 30 

14 40 40 50 50 30 30 30 

15 40 40 50 50 30 30 30 

16 40 40 50 50 30 30 30 

17 40 40 50 50 30 30 30 

18 30 30 40 40 25 25 25 

19 30 30 40 40 25 25 25 

20 30 30 40 40 25 25 25 

21 30 30 40 40 25 25 25 

22 30 30 40 40 25 25 25 

23 30 30 40 40 25 25 25 

24 40 40 50 50 30 30 30 

25 40 40 50 50 30 30 30 



Appendix C  

216 
` 

26 40 40 50 50 30 30 30 

27 40 40 50 50 30 30 30 

28 40 40 50 50 30 30 30 

29 30 30 40 40 25 25 25 

30 30 30 40 40 25 25 25 

 

 

Table C24 Products to processing units mapping 

Products 
Processing units 

1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 

3 0 1 0 1 0 1 1 

4 0 1 0 1 0 1 1 

5 1 1 1 1 1 1 1 

6 1 1 1 1 1 1 1 

7 1 1 1 1 1 1 1 

8 1 0 1 0 0 1 1 

9 1 0 1 0 0 1 1 

10 1 0 1 0 0 1 1 

11 1 1 1 1 1 1 1 

12 1 1 1 1 1 1 1 

13 1 1 1 1 1 1 1 

14 1 1 1 1 1 1 1 

15 0 1 0 1 0 1 1 

16 0 1 0 1 0 1 1 

17 0 1 0 1 0 1 1 

18 1 0 1 0 1 0 1 
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19 1 0 1 0 1 0 1 

20 1 0 1 0 1 0 1 

21 0 1 0 1 0 1 1 

22 0 1 0 1 0 1 1 

23 0 1 0 1 0 1 1 

24 0 1 0 1 0 1 1 

25 0 1 0 1 0 1 1 

26 0 1 0 1 0 1 1 

27 1 1 1 1 1 1 1 

28 1 1 1 1 1 1 1 

29 1 1 1 1 1 1 1 

30 1 1 1 1 1 1 1 

 

 

 

Table C25 Demand of target scenario for time periods 1-10 (kg) 

 
week 

1 2 3 4 5 6 7 8 9 10 

1 120 120 132 132 138 120 120 132 132 138 

2 120 120 132 132 138 120 120 132 132 138 

3 360 360 360 396 396 360 360 360 396 396 

4 156 156 171.6 382.93 372 156 156 171.6 382.9 372 

5 384 384 384 382.93 372 384 384 384 382.9 372 

6 384 384 384 382.93 372 384 384 384 382.9 372 

7 360 360 360 396 396 360 360 360 396 396 

8 360 360 360 396 396 360 360 360 396 396 

9 120 120 120 132 360 120 120 120 132 360 

10 384 384 384 382.9 372 384 384 384 382.9 372 
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11 345 345 345 381 381 345 345 345 381 381 

12 170 170 185.6 396.9 386 170 170 185.6 396.9 386 

13 360 360 360 396 396 360 360 360 396 396 

14 180 180 180 382.9 372 180 180 180 382.9 372 

15 384 384 384 382.9 372 384 384 384 382.9 372 

16 384 384 384 382.9 372 384 384 384 382.9 372 

17 360 360 360 396 396 360 360 360 396 396 

18 384 384 384 382.9 372 362. 351.9 362.4 331. 321.1 

19 132 132 145.2 382.93 372 362. 351.91 341.64 331.38 321.1 

20 360 360 360 396 396 396 435.6 360 360 360 

21 384 384 384 382.93 372 362. 351.91 341.6 331.3 321.1 

22 264 264 290.4 316.8 316 343 396 448.8 408 408 

23 240 240 264 288 288 312 360 408 408 408 

24 120 120 132 144 360 360 360 360 228 240 

25 132 132 145.2 158.4 158 171 198 224.4 250.8 264 

26 384 384 384 382.93 372 362 351.9 341.6 331.38 321.11 

27 240 240 264 288 288 312 360 408 408 408 

28 264 264 290.4 316.8 316.8 343.2 396 448.8 408 408 

29 360 360 360 396 396 360 360 360 396 396 

30 156 156 171.6 382.93 372 156 156 171.6 382.93 372 
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Table C26 Demand of target scenario for time periods 11-20 (kg) 

