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Abstract

Faculty of Engineering
Department of Chemical Engineering

Doctor of Philosophy

Optimal production planning and scheduling of mixed batch

and continuous industrial processes
By Georgios Georgiadis

The use of techniques for the optimization of decision-making procedures in the
processindustries (chemicals,food, pharmaceuticals, pulp and paper, oil and gas, cement,
etc.) is more relevant than ever. Current markets are characterised by increased
competitiveness that forces process industries to operate with miniscule profit margins.
Therefore, improved production and resource efficiency is critical for the viability and
future growth of all industries. Moreover, the European Union has identified energy and
resource efficiency as a key milestone on the path towards a sustainable circular

economy. Consolidated targets on this path for 2030 are:

e a40% cut in greenhouse gas emissions compared to 1990 levels,
e a27% to 30% share of renewable energy consumptionand

e 27%to 30% energy savings compared with the business-as-usualscenario.

These targets can be achieved not only by technical innovations and new plants,
but also with the introduction of computer-aided optimization technique tools and
methodologies. Production planning and scheduling is the process related to the efficient
allocation of resources, such as equipment, utilities and manpower, over a given time
horizon of interest, e.g., daily, weekly etc., so that all required tasks are executed, and
incoming orders are satisfied. Efficient production planning and scheduling is extremely
beneficial to all industries, since some of the induced benefits are increased productivity,

lower production costs and reduced energy needs and waste. Despite the increased use
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of digitalization, production planning and scheduling remains a manual process mainly

due to the lack of optimized methods that can handle real-life problems.

This thesis considers the development of mathematical frameworks to provide
optimized solutions for a wide range of high complexity production planning and
scheduling problems. The proposed methodologies are based on mixed integer linear
programming (MILP) modelling frameworks. A known issue of this modelling technique
is that the model size increases exponentially with the problem size. As a result, large-
scale problems become easily intractable. Therefore, several novel solution algorithms
have been investigated to allow the applicability of the presented methodologies inreal-
life industrial problems. The proposed solution strategies can address large-scale

problems using commercially available MILP solvers, such as CPLEX and GUROBI.

More specifically, the first chapters consider the production scheduling problem
of multiproduct plants comprising of mixed batch and continuous processes, a layout
commonly met in several industrial sectors, such as food, pharmaceuticals, specialty
chemicals etc. First, two MILP-based mathematical frameworks with distinct advantages
are presented for the optimal production scheduling problem of such industrial facilities.
The developed frameworks are then successfully applied on a real-life scheduling
problem of a food industry. Near-optimal solutions are efficiently generated, comparing

favourably with manually derived schedules by the production engineers.

Next, an optimization-based solution strategy is proposed for the integrated
production planning and scheduling problem in breweries. Beer production consists of
multiple batch and continuous processingsteps, butit is also characterized by a long lead
time, making the efficient coordination of production a difficult task. An extensive
computational analysis shows the superiority of the developed methodology compared
to otherapproaches in the openliterature, while a problem originating from a real Greek

brewery is used to illustrate the applicability of the proposed framework.

The optimal planning of COVID-19 vaccine supply chains is addressed in the final
part of this thesis. A novel MILP model is developed to generate optimal tactical and
operational decisions for the underlying supply chain problem. Key issues of the COVID-
19 vaccine supply chain e.g., vaccination targets, transportation lead-times and vaccine

perishability, are cleverly incorporated in the model to optimise an economic objective.
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Furthermore, a decomposition strategy is introduced to address realistically sized case
studies and applied to a case simulating the Greek COVID-19 vaccination program.
Finally, a rolling-horizon technique is introduced to address uncertainty factors such as

demand fluctuations due to cancelled vaccination appointments.



MepiAnym

To epeuvnTiKO €pyo TOU TAPOUGCLAleTaL 0 aUTN TN SLdakTopikny Statpfn
TPAYUATEVETAL TNV AVATITUEN HOUONUATIKOV HOVTEAWY HEIKTOU AKEPALOV YPOAUULKOV
mpoypappatiopov (MILP) kat amodotikwv pefodwv emidvong cuvBeTwv TtpoANUATWY
BeAtioToTOMONG TOV CPopPoVV Bépata i) XPOVOTIPOYPAUUATIOHOU TAPAYWYNS, ii)
EVOTIOLNUEVOU XPOVOTIPOYPAUUATIOHOU KL OXESLAGHOV TTapaywyns Kal iii) oxeSlaopov

KaLAeltovpylag SIKTVWV QO SLAcTIKWVY aAvcidwv epfoAiwv COVID-19.

O XPOVOTPOYPAUUATIONOG Tapaywyng oamoteAel T Swadikaoia ANYmg
QATOPACEWV KATA TNV omola katavépovtal ol Stabéoipol ToOpot pag PLopnyaviknig
EYKATAOTAONG OTLS SLAPOPESG SLEPYATLEG IOV VAL ATIAPALTN TEGYLX TNV TIAPAY WY TWV
TeEAKWV Tpoidvtwy. Ot mopol auvtol pmopel va mepldlapfdavouvv Tov €EOTALONO
emegepyaociag, amoONKeLONG KAl HETAPOPAG VAIKWY, TO avOpm®Tvo SUVAULKO Kal TIG
BonONTIKEG TAPOXES, TLY. NAEKTPLOUO, VEPO, K.0. O OXESLAOUOG TTHPAYWYN G ATIOTEAEL LA
aAAN Swadikaoia ANYMG amo@dcewy, 1 OTOlA A@OP& EMIONG TNV KATAVOUN TWV
SLaOECLUWY TTOP WV KAL 1) OTIOLA TIPONYEITUL TOV XPOVOTIPOYPAUUATIOUOV TTAPAYWYNG, LUE
™V évvola OTL OL ATTOPACELS TTOU AAUBAVOVTAL KATA TOV 0XeSLopUO amoTeAoVUV elcodo
TOU  XPOVOTIPOYPAMUUATIOHOU  Tapaywyns. Ou  Swagopés  avapeoa o€
XPOVOTIPOYPUAUUATIONO KAl OXESLACUO TTAPAYWYNG EYKELTAL OTOV UTIO PEAETT) XPOVIKO
opllovta (uépeg-gfSopdda yla XPOVOTIPOYPAUUATIONO KAl €RSopadeg-punves ya
oxeSlOU0) KAl OTNV AEMTOUEPELA TWV ATOPACEWV (O AEMTOUEPEIS KATA TOV
XPOVOTIPOYPAUUATIONO). TNV TPA&n Tta U0 aQUTA oTASLH ATOPACEWV HEAETWVTAL
EeXWPLOTA, WOTOOO0 EKTEVEIS €peVvEG €xouv Sel€el OTL 1) EVOTIOMUEVT] MEAETN TOUL
XPOVOTIPOYPAUUATIOUOV KAL TOU OXESLOUOV TAPaywynG odnyel oe onUavTikn avinon

NG ATOSOTIKOTNTAG LG BLOUNYXAVIKNG HOVAS OS.

Ta tedevtaia 30 ypovia €xel mpotabel eva peydAo €0pog ueboOdwv yia v
QVTIUETWTILOT AUTWV TWV CLUVSVAOTIKWY TIPOLPANUATWY, WOTOCO 1) TAELOVOTNTA TOUG
avaAwvetal o mpoPAnpata mov  Sev  avTikatomTpilouv TNV PLopnyaviKn
TPAYUATIKOTNTA. ZUVNOWG EUTAEKETAL EVAG UEYAAOG aplOpog €EoTMALOHOV yla TNV
TApAYwWYN HaG TANOWPAG TEAKWY TPOIOVIWY, HECW HLXG LSlaitepa TEPITTAOKNG
TAPAYWYLKNG SLadkaciag, 1) 0Tolx VTTOKELTAL O ATALTNTIKOUG TEXVIKOUG, OLKOVO UKOUG

KOl  Aeltovpylkovg  meploplopovs  ‘Etol, ta peadiotika mpofAnuata



XPOVOTIPOYPAUUATIONOV  Tapovotalovv  efalpeTik@  LYmMAN UTIOAOYLOTIKN
TOAVTIAOKOTNTQ, LE ATIOTEAECHA VA UMV LTTOPOVV VA ETAVOOVV G€ XpOVOUG ATIOS EKTOVG
amo v Bopnyxavia. Emopévwg, kpivetatl avaykaio 1 avamtuén vEwv VTTOAOYLOTIKWV
TEXVIKWYV, 0L 0TtoleG Ba cUVEVALOVY ATIOTEAECUATIKOTNTA, ATTOS00N KAl TaxVTNTAQ, £TOL
WOTE va vTooTNPi&ouvv TIG SLO0KNOELS TwV EemXeEPNoewy ot Sladikacia ANYmg
amo@doewv. [Ipog avtn TNV KatevBuvon, oty Tapovoa SLATPLPn TPAYUATOTOLETAL
TO600 N avATTUEN VEWV HaBNUaTIK®V HovTéEAwY, Aapufdavovtag LvToYn peaALoTIKA
XOAPAKTNPLOTIKA, 000 KAl 1 avamtuin véwv aAyoplBuwv ywa tnv emilvon Ttwv

TPOBANUATWY 6 CUVTONO UTIOAOYLOTIKO XpOVoO.

Zto TeAsvTalo TUNHAX TOU SIOAKTOPLKOV, EPAPUOCTNKE 1] TEXVOYVWOLA IOV E(XE
amoktnOel oTov TOPEQ TNG HABNUATIKNG povTeAOTIOMONG, 0TO TPOBANUX BEATIOTNG
AELTOVPYLAG KAL OXESLAGUOU LAG EQPOSLACTIKNG AAVGISAS YL TNV SLtavo ur) Twv ePBoAiwv
COVID-19. To mpdfAnua auto a@opa Kupilwg Tov KaBopLoPo TV HETAPEPOUEVV KAl
ATOONKEVUEVWV TTOCOTNTWY AAAX KOl TOV TIPOYPAUUATIONO TwV eUBOALXCUWV 0T
epuBoAlaotika kévipa. O OUYKEKPLUEVOG TUTOG £POSLAOTIKNG aAvoidag eu@avile
XAPAKTNPLOTIKA T 0ol Suoyxepaivouy TV eVPLOUN AetTovpYia TOV, KUPIWGAOYW TWV
LSLaLTEPOTTWV TWV EPPOALWV TUTTOUV MRNA, CUYKEKPLUEVA TOV TIEPLOPLOUEVO XPOVO (NG
TwV euPoAlwVv KAl TIG avaykes amobnkevons o€ Babla KatdPuln. ZUVETWG, | «TVEAT»
amobnkevon epforiwv Sev amotedel amodotikny AVom, kabwg odnyel oe TEPAOTIO
AELTOVPYLKO KOOTOG, AAAL Kol 0€ ATIWAELEG TOAVTIHWY S0cewv. H BiAtoypapia yia
BEATIOTOTIOMON LATPLKWV EQOSLACTIKWV AAVGIS wV TTEPLOPIleTALKUP WG OE AP LOKA KAl
BplokovTtal eAAXLOTEG UEAETEG Yl TNV €QOSINOTIKN aAvoida epfoAiwv, oL omoleg
a@opoLV KLPIwG TNV Stavourn euPfoAiwv oe xwpeg Tov Tpitov kKO6ouov. Emiong Sev
Bploketatl perétn otn PLAloypa@ia yia £@odlaoTikeG aAvoides eufoAiiwv yia thv
avTipeTwTon mavénuiag, kabwskatyla eufBéAta mRNA. Ta mapamavw Snutovpyolv éva
EPEVVNTIKO KEVO PEYAAOU EVSLAPEPOVTOG LOLALTEPWS AOYW TWV TEAEVTALWV €EeAIEewV.
[Na Tovgmapamavw Adyous avamtuyxdnkav véa LovTéEAa KalaAyopLlOpoLemiAvongyla Ty
BeATloTOTIOMON TWV ATOPACEWY TIOU APOPOVV TNV £POSLACTIKY aAvoida epfoAiwv
COVID-19. EmmA£ov opiletat éva véo TTpoANUa, oto omoio kabopileTal tauto)Xpova Kot
To Tpdypappa epfoAlacpuwyv oe KaBe euoAlaoTiKO KEVTPO, HECW TNG EVOWUATWONG

QATIOPAGEWV IOV ALPOPOVV TLG AVAYKEG OE VYELOVOULKO TIPOCWTILKO.
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‘OAa TX TPOTELVOUEVA HOVTEAQ KOl OL aAyoplOpol emiAvong vAomombnkav e

xpnon tov Aoylopikoy GAMS kot tov emAvtr) CPLEX.

AvaAuTtikdtepa, 1 ovvelo@opd TG mapovoag SSaktoplkng  StatpPng

oLVOYITETAL 0TI TTAPAKATW TIAPAYPAPOVG.

Apxika peAetatal to TPOPANUA TOU PEATIOTOU XPOVOTIPOYPAUUATIOUOU
Tapaywyns o€ Blopunyavieg moAAwv otadiwv, IOV ATOTEAOVVTAL ATO LELKTEG CUVEXE(S
kat Slakpltég Siepyaoies. T TNV AVTIHETWOTION OUTWV TWV  TPOPLANUATWY
avamtoyxdnkav 6¥o véa pabnuatikd mAaiola. ETo TPWTO TPOTEIVETAL £V VEO LOVTEAO
HEIKTOV-AKEPALOV YPAUULKOV TIPOYPAUUATIOHOV YL TNV EAXXLOTOTION 0T TOU GUVOALIKOU
xpovou mapaywyns (makespan minimization). Zvykekpipéva e@apudleTal UEKTN,
OLVEXNGKALSLAKPLTT), XPOVLIKT AVATIHPAOTACT), OTIOU 1) SLAKPLTT) KALLOK QX X PN OLUOTIO LE(TAL
Yla TOUG TEPLOPLONOVG LooppoTiag VAIKwVY (material balances), evw 1 ouvexng ya Tig
ATOQACELG XPOVOTIPOYPAUUATIONOU, OTIWG KATAVOUN TwV TAPTISwV 0 CUOKEVES,
ekKivnon kat aAAnAovyia iepyaciwv). EmimAov, elodyovTal VEOL EVPETIKOL TTEPLOPLOLOL,
OLOTOLOLETLTAYXVVOLUV TNV ETAVCT TOV LABN A TIKOU HOVTEAOV, XWP LG VA AAAOLWVOUV TV
ToloTNTA TG AVoNnG. Mo TV emiAvon TPoPANUATWY HEYAANG KAIHAKAG, AVATITUGGETOL
Evag VEoG aAyoplOuog Siaomaong, O0mov oe kKabBe emavaAnym PeAtioToTolETAL TO
TPOYPAUUA TIAPAYWYNS YIX €VA UTTOGUVOAO TwV TapayyeAlwv. Me to mépag kdabe
emavaAnymg otabepomolovvtal ot Svadikég PETABANTEG Yl TO UTOOUVOAO TIOU
efetdletal Me TV tedevtaia emavAANPm TPOKUTITELTO TEALKO TIPOYPAUUA TLAP ALY WYT|G.
Y10 8e0TEPO HOONUATIKO TTAX(OLO TTPOTEIVETAL LLX TIPWTOTOPLAKT) HEBOSOG YL TN pelwon
NG TTOAVTIAOKO TN TG TOV cLVSVAGTIKOV TIpo AN UaTos BeATioTomoinong. Me Baon avt
™ véx peBodo, avamtixOnkav V0 vEA HOVTEAQ UELKTOU-OKEPALOU YPOAUULKOV
TPOYPAUUATIONOV, €V YEVIKNG TpoTepaloOTNTAS (general precedence) ywx tnv
EAAXLOTOTIOMON TOV XPOVOL TIAPAYWYTNG KUL EVA YEVIKNG TIPOTEPALOTNTAG WG TIPOG KA OE
ovokevn (unit-specific general precedence) ywx tnv €Aaylotomoinon touv xpdvou
evaAdaywv (changeover minimization). TéAog, To povtédo evtdooetal o€ Eva aAyopLpo
Slaomaong, TapPOHOLo HE AUTO IOV EQAPUOCTNKE OTO TIPWTO LABNUATIKO TAdiCL0, WoTE
va VTdpyxel Suvatotnta emidvong mpofAnuatwy Bopnxavikng kAlpakag. H kupux
Sla@opd Twv 800 pEBOSWV EYKELTAL OTNV AEMTOUEPELN TWV ATOPACEWV TIOU

Aappavovtal kKabws 1 MP®WTN €EAYEL AETTTOUEPT] TIPOYPAUUATA Yl OAQ TA OTASIA
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TAPAYWYNG, EVw 1 SeVTEPT HOVO Yla T ouvexn. Qotoco, 11 Sevtepn nEBodog eivat
UTIOAOYLOTIKA OAPWE AVWOTEPT) TNG TIPWTNG.

Ta mapamdvw povTEAa e@apuoOlovTaL OE EVO TIPAYUATIKO Blopunyavikd TtpoAnua
HEYAANG KAIHOKAG. ZUYKEKPLUEVA, LEAETNONKE N TIAPAYWYLKT] SLaSIKAGLA TNG LOTIVLIKTG
Bropumxaviag tpo@ipwv «Frinsa del Noroeste». Avtn amoteAsital amd MOAA& oTASIH
TAPAYWYNG, CUVEXOUG Kal SlaAelmovoag, Asttovpylag, oe kaBe éva amd ta omola
AELTOVPYOVV TTAPAAANAX TTOAAATIAEG UM X AVES, EVW o€ efSopadiaia Baon eEuTmpeTovvTal
mavw amdé 100 mapayyeAles. [MpaypatomomOnkav ektevig HEAETEG o TpofANpata
BEATIOTOV XPOVOTIPOYPAUUATIONOV TIOU QAVTLOTOLYOUV oTIS efSopades mov TE(OUV
TEPLOCOTEPO TNV TAPAYWYLKY Stadikacio. Xpnolpomodnkav mpayuatika dedopéva
(Mmong kat Aettovpylag ™G povadag, Ta omoia €6xOnoav amd TA VTTOAOYLOTIKA
OUOTNHATA TNG ETALPELNG, YLt OPLOUEVES LOTOPLKES efSonddes. XpNOLHOTIOLWVTAG TO
TPWTO LB UATIKO TAK(GL0, TIPOTEIVOVTALOYXESOV BEATIOTA TIPOYP A UUATA TLAP XY WYT|G OE
ula wpa, Ta omolar HELWVOUV TO XPOVO TapAywYNS KAt ~15%, CUYKPLTIKA pHE TA
TPOYPAUUATA TILPAYWYN S TIOV E(XAV TTPOTEIVEL OL UNYAVIKOL TTApaywyNG. ZTOV avTimoda
N EQAPUOYT TOL SEVTEPOV LABNUATIKOV TTAALOIOV ATALTEL ALYOTEPO VTTOAOYLOTLKO XPOVO
(~15 Aemtd) yia v €€aywyn Avcewv mAnciov Twv BéAtiotwy. H taydtnta emiAvong
ETILTPEMEL TOV TAYVUTATO EMAVATIPOYPAUUATIONO O TEPIMTWOT ATPOOTTWV AAAXYWV
(TL.x. cAA oy TapayyeALwv), cAAG Kat TV aloAO YN o1 EVOAAAKTIKWOV CEVAP LWV ATIO TOUG
unxavikovg mapaywyns. Emiong pe to Sevtepo pabnuatikdé mAaiclo Sivetat 1
SuvaToTNTA HEAETNG TIPORANUATWY EAAXLOTOTOMONG TOU XpOVOoU evaAdaywv. Me T
OUYKPLTIKN HEAETN UETAEY TWV MPOYPUAUUATWV TIHPAYWYNS TOV €EAyovVTaL ATd TA
QVETTUYHEVA HOVTEAX TOU SEVTEPOV LABNUATIKOU TTAALGLOV KA LU TWV IOV TIPOTE(VOVTAL
QTO TOUG UNXAVIKOUGS TTapaywyns TG Blopunxaviag, SLAMIOTOVETAL ONUAVTIKY avinon
™G ATOSOTIKOTNTAG TNG HOVASAG, HECW TNG Helwong Tov xpdvou mapaywyns (~10%)
™G pelwong tov xpovou evariaywv (~15%).