 
week 

11 12 13 14 15 16 17 18 19 20 

1 120 120 132 132 138 120 120 132 132 138 

2 120 120 132 132 138 120 120 132 132 138 

3 360 360 360 396 396 360 360 360 396 396 

4 156 156 171.6 382.93 372 156 156 171.6 382.9 372 

5 384 384 384 382.98 372 384 384 384 382.9 372 

6 384 384 384 382.98 372 384 384 384 382.93 372 

7 360 360 360 396 396 360 360 360 396 396 

8 360 360 360 396 396 360 360 360 396 396 

9 120 120 120 132 360 120 120 120 132 360 

10 384 384 384 382.93 372 384 384 384 382.931 372 

11 345 345 345 381 381 345 345 345 381 381 

12 170 170 185.6 396.9 386 170 170 185.6 396.91 386 

13 360 360 360 396 396 360 360 360 396 396 

14 180 180 180 382.93 372 180 180 180 382.93 372 

15 384 384 384 382.93 372 384 384 384 382.93 372 

16 384 384 384 382.93 372 384 384 384 382.93 372 

17 360 360 360 396 396 360 360 360 396 396 

18 310.8 300.58 290.3 280.0 269.78 384 384 384 382.93 312 

19 310.4 300.5 382.93 372 362.4 351.9 341. 8 331.3 382.9 382.9 

20 360 360 396 396 396 360 360 360 396 312 

21 310.8 300.5 290.3 280.05 269.78 384 384 384 382.93 408 

22 408 408 408 408 408 408 408 408 408 408 

23 408 408 408 408 408 408 408 408 408 408 

24 264 300 306 312 312 312 312 312 312 312 

25 290.4 330 336.6 343.2 343.2 343.2 343.2 343.2 343.2 343.2 
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26 310.8 300.5 290.35 280.05 269. 4 384 384 384 382.9 312 

27 408 408 408 408 408 408 408 408 408 408 

28 408 408 408 408 408 408 408 408 408 408 

29 360 360 360 396 396 360 360 360 396 396 

30 156 156 171.6 382.9 372 156 156 171.6 382.93 372 

 

Table C27 Demand of target scenario for time periods 21-30 (kg) 

 
week 

21 22 23 24 25 26 27 28 29 30 

1 120.0 120.0 132.0 132.0 138.0 120.0 120.0 132.0 132.0 138.0 

2 120.0 120.0 132.0 132.0 138.0 120.0 120.0 132.0 132.0 138.0 

3 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0 

4 156.0 156.0 171.6 382.9 372.0 156.0 156.0 171.6 382.9 372.0 

5 384.0 384.0 384.0 382.9 372.0 384.0 384.0 384.0 382.9 372.0 

6 384.0 384.0 384.0 382.9 372.0 384.0 384.0 384.0 382.9 372.0 

7 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0 

8 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0 

9 120.0 120.0 120.0 132.0 360.0 120.0 120.0 120.0 132.0 360.0 

10 384.0 384.0 384.0 382.9 372.0 384.0 384.0 384.0 382.9 372.0 

11 345.0 345.0 345.0 381.0 381.0 345.0 345.0 345.0 381.0 381.0 

12 170.0 170.0 185.6 396.9 386.0 170.0 170.0 185.6 396.9 386.0 

13 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0 

14 180.0 180.0 180.0 382.9 372.0 180.0 180.0 180.0 382.9 372.0 

15 384.0 384.0 384.0 382.9 372.0 384.0 384.0 384.0 382.9 372.0 

16 384.0 384.0 384.0 382.9 372.0 384.0 384.0 384.0 382.9 372.0 

17 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0 

18 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 

19 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 
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20 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 

21 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 

22 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 

23 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 

24 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 

25 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 

26 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 

27 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 

28 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 

29 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0 

30 156.0 156.0 171.6 382.9 372.0 156.0 156.0 171.6 382.9 372.0 

 

Table C28 Demand of target scenario for time periods 31-40 (kg) 

 
week 

31 32 33 34 35 36 37 38 39 40 

1 120.0 120.0 132.0 132.0 138.0 120.0 120.0 132.0 132.0 138.0 

2 120.0 120.0 132.0 132.0 138.0 120.0 120.0 132.0 132.0 138.0 

3 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0 

4 156.0 156.0 171.6 382.9 372.0 156.0 156.0 171.6 382.9 372.0 

5 384.0 384.0 384.0 382.9 372.0 384.0 384.0 384.0 382.9 372.0 

6 384.0 384.0 384.0 382.9 372.0 384.0 384.0 384.0 382.9 372.0 

7 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0 

8 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0 

9 120.0 120.0 120.0 132.0 360.0 120.0 120.0 120.0 132.0 360.0 

10 384.0 384.0 384.0 382.9 372.0 384.0 384.0 384.0 382.9 372.0 

11 345.0 345.0 345.0 381.0 381.0 345.0 345.0 345.0 381.0 381.0 

12 170.0 170.0 185.6 396.9 386.0 170.0 170.0 185.6 396.9 386.0 

13 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0 



Appendix C  

222 
` 

14 180.0 180.0 180.0 382.9 372.0 180.0 180.0 180.0 382.9 372.0 

15 384.0 384.0 384.0 382.9 372.0 384.0 384.0 384.0 382.9 372.0 

16 384.0 384.0 384.0 382.9 372.0 384.0 384.0 384.0 382.9 372.0 

17 360.0 360.0 360.0 396.0 396.0 360.0 360.0 360.0 396.0 396.0 

18 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 

19 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 

20 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 

21 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 

22 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 

23 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 

24 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 

25 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 

26 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 

27 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 

28 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 408.0 

29 360 360 360 396 396 360 360 360 396 396 

30 156 156 171.6 382.9 372 156 156 171.6 382.9 372 

 

Table C29 Demand of target scenario for time periods 41-52 (kg) 

 
week 

41 42 43 44 45 46 47 48 49 50 51 52 

1 120  120  132  132  138  120  120  132  132  138  120  120  

2 120  120  132  132  138  120  120  132  132  138  120  120  

3 360  360  360  396  396  360  360  360  396  396  408  408  

4 156  156  171.6 382.9 372  156  156  171.6 382.9 372  310.8 300.6 

5 384  384  384  382.9 372  384  384  384  382.9 310.8 249.7 249.7 

6 384  384  384  382.9 372  384  384  384 382.9 310.8 249.7 249.7 

7 360  360  360  396  396  360  360  360 396  310.8 249.7 249.7 
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8 360  360  360  396  396  360  360  360 396  396  360  360  

9 120  120  120  132  360  120  120  120 132  360  396  435.6 

10 384  384  384  382.9 372  384  384  384  382.9 372  310.8 300.6 

11 345  345  345  381  381  345  345  345  381  381  393  393  

12 170  170  185.6 396.9 386  170  170  185.6 396.9 386  324.8 314.6 

13 360  360  360  396  396  360  360  360  396  396  360  360  

14 180  180  180  382.9 372  180  180  180  382.9 372  310.8 300.6 

15 384  384  384  382.9 372  384  384  384  382.9 310.8 249.7 249.7 

16 384  384  384  382.9 372  384  384  384  382.9 310.8 249.7 249.7 

17 360  360  360  396  396  360  360  360  396  310.8 249.7 249.7 

18 312  312  312  312  312  312  312  312  312  312  312  312  

19 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 

20 312  312  312  312  312  312  312  312  312  312  312  312  

21 360  360  360  360  336  336  336  336  336  336  336  336  

22 360  360  360  360  336  336  336  336  336  336  336  336  

23 360  360  360  360  336  336  336  336  336  336  336  336  

24 312  312  312  312  312  312  312  312  312  312  312  312  

25 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 343.2 

26 312  312  312  312  312  312  312  312  312  312  312  312  

27 360  360  360  360  336  336  336  336  336  336  336  336  

28 360  360  360  360  336  336  336  336  336  336  336  336  

29 360  360  360  396  396  360  360  360  396  396  408  408  

30 156  156  171.6 382.9 372  156  156  171.6 382.9 372  310.8 300.6 
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Table C30 Changeover times between products (hours) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.0 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 1.7 