EmmAéov peAeT)ONKE O XPOVOTIPOYPUAUUATIONOG KAL OXESLACUAG TIAPAYWYNG OF
Blopmxavieg C0O0VL. ZUYKEKPLUEVA TIPOTEIVETAL €V VEO HOVTEAO WHELKTOU-UKEPALOU
YPOAUUIKOU TIPOYPAUUATIOLOV YLA TOV EVOTIONHEVO BEATLOTO XPOVOTIPOYPAUUATIONO Kal
oxXeSlOUO TAPAYWYNG, WOTE VA €AAXLOTOTIOMOEL TO KOOTOG TAPAYWYNG OE LA
CuBomotia. H SuokoAia otnyv e€aywyn BEATIOTWV ATTOQAGEWY XPOVOTIPOYPAUUATIOUOV OE
o CuBoToLia EyKelTal KUpiws 6Tov TTOAD LEYGA0 XpOVo TTapadoomg, 0 0Toiog SnuLlovpyel

TNV AQVAYKT LEAETNG EKTETAUEVOU XPOVIKOV 0pLloVTQA, CUVETIWG TN SNUlovpYyia HEYAAWY
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HovTéAwv MILP. To mpofAnpa autd avTILETWTI(ETAL LE TV EQAPUOYT) LELKTTG XPOVIKIG
QVATIAPAOTHOTG KL TNV SLAoTIA T TOU XpovikoL opilovta o€ SU0 TUNHATA. ETO TIPWTO
AapBavovtal amo@AcELS OXESLAGIOV KAL XPOVOTIPOYPAUUATIOUOV TP AYWYNS, EVW OTO
5e0TtePO Povo oxedlaopov mapaywyns. [lapovotdleTal o EKTEVIIG CUYKPLTIKN LEAET
HETAE) TOU TPOTELWVOUEVOU HOVTEAOU KL TOU HOVASIKOU QVAAOYOU HOVTEAOUL TNG
BiBAoypagiag, oe éva peydAo €Vpog TPOPANUATWY, 1 oTola ATMOSEIKVUEL TNV
AVWTEPOTNTA TOVU AVATTUYUEVOU HOVTEAOV. EmmA£ov, avamtuxBnke pla oTpatnykn
eMiAvong mPoBANUATWVY HEYAANG TTOAVTIAOKOTNTAG, 1] OOl aTtoTEAE (T ATTO SV O OTASIA.
ZTO TPWTO KATAOKEVALETAL Lt AP LKT) AVOTM, 1) OTIOlA TN oLV EXELX BEATIOVETAL HECW
HLOG ETAVAANTITIKNG EEOVTWTIKNG S1aSIKAGIAG EQPAPUOYNG TEAECTWV XAAAPWONG Kal
BeAtioTomoMOoNG TwV petafAntwy tov pofAnuatog (fix-and-optimize). H mapamavw

OTPATNYLKY) EMAVONG EQPAPUOLETAL ETMLTUX WG O EVA PEAALOTLKO BLounxaviko mpofAnua.

Ito teAevtalo TUNHa TNG Sdaktoplkng Statpiffnig peAstatal to TPOBANMQ
BeAtiotomonoNg TOU OXeSLOPOV Kol TNG AELTOLpPYlag €POSIAOTIKOV OAVGISWY
euBoriwv COVID-19. Zuykekpluéva UEAETATAL 1) TAUTOXpovVn PeATLoOTOTOMON TWV
ATOPAGEWV TN G EPOSLAOTIKNG aAVGISag, Y. HEYyeB0Gg oTOAOV, eMiMES A ATTOON KWV, AAAK
KOL TWV ATIOPACEWY OXETIKA [LE TO TPOYPAUUAX ELPOALACUWY OTA EPROALAOTIKA KEVTPOL.
AvTo 10 TPOBANUA TPOYPAUUATIOUOV EEETALETAL YLX TIPWTN POPA, OTIOTE N HEAETT CUTY)
To elodyel otn S1eBvn BiAloypagioa. I'ia THV AVTIHETWTILON AUTOV TOU GLVSVACTIKOU
TPOBANUATOG AVATITUCOETAL VA VEO HABNUATIKO HOVTEAOD YLK TNV EAQYLOTOTIO(N 0T TOV
KO0TOoUG Stavoung epforiwv COVID-19. H epodiaotikny aAvoida amoteleltal amd Tplo
EMIMESA, TA €PYOOTACLA TAPAYWYNG, TIG KEVIPLKEG amobnkes epfoiiwv kat Tta
euBoAlaotika kévtpa. Efetaletal xpovikog opilovtag Svo efSopddwv, wote va
UTLEPKAAVTITETAL 1] HELWUEVT] SLApKELA (WNG OPLOUEVWY EPPOAIWY 08 CLVONKEG ATIANG
POing (mévte pépeg). AauPavovtat vmoPn OAEG oL TEXVIKEG LOLALTEPOTNTEG TOU
TPOLANUATOG, OTIWG T HELWUEV SLapKeELX (WG EUPOAIWV KALO XPOVOGTIOU ATIALTEITAL YL
™ HETA@OP A TwV ePBoAiwv. H emidvon tov padnuatikol povtédov odnyel oe BEATIOTES
ATOQACELG OO0V A POPE TA ETHTES A ATTOONKEVUEVWVY EPPOALWV OTLG KEVTPLKES ATTOOTKESG
KOL T EPPOALAOTIKA KEVTPQA, TIG LETAPEPOUEVEG TIOCOTNTEG AVAUECA 0T ETITIES A TNG
€POSLAOTIKNG aAvciSag, To mMuepnolo mPOYPAUUA EUBOALXCUWY, TO VOONAEVLTIKO
TPOOWTILKO KL TO HEYEB0G TOU 6TOAOV OXNUATWV. H ATTOTEAECUATIKOTNTA TOV LOVTEAOV
dev emapkel yia v Taxela emilvon MPOBANUATWY OV AVTLOTOLXOUV Ot €BVIKA
EUBOALAOTIKA TPOYPAUMATA, OTIOTE TPOTEIVETAL €vag aAyOplOpog emilvong yla
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TPORANUATA LEYAATG TTOAVTIAOKOTNTAG. APY LKA T ELBOALACTIKA KEVTPA KATAVEUOVTOL
OTLG KEVTPLKEG Ao ONKES Bdom YEWYPA@IKWV KpLTnplwv. ZTN cuvéxela Ta ePLPOALAOTIKA
KEVTPA CUYKEVTPWVOVTAL 68 cVOTASES (clusters) pe Bdon TIg TEPLPEPELAKESG EVOTNTES
oTI§ omoleg avnkovv. Emeita AVvetal €va oUYKEVIPWTIKO povTéAo (pe Bdom Tig
TAPAUETPOUG VLA TLG CUOTASEG) KAl TEAOG 1) AVOT] AUTN XPTOLLOTIOLEITAL OTO EMOUEVO
0TAS10, 0OV AVVETAL €V AETTTOUEPEG LOVTEAD Yia OAx T epPoAlaoTtika keévipa. H
TAPATIAVW UEBOSOG EPAPUOCTNKE ETILITUXWS O Eva TPOLANUX TTOU TIPOCOUOLWVEL TO
epBoAtaotikd mpoypappa s EAAGSag. Ze auto e€etalovTal TTEVTE KEVTPLKES ATIOONKES,
351 euBoAlaoTIKA KEVTPA, TOAAATIAEG YPAUUES EpBoAlaopuoV ava KEVTPO Kol TEGGEPA
Staopetika eufoiia. Q¢ amoTéAeoua emTVYXAVOVTAL 0XeESOV BEATIOTEG AVCELS OF
oUVTONO XPOVIKO SLACTNHA, EVW TA ERPOALA IOV TIETLOVVTALAOYW KAKNGS Slaxelplong mg
€@OSLAOTIKNG aAvoldag eival eddylota. TéAog, peAetdtal 0 emavacyeSLAOUOG TG
€POSLAOTIKNG AAVGLSaG, LE xp1|oT EVOG AAYOPLOUOU KUALOUEVOU 0pIloVTA, O TIEPITITWON
uetafoAng tng {nNtnong, A0yw akvpwong pavteRol 1 pn-€Agvong TMOALTWV OE

mpokaboplopéva pavteBov.
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Chapter 1

Introduction

1.1 Motivation and objectives

Process industries operate in an environment characterized by increasing
competitiveness and minuscule profit margins. Therefore, they must strive more than
ever for efficiency and increased productivity. In addition to significant economic
benefits, the better coordination of production leads to important reduction in energy
needs, thus allowing industries to achieve a more environmentally friendly production
process. The decision-making process that allows for the efficient management of
production and thus can directly affect the productivity of any facility is production
scheduling. This processrefers to the efficientallocation of resources, such as equipment,
utilities and manpower, over a given time horizon of interest, e.g. daily, weekly etc., so
thatall required tasks are executed and incoming orders are satisfied (Pinedo 2016). The
importance of optimal production scheduling has been long recognised by academia;
therefore, a plethora of works written across different scientific communities can be
found in literature (Harjunkoski et al. 2014). An abundance of optimization-based
algorithms has been proposed to address the production scheduling problem. Most of
them express the production scheduling problem as a mixed-integerlinear programming
(MILP) problem, since it proved to be extremely flexible and rigorous, while ensuring
optimality. However, production facilities comprising of multiple batch and continuous
operations have received nearly no attention compared to other type of production
processes, despite being the norm in a large variety of industries, such as, food and
beverage, chemicals, pharmaceuticals, etc. Therefore, efficient mathematical frameworks
for the optimal production scheduling of mixed batch and continuous processes is a

known research gap. Concerning the above observation, we study the optimal production
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scheduling of facilities comprising of mixed batch and continuous processes by

developing novel mathematical frameworks.

Digitalization of manufacturing is attracting a lot of attention within all process
industries and is expected to have a significant impact on how the industry operates
(Isaksson,Harjunkoski,and Sand 2017). However, in terms of production scheduling, the
current industrial reality is different. In most cases schedules are manually generated by
production engineers or operators, based on rules and heuristics, that arise from their
multiyear experience and understanding of the production process. Due to the complex
nature of real scheduling problems, that involve a large number of items, like tasks,
intermediate and final products, multiple parallel machines, many processing stages and
production routes, manually generating good schedules becomes an extremely difficult
and tedious task. Hence, numerous iterations and a significant number of working hours
are required daily, which generally lead to sub-optimal results. In some cases, industries
utilize commercially available scheduling tools (Intelligen Inc.), in order to automate the
procedure and to generate fast and feasible production schedules. However, the
schedules are created based on simple heuristics that mostly ensure their feasibility.
Consequently, either when schedules are manually generated by the engineers or when
simulation-based tools are employed, the extracted solutions are far from being optimal.
Furthermore, generated and later executed schedules cannot be evaluated in terms of
their efficiency, so the managers cannot assess the true potential benefits realized on the
plant. As a result, productivity is reduced, resources are underutilized, customers are
dissatisfied and there are significant profit losses, which result to a decrease in the
industries’ competitiveness. The deployment of optimization-based tools in industrial
problems can address these issues by assisting the production engineers into
systematically improving their decisions, thus leading to important economic,
environmental and social benefits (Harjunkoski 2016). Therefore, a high interest has
been expressed for real-life industrial case studies and problem specific solutions have
been generated for real industrial facilities. Moreover, the ever-increasing computational
power, allowed the handling of larger problem instances. However, there is still a
significant gap between the academic research and the industrial practice, as only a few
contributions have been successfully applied in real-life scheduling problems. Due to the
lack of real-life applications, all proposed mathematical frameworks are employed on

large-scale instances of industrial problems.
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The unprecedented effects of the SARS-COV-2 virus, which resulted in the COVID-
19 pandemic, have risen an immense global interest regarding the development and
distribution of safe and effective vaccines. Until the completion of this thesis, more than
160 million people have been already infected and close to 3.5 million could not
overcome this catastrophic disease worldwide. In addition, the necessitated protective
measures and lengthy lockdowns have a severe financial impact on society. The urge to
rapidly decrease the toll of COVID-19 on health and global economy led to significant
scientific breakthroughs and the authorization of various vaccine candidates within a
record time. While the focus in the vaccine world has been on developing the required
vaccines and measuring their effectiveness, struggle to understand and properly address
the issues of the Vaccine Supply Chain (VSC), greatly reduces the impact of any
vaccination program (Lee and Haidari 2017). Mass vaccination of the world’s population
will achieve herd immunity, the first step for the progressive transitionto the pre-COVID-
19 normalcy. As a result, the biggest vaccination program in human history is currently
in action pushing the COVID-19 VSC to its limits. Furthermore, special characteristics of
the COVID-19 VS(, like limited shelf life and storage requirements in freezing conditions,
makes its management a logistical challenge. Multiple decisions are required e.g., on
central hub locations, vaccination locations, facility layouts, the order people are
vaccinated, staffing levels etc. Efficientand effective planning and operation of the supply
chainis critical for the success of the vaccination program, otherwise, numerous valuable
doses will be wasted, and the program’s progress will slow down, imposing important
financial losses. Due to the aforementioned difficulties, the COVID-19 VSC optimization
problem, has been addressed only by a handful of contributions, which mainly focus on
manufacturingissues of mRNA vaccines (Kontoravdi, Shattock,and Shah 2021), while the
optimal distribution of the COVID-19 vaccines has never been addressed. As a result, the
current scientificknowledge is expected to be greatly broadened with the introduction of

an optimization-based framework for the optimal planning of the COVID-19 VSC.
The primary objectives of this thesis are:

e To develop novel optimization-based frameworks based on MILP
techniques for the optimal production scheduling of multiproduct mixed

batch and continuous facilities.
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Introduction

To develop a new MILP model that tackles the integrated optimal
production planning and scheduling problem in mixed batch and
continuous processes.

To propose efficient solution strategies, which combine decomposition
techniques, heuristic algorithms, and MILP models, in order to generate
optimal or near-optimal solutions for large-scale problem instances inlow
Central Processing Unit (CPU) times.

To introduce a new problem in the open literature that simultaneously
considers short-term planning decisions for the COVID-19 VSC along with
the vaccination plans in the associated vaccination centres.

To develop appropriate MILP-based solution strategies capable of solving
a nation-wide COVID-19 VSC planning problem.

To reduce the existing gap between scientific research and industrial
reality by successfully applying the proposed mathematical frameworks in
real-life, large-scale industrial cases studies, either using real data, or

simulated data that correspond to real-life conditions.

1.2 Production scheduling

1.2.1 Classification of scheduling problems

Traditionally, scheduling problems are defined in terms of a triplet a/3/y (Pinedo

2016). The a field describes the production environment, while the 8 field denotes the

special characteristicsand production constraints. Finally, field y describes the problem’s

objective e.g., minimization of cost. The entries of this triplet can be extremely diverse

between process industries, since a great variety of aspects needs to be considered when

developing optimization models for process scheduling. As a result, many classes of

scheduling problems exist. However, the general production scheduling problem can be

summarized in the following.

Given are:

o Facility data, e.g., processing stages and units, storage vessels, processing

rates, unit to task compatibility.
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e Production targets that need to be satisfied.

e Availability of raw materials and resource limitations, e.g., maintenance of

units, availability of utilities.

The first term denotes the characteristics of the facility and can be considered
staticinput to the scheduling problem, sinceit remains the same for all problem instances
of a facility, unless any redesign studies are considered. The remaining terms are inputs
from other decision-making processes in the manufacturing environment. Scheduling is
not a standalone problem; it is part of the manufacturing supply chain and has strong
connections to other planning functions. Production targets and materials availability
come from the planning level, while resource availability is an output of the control level,

thus there is a significantflow of information from other planning functions to scheduling

(Figure 1.1).

. Production targets
Planning  yaterial availabiity

e
Scheduling

Facility data

Contro| Resource availability

Figure 1.1: Information flow towards scheduling level

Main goal is to propose a schedule that reaches the production targets, while
respecting all operational, logistical, and technical constraints, and achieve a certain
objective, such as the maximization of profit, the minimization of the total cost, earliness
and/or tardiness, and production makespan.

The general scheduling problem seeks to optimally answer the following

questions (Figure 1.2):
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e What tasks must be executed to satisfy the given demand (batching/lot-
sizing)?
o How should the given resources be utilized (task-resource assignment)?

¢ Inwhatorder are batches/lots processed (sequencing and/or timing)?

PL P2 P3 P4 PS5 Demand from
s ] plannlng level
Batching /

Lot-sizing

Unit allocation

P3.A P3.B P1L.A P1.B P1l.C
U1l | | I — — _
Sequencing
P4.A P2.A P2.B P5.A P5.B P5.C Timin
U2l | | [ . | 9

Figure 1.2: Decisions of production scheduling in the process industries

Note that depending on the specifics of the problem at hand, some of these
decisions are not considered in the scheduling level. When developing a model for the
optimal scheduling problem all characteristics of the production must be considered to
ensure the feasibility of the proposed schedules. However, the production needs to be
portrayed in an abstractway to reduce the computational complexity ofthe problem. This
is even more crucial when dealing with real-life industrial applications, which are
typically characterized by complex structures, ever-expanding product portfolios and a
huge number of constraints that must be considered.

Scheduling is a critical decision-making process in all process industries, from the
chemical and pharmaceutical to the food and beverage and the petrochemical sector.
Besides the aforementioned general description of scheduling, industrial applications
display strong differences to each other, due to the facility itself, the production policy or

market and business considerations. First step when approaching an industrial
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scheduling problem is to identify its problem specifics, in order to accurately portray the
problem at hand. Moreover, a strong correlation between different classes of scheduling
problems and the available mathematical modelling frameworks exists. The scheduling
problems found in processindustries are classifiedin terms of: (a) the production facility,
(b) the interaction with the rest of the production supply chain, and (c) the specific
processing characteristics and constraints. A shortdescriptionof these terms follows, and
further details can be found in the excellent reviews of Maravelias (2012) and

Harjunkoskietal. (2014).

1.2.1.1 The production facility

At this point we should note that the following analysis focuses on production
scheduling. However, many scheduling problems in the process industries target to the
optimization of material transfer operations rather than production operations.
Characteristic examples are crude oil and pipeline scheduling. With this in mind, the
production facility is classified based on the type of process (batch/continuous) and the

production environment (sequential or network).

1.2.1.1.1 Processtype

The type of production processes found in the process industries can be defined
as continuous or batch. In continuous mode, units are continuously fed and yield constant
flow. Continuous processes are appropriate for mass production of similar products,
since they can achieve consistency of product quality, while manufacturing costs are
reduced, due to economies of scale. The main characteristic of batch processes is that all
components are completed at a unit before they continue to the next one. Batch
productionis advantageous for production of low-volume high-added value products, or
for production of seasonal demands which are difficult to forecast. One of the main
advantages of batch production is the reduced initial capital investment, therefore it is
especially profitable for small business or trial runs of new facilities. From a scheduling
point-of-view, both batch and continuous processes require the same type of decisions.
Tasks are characterized as batches in batch and lots in continuous processing.
Assignment (batches/lots to units), sequencing (between batches/lots) and timing (of
batches/lots) decisions are identical, while selection and sizing of tasks (batching/lot-

sizing) display more degrees of freedom in continuous processes. Capacity restrictionsin
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continuous processes refer to processing rates and processing times and are usually
unrestricted, thus a given order can be satisfied in a single lot (campaign) or multiple
shorter ones. On the other hand, batch production is capacitated by the amount of
processed material that a unit can process, thus affecting the number and size of batches
to be scheduled. Another difference lies in the way inventory levels are affected. At this
point, itis worth mentioning that many facilities are characterized by more than one type
of processes. A characteristic example is the “make-and-pack” type of production, where
several batch or continuous processing stages are followed by a packing (continuous)
stage. This production flow is very commonin the food and beverage and the consumer
goods industries and requires the consideration of both the characteristics of batch and
continuous production processes (Baumann and Trautmann 2012; Georgiadis et al.