2 1.4 0.0 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 1.7 

3 1.8 1.4 0.0 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 1.7 

4 1.8 1.4 1.8 0.0 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 1.7 

5 1.4 1.4 1.8 1.8 0.0 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 1.7 

6 1.8 1.4 1.8 1.8 1.4 0.0 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 1.7 

7 1.4 1.4 1.8 1.8 1.4 1.8 0.0 1.4 1.8 1.8 1.4 1.8 1.8 1.7 1.7 

8 1.5 1.4 1.8 1.8 1.4 1.8 1.4 0.0 1.8 1.8 1.4 1.8 1.8 1.7 1.7 

9 1.5 1.4 1.8 1.8 1.4 1.8 1.4 1.4 0.0 1.8 1.4 1.8 1.8 1.7 1.7 

10 1.5 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 0.0 1.4 1.8 1.8 1.7 1.7 

11 1.5 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 0.0 1.8 1.8 1.7 1.7 

12 1.5 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 0.0 1.8 1.7 1.7 

13 1.5 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 0.0 1.7 1.7 

14 1.5 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 0.0 1.7 

15 1.4 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.7 0.0 

16 1.4 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.8 1.8 

17 1.4 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.8 1.8 

18 1.4 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.8 1.8 

19 1.4 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.8 1.8 

20 1.4 1.8 1.8 1.4 1.8 1.4 1.4 1.8 1.8 1.4 1.8 1.8 1.8 1.8 1.8 

21 1.5 1.6 1.9 1.8 1.5 1.7 1.4 1.4 1.8 1.6 1.4 1.7 1.6 1.6 1.6 

22 1.5 1.6 1.9 1.8 1.5 1.8 1.4 1.4 1.8 1.6 1.4 1.7 1.6 1.6 1.6 

23 1.5 1.6 2.0 1.8 1.5 1.8 1.4 1.4 1.8 1.6 1.4 1.7 1.6 1.6 1.6 

24 1.5 1.6 2.0 1.8 1.5 1.8 1.4 1.5 1.8 1.6 1.4 1.7 1.6 1.6 1.6 

25 1.6 1.6 2.0 1.8 1.6 1.8 1.4 1.5 1.8 1.6 1.4 1.7 1.6 1.6 1.6 

26 1.6 1.7 2.0 1.9 1.6 1.8 1.4 1.5 1.8 1.6 1.4 1.6 1.6 1.6 1.5 
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27 1.6 1.7 2.0 1.9 1.6 1.8 1.4 1.5 1.8 1.6 1.4 1.6 1.6 1.6 1.5 

28 1.6 1.7 2.1 1.9 1.6 1.8 1.4 1.5 1.8 1.6 1.4 1.6 1.6 1.6 1.5 

29 1.6 1.7 2.1 1.9 1.6 1.8 1.4 1.5 1.8 1.6 1.4 1.6 1.6 1.6 1.5 

30 1.6 1.8 2.1 1.9 1.6 1.8 1.4 1.5 1.8 1.6 1.4 1.6 1.6 1.6 1.5 

 

 

Table C31 Changeover times between products (hours) 

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 1.8 1.4 1.8 1.8 1.4 1.8 1.9 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.1 

2 1.4 1.4 1.8 1.8 1.4 1.7 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 

3 1.8 1.4 1.8 1.8 1.4 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 2.0 

4 1.4 1.4 1.8 1.8 1.4 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 

5 1.5 1.4 1.8 1.8 1.4 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.9 

6 1.5 1.4 1.8 1.8 1.4 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 

7 1.5 1.4 1.8 1.8 1.4 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.8 

8 1.5 1.4 1.8 1.8 1.4 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.7 

9 1.5 1.4 1.8 1.8 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 

10 1.5 1.4 1.8 1.8 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 

11 1.5 1.4 1.8 1.8 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 

12 1.4 1.4 1.8 1.8 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

13 1.4 1.4 1.8 1.8 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.4 1.4 1.4 1.4 

14 1.4 1.4 1.8 1.8 1.4 1.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

15 1.4 1.4 1.8 1.8 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

16 0.0 1.4 1.8 1.8 1.4 1.5 1.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

17 1.4 0.0 1.8 1.8 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

18 1.8 1.4 0.0 1.8 1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3 

19 1.8 1.4 1.8 0.0 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 

20 1.4 1.4 1.8 1.8 0.0 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.2 
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21 1.3 1.1 1.5 1.5 1.1 0.0 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.1 

22 1.3 1.1 1.5 1.4 1.1 1.3 0.0 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1 

23 1.3 1.1 1.5 1.4 1.0 1.3 1.2 0.0 1.2 1.2 1.2 1.1 1.1 1.1 1.1 

24 1.2 1.1 1.4 1.4 1.0 1.3 1.2 1.2 0.0 1.1 1.1 1.1 1.1 1.0 1.0 

25 1.2 1.1 1.4 1.4 1.0 1.2 1.2 1.2 1.1 0.0 1.1 1.1 1.0 1.0 1.0 

26 1.2 1.1 1.4 1.4 1.0 1.2 1.2 1.1 1.1 1.1 0.0 1.0 1.0 1.0 0.9 

27 1.2 1.1 1.4 1.3 1.0 1.2 1.1 1.1 1.1 1.0 1.0 0.0 1.0 0.9 0.9 

28 1.2 1.1 1.4 1.3 0.9 1.2 1.1 1.1 1.1 1.0 1.0 0.9 0.0 0.9 0.8 

29 1.2 1.0 1.3 1.3 0.9 1.1 1.1 1.1 1.0 1.0 0.9 0.9 0.9 0.0 0.8 

30 1.2 1.0 1.3 1.3 0.9 1.1 1.1 1.0 1.0 1.0 0.9 0.9 0.8 0.8 0.0 
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C4. Results for the second case study– Initial and new plant layout 

Table C32 Summary of results for all contract combinations (initial plant layout) 

Feasible Contact 

combination 
Exp. Profit VaR90% VaR95% CVaR90% CVaR95% Max. Profit 

C1-C7-C8 8.10 6.03 4.34 4.58 3.98 12.64 

C1-C2-C5-C11 8.01 5.08 5.08 4.89 4.70 11.73 

C1-C2-C5-C12 7.74 5.50 5.50 5.12 4.74 11.75 

C1-C2-C6-C11 7.57 4.55 4.55 4.43 4.31 11.11 

C1-C5-C6-C11 7.51 5.05 5.05 4.90 4.74 10.55 

C1-C8-C12 7.28 3.64 3.64 3.43 3.23 12.98 

C1-C7-C12 7.18 3.96 3.96 3.77 3.59 12.96 

C1-C3-C7 7.08 4.36 4.36 4.33 4.30 8.24 

C1-C3-C12 7.04 4.40 4.40 4.11 3.82 10.77 

C1-C5-C11 6.91 3.61 3.61 3.46 3.30 10.07 

C1-C5-C12 6.61 3.62 3.62 3.62 3.62 10.23 

C1-C2-C11 6.25 3.13 3.13 2.98 2.83 10.12 

C1-C6-C11 6.14 3 3 2.88 2.75 9.54 

C1-C2-C12 5.98 3.14 2.64 2.91 2.69 10.24 

C1-C6-C12 5.89 3.01 3.01 2.82 2.64 9.69 

C1-C6-C8 5.87 2.99 2.97 2.93 2.89 8.12 

C1-C2-C7 5.85 3.10 3.10 3.07 3.05 7.58 

C1-C6-C7 5.79 2.97 2.97 2.95 2.93 7.12 

C1-C2-C5-C6 5.66 4.30 4.30 4.30 4.30 6.46 

C1-C5-C16 5.30 3.13 3.13 2.88 2.64 9.36 

C1-C11 4.76 1.25 1.25 1.22 1.19 8.16 

C1-C8 4.52 1.24 1.24 1.23 1.22 6.72 

C1-C12 4.49 1.26 1.16 1.21 1.16 8.28 

C1-C7 4.18 1.22 1.22 1.21 1.21 5.60 

C1-C2-C5 4.17 3.26 3.26 3.26 3.26 4.83 



Appendix C  

228 
` 

C1-C3-C5 4.10 2.83 2.83 2.83 2.83 4.82 

C1-C2-C6 3.61 2.45 2.45 2.45 2.45 4.33 

C1-C3-C6 3.60 2.71 2.71 2.71 2.71 4.13 

C1-C3 3.25 2.60 2.60 2.60 2.60 3.90 

C1-C5 2.57 2.06 2.06 2.06 2.06 3.09 

C1-C2 2.15 1.72 1.72 1.72 1.72 2.58 

C1-C6 2.04 1.63 1.63 1.63 1.63 2.45 

*The values represent millions of relative monetary units (r.m.u.) 