2020).

1.2.1.1.2 Production environment

Production facilities can be classified as sequential, or network based on the
material handling restrictions. In sequential processing, each batch/lot follows a
sequence of stages based on a specific recipe. Throughout its recipe a batch retains its
identity, since it cannot be mixed with other batches or split into multiple downstream
batches. Network facilities are characterized as more general and complex and have
usually an arbitrary topology. Moreover, no restrictions exist for the handling of input
and output materials, thus mixing and splitting operations are included. Based on their
topological characteristics, sequential facilities can be further categorized into the

following:

o Single stage: Production facility that consists of just one processing stage,
which may consist of a single unit or multiple parallel units. The product to unit
compatibility may be fixed (batch can be processed in a single unit) or flexible (batch
can be processed in multiple units), but in all cases each batch must be processedin
a single unit.

e Multistage: Each batch must be processed in more than one processing
stages, each consisting of a single unit or multiple parallel units. The multistage
environment can be further categorized into multiproduct and multipurpose,
depending on the imposedrouting restrictions. Multiproduct facilities are equivalent

to flowshop environments in discrete manufacturing, where all products go through
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the same sequence of processing stages. In contrast, a facility is characterized as
multipurpose when the routings are product-specific, or when a processing unit
belongs to different processing stages depending on the product, thus being

equivalent to jobshop environments in discrete manufacturing.

Early studies mainly focused on scheduling problems that are characterized as
sequential (Egliand Rippin 1986; Vaselenak, Grossmann, and Westerberg 1987). Process
industries with a sequential environment are very similar to discrete manufacturing,
from a scheduling point-of-view. Sequential facilities can be easily modelled in terms of
batches and production stages, like jobs and operations in discrete manufacturing.
However, this does not hold true for network facilities, thus they cannot be modelled in a
similar straightforward manner. In the early 90s, the research team of Prof. Sargent in
Imperial College London was the first to propose general representations for network
facilities. In particular, they introduced the concepts of the State-Task-Network (STN)
(Kondili, Pantelides, and Sargent 1993; Shah, Pantelides, and Sargent 1993) and the
Resource-Task-Network (RTN) (Pantelides 1994), which allowed the development of
optimizationmodels for scheduling problems of such complex structures. A classification

of the production environments for process industries is illustrated in Figure 1.3.

1.2.1.2 Interaction with other planning functions

Scheduling is strongly interconnected to the rest of the planning functions of the
manufacturing supply chain; therefore, it cannot be approached as a standalone problem.
The interactions between scheduling and the other decision-making processes in a
manufacturing environment must be accounted for, since they determine significant
aspects of the scheduling problem; in particular: a) the input parameters of the
scheduling problem, b) the decisions to be optimized by the scheduler, c) the type of
scheduling problem to be solved and d) the problem’s objective.

Planning and scheduling are often confused since no distinct differentiation exists
between them. However, it is generally accepted that planning determines the input of
the scheduling problem in terms of production targets like order sizes, due, and release
dates. Additionally, batching/lot-sizing decisions can be made in the planning level, thus
affecting the type of decisions that needs to be made in the scheduling level. In that case

batching/lot-sizing decisions are pre-fixed, and the scheduling decisions are narrowed
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Figure 1.3: Categorization of scheduling problems based on the production environment
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down to just unit to task assignment, sequencing, and timing of tasks. There is also an
important flow of information between scheduling and control; more specifically the
optimized schedule provides the reference points to the control level while resource
availability is in turn provided to the scheduling level. Most studies until the early 2000s,
approach production scheduling as a standalone problem. However, the scientific
community acknowledged the importance of integrating the decision-making process of
the wvarious functions (planning, scheduling and control) that comprise the
manufacturing supply chain of a process industry (Grossmann 2005). The integrated
planning and scheduling problem has been studied in multiple works over the last
decades (Li and lerapetritou 2010; Kopanos, Puigjaner, and Maravelias 2011) and also
implemented in industrial case studies with great success (Baldo et al. 2014; Sel et al.
2015; Georgiadis, Elekidis, and Georgiadis 2021). In contrast the integrated scheduling
and control and integrated planning, scheduling and control problems have been only
recently examined (Du et al. 2015; Charitopoulos, Dua, and Papageorgiou 2017).

The demand volume and variability defined by the market environment in which
an enterprise operates plays a pivotal role, since it specifies the type of the scheduling
problem to be solved. On the one hand, high-volume production with relative constant
demand based on forecasting favors a “make-to-stock” production policy, while the low-
volume production with irregular demand follows a “make-to-order” policy. In the
former the generated schedule is repeated periodically (“cyclic scheduling”), while in the
latter a short-term schedule must be frequently generated. Finally, the objective of the
production scheduling problem is usually imposed by the relation between the capacity
of the plant and the demand to be satisfied. More specifically, when the demand
overcomes the capacity of the plant, then objectives such as, the minimization ofbacklogs
or the maximization of throughput are chosen. On the contrary, if the capacity is enough

to satisfy the demand, the production goal is the minimization of total cost.

1.2.1.3 Processing characteristics and constraints

Scheduling problems may refer to facilities that exhibit various special processing
characteristics and constraints. These aspects complicate the problem but must be

considered, in order to ensure the feasibility of the generated production schedules. In
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the next section we will shortly review some of them. Further details can be found in
(Méndez et al. 2006).

Resource considerations, aside from task-unit assignments and task-task
sequences, are of great importance. These may involve auxiliary units (e.g., storage
vessels), utilities (e.g., steam and water) and manpower. Resources are mainly classified
into renewable (recover their capacity after being used in a task, e.g., labor) and non-
renewable (their capacity is not recovered after being consumed by a task, e.g., raw
materials). Renewable resources can be further classified into discrete (e.g., manpower)
and continuous (e.g., electricity, cooling water). Another important characteristic in
process industries is the handling of storage, which is usually referred to as the storage
policy. Depending on the duration a material can be stored, the storage policies are
described as i) Unlimited Intermediate Storage (UIS), ii) Non-Intermediate Storage (NIS),
(iii) Finite Intermediate Storage (FIS) and (iv) Zero Wait (ZW). Setups are a critical factor
in most processing facilities as they represent operations like re-tooling of equipment,
cleaning, or transitions between steady states. They are associated with a specific
downtime that can be sequence-independent or sequence-dependent (changeovers)
inducing an additional cost to the production process. To reduce the complexity
associated withthe consideration ofsetups, products are categorizedinto families.In that
case setups exist only between products of different families.

This classification illustrates the complexity of scheduling problems and the
tremendous diversity of aspects that must be accounted for when dealing with real
industrial applications (Figure 1.4). The inherent diversification of scheduling problems
in the process industries hindered the initial efforts of the academic community to
propose a unified general mathematical framework. Therefore, research turned into the
development of less general methods which can address industrial cases that share
similar characteristics. As a result, a multitude of efficient specialized methods for the
optimization of scheduling in the process industries have been proposed in the last 30

years.
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Figure 1.4: Information extracted from problem characteristics

1.2.2 Classification of modelling approaches

As mentioned in the previous subsection, scheduling problems in the process
industries are defined by extremely diverse features (e.g., production environment,
processing characteristics etc.), while different aspects need to be taken into account
based on external parameters, like the market environment in which the industry under
study operates. Therefore, the initial attempts of proposing a mathematical framework
that would constitute a panacea to all scheduling problems, were unsuccessful and soon
solutions that take advantage of the problem-specific characteristics emerged. The
struggle to overcome the computational complexity associated with scheduling
problems, gave rise to numerous scheduling models. It should be noted that in this thesis
we focus on optimization-based approaches, more specifically, the models presented are
mixed-integer programming (MIP) models. Nevertheless, we should mention that an
abundance of alternative solution approaches, e.g. constraint programming models (
Zeballos, Novas, and Henning 2011; Malapert, Guéret, and Rousseau 2012), heuristics
(Bassett, Pekny, and Reklaitis 1996) and metaheuristics (Panek et al. 2008), existin the
literature. These methods can provide fast and feasible solutions, thus being a very
attractive solution for industrial case studies. However, their superiority in terms of
computational time comes with a cost since optimality of the generated schedules is not
ensured. To combine the advantages of both optimization and non-optimization
approaches, hybrid methods have emerged that are able to provide near-optimal

solutions in low computational time (Kopanos, Méndez, and Puigjaner 2010).
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The three main aspects that describe all optimization models for scheduling are:
(i) the optimization decisions to be made, (ii) the modelling elements and (iii) the

representation of time.

1.2.2.1 Optimization decisions

The optimization decisions are affected by the handling of batches/lots. As we
underlined in subsection 1.2.1.2, batching decisions may be optimized in the planning
level, thus be prefixed and be an input to the scheduling problem. Even if this is not the
case, the scheduler has the flexibility to decide whether the batching decisions will be
part of the optimization model. For example, the decision-maker can heuristically specify
the number and size of batches and then utilize an optimization approach for the unit
allocation, sequencing,and timingdecisions.Usually models for sequential environments
favor this two-step approach. In contrast, a monolithic approach, consisting of
batching/lot-sizing, unit assignment, sequencing, and timing decisions, is used for
network environments. Few recent works have proposed a monolithic approach to deal
with scheduling problems in sequential environments (Prasad and Maravelias 2008;
Sundaramoorthyand Maravelias 2008; Leeand Maravelias 2017b). In some special cases,
like in the single machine problems, only sequencing and timing decisions are optimized,
thus reducing the scheduling problem to a traditional Travelling Salesman Problem

(TSP).

1.2.2.2 Modelling elements

According to the entity used to enforce the resource constraints on processing
units, modelling approaches are classified into i) batch-based and ii) material-based. In
sequential environments, where the identity of each batch remains the same throughout
the processing stages, batch-based approaches are used. On the contrary a material-
based approach is favoured, when dealing with network environments, where batches
are mixed or split. [tis important to mention that the modelling elements used are tied to
the optimization decisions. More specifically, in monolithic approaches the scheduling
problems are modelled using a material-based approach, while a batch-based approach

is followed, whenever the batching decisions are known a priori.
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The modelling elements are strongly tied with the representation of the
manufacturing process, which is the core of every scheduling model. Goal of a successful
representationis to translate the real problem (orders, units, stages) into mathematical
entities (variables, constraints) in an abstract way, that will allow for the fast generation
of optimal and feasible schedules. Even a simple manufacturing process may consist of
multiple operations, therefore the use of a simplified representation is essential. The
oldest type of manufacturing process representation is used to model scheduling
problems of sequential production environmentand is based on (i) processingstages, (ii)
processing units in each stage and (iii) batches or products (depending on whether
batchingdecisionsare prefixed or not). The second type of representationemergedin the
early 90s from the novel works of Kondili et al. (1993) and Pantelides (1994), who
introduced the STN and RTN, both based on the modelling of materials, tasks, units and
utilities. The STN represents manufacturing processes as a collection of material states
(feeds, intermediate final products) that are consumed or produced by tasks. The main
difference between STN and RTN is that in the latter states, units and utilities are
represented uniformly as resources that are produced and consumed by tasks. While
originally introduced for scheduling problems in network environments, recent works
have addressed problems in sequential environments using the RTN representation

(Castro, Grossmann, and Novais 2006; Velez and Maravelias 2013).

1.2.2.3 Timerepresentations

The most studied topic and the one that mostly differentiates optimizationmodels
forschedulingis the representationoftime.Depending on the way sequencingand timing
of tasks are considered, modelling approaches are categorized in two broad approaches,
in particular precedence-based and time-grid-based. Based on their type, precedence-
based models are classifiedinto general, immediate,and unit-specific general precedence
models and time-grid-based into discrete and continuous. Continuous-time formulation
may employ single or multiple-time grids. Figure 1.5 illustrates the various time
representation approaches in optimization models for scheduling.

All precedence-based models consist of unit-task allocation and task-task
sequencing constraints (Pinto and Grossmann 1998). The latter are expressed as

precedence relationships between tasks processed in the same unit, while the former
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ensure that each batch/lot is processed by exactly one unit in each stage. Binary
sequencing variables are introduced to enforce the precedence relationships and ensure
the generation of a feasible schedule (no processing of multiple tasks simultaneouslyin
the same unit). Another main characteristic of any precedence model is that the timing
variables are not mapped onto an external time reference, rather their exact values are
specified within the scheduling horizon based on the interactions (timing constraints)
betweenpairs of batches/lots orbetween processingstages of the same batch. Two types
of precedence variables exist: (i) general, where precedence relationshipsare established
between all pairs of batches/lots and (ii) immediate, where they are established only
between consecutive pairs. General precedence models require fewer variables, so they
are more computationally efficient. However, these models do not identify subsequent
tasks, making it difficult to consider changeover costs and heuristics, such as pre-fixing
or forbidding certain processing sequences. To overcome this limitation Kopanos et al.
(2010) proposed the unit-specific general precedence approach that combines both
general and immediate sequencing variables. In all cases precedence-based models can
provide high quality solutions with low computational cost, thus being an attractive
alternative when dealing with real-life industrial problems. One of the main
disadvantages of this approach is the quadratic increase of the size of the model with the
number of batches/products considered. The use of information such as product families
or pre-fixing of sequences mitigates this phenomenon and vastly improves the efficiency
of the models (Kopanos, Puigjaner, and Georgiadis 2010).

Time-grid-based models enforce timing and sequencing constraints through the
utilization of a single or multiple time grids, onto which events (e.g., starting or
completion of task) are mapped. A great variety of time-grid-based approaches exist
depending on the representation of events (time slots, global periods, time points or
events), which are classified into discrete and continuous. In discrete-time models the
time-gridis portionedinto a pre-fixednumber of global time periods of a known duration,
both of which need to be specified by the modeler. Most discrete formulations use a
common time frame for all shared resources. However, Velez and Maravelias (2013)
proposed a discrete model that employs multiple time frames. One of the main challenges
when setting up discrete models is the proper selection of the number of time periods
that needs to be employed. A fine grid results to solutions of higher quality but in cost of

larger less computationally efficient models. An advantage of discrete-time models is

16



Chapter 1 Introduction

their capability of monitoring inventory and backloglevels, material balances, as well as
the availability and consumption of utilities without introducing nonlinearities.
Moreover, time-dependent utility-pricing, holding and backlog costs can be linearly
modelled, while integration with higher planning levels is straightforward (Maravelias
and Sung 2009). Additionally, discrete-time formulations are superiorto their continuous
counterparts in terms of solution quality (Sundaramoorthy and Maravelias 2011).
Nevertheless,discrete formulationsresult to very large, howevertight, models, especially
when small discretization of time is mandatory. In continuous models, the horizon is
subdivided into a fixed number of periods of variable length, which is defined as part of
the optimizationprocedure. Both single, common, and multiple, unit-specifictime frames
have been successfully employed to continuous-time models. Continuous formulations
can alleviate some of the computational issues associated with discrete-time models,
since fewer time periods, thus variables, are required for the representation of the same
scheduling problem. However, they are not necessarily more computationally efficient
compared to their discrete counterparts. Finally, it should be mentioned, that few models
that utilize multiple ways of representing time have been proposed, thus combining both
the advantages of discrete- and continuous- time formulations (Kopanos, Puigjaner, and

Maravelias 2011; Lee and Maravelias 2018, 2020).

1.2.3 Alternative MILP models for process scheduling

We already illustrated a classification of the various scheduling problems as well
as the main modelling approaches that have been suggested in the last 30 years. A
scheduling model is determined by both externally specified (problem class) and user
selected (modelling approach) factors. On the one hand, the model should be suitable for
the examined problem environment and the processing specifics of the facility under
study, and on the other it should be developed in terms of the chosen modelling
approach’s characteristics. A given problem can be represented in multiple ways,
howeverthere is a significant relationship between these two aspects. In this subsection
we will demonstrate the basic aspects of the mathematical models that have been
proposed by the scientific community. More specifically, we present an overview of the
models based on the problems they are used for. Further details on the different
mathematical models for production scheduling can be found in the excellent review of

Mendez etal. (2006).
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Figure 1.5: Categorization of modelling approaches based on time representation
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1.2.3.1 Models for network production environments

In network environments batches do not maintain theiridentity, since mixing and
splitting of batches is allowed. Therefore, the problem is presented utilizing either the
STN or the RTN process representation (batch-based approaches). Moreover, the
complexity of the production arrangement, with tasks consuming or producing multiple
materials and materials being processed in different tasks and units, requires the proper
monitoring of material balances, status of units and utility and inventory levels. This
necessitates the utilization of a time-grid based approach.

A plethora of modelling formulationemerged after the introduction of the discrete
STN and RTN models. Reklaitis and Mockus (1995) were the first to propose a
continuous-time formulation based on the STN formulation, exploiting its generality. A
commonresource grid is used, with the timing of the grid points (“event orders” in their
terminology) determined by the optimization. The model is an MINLP, which may be
simplified to a mixed integer bilinear problem by linearizing terms involving binary
variables, which is solved using an outer-approximation algorithm. Zhang and Sargent
(1994, 1996) presented a continuous time formulation based on the RTN representation
for both batch and continuous operations, with the possibility of batch size-dependent
processing times for batch operations. Again, the interval durations are determined as
part of the optimization. An MINLP model ensues; this is solved using a local linearization
procedure combined with what is effectively a column generation algorithm.

One of the major drawbacks of the first models developed according to the
continuous STN and RTN mathematical frameworks was the large integrality gap. This
deficiency was addressed by Schilling and Pantelides (1996). They modified the
formulation of Zhang and Sargent (1996), simplifying it and improving its general
solution characteristics, while they developed a hybrid branch-and-bound solution
procedure which branches in the space of the interval durations as well as in the space of
the integervariables.

Castro, Barbosa-Pévoa, and Matos (2001) proposed a relaxation of Schilling
(1997), allowing tasks to last longer than the actual processing time. Consequently, their
model is less degenerate, and less CPU time is required. Some of the co-authors further
improved this formulation, allowing the optimization of continuous processes (Castro et

al. 2004). A novel common-grid STN-continuous formulation was introduced by
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Giannelos and Georgiadis (2002). They utilized a non-uniform time grid, that eliminates
any unnecessary time events, thus leading to small MILP models. Maravelias and
Grossmann (2003) suggested a general continuous STN-model that accounts for various
processing characteristics such as, different storage policies, shared storage, changeover
times and variable batch sizes. The model of Sundaramoorthy and Karimi (2005) is
another well-known continuous MILP model that introduced the idea of several balances
(resource, time, masses etc.).

The concept of multiple unit-specifictime grids was first proposed by lerapetritou
and Floudas (1998). This approach decouples the task events from the unit events, thus
less slots are required. As a result, smaller MILP models are generated, leading to a
significant decrease in computational effort. Multiple works have been proposed ever
since,improving the computational characteristics and expanding the scope of the initial
formulation (Vin and Ierapetritou 2000; Janak, S.L., Lin, X,, Floudas 2004; Shaik and
Floudas 2009).

Velez and Maravelias (2013) were the first to introduce the concept of multiple,
non-uniform discrete time grids. The multiple grids can be unit-, task- and material-
specific. The same authors extended this work with the consideration of general
resources and characteristics like changeovers and intermediate storages (Velez and
Maravelias 2015). It should be noted that while these formulations were initially
proposed for network facilities, they can be also used for the scheduling of sequential

environments.

1.2.3.2 Models for sequential production environments

Scheduling problems of sequential environments do not share the same
complexity, in terms of problem representation, with the ones encountered in network
environments. Therefore, both precedence-based and time-grid based approaches can be
employed to address them. Each of these approaches display specific advantages and
drawbacks. On the one hand precedence-based models generate smaller, more intuitive
models that provide high quality solutions, on the other hand time-gridbased models are
usually tighter and computationally superior. As a result, a great variety of models have

been proposed to address sequential production environments.
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One of the most impactful time-grid based models was suggested by Pinto and
Grossmann (1995). They described an MILP model for the minimization of earliness of
orders for a multiproduct plant with multiple equipment items at each stage. The
interesting feature of the model is the representation of time, where two types of
individual time grids are used: one for units and one for orders. Castro and Grossmann
(2005) proposed a non-uniform time grid representation for the scheduling problem of
multistage multiproduct plants. They tested their formulation for various objectives e.g.,
minimization of makespan, total cost and total earliness and compared it with other
known formulations, concluding that amodel’s efficiency highly depends on the objective
and the problem characteristics. The same authors extended their work with the
consideration of sequence-dependent setup times (Castro et al. 2006).

Unlike to mostof the other contributions, which propose continuous-time models,
the work of Maravelias and co-workers thoroughly investigated the employment of
discrete-time models in sequential environments. Sundaramoorthy, Maravelias, and
Prasad (2009) suggested a discrete time model to incorporate utility constraints for the
scheduling problem of multistage batch processes. Merchan, Lee, and Maravelias (2016)
developed four novel formulations, two of them based on the STN and RTN
representation and two more inspired by the Resource-Constrained Project Scheduling
Problem (RCPSP). Moreover, the authors introduced tightening constraints and
reformulations that allowed for significant computational enhancements. Re cently, Lee
and Maravelias (2017a) presented two new MIP models for scheduling in multipurpose
environments using network representations. Interestingly, states and tasks were
defined based on batches instead of materials, making possible the consideration of
material handling constraints in sequential production environments. The authors
displayed the potential of the proposed models by incorporating important process
features, such astime-varyingdata and limited shared resources,and by solving medium-
size problem instances to optimality.

The concept of precedence has been extensively studied by the Process Systems
Engineering (PSE) community (Gupta and Karimi 2003; Kopanos, Lai, and Puigjaner
2009). Numerous unit-specific immediate (Cerda, Henning, and Grossmann 1997),
immediate (Méndez, Henning, and Cerda 2000) and general precedence models (
Méndez, Henning, and Cerda 2001; Mendez and Cerda 2004) have been proposed for

scheduling problems in sequential environments. In initial studies the batches to be
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scheduled was a problem data, however later contributions suggested models for the
simultaneous batching and scheduling problem (Castro, Erdirik-Dogan,and Grossmann

2008).

1.2.4 Real-life Industrial Applications

As described in the previous section, a plethora of different mathematical models
has been proposed to tackle the production scheduling problem. Except from solving
literature problem examples, several researchers expressed a high interest for handling
real-life industrial case studies. Numerous modelling approaches and methods can be
found in the open literature, addressing a great variety of industrial process scheduling
problems. We will present a literature review of contributions considering a variety of
industrial sectors, e.g., chemical, pharmaceutical, petrochemical, steel, and consumer
goods industries, and then we will focus on works studying the optimal scheduling
problem of food industries. Notice that the presented literature review is limited on
MILP-based approaches for the offline scheduling problem, excluding other solution
methods (e.g., heuristic rules, metaheuristic algorithms etc.).

One of the main industrial sectors widely studied, considers chemical plants,
where a variety of new products is produced via the chemical transformation of multiple
raw materials. Floudas and Lin (2004) proposed a continuous time, event-based MILP
scheduling model and a decompositionmethodology,to solve large-scale industrial cases
of multiproduct batch plants. Janak et al. (2006) extended the previous approach, by
adaptingintermediate due datesand othertechnical constraints. Westerlund etal. (2007)
introduced a mixed discrete-continuous time formulation to tackle short-term and
periodic scheduling problems of multi-product plants, including intermediate storage
constraints, while in Velez, Merchan, and Maravelias (2015), a strategic planning tool was
developed based on the proposed model and applied to an industrial plant, importing
demand data from the plant’'s Enterprise Resource Planning (ERP) system. The
introduced methods have been applied to a real case study from the Dow company (Nie
etal. 2014).

A special subsector of the chemical plants is the pharmaceutical industry. Castro,
Harjunkoski, and Grossmann (2009) presented a decomposition-based algorithm for

tackling the high complexity of large-scale problems of multiproduct facilities. A case
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study comprising of 50 production orders, 17 units and six stages is efficiently solved in
less than one minute. The same pharmaceutical study case has been also considered by
Kopanosetal. (2010). They proposed a decomposition-based solutionstrategyrelying on
two precedence-based MILP models in order to optimize different objectives, such as
makespan, changeover-time and cost minimization. Stefansson et al. (2011) studied a
large-scale industrial case study from a pharmaceutical company, including up to 73
products and 35 product families. Moniz et al. (2014) motivated by a real-world
scheduling problem of a chemical-pharmaceutical industry, developed a case-specific
discrete-time MILP scheduling model for batch plants. A representative industrial case
including four products, nine shared processing units and 40 tasks, has been studied.

A special interest is expressed for the scheduling problem of oil refineries or
petroleum industries. Zhang and Hua (2007) deployed a plant-wide multi-period
planning model, aiming to the integration of the plant processes and the utility system, in
order to reduce the energy consumption. The applicability of the approach is illustrated
ina real study casethat considersarefinery industry, located in South China. Shah, Sahay,
and lerapetritou (2015) motivated by a study case provided by Honeywell Process
Solutions (HPS), considered an MILP based heuristic algorithm. The initial oil refinery
problem is spatially decomposed into two subproblems, one considering the production
and blending and the other the delivery of the finished products.

One of the main consumer goods group is the Fast Moving Consumer Goods
(FMCG), which are characterized by frequent purchases, rapid consumption and low
prices. 10 large-sized instances provided by The Procter & Gamble Company that
consisted of up to 1391 operations have been solved within reasonable CPU times by
Honkomp et al. (2000). Giannelos and Georgiadis (2003) developed an MILP model to
address the scheduling problem in fast consumer goods manufacturing processes. The
STN-based formulation was tested on a medium-sized industrial consumer goods
manufacturing process, considering cases with up to 35 final products and five packing
lines. Georgiadis et al. (2005) presented two different scheduling approaches, based on
the RTN and the STN representations, respectively. A significant decrease in the
operational cost was reported in a variety of problem instances provided by a large
manufacturing company located in Greece. Elzakkeret al. (2012) presented an algorithm
based on a unit-specific, continuous time interval MILP model and ten industrial case

studies are considered, as provided by Unilever. Optimal schedules have been generated
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for problem instances of up to 73 batches of eight products allocated to six storage tanks
and two packinglines within three minutes. Baumann and Trautmann (2014) proposed
a hybrid method for large-scale, short-term scheduling problems that comprises of an
MILP model and a heuristic algorithm. Elekidis, Corominas, and Georgiadis (2019)
developed an immediate-general precedence-based model that focuses mainly on the
packing stage. Various real-life case studies have been considered that include up to six
packinglines and 130 final products.

Another important field of interest is the steel-making process industry. Various
challenges arise, due to the large variety of final products, the complex process that take
place and the volatile electricity prices. Biondi, Saliba, and Harjunkoski (2011) studied
the scheduling problem of a hot rolling mill in a steel plant. Strict production constraints
related to metallurgic production are taken into account. Li et al. (2012) considered the
scheduling problem of steel making industries, focusing mainly on the steelmaking
continuous casting process. A novel unit-specific event-based continuous-time MILP
model is proposed, relied on material continuity and other technological requirements
constraints in order to ensure the generation of feasible schedules. Yang et al. (2015)
proposed an MILP mathematical formulation that optimizes the byproduct gas systems
in steel plants. A representative case study from a steel plant in China has been
considered and a significant reduction in the operation cost was noticed. Hadera et al.
(2015) proposed a new general precedence MILP scheduling model adapting energy
awareness. Wang et al. (2016) investigated the bi-objective single machine batch
scheduling problem o f a real-world scheduling problem in a glass company located in
Shanghai, China. An exact e-constraint method is adapted to the MILP model in order to
minimize the makespan and the total energy costs. Gajic et al. (2017) studied the
integrated scheduling and electricity optimization problem of a hot rolling mill, taking
also into account electricity costs and prices. An approach that combines MILP models
and intelligent heuristics has been successfully implemented in the melt shop at Acciai
Speciali Terni S.p.A.

A special interest has been expressed for the problem of trim loss minimization,
mainly in the paper industry. Westerlund, [saksson, and Harjunkoski (1998) studied the
trim-loss problem of a Finnish paper-converting mill, resulting to waste savings of 2% of
the turnover. Roslof et al. (2000) developed various sophisticated heuristics that can be

utilized in large scale industrial problems to provide feasible suboptimal solutions in
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reasonable computational times. The real-life case studies provided by a Finnish paper
mill included 61 scheduling jobs and a single processing unit. Giannelos and Georgiadis
(2001) proposed a slot-based MILP scheduling model, which relied on a continuous time
representation, to examine an industrial case study, provided by a paper mill company
(Macedonian Paper Mills, S.A., Greece). Castro, Barbosa-P6voa, and Matos (2003)
proposed an MILP and an MINLP mathematicalmodel, whichwere based on a continuous
and adiscretetime RTN representationand were applied to an industrial case study from

a pulp mill plant located in Portugal.

1.2.4.1 Applications on Food industries

The scientific community has also shown significant interest for the scheduling of
food industries. Common characteristics of food processing industrial facilities, such as
intermediate due dates, shelf-life considerations and multiple mixed batch and
continuous processing stages, substantially complicate the optimization of scheduling
decisions. The above combined with market trends that enforce the gradual increase of
the product portfolio, the demand profile (high variability-low volumes),and the multiple
identical machines and shared resources, make the consideration of real-life industrial
cases extremely challenging.

As the food industry focuses mainly on the production of perishable final products
a make-to-stock production policy is not efficient, since the generation of high inventory
levels should be avoided. A plethora of industrial case studies have been considered from
various subsectors of the food industry. An immediate precedence-based MILP
formulation for the packing stage of a brewery company was developed using a mixed
discrete-continuous time representationin Kopanos, Puigjaner, and Maravelias (2011).
The scheduling decisions are defined in a continuous manner, while material balances
are expressed at each discrete time period to ensure the generation of feasible schedules.
The idea of grouping the products into product families leads to significant reduction of
the computational cost. Changeover times among sequential time periods are also taken
into account. The industrial study case under consideration consists of eight processing
units and 162 products grouped into 22 product families are produced. The generated
solutions are better than the ones extracted by commercial tools. Baldo et al. (2014),

motivated by a real study case from a Portuguese brewery, proposed a novel MILP-based
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relax and a fix heuristic algorithm, for the integrated fermentation and packing problem.
The time horizon is discretized in two subperiods. The first subperiod is scheduled in
detail, as for the second subperiod only the main planning decisions, such as the
inventory levels, are optimized. Small and big sized problem instances have been
considered, with five filling lines and up to 40 products. Although a direct comparison
with the company plan was not possible, good quality schedules were generated.
Recently, Georgiadis et al. (2021) proposed an optimization-based solution strategy for
the optimal production planning and scheduling of breweries. Their approach generated
superior solutions compared to Baldo etal. (2014) and was successfully tested on a real-
life case provided by a large Greek brewery. Koulouris, Misailidis, and Petrides (2021)
discussed the concept of digital twin models and their application in the production
scheduling problem of food industries. With the help of a large-scale brewery case study,
the authors underlined the potential benefits from implementing a digital modeling
approach. Simpson and Abakarov (2009) investigated the scheduling problem of food
canneries focusing on the sterilization stage, allowing the possibility of the simultaneous
sterilization of different products in the same retort. A graphic user interface, able to
identify the nondominated simultaneous sterilization vectors, is connected to the
proposed MILP model. Different cases are solved depicting a reduction of up to 25% in
total plant operation time. Georgiadis et al. (2020) studied the scheduling problem of a
large-scale canned fish Spanish industry. An MILP based decomposition algorithm is
utilized to tackle the high computational cost, as the products are inserted in an iterative
way until the final schedule is generated. Nearly optimal schedules of a large-scale
problem instance, with 126 final products, have been generated in just 15 minutes. A
study case of a real-world edible-oil deodorized industry is studied by Liu, Pinto, and
Papageorgiou (2010). The plant is described as a single-stage multiproduct batch
process. The final products are grouped into product families having the same due date.
The proposed approaches rely on mixed discrete and continuous MILP mathematical
formulations and classic TSP constraints. A real study case of 128 hours’ time horizon of
interest was studied. 70 orders of 30 different final products of seven groups of different
release time have been scheduled. The new formulations are shown to be more efficient
than previously proposed methods found in the literature. Polon etal. (2018) studied a
sausage production industry aiming to the profit maximization by solving an MILP

scheduling model for batch processes. The packing stage, which often constitutes the
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main production bottleneck has not been considered. The plant operates in a single
campaign mode and eight products are produced in total.

A special subsector of food industries is dairy manufacturing. Numerous products
are produced, such as yoghurt, cheese and butter and distributed to customers
worldwide. Touil, Echchatbi, and Charkaoui (2016) deployed an MILP model for a small
multiproduct milk industry, located in Morocco, aimingat the minimization of makespan.
The stages of homogenization, pasteurization and packing are scheduled for four final
products, seven packing lines, two pasteurization units and one homogenizer. The
production scheduling problem of an ice cream facility has been tackled by Kopanos,
Puigjaner, and Georgiadis (2012). A real-life study case of eight final ice cream products,
two packinglines and six aging vesselsis addressed. The simultaneous optimizationofall
processing stages is achieved, and 50 problem instances are optimally solved. An MILP-
based decomposition strategy is proposed to handle scheduling problems of large-scale
food process industries. High quality solutions were generated for larger cases of up to
24 final products utilizing the proposed decompositiontechnique. Doganis and Sarimveis
(2007) solved the scheduling problem of a single yoghurt production line taking into
accountinventory, manpower and capacityrestrictions.The model was tested using data
from a yoghurt production line of a Greek dairy industry, where 18 products are
produced. A novel mixed discrete-continuous MILP formulation is deployed by Kopanos,
Puigjaner, and Georgiadis (2011) for the scheduling problem of a Greek yoghurt
production facility. The idea of product families is adapted similarly to the other
aforementioned works from the same authors. The packing stage is scheduled in detail,
but mass balance constraints related to the production stage are also adapted, using a
discrete time representation. 93 final products (grouped into 23 product families) are
allocated in four packinglines. Novel resource constraints can adapt realistic limitations
to various types of resources (e.g., manpower) and ensure the generation of feasible
solutions. Based on a similar approach, the scheduling problem of another large scale
Greek dairy industry has been studied (Georgiadis et al. 2019). A rolling horizon
technique is embedded to reactively adjust the schedule in case of disturbances, like the
cancellation or modification of orders, the sudden arrival of new orders or any
digressions from the planned production. 158 final products (grouped into 44 product
families) are allocated to six parallel packing lines, while the time horizon of interest is

five days. A total cost decrease of 20% is achieved in comparison with the schedules
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generated by the company. An integrated software tool with a user-friendly graphical
interface has been developed to connect the proposed MILP model to the input data,
located in excel files (parameter values such as changeover times etc.) and the ERP
system (providing the demand values). As a result, optimal solutions can be generated
automatically in less than 10 minutes. The integrated planning and scheduling problem
of a small size Balkan type semi-continuous yoghurt facility, with 8 final product types,
produced by three intermediates has been investigated by Sel, Bilgen, and Bloemhof-
Ruwaard (2017). The evaluation of the proposed MILP approach has been utilized via a
simulation model. 32 different scenarios were considered and a significant decrease in

the total waste and makespanis achieved.

1.3 Supply chain optimization

Modern markets are characterized by increased competitiveness, while the
current entrepreneurial environment is inherently dynamic, highly complex and
uncertain. Therefore, the viability and later growth of companies requires their constant
effort of developing a competitive advantage (Shadid 2018). To achieve that, a company
should efficiently manage its whole supply chain, consisting of all entities, e.g., suppliers,
manufacturing plants, warehouses, and customers, needed for the fulfilment of the
requested demands. These entities are interconnected by material, information, and
financial flows, which are represented by the known Supply Chain Network (SCN).
Coordinating all necessary activities required to transform the raw materials into final
products which are then delivered to the customersis called Supply Chain Management
(SCM) (Stadtler et al. 2015). Enhancing these operations through the incorporation of
optimization-based techniques is known as Supply Chain Optimization (SCO). The
decisions related to SCM can be categorized into strategic, tactical, and operational based
on the considered horizon. Strategic decisions are related to the long-term planning of
the supply chain, i.e., the installation of new distribution centres. Medium-term planning
decisions,such as, determining the inventory levels of a warehouseare tacticaland lastly,
the short-term decisions, like daily distribution of products, are included in the
operational level. Recently, the scientific community has shown an increasing interestin
the integration of the various decision levels, since it leads to a significantincrease in the

overall efficiency of the supply chain (Aguirre, Liu, and Papageorgiou 2018).
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Acknowledgingthe positive effect optimal planning has on the efficiency of supply chains,
the scientific community has extensively researched the topic, proposing a plethora of
mathematical programming models (Mula et al. 2010). Liu and Papageorgiou (2013)
defined the problem of integrated production, distribution, and capacity planning of
global supply chains in terms of an MILP model. Multiple objectives (cost, flow time and
lost sales) were investigated employing a lexicographic minimax and an e-constraint
approach. Ramos, Gomes, and Barbosa-Pévoa (2014) proposed a mathematical
formulationand solutionapproachto support tacticaland operationaldecisions in supply

chains with reverse flows considering economic, environmental, and social objectives.

1.3.1 Healthcare supply chains

The healthcare supply chain considers the flow of medical products and services,
in particular, pharmaceuticals, surgical or hygiene consumables, medical devises and
vaccines,between severallocations, such as, drug manufacturing plants, hospitals, clinics
and patients (Imran, Kang, and Ramzan 2018). Information flow may involve, i) orders
and processing data, ii) information on inventory levels, iii) pricing data and iv) the
patient’s medical information. Common financial flows are i) credit terms, ii) payment

schedules and iii) consignment agreements.

Most contributions on healthcare supply chains consider problems of the
pharmaceuticalindustry. This industry necessitates a complex set of processes involved
in the discovery, development, and manufacturing of drugs. The supply chain of the
pharmaceutical industry is like any other industry in the manufacturing phase. Despite
the rich literature on SCO, only a small fraction of these studies addresses cases of the
pharmaceutical sector. In one of the first significant contributions Papageorgiou,
Rotstein, and Shah (2001) developed an MILP model in order to facilitate the strategic
decision-making process for pharmaceutical industries. The suggested optimization
approach is able to simultaneously select product development, introduction strategy,
long-term capacity planning as well as investment strategy at multiple sites. Gatica,
Papageorgiou, and Shah (2003) extended the previous work with the incorporation of
uncertainty of clinical trials. Key issues regarding the long lead times of pharmaceutical
products and the difficulties in balancing future capacity with anticipated demands

considering the clinical trials uncertainty are underlined by Shah (2004). A generic
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approach for planning and scheduling of supply chains with reverse flows is presented
by Amaro and Barbosa-Pévoa (2008) and applied in a case study inspired by the
pharmaceutical sector. Masoumi, Yu, and Nagurney (2012) consider the perishability of
vaccines and the fact that they need to be refrigerated. The authors constructed an
oligopoly model, that incorporates multiple firms competing in different markets, using
variational inequality theory. Liu, Xie, and Garaix (2014) developed a tabu search
metaheuristic that incorporates feasible and infeasible intra-route local search schemes
to tackle a periodic vehicle routing problem for home healthcare logistics. Reverse flows
in the pharmaceutical supply chain are investigated by Weraikat, Zanjani, and Lehoux
(2016). More specifically, a decentralized negotiation process is proposed for the
coordination needed to collect any unwanted medications at the customer zones. The
integrated sustainable-resilient pharmaceutical supply chain under uncertainty was
investigated by Zahiri, Zhuang, and Mohammadi (2017). The authors incorporated an
MILP model with a possibilistic-stochastic programming approach to address
uncertainty issues. Perishabilityissueswere included in the optimizationdesign problem
of a pharmaceutical supply chain network in the work of Savadkoohi, Mousazadeh, and
Torabi (2018). Jankauskas, Papageorgiou, and Farid (2019) solved the integrated
capacity planning and scheduling problem of a biopharmaceutical industry. They
proposed a genetic algorithm, whose hyperparameters are fine-tuned by a post-
optimization procedure, based on the particle swarm optimization approach. The vehicle
routing problem for the delivery of pharmaceutical products to healthcare facilities is
addressed by Kramer, Cordeau, and lori (2019). A multi-start iterated local search
algorithm is employed to handle bothrealistic and artificial case studies. Recently, Sarkis
et al. (2021) discussed the challenges and opportunities that emerge from the rise of

personalised and complex drug production in both manufacturing and distribution.