 

Table C33 Summary of results for all contract combinations (new plant layout) 

Feasible Contact 

combination 
Exp. Profit VaR90% VaR95% CVaR90% CVaR95% Max. Profit 

C1-C6-C7-C11 9.31 5.70 5.70 5.52 5.34 13.74 

C1-C7-C8 8.12 6.03 4.34 5.64 4.09 12.64 

C1-C2-C5-C11 8.01 5.08 5.08 4.89 4.70 11.73 

C1-C7-C11 7.85 3.95 3.95 3.78 3.61 12.93 

C1-C2-C5-C12 7.74 5.50 5.50 5.12 4.74 11.75 

C1-C2-C6-C11 7.57 4.55 4.55 4.43 4.31 11.11 

C1-C5-C6-C11 7.51 5.05 5.05 4.90 4.74 10.55 

C1-C8-C12 7.39 3.64 3.64 3.43 3.23 14.34 

C1-C8-C11 7.38 3.64 3.64 3.43 3.23 13.04 

C1-C7-C12 7.20 3.96 3.96 3.77 3.59 13.27 

C1-C5-C6-C8 7.17 5.35 5.35 4.97 4.92 9.21 

C1-C3-C7 7.08 4.36 4.36 4.33 4.30 8.86 

C1-C3-C12 7.04 4.40 4.40 4.11 3.82 10.77 

C1-C5-C11 6.91 3.61 3.61 3.46 3.30 10.07 

C1-C5-C12 6.61 3.62 3.62 3.62 3.62 10.23 

C1-C2-C11 6.25 3.13 3.13 2.98 2.83 10.12 

C1-C4-C11 6.21 3.12 3.12 2.99 2.86 9.44 
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C1-C6-C11 6.14 3 3 2.88 2.75 9.54 

C1-C5-C8 6.12 3.12 3.12 3.07 3.03 8.56 

C1-C2-C12 5.98 3.14 3.14 2.91 2.69 10.24 

C1-C6-C12 5.89 3.01 3.01 2.82 2.64 9.69 

C1-C6-C8 5.87 2.99 2.99 2.93 2.89 8.12 

C1-C2-C7 5.85 3.10 3.10 3.07 3.05 7.58 

C1-C6-C7 5.79 2.97 2.97 2.95 2.93 7.12 

C1-C2-C5-C6 5.71 4.46 4.46 4.46 4.46 6.87 

C1-C4-C12 5.30 3.13 3.13 2.88 2.64 9.36 

C1-C3-C5 5.29 4.24 4.24 4.24 4.24 6.27 

C1-C2-C3 4.85 3.64 3.64 3.64 3.64 5.79 

C1-C12 4.76 1.25 1.25 1.22 1.19 8.16 

C1-C8 4.52 1.24 1.24 1.23 1.22 6.72 

C1-C11 4.52 1.24 1.24 1.23 1.22 6.72 

C1-C2-C5 4.20 3.26 3.26 3.26 3.26 5.05 

C1-C7 4.18 1.22 1.22 1.21 1.21 5.60 

C1-C4-C5 4.17 3.15 3.15 3.15 3.15 4.89 

C1-C2-C4 3.67 2.39 2.39 2.39 2.39 4.31 

C1-C2-C6 3.66 2.91 2.91 2.91 2.91 4.40 

C1-C4 3.65 2.84 2.84 2.84 2.84 4.33 

C1-C3 3.25 2.60 2.60 2.60 2.60 3.90 

C1-C5 2.57 2.06 2.06 2.06 2.06 3.09 

C1-C2 2.15 1.72 1.72 1.72 1.72 2.58 

C1-C6 2.04 1.63 1.63 1.63 1.63 2.45 

*The values represent millions of relative monetary units (r.m.u.) 

 

 

 

 