Few recent contributions focused on supply chains of CAR T-cell therapies. These
therapies require a complex and precise biomanufacturing process, which necessitates
specialized staff, facilities, and equipment. The CAR T-cell SCN is highly complex, since
blood must be first collected from the patientin a specialized treatment facility, which is
then transferred to a manufacturing plant where the therapy is produced. Finally the
patient must revisit the treatment facility so that the cell therapy is administered. Wang
et al. (2018) proposed a multi-objective stochastic programming model for the optimal

design of the CAR T-cell SCN and underlined the benefits achieved by the optimization
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process. A review of the challenges associated with the CAR T-cell supply chains is
presented by Papathanasiou et al. (2020). Recently, Karakostas etal. (2020) presented a
novel modelling framework and an efficient solution approach to optimize the CART-cell
supply chain. The authors proposed a patient-centric network structure, where the
administration of CAR T-cell therapies is performed in local treatment facilities located
close to patients’ sites. They developed a General Variable Neighbourhood Search (VNS)

algorithm, which was able to tackle realistically sized problems.

1.3.2 Vaccine supply chain

Immunization is one of the most successful and cost-effective public health
interventions. Production, quality control and marketing authorization of vaccines is
extremely complex due to three mainreasons. Firstly, medical science advances resulted
to highly sophisticated and effective vaccines that led to more complex manufacturing
and testing procedures. Therefore, top quality facilities that can consistently produce
quality vaccines are needed. Secondly, vaccine production utilizes globalized
manufacturing chains to increase production capacity, Thirdly, strict regulatory
requirements are imposed, to ensure public safety. Subsequently, the prolonged testing
leaves less time for the distribution and administration of vaccines to patients. To deal
with these complexities, the Vaccine Supply Chain (VSC) needs to be optimized in terms
of structure, planning and operation, while considering the associated supply chain

characteristics.

The VSC is characterized by two main phases, the manufacturing, and the
distributionphase. A genericrepresentationis provided in Figure 1.6. The manufacturing
phase comprises of the first two steps (supply of raw materials and manufacturing of
vaccines), while the rest belong to the distribution phase. Commonly the consumers are
clustered, so the last two steps, customers, and consumers, can be considered to be the

same step.

Managing the VSC brings many logistical questions. These are grouped into four
components, i) what kind of vaccine should be used ii) how many doses should be
produced and when, iii) who should be vaccinated and iv) how should the vaccines be

distributed (Duijzer, van Jaarsveld, and Dekker 2018). Distributing the vaccines involves
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design decisions e.g., related to the location and capacity of the various nodes
(manufacturing plants, warehouses, and clinics), as well as, planning decisions, for
example on the inventory levels and the routing decisions. Vaccines are perishable
products, therefore, shelf-life issues must be considered. Furthermore, vaccines must
always remain in low temperature conditions. Depending on the type of vaccine, they
must remain refrigerated or frozen throughout their transportation and storage, making
the VSC a temperature-controlled supply chain, or a cold chain as usually found in the
literature. Keeping the cold chain uninterrupted throughout production, storage and
distributionis critical to maintain the quality of the vaccines and ensure the effectiveness
of the vaccination program. A special characteristic of the VSC that differentiates it from
other supply chains is the need for mass distributionunder high time pressure, especially

in cases of sudden outbreaks.
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Figure 1.6: Vaccine supply chain structure (Ribeiro 2016)
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Inrecentyears, the scientificcommunity hasshownanincreasing interestin VSCs.
The distribution of thermosensitive vaccines is a challenging task especially for low - and
middle-income countries, where the required infrastructure is unavailable. Therefore,
Leeetal. (2012) developed a discrete-evensimulationmodel for the Niger vaccine supply
chain, to investigate the impact of making thermostable vaccines. They found out that
making any vaccine thermostable strongly alleviates supply chain bottlenecks. Zaffran et
al. (2013) state that designing products and packing in a way that meets the needs of
developing countries will strengthen the logistics systems. Moreover, they underline the
importance of information systems and internet connectivity for improving the decision-
making process. Another paper proposes the integration of VSCs with other supply
chains, like health commodities, to decrease costs (Yadav et al. 2014). This study provides
a framework that decides where such integration offers significant benefits. However,
integrating multiply supply chains poses a great challenge, since it further complicates
any unique demand and supply characteristics. The design/redesign problem of VSC
networks, especially in developing countries, has been considered in many contributions
lately. Assietal. (2013) generated a discrete-eventsimulationmodelof the Niger’s supply
chain to investigate the effect of removing the regional level. As a result, a remarkable
increase invaccine availability is reported. Two additional studies on the Benin’s (Brown
etal. 2014) and the Mozambique’s supply chain (Lee etal. 2016) showed that redesigning
significantly benefits the supply chain in both cost savings and vaccine accessibility. Two
extensive literature reviews on the topicof VSCs were recently published. Lemmenset al.
(2016) focus on models for the design of VSC networks, while Duijzer et al. (2018) review
all issuesrelated to the VSC from product selection to production, allocation and finally

distribution of the vaccines.

Despite, the rich literature, only a handful of contributions consider the optimal
planning of VSCs. This may be attributed to the fact that for traditional vaccines the most
critical supply chain issues are related to the optimal design decisions in developing
countries. Chen et al. (2014) developed the first planning model for a World Health
Organization's Expanded Program on Immunization (WHO-EPI) distribution chain in
developing countries. The proposed mathematical model can be used as a planning and
evaluation tool, to understand bottlenecks and improve immunization rates. Another
study proposed a multi-objective, multi-period model to address the simultaneous

optimal design and planning of sustainable VSCs (de Carvalho, Ribeiro, and Barbosa-
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Povoa 2019). The model is evaluated on a case study representing a European supply
chain. Trade-offs between the sustainability dimensions considered (economic,
environmental, and social) are highlighted. Recently, Yang (2020) investigated the
optimal design and operation of WHO-EPI vaccine distribution chains. The author
developed an MILP model and a disaggregation-merging technique to generate optimal
solutions for real-world cases. Moreover, a systematic way to plan outreach operations
with mobile clinics that will increase vaccine accessibility in regions of developing

countries withoutaccess to direct clinic services is introduced.

The scientific community has not yet properly addressed the COVID-19 VSC.
Recently, Kontoravdi et al. (2021) focused on the production phase of the vaccine. They
emphasize the challenges of producing the required doses for the global vaccination
campaign. The techno-economic feasibility of production is assessed for various RNA
vaccines under development. The authors showed that the time required to meet global
demand strongly depends on the RNA amount per dose, and the development of lower
dose saRNA vaccines will significantly improve the production rates. The distribution
phase of the COVID-19 supply chain has notbeen addressed so far. Only a few papers are
published on the effect of the COVID-19 pandemic on other distribution supply chains
(Rastegar et al. 2021). The COVID-19 distribution chain displays special characteristics
that differentiate them from other VSCs. A prominent concern regarding the distribution
of COVID-19 vaccines is the extreme temperature requirements during transportation
and storage. The mRNA vaccines provided by Pfizer and Moderna must remain in deep-
freeze conditions, -70°C and -20°C accordingly, while their lifetime in refrigerated
conditions is limited. Especially in the case of the Pfizer vaccine, inefficient planning can
lead to many valuable doses being wasted and to increased operational costs. These

negative implications are further enhanced due to the enormous scale of the COVID-19

vaccination programs.

1.4 Thesis overview

This thesis is organized as follows:
Chapter 2 addresses the optimal production scheduling in multiproduct

multistage plants that comprise of both batch and continuous processes. Two
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modelling approaches are presented based on MILP frameworks. The first
generates detailed optimal schedules for all processing stages involved, while the
second proposes a novel aggregation technique that reduces the problem’s
complexity and allows its faster solution. At the end of the chapter, a
computational analysis is performed to illustrate the efficiency of the proposed

solution strategies.

Chapter 3 applies the methods presented in the previous chapter in a real-life
large-scale industrial problem. More specifically, the optimal production
scheduling of a food industrial process that includes two continuous preparation
stages,a batch sterilization stage and finally a continuous packingstage,is studied.
The process structure under consideration is commonly found in several
industries. It is shown that both methods are able of providing near-optimal
solutions leading to significant benefits in very low CPU times, compared to

manually derived schedules generated by the production engineers.

Chapter 4 studies the integrated production planning and scheduling problem in
breweries. The special characteristics that differentiate this production process
are underlined. A new MILP model is developed to effectively address small- to
medium-sized problem instances. To tackle larger problems, which are closer to
the industrial reality, a two-step solution strategy is developed, relying on a
decompositionanda re-optimization procedure. A computationalanalysis reveals
that the newly proposed MILP model is superior to alternative approaches from
the open literature. Furthermore, the developed solution strategy is successfully

applied to case studies, which represent a real-life brewery.

Chapter 5 investigates the optimal short-term planning of the COVID-19 VSC. A
novel MILP modelis developed to address this problem. Multiple criticaldecisions
such as inventory levels, transferred quantities and scheduling of vaccinations in
the vaccination centres, are optimally taken. The solutions minimize the overall
cost of the supply chain, including the cost due to doses that have been wasted.
The proposed model is integrated in a solution strategy based on an aggregation
and a divide-and-conquerapproach to study complex problem instancesincluding
nation-wide supply chains. A case study simulating the Greek COVID-19 VSC is

used to illustrate the applicability of the methods developed in this chapter.
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Chapter 6 provides a synopsis of the research outcomes of this thesis and

proposes possible future research directions.
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Chapter 2

Optimal Production Scheduling of
Multistage Multiproduct Process
Industries

2.1 Introduction

In this chapter we address the optimal production scheduling problem in
multistage multiproduct process industries. In particular, we focus on facilities that
comprise of multiple mixed batch and continuous processes, a very common plant layout
in various industrial processes, like pharmaceuticals, fast-moving consumer goods
industries (FMCG) and especially food industries. Most of those industries usually consist
of several processing stages that prepare the final products based on a given recipe,
followed by a packing stage. These types of facilities are also known as make-and-pack.
The stages that prepare the final products are batch, continuous or a mix of both, while
the packing stage is a continuous process, thus resulting to a production procedure that
consists of both batch and continuous processes. Despite the extensive scientific work on
the subject of optimal productionscheduling thesetypes of facilities were not sufficiently
addressed, thus underlying a significant gap in the literature. This gap is even more
evident when considering characteristics of real-life industrial problems, e.g., tight
technical and logistical constraints, a large number of products and multiple processing

lines.

Goal ofthe work presented in this chapteris to effectively fill this scientific gap, by
proposing novel mathematical frameworks that can solve large-scale production
scheduling problems for mixed batch and continuous processes. Two optimization-based
methods are introduced that approach differently the problem at hand. In the first
approach, detailed production schedules are generated for all stages involved. The

second follows a more aggregated approach that reduces the process into a purely
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continuous one by indirectly including the batch process through a new set of feasibility
constraints. Core of both solution strategies are new MILP models inspired by the
precedence-based mathematical framework, while two different decomposition
techniques are utilized to extend the applicability of the proposed methods into larger

problem instances which are closer to the industrial reality.

2.2 Problem statement

A plant layout common in many make-and-pack industries is considered. The
multistage multiproduct facility consists of both batch and continuous processes. In
particular, the plant consists of three processing stages, i) a continuous process that
transforms the raw materials into intermediate products based on a given recipe
(preparation stage), ii) a sterilization process required to ensure the quality of the final
products and iii) a packing stage necessary to bring the products into their final form. The
sterilization process has been chosen as a general process since it is a very common

procedure in many industries, thus extending the applicability of the study.

In total, two continuous stages are considered, with a batch processing stage
(sterilization) in between. All stages comprise of multiple parallel machines. Each
product must go through all processing stages. A product can be processed only by a
subset of the available equipmentin the continuous stages since the continuous lines of
the preparation and packing stages have different capabilities.In contrastall sterilization
chambers are identical, therefore a product may be processed in any of them. It is
assumed that the intermediate products in the output of the preparation stage are
grouped into carts to be transferred to the sterilization chambers. The implementation of
other more general grouping methods can be done in a straightforward manner. To
ensure the safety and quality of the final products, a maximum waiting time is allowed
betweenthe preparation and the sterilizationstage. This is a rather low waiting time that
incommodes the computational speed of the proposed method, however incorporating it
is critical to ensure the feasibility of the generated production schedules. A single
campaignpolicy is favored by mostindustries, therefore order splittingis not considered.
A product order is continuously processed in a single line in the continuous stages of the

facility. However, most product orders are larger than the capacity of the sterilization
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chambers, therefore, they are divided into several batches. To improve the efficiency of
the plant these can be processed by multiple sterilizers. Conclusively, a product order is
splitinto numerous batches, whose associatedlotsare processed continuously in a single
line in the continuous stages but can be processed by multiple sterilizers in the batch
stage. This production process poses difficult synchronization issues that must be

considered to significantly improve the efficiency of the plant.

The problem under study can be formally stated as follows.

Given:
e A knownscheduling horizon H divided into a setto time periodsn € N.
e Asetofcontinuous processingstages s € S.
e Asetofcontinuous processinglines j € J.

e The multidimensionalset/S; ; describingwhether a line j belongs in a processing

stages.

e A set of products p € P to be processed within the scheduling horizon, with all
production related parameters, such as, demand, due date, processing rate in the
rate

continuous lines Ty and sterilization time rf,f”.

e The multidimensionalset/P;, denotingwhichlines can process each product p.

e Asetofproductbatches b € B.This setis required sincethe order-sizes are usually

larger than the capacity of the sterilization chambers.
e The multidimensionalset PB,, ,, denoting which batches b belong to a product p.

e A changeover task required in any continuous line j whenever the production is
changed between two different products. Every changeover operation requires a

specifictimey; p, .

e The parameters related to the sterilization stage, in particular the capacity of each

cart for every product p, (¥,) the number of carts that fill up a sterilization
chamber (y°7) and the number of available sterilizers in the facility (v57).
Determine:

e The allocation of products into lines in every stage.
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e The sequencing between products in each line.

e The starting and completion time for the processing of each product p in each

stages.
, in order to minimize the production makespan or the total changeover time.

This problem definition is more general and encompasses both mathematical
frameworks presented in the next section. Both tackle the optimal production scheduling
problem of multistage multiproduct facilities with mixed batch and continuous
processes, however from a different point of view. The special characteristics of each
approach thatadd on top of the general problem statement presented above are provided

in the beginning of the related subsection.

2.3 Mathematical frameworks

2.3.1 Approach A: Detailed production scheduling of mixed batch and
continuous processes

In this first modelling approach, all processing stages are modelled explicitly.
Detailed decisions for all stages involved are specifically provided. The scheduling

horizon is divided into n daily time periods.
In particular, we determine:

e The allocation of products into units in every stage s and time period nY, s ; , and

the allocation of all batches b of each product p in the sterilization stage Y, j, j »-

e The sequencing between products in each line and stage, which is expressed by

general precedence variables X, v ; .
e ThestartingL, s, and completiontime C,, ;, s , for the processingofeach product
p and batch b in each stage s and time period n.

The developed MILP-based solution strategy consists of free main pillars (Figure 2.1):

e A pre-processingalgorithm that translates production orders into batches
presented in subchapter 2.3.1.1.

e The mathematical model describing the scheduling problem.
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e A decompositiontechnique that splits the initial problem into tractable easily

solvable subproblems.

Mathematical Aggregated MILP
Model models

Figure 2.1: Illustrative description of developed solution strategy

2.3.1.1 Batching algorithm

The goal of this batching algorithm is to convert the product orders into batches
in the sterilization stage to fully satisfy the given demand. Moreover, in this step, we
calculate the processing time required for the first batch in the first continuous stage and
the last batch in the packing stage. These parameters are later required in the
mathematical models. In many industries the industrial practice imposes the operation
ofthe intermediate batch processesto their maximum capacity. The maximum utiliza tion
of the sterilization stage allows for high production levels while ensuring minimization
of changeovers between products. Thus, the batching problem can be solved a priori.
After the completion of the previous process, the intermediate products are loaded in
carts that are pushed into the sterilization chambers. All product orders are at least the
size of one full batch, but the capacity of the sterilizers may not be an exact divisor of the
ordersize. Therefore, thelast batch of any order maybe smaller than the rest. To calculate

the necessary batch-related parameters, we employ the following equations:
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In equation (2.1) the total number of required carts for each product is calculated,
by dividing product demand ¢, over the capacity of the carts x,, which depends on the
product’s size. Equation (2.2) definesthe minimumnumber of batchesrequired to satisfy
demand (nl,’]), by dividing the calculated number of carts over the number of carts thatfill
each batch processing equipment yS7. Since every batch equipment has the same
specifications, this number is constant. However, the total number of carts for each
product may not be exactly divided by this number. Therefore, in equation (2.3) we also
define ngu”, which is the number of fully utilized batches. Based on that information, the
quantity processed in the first and last batch is calculated. The quantity of the first batch
of each product order is always equal to the capacity of each cart multiplied by the
number of carts that fill a batch processing equipment, as shown in equation (2.4).
However, the capacity of the last batch depends on whether it is a full batch or a batch of

reduced size (2.5). Finally, the required processing time for the first batch Tﬁg and the
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last batch of each product in every available continuous line 7-8

i is calculated using

equations (2.6) and (2.7) accordingly.

In Figure 2.2 the flowchart of the batching algorithm is illustrated.

Calculate number of Calculate number of total
required carts for batches and full batches
each product for each product

v

Calculate quantity of first
batch for each product

Last batch quantity Is the last batch
equals first batch quantity a full batch?

Calculate processing
times for first batch and Calculate quantity of last
for last batch in the batch of each product

continuous stages

Figure 2.2: Flowchart of batching algorithm

To better clarify the meaning of these parameters, let us consider an example of
an order with a size of 120000 units of a specific product, with a cart capacity of 5000

units. In that case, the totalamount of required carts is:

C__Jp:120000:24

7, 5000

P

The number of full batches and total batches are calculated as follows:

Full I]C 24
V4
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, |, 24
np:l’ ;’T = ? :3
V4

Furthermore, let us assume that this product can only be processed by one line in

the first continuous stage and one in the packing stage, with a rate of 45000 units/hour.

Therefore, the considered processing times will be

o _ 9 %, X 500049
J.p z_rate z_;a}t]e 45000

5P

1 hour

for the first batch and

LB

c FB ST
o _ 9, _(@,-n7-7") %, 5000-(24-9-2)

jp z_rate z_rate 45000

P /P

=40 minutes

for the last batch in the continuous stages.

2.3.1.2 MILP model

The proposed MILP model is inspired by the general precedence framework. A
daily discretization of the considered horizon is employed. Moreover, a cyclic heuristicis
implemented for the sterilization stage, to reduce the problem’s combinatorial
complexity. The daily demand must be satisfied within the specified time period, so
backlogs are not allowed. The batches and associated lots in the continuous processes,
calculated from the batching algorithm, must be completed within the given time period.
[t is assumed that the plant shuts off at the end of each time period for maintenance
purposes, so all production processes must be completed within one time period. For
example, a product order cannot undergo the preparation and the sterilization stage in
time period n and the packing process in time period n+1. The constraints of the
developed model are presented below and are categorized based on the type of decisions

that they include.

Allocation constraints. Constraints (2.8) - (2.10) impose the allocation constraints
of the model, introducing the binary variables Y, 5 ; , ¥, 5 j n, and Y;f,j,n- To comprehend

these constraints, we must introduce the subset SB, ,. This includes all products that

44



Optimal Production Scheduling of Multistage Multiproduct
Chapter 2 Process Industries

consist of a single batch. In those cases, it is not required to specify an additional index b
in the associated allocation variable. More specifically, constraints (2.8) pose the
allocation constraints for the continuous stages (s # 2), but also for the products
consisting of a single batch in the sterilization stage. Constraints (2.9) focus on the
sterilization stage and the products that comprise of multiple batches and guarantee that
all product batches p, b to be scheduled on day n will be processed by exactly one
sterilizer. Finally, constrains (2.10) are necessary for the cyclic heuristic that follows.
Variable YpF’j'n denotes the allocation of the first batch of product p in the sterilization

stage. The constraints ensure that the first batch of every product must be processed by

exactly one sterilizer.

Y =1 in In _
sesrp,y P Vpel nel ' (s#20(s=2npeSB )) (2.8)
Z Ypsjn=1 Vpel”,peSB ,bePB , nel™ (2.9)
JeUS; s 0VJF; ) p p. p.b.a n
yr =1 in In
P ‘v’pe[p ,peSBp’”,neln (2.10)

JeUs.; sp0IP; )

Cyclic allocation heuristic. A great increase in the problems computational
complexity originates from the flexibility of production in the sterilization process. The
products can be processed in any of the available sterilizers, which often are many.
Therefore, the solver used for the developed MILP model will have to examine numerous
nodes, which result to same quality solutions. Since the sterilizers have the same
characteristics, it does not make any difference in the schedule’s quality whether a
product batch is processed in sterilizer 1 or sterilizer 2 etc. Therefore, an algorithm is
introduced that heuristically allocates the product batches in the sterilization chambers.
This algorithm is inspired by Kopanos, Puigjaner, and Georgiadis (2012) and states that
the only decisions that must be optimally taken by the model, are the allocation decisions
of the first batch of each product Yﬁj,n, the rest of the allocation decisions in the
sterilization stage can be heuristically extracted without affecting the solution quality.
The heuristic specifies that every next batch of a product will be processed by the next
indexed sterilizer. For example, if the first batch of a product is processed in sterilizer
ST_1,thenthe nextwill be processedin ST_2,the nextinST_3 and so on. To further reduce

the model’s size, we can specify the “size” of this cycle, or the number of units used for
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the sterilization process of the order’s batches. To define this number, we assume thatan
uninterrupted process is desired in the packing stage. Usually, the sterilization stage is
the slowest process of the facility. Since a single campaign policy is required in the
packing stage, an uninterrupted processing procedure requires the employment of
multiple sterilizers. The number of sterilizers used in the cyclic heuristic for a product is
calculated as the minimum number of sterilizers that ensure an uninterrupted process in
the packing stage. For example, if the packing process lasts 1 hour for a product, while
the sterilization process lasts 2 hours for the same product, then 2 sterilizers will be used
in the cyclic heuristics of this product. Alternatively, if the sterilization process lasts 2.5
hours, then 3 sterilizers will be employed in the heuristic. Figure 2.3 provides an
illustrative example of the proposed heuristic. Let us assume that a product order
consists of 10 batches and that the heuristic employs 3 sterilizers. The optimization
model generates a solution which states that the first batch of product P1 must be
processed in sterilizer ST_1. The heuristic decides on the rest of the allocation variables
as shown, without burdening the optimization procedure. As a result, a significant

reductionin CPU times is reported.

sterilizers
(p1,b1) (p1,b4) (p1,b7) (p1,b10)
ST 1 | | |1 |l |
(p1,b2) (p1,b5) (p1,b8)
- (p1,b3) (p1,b6) (p1,b9)
o 3 I i W
I I [T A | | I [

time

Figure 2.3: Description of cyclic heuristicin the sterilization stage

Constraints (2.11) - (2.13) imprint mathematically the cyclic heuristic described
above. Subset Cyc, ), is introduced, which includes all batches that utilize the same
sterilizer with the first batch. In the example presented in Figure 2.3, Cyc,;, =
{(py, by, n), (p1, by, ), (1, b7, 1), (p1,b19,n) }. First, constraints (2.11) define that the
sterilizer used for processing the first batch of a product p in time period n, is the same

with the sterilizer used for the rest of the batches in subset Cyc, . The next two
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constraint sets focus on the rest of the batches b € Cyc, ) . Constraints (2.12) state that
if a batch b is processed in sterilizer j, then the next batch b+1 will be processed in
sterilizer j+1. Finally, constraints (2.13) examine the special case, where batch b is
processed in the last available sterilizer LS7};. In that case, the next batch b+1 must be

processed in the first sterilizer FS7;.

= Vpel),peSB, nel,je]s,

Y' =Y ppsm e '
p,j.n p.b.j, bECpr,b,n (2 11)
_ Vpel),peSB,, nel bePB,, ,

Vosin=Y s b'ePB,, b'=b+tLb'eCyc, . .j, (2.12)
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b'ePB,, b'=b+1,b'¢Cyc,, , (2.13)
JELST,,J'=FST,

Timing constraints. Constraints (2.14) impose the timing constraints in the

Yobjn=Yppjm

sterilization stage. They state that the completion of the sterilization process for every
product batch to be scheduled in a day (Cp,b,s,n) is equal to the starting time of the task
(Lppsn) plus the required sterilization time (73t"). Similarly, constraints (2.15) define
the completion time for the continuous stages. Synchronizing the stages necessitates the
introduction of constraints (2.16). The continuous variable W,  ,, defines the waiting

time between each stage.

Vpel”,nel”,bePB , ,
p.b,s,n ;ter :Cpbsn pe ’ - " < b (214)
o o seST
proc . _ v [in, [l”,b PB ,
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Sequencing constraints. Constraints (2.17) and (2.18) guarantee the proper timing
betweenthe batches of the same product. The first focuses on the continuous stages while
the second on the sterilization stage. In particular, (2.17) respects the single campaign
policy by stating that a batch b of product p finishes before starting the next batch of the
same product. Expressing this constraint for the sterilization stage is slightly more

complicated due to the cyclic heuristic. More specifically, the sterilization process for
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batch b of product p must be completed prior to the start of the sterilization process for
batchb’ = b + K, ,, where k,, ,, denotes the number of sterilization chambers used for the
product based on the cyclic heuristic (2.18). The sequencing constraints betweenbatches
of different products are given in constraints (2.19) - (2.22). The first two are related with
the continuous stages for all products and the sterilization stage for products consisting
of a single batch, while the next two are related with the sterilization stage for the rest of

the products. A general precedence variable X. is introduced. When it is active, it

p,p',s,n
denotes that product p’follows product p in stage s and time period n. Constraints (2.19)

state that if a product p is processed prior to p’in stage s and period n (X =1)and

p.p'sn
both products are processed in the same unit (Y, 5, = Y/ 5;» = 1), then the starting
time of the first batch of product p’ must be greater than the completion time of the last
batch of product p (PBL, ) plus any required changeover time (y; /). Constraints
(2.21) pose the same but for the sterilization stage and for products with multiple
batches. Here the sequencing constraints are imposed on sets FCB),, , and LCBy, .
These denote the first k,, , and last k,, , batches of the product, accordingly, as defined by
the cyclic heuristic. Notice that we choose to define the sequencing constraints between
batches of different products only for the first and last batches of the products. The
sequencing of the rest of the batches between different products are irrelevant, due to
constraints (2.17) and (2.18) and would only increase the size of the model without
providing any useful information. As a result, the model’s size remains as small as
possible allowing for a faster solution. Constraints are defined only for p<p’, a known

technique used in the general precedence framework for model size reduction, therefore

the complementary constraints (2.20) and (2.22) are required.
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Quality constraints. Constraint set (2.23) enforces the waiting time between the

preparation and the sterilization stage to be less than a specific limit Q,. This limit

ensures the safety and quality of the final product.

Vpel,nel!,bePB  ,s=1 (223)
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Objective. Goal of the MILP model is the minimization of the total production makespan
C™%*, whichis expressed by the following constraints:
. Vpel’,nel”,bePBL , ,
c™2C . . p ! P (2.24)
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2.3.1.3 Decomposition strategy

The complexity of the examined plant is such that an exact method cannot solve
the scheduling problem in a reasonable CPU time. Therefore, a two-step decomposition
algorithm is employed to split the initial problem into several tractable subproblems.
First, the weekly scheduling problem is decomposed in a temporal manner into n daily
scheduling subproblems, depending on the number of time periods in the considered
horizon. Then, an order-based decomposition is utilized to solve the daily scheduling

problem for a specific number of products in each iteration. Figure 2.4 illustrates the
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flowchart of the proposed solution strategy. At first the batching subproblem is solved to
translate the product orders into batches. Afterwards, the number of orders to be
scheduled in each iteration are set. Then, the MILP model is solved for the specified
subproblem area (day and number of products) and all binary variables (unit allocation,
sequencing) are fixed. In contrast, the continuous variables are reoptimized after every
iteration, thus increasing the flexibility of the solution strategy. When all orders are
scheduled for a given day, all variables are fixed, and the algorithm continues to the next

day. Finally, when all days are considered, the complete optimal schedule is generated.

( : Fix all variables
Plant Data it

Go to next day

k4

Solve Set End of Set Solve
batching 1nser:t10n hotizon? subproblem —» MILP
subproblem policy area
YES
Fix binary
Complete variables. Next «
Schedule
set of orders

Figure 2.4: Flowchart of solution strategy implementing a two-step decomposition
algorithm

2.3.2 Approach B: Aggregated production scheduling of mixed batch and
continuous processes

Inthe previousapproach we have stressed the importance of efficiently modelling
the sterilization stage, due to the combinatorial complexity it introduces to the model.
Therefore, a cyclic heuristic has been proposed to reduce the involved constraints and
decisionvariables.In thissectionwe present an alternative approach that further reduces
the items involved with the sterilization stage. In fact, this stage is completely omitted
from the optimization model with the introduction of a novel aggregated approach that
however incorporates all significant considerations related to the sterilization stage.
Conclusively, more efficient models are generated that provide faster, feasible solutions,
which howeverdo notinclude detailed decisions for the sterilization stage. The improved

efficiency allows for the consideration of more complicated objectives, e.g., changeover
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minimization,impossible to be studied in reasonable CPU times using the first approach.
Moreover, a unified scheduling horizon is employed that increases the production
flexibility of the plant, since the production process of an order can last multiple days.
This approach also includes a useful extension for many industries. Often equipment is
shared between processing lines, therefore an additional set of constraints is included
that considers the case where some packing lines may share the same labelling machine.

Of course, this can be easily extended to any type of shared resource.

Two MILP models are presented to efficiently address the scheduling problem of
a multistage multiproduct industrial facility. The firstis based on the general precedence
framework, while the second is inspired by the unit-specific general precedence
formulation (Kopanosetal. 2009). Specific characteristics ofthe production are exploited
to formulate aggregated models, that significantly simplify the problem. However, the
combinatorial complexity of the examined problem is still prohibitive for the
straightforward application of these models in large-scale problem instances using any
known solver, like CPLEX. Therefore, we also investigate a decomposition strategy, that

allows for the fast generation of feasible schedules.

2.3.2.1 Conceptual model design

Using MILP-based frameworks to model all processing stages together leads to
problems that are intractable with the current computational power. This is mostly due
to the large number of involved items, in particular, processing stages, units and products.
A commonway of addressing complicated problems using low computationaltimesis the
simplification of the overall process by solely focusing on the scheduling of a specific
stagethat constitutesa production bottleneck. Unfortunately, such an assumption cannot
be done in this problem since the production bottleneck shifts according to the demand
profile. Therefore, other ways of reducing the problem’s complexity, however without
generating infeasible schedules, must be investigated. One of the main sources of
increased combinatorial complexity is the batch process, since in contrast to the rest of
the processing stages, each product can be processed by any of the available machines.
Unfortunately, we cannot neglect it entirely. However, it is noticed that the scheduling
decisions related to the batch stage, do not affect the quality of the final schedule. This

occurs, since all batch processing machines are identical and as such no sequence-
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dependent setups exist. Therefore, the inclusion of the batch stage is a potential source
of degenerate solutions. For instance, let us consider a simple case, in which only two
sterilizers ST1 and STZ existand two products P1 and P2 are to be scheduled. Note that
alternate allocation decisionsi.e. {P1 = ST1; P2 - ST2}or {P1 - ST2; P2 - ST1} are
equivalent, since the batch time for both products is the same using any machine. The
same holds for the sequencing decisions. Since no changeovers exist, it does not matter
whether P1 is processed before P2 or vice versa. Based on this observation, the batch
processing equipment can be viewed as a finite renewable resource, similar to e.g,
manpower. Therefore, while it is not explicitly modelled, it is indirectly incorporated in
the model. Feasibility constraints related to the availability of time and units are imposed.
These constraints ensure that: a) enough time between the continuous processes of a
product exists for the required batch process and b) that at any time point there is
available equipment to complete the batch process. Consequently, the process is reduced
to a purely continuous one, consisting of two stages and a number of feasibility
constraints for the batch stage in-between. The use of this aggregated approach

significantly reduces the combinatorial complexity of the problem at hand.

To exploit the benefits of both time representation approaches, a mixed discrete-
continuous time representation is used. The size of the problem necessitates the
employment of a continuous-time representation, since fewer variables are required and
smaller, easier solvable, models are generated. However, a known disadvantage of this
approach is its inability to efficiently monitor the consumption and/or availability of
resources (Floudas and Lin 2004). This is an extremely important feature that must be
included in the model since batch equipment is described as a renewable resource.
Therefore, a discrete-time grid is employed on top of the continuous one. More
specifically, all scheduling decisions related to the continuous stages are modelled in the
continuous timeframe, but the feasibility constraints are expressed using the discrete-
time grid. The solution quality depends strongly on the duration of the time periods. A
finer discretization results to more exact solutions, but to larger and more difficult to be
solved models. Multiple tests have shown that a duration smaller than the fastest batch

process is adequate since good schedules are generated in low computational times.

In order to further illustrate how time is represented in the developed models, let

us consider the simple case illustrated in Figure 2.5. In this example three products P1,
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P2 and P3 are scheduled, over two continuous processing lines (FS_1 and FS_2) and one
packing line (P_1). The continuous timeframe determines, where each product is
processed in the continuous processes (Y ; ,),in whatsequence (Xﬁp,p,, Xj"p'p,) and exact

timing (L p, Cs ,)- Simultaneously, the timing decisions are mapped on the discrete-time

s,p’
grid. Atthis point, itis assumed that a sterilization process takes place in all discrete-time
points between the two continuous stages. This is denoted in the figure by the coloured
blocks on top of the discrete grid, whose height expresses the number of sterilizers

required for each product. This number is extracted by the following simple heuristic:

Sterilization time of a batch

Number of sterilizers (kp) = Packing time of a batch

, that allows for a constant production in the packing stage while using the
minimum number of sterilizers. It must be noticed, that while a fully continuous process
is modelled, thisonly occurs due to the employed aggregated approach. In reality, a mixed
batch-continuous process takes place, and each product-lotis split into multiple batches
in the batch stage. This process characteristic must be considered. In Figure 2.51itis clear
that the batch processing units are occupied between two time points, one being a little
bit later than the start of the first continuous stage and the other a little bit earlier than
the completion of the packing stage. This happens since the batch process will only start
after processing the first batch in the continuous stage and will stop once the last batch
enters the packing stage. A properly small period duration must be employed, to ensure
a good quality of the results. At each time point, the total number of batch processing

units used are monitored and bounded to not violate the maximum resource limit.
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Figure 2.5: Time representation: a) continuous timeframe; b) discrete timeframe

2.3.2.2 General precedence model (M1)

All models based on the general precedence framework are significantly smaller
compared to models generated using other continuous MILP frameworks. This is due to
the fewerrequired constraints, makingthe general precedence model attractive for large -
scale scheduling problems. For the problem under consideration, we propose an MILP
model based on the aggregated approach presented in the previous subsection and the
general precedence framework. Next, we present the developed model, categorizing the

constraints according to the type of decisions they subject to.

Allocation constraints. Constraints (2.25) ensure that all products p, to be scheduled
within the time horizon of interest, will be processed by a single unit j in every stage s,

using the binary allocation variable Y; ; ,. Constraints (2.26) activate the unit utilization
variable V;. In particular, they state that a unit is used (V; = 1), whenever at least one

product is processed by it (Vs ;, = 1).

> Y,,=1 Vpell,seS (2.25)

JeUP,AJS;)
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V>Y Vpellje(JP,,NJS, ).S€S  (2.26)

J s.Jj.p

Timing constraints. Constraints (2.27) define the connection between the starting

Lg, and the completiontime Cs,, of every product p at each stage s. Since all orders are

completedin a single campaign the required processing time can be simple calculated by

dividing the demand by the given processing rate t;, = Tfﬁ’te. Constraints (2.28) state

Jp

that the completion time of a product p in each stage s mustbe larger than the necessary

processing time of the product 7;,, plus the processing times of all products p’that are

: ; : G
previously processed in the same line (X, ,,

=1). In the next constraints, the
synchronization of production between stages is guaranteed. More specifically,
constraints (2.29) ensure that the starting time of the packing process of a product, is
larger than the starting time of the first process, plus the processingtime of the first batch
inthe first stage ng and the required sterilizationtime 7,,**". Similarly, constraints (2.30)

guarantee the synchronization of the completion times in each stage.

Cop=L,t 2 (@, Y,) Vpel” seS (2.27)
Jje(JP; ,NJS; ) p
Cs,p 2 Z (T/‘,p 'Ys,/‘.p)
je(JP,AJS,)
Vpel” seS .
D SR MG AR pelise (228)
/'E(llgjﬁ/P',-f'WIS/v)p'ePpif' ,P#D'
FB ster .
L,2L.,+ 3 (5, )+, Vpel”,s=2 (2.29)
JeUP, ,0JS; o 4) P
LB ster .
Cs,p ZCs—l,p-l_ Z (T/’,p'ys,j,p)-l_z-p VpE[;H,SIZ (230)

je(P; ;0S5 )

Sequencing constraints. To ensure the proper sequencing of production, big-M
constraints (2.31) and (2.32) are employed. The big-M parameter is set equal to the
duration of the scheduling horizon. According to constraints (2.31), the starting time of a
product p’processed after another product p in the same unitj, is forced to be larger than
the starting time of product p plus the required processing time and the necessary
changeovers y;,, ,,. Notice that these constraints are only defined for p<p’, therefore the

complementary constraint set (2.32) mustbe introduced.
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G
L =L+t Y 4y -M-(1-X° )-M-2-Y -V )

s S, P s,Jjp S, J,p

‘v’pe[[’;”,p'eP[:f’,SES,p<p',
je(PP,, .NJS, ) (2.31)

-M-(X°

L >L +7. .Y ,
s,p s,p 5P 4

Lty
s "V jp

)-M-2-Y,, Y, )

$.],P

Vpell,p'ell,seS,p<p'
je(PP, . NS, ) (2.32)

Tightening constraints. Constraints (2.33) impose that a general precedence
variable between two products is active, only when both products are processed in the
same unit. On the other hand, constraint set (2.34) guarantees that in case both products

p and p’are processed in the same unit j, then product p may be either processed before

product p’ or vice versa. In order to satisfy the given due dates rg, constraints (2.35) are
introduced.
. . ‘v’seS,pe/}’;”,p'e[";’f,p;«ép',
. < .
2 (X/',p.p' +X/,p',p) - Ys,j.p +Y;./UP' J € (/PP,-,p-,p m/S/.,S) (2.33)
. ; ‘v’seS,pe/}’;”,p'e[";’f,p;«ép',
< .
$.J.p +Ys./’.p' - V/ +X/',zwv' +X/',P'.P J € (/PP,-,p_p- m/5,-_5) (2.34)
< ¢ in
C,, <t VseS,pel] (2.35)

Sterilization feasibility constraints. Constraints (2.36) - (2.39) utilize a discrete-
time grid to enforce the sterilization stage-related feasibility constraints. The auxiliary
binary variables X3, and Z37, are introduced to define the binary variable CR;7, that is
activated when a sterilization process occurs for a product p in time period n. In
particular, constraints (2.36) enable variable X;7, forall time periods after the completion
ofthe firstbatchin the filling and sealing process, plus a waitingtime W, betweenthe two

processes. This variable is bounded to be less than @, hours, to ensure final product

safety and quality. The exact time of each time period is calculated by the term § - n, with
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6 being the duration of each time period. Thus, constraints (2.36) define the beginning of
a sterilization process for a product p. Similarly, constraints (2.37) set the completion of
the sterilization process, by activating the corresponding variable Z3",, for all time
periods before the time point defined by the completion of the preparation process, plus
the waiting time and the required sterilization time. It is assumed that the waiting time
for both the firstand last batch are equal, since defining two separate variables does not
affect the quality of the solution, while the size of the model is further increased.
Constraints (2.38) impose that a sterilization process for product p (CR3}, = 1) takes
place for those time periods n, that both X%, (the process starts before n) and Z;7, (the
process finishes after n) are activated. Figure 2.6 illustrates graphically the role of each

variable in the feasibility constraints.

First processing stage

=T

FB

bE)

ter
T

xg= 1
L | | | | | | | | | | | IZgI%'I I= | | | | | | | | | | |

CRT = 1

>

Figure 2.6: Explanation of binary variables introduced for the sterilization stage
feasibility constraints

Finally, constraints (2.39) impose the resource capacity limitations for the
sterilization stage. The number of sterilizers used for each product is defined by
parameter k,, thatis only enabled when a sterilization process occurs for this product. It
is ensured that at each time point the total number of used sterilizers is less than the

available resource v°T.
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Extension - Labeller constraints. A significant resource limitation in many
industrial facilities is the utilization of a single labeller machine in multiple packing units.
Hence, these units cannot operate simultaneously. These design constraints must be
considered to ensure the generation of feasible schedules. Therefore, we employ

constraints (2.40) - (2.45), which were first proposed by Kopanos, Puigjaner, and
Georgiadis (2011). The global sequencing variables X].L,’p,'j'p are introduced for each pair
of products p’and p thatare assigned to different packing units sharing the same labeller.

Constraints (2.40) and (2.41) impose that variables X ].L, o jp are activated when product

p’starts in unit j’ before product p starts being processed in another unit j. In constraints
(2.42) a very small number A is added to cope with the special case of two products

starting at the same time. Auxiliary variables Z]I.‘, o' jp are active whenever product p’ is

completed in unit j” after the starting time of product p in another unit j, as constraints

(2.43) state. Finally, binary variables CR].L,_p,J.,p are added, which denote that the

production of p’in j’ overlaps the one of p in unitj. As imposed by constraints (2.44), the
variables are active only when both auxiliary variables are equal to one. Finally,
constraints (2.45) do not allow any overlap in the production of products in lines sharing

the same labeller machine.

V E]in, .E P ,D< 1
L '_Ls,pSM'(l—Xf.‘p.‘/,pHM-(Z—Y _Y pel ,jeJP ,p<p

' o 2.40
- sgp Csp ) je (/Pj,p M CL]._]..),]" € /P/..'p, ( )

Vpel”,jeJP. ,p<p'
L )
L ~L <M-X.  +M-Q2-Y -V 4 Jp (2.41)
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Objective. Goal of this model is the minimization of the production makespan (2.46).

C"2C VpeP,s=2 (2.46)

2.3.2.3 Unit-specific general precedence model (M2)

Despite their computational prowess, general precedence models cannot be used
when changeover minimization is the main overarching goal of the scheduling problem.
To consider this objective, a unit-specific general precedence model is developed. This
model (M2) is very similar to the previously presented M1 model, sharing most
constraints, with the main difference being the introduction of immediate precedence

variables X! More specifically, model M2 consists of constraints (2.25) - (2.27), (2.29)

],0,p""
- (2.45) and the following:
Cs,ﬂ 2 Z (T/‘_p .Y;.j,p)
je(JP,nJS ;)
7 . G . v EPI'H‘S ES .
" Z Z (X/.p'.p y/',p',p +X/‘,p',p z-/'.p') P p (2 4'7)
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Constraints (2.47) constitute an alteration of constraints (2.28), since they
guarantee that the completion time of a product p in stage s is larger than the required
processing time, plus the processing time of all previously completed products in the
same line, plus the changeover between product p and its direct predecessor p’. In
contrast to model M1, a single set of sequencing constraints (2.48) is required, which
forces the starting time of product p’ to be larger than the starting of product p that is
processedright before it, plus the processingtime of p and the required changeover time.
Fouradditional tightening constraints are employed. More specifically, constraints ( 2.49)
state that the total number of processed products in a unit in each stage mustbe equal to
the sum of enabled immediate precedence variables in that unit plus the unit activation
variable. Constraints (2.50) and (2.51) impose that at most one product p’ is processed
right before or after p. Finally, constraints (2.52) guarantee that a product p can be an
immediate predecessor of another product p’only if it is also a general predecessor. The
objective of model M2 is the minimization of the total changeover time CH , as depicted

by constraint (2.53).

2.3.2.4 Decompositionalgorithm

The aggregated modelling approach presented in the previous subsection
significantly reduces the combinatorial complexity of the problem. However, the direct
solution of the MILP model in real-life industrial problems still requires large
computational effort, thus resulting in intractable case studies. Moreover, the industry
requires the fast solution of the weekly scheduling problem. This will allow production

engineers to undergo multiple what-if analyses, and promptly encounter any order-
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related uncertainties, like sudden change in demands, cancellations, or arrivals of new
orders. The main goal of this study is to generate fast near-optimal schedules, which will
be readily available to the decision-makers. Thisis essential for the developed strategyto
be potentially used as the core of a future computer-aided scheduling tool that will be
utilized by the production engineers. Therefore, to satisfy the prerequisites set by the
industry a decomposition algorithm is employed, that further reduces the complexity of

the optimization problem.

An order-based decomposition algorithm is employed to split the initial problem
into smaller subproblems. The final schedule is generated iteratively. In each iteration,
only a subset of the original set of product orders p € I{;" is scheduled. Therefore, the
generated MILP models are smaller and can be solved much faster. A characteristic of the
developed approach, that strongly affects the quality of the solution, is the insertion
policy, which consists of: a) the way products are sorted and b) the number of products
optimally scheduled in each iteration. Regarding the first decision, multiple possible
sorting algorithms were studied. The best solutions were extracted when sorting from
largest to smallest product order size was chosen. This may not be trivial but can be easily
justified sincelarger orders occupy more time in the scheduling horizon. So, in case other
smaller orders are scheduled first, this may be done in a manner that does not allow for
the optimal placement of the larger orders. The second decision is a user-defined
parameter (o). Larger values result in better solutions since the initial problem is less
decomposed, but on the other hand, require more computational time. Thus, the value of
this parameter must be set as high as possible, but not so large that the computational

limitations of the examined study case are not met.

In Figure 2.7 a schematic representation of the developed solution strategy is
presented. The input in this method is the plant data provided by the ERP system and
Manufacturing Execution System (MES) and the insertion policy as defined by the user.
In the pre-processing step the orders are sorted according to the preferred sorting
algorithm and then the batching algorithm calculates all batch related parameters. Then,
the scheduled problem is solved through an iterative method. The first o products are
inserted in the aggregated models presented in the previous subsection and the MILP
model for the specified subproblem area is solved. The selected model depends on the

scheduling problem’s overarching goal. In particular, for makespan minimization, model
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M1 is used, while model M2 is employed when changeover minimization is the main
objective. Afterward, the unit allocation and the general precedence variables are fixed
for the subproblem area. All other related variables, like the utilization of sterilizers and
the completion and starting times for the products already scheduled can be freely
adjusted in the next iterations to ensure flexibility and improve final results. Then, the
algorithm returns to the initial step of the iterative method and the next set of products

isinserted. When all product-orders are considered, the complete schedule is generated.

Plant data
from ERP User-defined

and MES insertion policy

Pre-processing

Orders sorted
based on = el
insertion policy

Batching
algorithm

Fix unit allocation and
Insert next o Solve MILP general precedence
products subproblem binaries for the
subproblem space

2\

All orders
scheduled?

Optimization-based

\ decomposition

Final Schedule

Figure 2.7: Optimization-based solution strategy

In Figure 2.8 an illustrative example displaying the allowed and forbidden

sequencingdecisions,when employing the decomposition algorithm, is presented. In this
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simple example, we assume that only one unit exists. Two products have been already
scheduled, while in the current iteration, just one product is newly inserted. It is
illustrated, that the new product can be freely placed anywhere in the scheduling horizon
and in any sequenceto the others. However, the sequence betweenthe already scheduled
products is set and therefore cannot be changed. Notice, that the immediate precedence
variables are not fixed when model M2 is used. Thus, the flexibility in changing decisions
in future iterations of the iterative method is increased, which leads to schedules closer

to optimality.

Already scheduled AHO‘,N?d sequencing
roducts ——— 3 decisions for newly
P inserted product

Newly inserted
product

> Forbidden sequencing

decisions

Figure 2.8: Flexibility of sequencing decisions

2.4 Computational analysis

Inthis sectionwe display the efficiency of the proposed mathematical frameworks
using a small illustrative example. We consider a multistage multiproduct facility,
consisting of three processing stages. The first stage comprises of two continuous lines,
next follows a sterilization stage consisting of two batch units and finally the products are
packaged in two packing lines. A total of 25 products are produced during the 5-day
scheduling horizon. Each product can be processed by any of the available sterilizers, but
only by a subset of the continuous lines as shown in Table 2.1, where {S1_L1; S1_L2} and

{S3_L1;S3_L2} are the available processinglines of the first and second continuous stage
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accordingly. The problem definition is slightly different for the two developed solution
strategies. Approach A considers a daily demand with different orders for each product
within the studied horizon. Moreover, it is assumed that the plant shuts down at the end
of every day for maintenance purposes. On the contrary, Approach B is considered with
a weeklydemand withvarious due dates for each product order, while the plant operates
24/7. In addition to makespan minimization, approach B is employed also for the
minimization of changeovers. Detailed data for the considered example are provided in
Appendix A. All instances are solved using the GAMS interface and the CPLEX solved in a
PC witha 1.8Ghz CPU and 8 GB of DDR4 RAM.

Table 2.1: Products that can be processed by the available continuous processinglines

S1.L1 S1L2 S3L1 S3_L2 S1 L1 S1L2 S3.L1 S3.L2
P1 1 1 1 P14 1 1 1
P2 1 1 P15 1 1 1
P3 1 1 1 P16 1 1
P4 1 1 1 P17 1 1
P5 1 1 P18 1 1 1
P6 1 P19 1 1
P7 1 1 P20 1 1 1
P8 1 1 1 P21 1 1 1
P9 1 1 1 P22 1 1 1
P10 1 1 P23 1 1
P11 1 1 1 1 P24 1 1 1
P12 1 1 P25 1 1 1
P13 1 1 1

2.4.1 Approach A

Due to the small size of the examined example, only a temporal decomposition of
the problem is employed. In each iteration of the algorithm, the daily schedule for all
orders is optimized. An optimalsolution that minimizes the production makespanin each
individual day is extracted in just 1.7 CPU seconds. Table 2.2 shows the optimal objective
value for each day, as well as the solution statistics for each daily MILP-subproblem. All
orders are satisfied within the available horizon, while in some cases (day 2 and day 3)
the optimal schedule is completed very fast, displaying the increased productivity
potential of the studied facility. Notice that the solver spends most computational
resources on the optimization of the first day, which happens to create the largest MILP-

subproblem. It is shown that a low number of equations and variables is necessary for
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the representation of this small, however complicated scheduling problem. As a result,
optimal decisions can be taken instantaneously. Figure 2.9 Illustrates the Gantt chart of

the optimal schedule for all processing stages. Each coloured block signifies a processing

task of a batch/lot in the corresponding continuous line or sterilizer.

Table 2.2: Solution and model statistics using approach A on the illustrative example

Objective . Continuous Bina
Day vallle (hr) Equations Variables Varls;y CPU (s)
1 22.29 615 128 248 1.55
2 19.71 226 80 92 0.05
3 13.18 163 48 72 0.03
4 23.69 220 56 93 0.02
5 20.26 121 80 52 0.02

2.4.2 Approach B

First, we considerthe minimization of the production makespanemploying model
M1 in the context of the solution strategy developed in approach B. The size of the
problem allows for a monolithic approach without the use of the proposed order-based
decomposition strategy. Model M1 generates an optimal schedule with a minimal
makespan of 71 hours in just 18.8 CPU seconds. The solution strategy achieves an
improved synchronization between the processing stages and optimally exploits the
available resources leading to a schedule which denotes that the plant’s productivity can
be significantly increased. The resulting model consists of 7563 equations, 8032 binary
variables and 126 continuous variables. Notice the high number of binary variables,
whichoriginate from the utilizationof a discrete time horizon required for the introduced
feasibility constraints. However, the model is tight enough and can provide optimal
solutions in low computational times. Figure 2.10 presents the optimal Gantt chart of the
continuous stages for makespan minimization. Due to the employed aggregated
approach, detailed optimal decisions are not generated for the sterilization stage.
However, the available sterilizes can realize the proposed optimal schedule without

affecting the solution quality.
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Figure 2.9: Gantt chart for makespan minimization extracted using approach A

Furthermore, we examine the impact of the decomposition strategy on the
extracted schedules. Therefore, three decomposition scenarios are tested. In particular,
the mathematicalframework of approach B is employed usingi) a 1-by-1,ii) a 5-by-5and
iii) a 10-by-10 insertion policy. The comparative results are shown in Table 2.3. As

expected, the holistic approach provides the best possible solution, while a finer
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decomposition (schedule optimized for fewer products in each iteration) leads to faster
but worse solutions. An interesting conclusion is drawn by the fact that the solution
extracted by aless fine decomposition (10-by-10)isonly 5% worse than the one provided
by the monolithicapproach, whenitrequires only a tenth of the CPU time, thus displaying
the effectiveness of the proposed mathematical framework. This is even more evidentin

larger problem instances and is further discussed in subchapter 3.2.

Table 2.3: Comparing the solution for various decomposition approaches

Insertion Objective CPU Improvement

policy (hr) (s) (%)
lby1 88 0.5 -23.94
5by 5 80 1.5 -12.68
10 by 10 75 1.8 -5.64
Monolithic 71 18.8 0

Next, the same problem is examined but with the overarching goal being the
minimization of changeovers. Therefore, model M2 is used. Compared to the
minimization of makespan, minimizing the total changeover time is a more challenging
task. Monolithically solving the model without the incorporation of a decomposition
algorithm, cannot provide an optimal solution within a reasonable computational time
(900 s) for the problem at hand. The best schedule is generated when utilizing a 10-by-
10 insertion policy in the proposed decomposition algorithm. The solution strategy
achieves a minimal changeover time of 10.4 hours and generates the optimal schedule

illustrated in Figure 2.11 in just 16 seconds.
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Figure 2.10: Gantt chart for makespan minimization extracted using approach B
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Figure 2.11: Gantt chart for changeover minimization extracted using Approach B
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2.5 Conclusions

This chapter considers the optimization-based scheduling of multistage
multiproduct facilities with mixed batch and continuous processes. The problem under
consideration illustrates significant complexity, due to the mixed type of processing
stages, and the numerous shared resources. The inherent complexity of this type of
problems requires the development of novel solution strategies. Two new mathematical
frameworks were proposed, both consisting of three main pillars: i) a common pre-
processing step for the batching subproblem, ii) an MILP model and iii) a decomposition
algorithm. Core of the first approach is a new precedence-based model that cleverly
reduces the size of the generated models by utilizing a cyclic allocation heuristic in the
sterilization stage. In the second approach a novel set of feasibility constraints is
introduced in two precedence-based models, one for makespan and one for changeover
minimization. Bothapproaches display distinctstrengths.Inapproach A, detailed optimal
schedules for each processingstage are generated. Approach B considers the sterilization
stage in an aggregated way, thus ignoring detailed scheduling decisions. This approach is
computationally more efficient and can also consider the changeover minimization
objective. As shown in the computational analysis, both methods can efficiently deal with
the scheduling problem under consideration and can be used according to the specific
goals of the optimization, the plant design and the operational characteristics. The
considered make-and-pack structure (one or multiple batch or continuous processes
followed by a packing stage) is typically met in most food and consumer packed good
industries, but also in other type of industries like pharmaceuticals and specialty
chemicals, hence the developed mathematicalframework canassistthe decisions makers

in a great variety of process industries real-life scheduling problems.
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Nomenclature
Indices

p.p'eP  products to be processed within the scheduling horizon

b,b'e B batches of products required to fulfil the order

J,j'e] processing units

seS processing stages

neN time periods of considered horizon
Sets

Common for both approaches
i subset of products being optimized in an iteration of the decomposition
? algorithm

/Pj,p Mapping set defining the units j that can process product p

/Sj's mapping set defining lines j that belong in stage s

/PP,',,,,pv mapping set defining units j that can process both products p and p’

Approach A

I days considered in the decomposition algorithm

PBp,b,n denotes the batches b of product p processed in period n

SBPI,, orders of product p in period n that comprise of a single batch

Cycp,b'n batches b of product p in period n thatare first in the cyclic heuristic
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PBLP,I,'H last batch of product p in period n
FCBP‘b‘n subset denoting the first K, batches of product p in time period n
LCBP‘M subset denoting the last K, batches of product p in time period n
ST, subset of s denoting the sterilization stage
CS, subset of s denoting the continuous stages
FST, first sterilizer
LST, last sterilizer
Approach B
CL

I’

packinglines j and j’ utilizing the same labeller device

Parameters

Common for both approaches

rate

processing rate of each product p processed by continuous line j

J.p
Y;pp  changeovertimerequired between product p and p’processedin line j

o sterilization time required for each product p
Zp capacity of cart when filled with product p
7 number of carts to fill each sterilizer
o Maximum allowed waiting time between the preparation and the

p
sterilization stage
M big-M number
Approach A

Tion processing time of each product p processed by continuous line j
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o processing time for the first batch of each product p processed by
T continuous line j in period n

" processing time for the last batch of each product p processed by continuous
T line j in period n

number of sterilizers for each product order p used according to the applied
For cyclic heuristicin period n
Son demand for product p in period n
H;_n number of carts used for product p in period n
Hﬁ,n number of batches used for product p in period n
n;’i number of full batches used for product p in period n
qﬁi quantity of product p processed in a full batch in period n
q;’i] quantity of product p processed in the last batch in period n
Approach B

T processing time of each product p processed by continuous line j

s processing time for the first batch of each product p processed by
fe continuous line j

" processing time for the last batch of each product p processed by continuous
e line j

number of sterilizers for each product order p used according to the applied

" cyclic heuristic
5 due date for product p
<o demand for product p
ny number of carts used for product p
) number of batches used for product p
ny’ number of full batches used for product p
q,’ quantity of product p processed in a full batch
q,’ quantity of product p processed in the last batch
v number of available sterilizers
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A a very small number
Variables
Binary
Approach A
.5 =1 when product p is processed in unit j in processing stage s and period n
)_/,,,b,,-,,, =1 when a batch b of product p is processed in sterilizerj in period n
F . . . a1s .
iy =1 when the first batch of product p is processed in sterilizer
XM,’S =1 when product p is processed before product p’in stage s
Approach B
s)p =1 when product p is processed in unitj in processing stage s
V/ =1 when unitj is being utilized
/.G‘p‘p, =1 when product p is processed before product p’in unit;j
I . . ,. ..
oy =1 when product p is processed right before product p’in unitj
s =1 when product p’starts being processed in unit j’ before or exactly p at
7777 the time that product p starts in unit j
B =1 when product p’ is completed being processed in unit j’ after the
7P starting time of product p in unit j
L . S . ..
i»p =1 whenthe productionof p”in j’ overlaps the one of p in another unit
X ;Z auxiliary variable for CR;Z
Z an auxiliary variable for CR;Z
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ST
CRP‘H

=1 when sterilization process for product p takes place for those time

periods n,

Continuous

Approach A

p.b,s,n

completion time for batch b of product p in processing stage s and period n

starting time for batch b of product p in processing stage s and period n

p.b,s,0
shsn Waitingtime of processing batch b for product p between stages in period n
Approach B
Cs,p completion time for product p in processing stage s
lep starting time for product p in processing stage s
Wp waiting time between stages
Objectives
CH total changeovertime
C oo makespan
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Chapter 3

Real-life Industrial Applications

3.1 Introduction

The importance of applying optimization-based scheduling solutions on real-life
industrial cases is widely recognized. However, only a few successful industrial
applications are reported, e.g. in the Dow Chemical Company (Wassick and Ferrio 2011),
despite key research developments in the field of production scheduling (Georgiadis et
al, 2019a). The main reason for this disconnect between academia and industry is the
fact that most contributions address small- or at best medium-sized problem instances,
that do notrepresent the size and complexity of real-life industrial facilities. Hence, there
is a continuously growing interest in solving large scheduling problems. It must be
however emphasized, that the successfuluse of computer-aided scheduling tools by the
industrial operators and managers, is not solely dependent on the efficiency of the
proposed solution strategies. Numerous practical issues need to be resolved prior to the
on-site application, like ease of use, development and maintenance of the application,
stable system integration, and ability to dynamically make minor adjustments and adapt

to new information.

Food industrial facilities display characteristics like intermediate due dates,
multiple mixed batch and continuous production stages and product quality/safety-
related considerations, that substantially complicate the optimization of the scheduling
decisions. The above considerations combined with market trends that impose the
gradual expansion of the product portfolio, product demand profiles which are
characterized by high variability and low volumes and many identical production units
and shared resources, make the application of optimization-based scheduling solutions

in real-life industrial problems extremely challenging.

In this chapter we address the real-life optimal scheduling problem of a large

multistage multiproduct facility that comprises of both continuous and batch processes.
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Researchers have considered a plethora of industrial case studies from various
subsectors of the food industry in the last decades. However, most studies focus on small
to medium-sized problems (Doganis and Sarimveis (2007), Simpson and Abakarov
(2009), and Liu et al,, (2010)) or simple production processes (Kopanos et al., (2010a),
Sel et al, (2017) and Georgiadis et al, (2019b)). The process under consideration is
characterized by many involved items in terms of processing stages, available units and
products to be scheduled. Moreover, tight operatingand design constraints, as well as the
need to generate near-optimal schedules in low CPU times, lead to a scheduling problem
of extreme combinatorial complexity, that has never been systemically examined and
efficiently solved in the open literature. Therefore, we employ the frameworks proposed

in chapter 2 to successfully address a real-life large-scale industrial scheduling problem.

3.2 Industrial Problem

Areal-world food processindustryis considered in this chapter. More specifically,
the scheduling problem of the Spanish industry Frinsadel Noroeste S.A.,one of the largest
canned fish producersin Europe, is addressed. The studied facility can produce more than
400 product codes, a number that is constantly increasing, to cover market needs and
fulfils more than 100 orders every week. The production process is extremely
complicated, comprising of several, batch, and continuous processes. In order to simplify
the description of the production process, we identify four major processing stages, in
particular, thawing, filling and sealing, sterilizingand packing, each consisting of multiple
parallel units (Figure 3.1). Initially, the fish arrives in tracks in the form of frozen blocks,
which are defrosted in the thawing stage. Then, the blocks are cut in the proper size and
filled in cans along with other ingredients (e.g., tomato-sauce, oil, brine etc.) according to
the product’s recipe. In the same processing stage, the cans are sealed and transferred
into carts. Afterward, the carts are manually inserted in the sterilization retorts. Each
sterilizer has a capacity of nine carts. To avoid the growth of bacteria, the transfer
between the filling and sealing lines and the sterilization retorts must guarantee a near
zero-waitpolicy. Therefore,no morethan two hours mustelapse betweenthe completion
of the filling and sealing process and the initiation of the sterilization process. The
sterilization process is critical for food safety and final product quality. The cans are

heated at a temperature of around 110°C, which is maintained for a specific time,
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ensuring the targeted bacteria lethality, and finally, they are cooled down to room
temperature. Depending mainly on the size and shape of the cans, but also on the type of
fish and the rest of the ingredients, the duration of the sterilization process varies from
82 to 180 minutes. Horizontal retorts are used, while the temperature is managed
through a water spraying system. After the completion of the sterilization process, the
carts are manually extracted from the retorts and are transferred to the packing stage,
where the cans are packaged in the final product form (single, 6-pack, boxes etc.). An
important operation of this stage is labelling. However, not all packing lines have an
individual labeller. In particular, lines 1-2 and 5-6, share the same labelling machine,
therefore they cannotoperate simultaneously.Finally, after the completion of the packing

stage, the end products are stored in the warehouse, to be distributed in the market.
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Figure 3.1: Process description

The plant can be described as a multistage, multiproduct facility that combines
both batch (thawing, sterilizing) and continuous (filling and sealing, packing) processes
with multiple parallel units. In particular, four thawing chambers, eight filling and sealing
lines, 16 sterilizers and ten packinglines exist, making up a total of 38 available units in

the whole production process. Moreover, more than 100 different products are to be
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scheduled in a weekly basis. Consequently, an extremely large number of involved items
is reported, making the scheduling problem under study extremely complex. One should
also consider that the order-sizes are usually larger than the sterilization chamber’s
capacity, therefore each order is split into multiple order-batches, thus significantly
increasing the total number ofitems to be scheduled. An important feature of the plant is
the high production flexibility. Each product can be processed by all batch units, but only
specific continuous lines, which have different processing rates. Furthermore, the
processing time of each stage significantly varies, thus making the efficient
synchronization of all processes a difficult task. In order to reduce the problem’s size, it
was concluded that the thawing stage can be omitted for two main reasons: a) the
capacity of the thawing chambers is significantly larger than the rest of the processing
lines, b) the defrosted fish can be stored in the chambers for a significant amount of time
(more than 24hours). Therefore, any schedule generated by considering all other stages,
can be fulfilled by the thawing stage. Despite this simplification, the complex mixed batch
and continuous process, combined with the number of production units and orders,
production flexibility and the absence of clear bottlenecks, results to a computationally

exhaustive scheduling problem.

The plant operates from Monday to Friday, however in cases of large weekly
demands overtime operation during the weekend is allowed. Therefore, the short-term
scheduling horizon varies from 5 to 7 days depending on the case study, whereas all
processing units are available 24 hours each day. Most products have a single due date at
the end of the scheduling horizon; nonetheless, some exceptions may occur. Full demand
satisfaction is a prerequisite and orders must be delivered on time, so tardiness is not
allowed. Due to product quality considerations and space-related limitations, once a
product campaign starts in the thawing stage, it must be carried out until the completion
of all processing stages. Moreover, a single campaign policy is favored in the plant,

therefore order splitting is not possible.

In practice, production schedules are generated manually by the plant engineers.
The extreme combinatorial complexity of the underlying problem makes it impossible for
the production engineers to consider the weekly integrated scheduling problem of all
processing stages even using simple heuristicrules. In an attempt to generate a feasible

schedule, they decompose the decision-making process into multiple steps. First, they
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receive the weekly demand from the ERP system and plan the daily production based on
capacity limitations. They consider the filling and sealing stage as the most critical
process, due to the existence of large changeover times. Therefore, a weekly plan for the
filling and sealing stage is firstly generated, so that large changeover times are avoided.
Afterward, this plan is thrown over the wall to the department responsible for the
packing stage, which checks the feasibility of the plan. At this point, there is a constant
back and forth communication until a final plan is achieved. After settling on a weekly
plan, a daily schedule is generated, two days before the day under examination,
separately for the filling and sealing and the packing stage. During the whole procedure,
the sterilizers are not considered at all. The basic rationale of the production engineers is
that the main reason for reduced productivity is the existence of changeover times,
therefore they try to minimize them separately in each stage. This approach is however
myopic since they do not consider at all the synchronization of production between
stages and the limitations imposed by the sterilization stage. Consequently, the actual
schedules vary significantly from the planned ones, thus requiring multiple re-iterations

throughoutthe week.

The complexity of the problem results in a decision-making approach which lacks
efficiency and generates schedules far away from the optimal operation. The
optimization-based frameworks proposed in Chapter 2 consider all involved stages and
constraints which affect the efficiency of the generated schedules. Therefore, they are
applied in this industrial case to assess their efficiency into dealing with real-life

scheduling problems.

All data considered are real and provided directly by the plant’s computer
systems, so they correspond to the industrial reality faced by the schedulers. The demand
is provided directly by the plant’s ERP system, while all operational data, e.g., processing
rates, changeover times etc., are supplied by the MES installed at the facility. Moreover,
MES provides the Overall Equipment Effectiveness (OEE) factor of all processing lines,
which represents any deviations from the lines’ nominal speeds, due to i) equipment
breakdowns, ii) minor stoppages, iii) reduced machine speeds, iv) start-up scrap and v)
product scrap and is calculated based on historical data. Incorporating the OEE factors in
the scheduling problem, provides a way to consider uncertainties on the processingrates,

thus increasing the robustness of the generated schedules. All data are assumed to be
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deterministic, while resources like manpower, steam, electricity etc. are not considered.
All MILP models were implemented in GAMS 25.1 and solved in an Intel Core i7 @3.4Gz
with 16GB RAM, using CPLEX 12.0.

3.2.1 Industrial application of approach A

We first consider the utilization of the detailed optimal production scheduling
process. An industrial study case using real data from the Frinsa production plant is
presented. In total 136 final products are to be scheduled, corresponding to a real weekly
demand from a period with intensive production. Since the developed model cannot
incorporate shared resource constraints, the related labelling constraints are not
considered. To solve this complex case, the proposed solution strategy is utilized. In each
iteration the daily schedule for half of the product-orders was chosen to be optimized.
Goal of the optimizationisthe minimization ofthe daily production makespan. Optimality
is reached for all iterations of the suggested solution strategy. Figure 3.2 illustrates the

complete schedule generated for all units of every processing stage.

Compared to the real weekly schedule proposed by Frinsa, the optimized schedule
of the proposed strategy illustrates interesting results. To satisfy the given demand, the
manually derived schedule by Frinsa, requires the addition of a shift on Saturday, while
the optimized schedule satisfies all orders within five days. The developed mathematical
framework requires approximately one hour of CPU time for the solution of the problem
which is acceptable for offline scheduling. However, it was in the desires of the
production engineers to significantly reduce the total computational time, in order to
allow for fast and efficientrescheduling actions, in case of possible disturbances within
the considered horizon. So, despite the successful application of approach A in a real-life
problem, it was incapable of proposing near-optimal schedules in computational times
acceptable by the industry. Therefore, a more computationally efficient mathematical

framework is necessitated to properly address the problem under consideration.
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Figure 3.2: Gantt chart for makespan minimization using approach A for a real-life
industrial problem
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3.2.2 Industrial application of approach B

The applicability and efficiency of the MILP-based optimization framework
presented in subchapter 2.3.2 is illustrated using real-life, large-scale industrial case
studies, provided by the canned-fish facility.

Relevant labeller constraintsare introduced in the packingstage. In particular, the
pairs of packing lines {P_1; P2} and {P_5; P_6} share the same labelling machine,
therefore it is forbidden to operate simultaneously. The implementation of a discrete-
time grid requires the discretization of the relevant scheduling horizon into equisized
periods. A duration of one hour is chosen for each time period, since the longest
sterilization processlasts 82 minutes.Employinga finer discretization may provide more
exact solutions, but the computational costis prohibitive for the solution of the problem
in reasonable CPU times. A challenging prerequisite set by the production engineers is
the total computational time required for the generation of near-optimal schedules, to be
less than 15 minutes. This may be considered as a relatively small CPU time for weekly
scheduling, however,such alow solutiongenerationtime will allow productionengineers
to run multiple what-ifanalyses and re-run the model whenever new informationarrives
in the plant. Thus, making a future computer-aided tool much more appealing to the

production engineers and plant managers.

3.2.2.1 Problem size reduction

Let us first underline the impact the developed aggregated approach has on the
industrial problem’s size. The multistage, multiproduct, semi-continuous plant under
consideration consists of four processing stages, i.e., thawing, filling and sealing,
sterilization and packing. However, the utilization of the proposed aggregation approach
reduces the optimization problem into two continuous processes (filling and sealing,
packing). Exact schedules are generated only for these stages. However, due to the valid
assumptions and the imposed feasibility constraints of the aggregated approach, the
proposed schedules will be realized by all stages, without violating any capacity or other
limitations. The total number of available sterilizers in the plant is 16 and they are
modelled as a common renewable resource. The reduction of the problem’s complexity
using this approachis illustrated in Figure 3.3, where all possible productionroutes for a

single product are depicted. It is evident that the suggested aggregated approach
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decreases substantially the underlying decisions and results into smaller and more

efficient MILP models.

FILLING AND
[ THAWING H SEALING ]—D[STERILIZINGH PACKAGING]

II

Finished
Product

R

FILLING AND
[ SEALING HSTERILIZING H PACKAGING ] C
Feasibility
Constraints

FILLING AND

SEALING PACKAGING

Finished
Product

Defrosted
Fish [

3 R

ot "
Fih s
RN 29007\

0

Finished
Product

NHSHENEH

=
S

Figure 3.3: Possible production routes of a single product when a) considering the fully
sized problem, b) omitting the thawing stage and c) explicitly modelling only the
continuous stages.

3.2.2.2 Evaluation of the Decomposition Algorithm

The decomposition algorithm constitutes a crucial component of the proposed
scheduling framework, as it allows the solution of this complex real-life problem in a
computational time acceptable by the production engineers and managers of the specific
industry. However, the fast generation of schedules is not the sole purpose of the
proposed method. The quality of solution is essential, and it is the main reason for
employing an optimization-based approach. It is clear, that the quality of the generated
schedules is affected by the decomposition algorithm, as initially was shown in
subchapter 2.4.2. Hence, itis important to evaluate the performance of the algorithm, by
comparing the extracted solution with the truly optimal one. Therefore, three medium-
sized problem instances (I - III) are considered, which correspond to daily demands of

the Frinsa plant. The examined cases display an increasing complexity. In particular, 22,
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31 and 35 products are to be scheduled in cases I, Il and IIl, accordingly. All cases are
solved twice, once for makespan (MK) and once for changeover (CH) minimization,
resulting in a total of six instances. Each instance is solved once, directly applying the
MILP model and then using four different decomposition steps, ranging from 1-1 to 10-
10, while a time limit of 900s is imposed. In all instances a 10-10 decomposition was able
to generate near-optimal solutions (<1.5%) in just a small fraction of the time required
by the monolithicapproach. Employinga finer decompositionleadsto a faster generation
of schedules, but also to worse solutions. Especially,a 1-1 or 2-2 decomposition may lead
to non-integer solutions (I.CH, II.CH, [.MK) or solutions far from the optimal (I.CH). Case
[11.CH illustrates special interest since it is the most demanding problem instance (most
products, difficult objective).Here it is evident, that for complexscheduling problems, the
monolithic approach cannot return an optimal solution within the given CPU limit.
However, the proposed decomposition strategy returns a better solution, even when
applying a 1-1 decomposition step, which is close to the theoretical optimal one. In
conclusion, these results illustrate that the proposed decomposition strategy does not
only generate fast, but also high-quality solutions. A summary of the comparative study
is presentedin Table 3.1. The computational time and the objective value for all cases are
given. Moreover, the integrality gap to the theoretically optimal solution is given for the
cases solved using the monolithic approach. For the cases employing the decomposition
approach, the gap displays the quality difference of the solution extracted to the one
provided by the monolithicapproach. A negative value means that the solution provided
by the decomposition algorithm is better than the solution extracted by the monolithic

approach.

3.2.2.3 Industrial casel

In this case, we study the scheduling problem of Frinsa del Noroeste over a time
horizon of 5 days. The orders for 100 products are directly provided by the ERP system
and correspond to the real demand profile scheduled by the production engineers in the
plant. All demand-related data are deterministic, however, the use of OEE rates increases
the robustness of the proposed schedules. Product demands along with all relevant
operational data are provided in Appendix B. Due to confidentiality issues, the OEE rates

are not explicitly given, but they are incorporated in the processing rates. The problem is
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Table 3.1: Evaluation of the decomposition algorithm

Case Monolithic 1-1 2-2 5-5 10-10
CPU Obj Gap CPU Obj Gap CPU Obj Gap CPU Obj Gap CPU Obj Gap
(s) (r) (%) () (hr) (%) () (hr) (%) () () (%) (s) (hr) (%)
I.CH 118 8.17 0.00 - - 13 11.00 34.64 29 8.95 9.54 59 8.17 0.00
ILCH 900 2292 4.00 - - 16 2390 4.28 35 23.08 0.70 70 23.00 0.35

I[II.CH 900 19.67 12.25 15 17.83 -9.34 18 17.58 35 17.50 -11.02 78 17.50

10.61 11.02
[.LMK 85 2345 0.00 - - 8 2392 2.00 14 23.70  1.07 29 2355 043
ILMK 316 23.42 0.00 7 2397 2.35 16 2385 1.84 19 23.76  1.45 33 23,53 047
[II.MK 390 19.60 0.00 14 20.78 6.02 18 2051 4.64 27 20.19 3.01 41 19.84 1.22




solved twice, one having as objective the minimization of makespan and one the
minimization of the changeovers.

Firstly, we use the suggested method with model M1 to examine the minimization
of production makespan. Various insertion policies are tested, as shown in Table 3.2. As
expected, a finer decomposition of the initial scheduling problem leads to lower CPU
times, butalso worse objective values. Given the computational time limitations, the best
policy for this problem isto insert the product orders 20-by-20 in the optimizationmodel.
The less decomposed problem using a 40-by-40 order decomposition does not provide
better solutions, since the time limit is reached, and a worse integrality gap is achieved.
Finally, a monolithic approach cannot provide any integer solution within the allowed
CPU time. The production schedule suggested and realized by the schedulers required a
single 8-hour shift on Friday (C,,.x = 104), which is far worse than the generated
schedule by the proposed solution strategy. Even when we apply a simple 1-by-1
insertion policy, we get results comparable to the solution proposed by the schedulers.
However, this is achieved automatically in less than two minutes.

Next, we test the efficiency of the M2 model in combination with the suggested
solution strategy, to address the changeover minimization objective. Again, we
investigate various insertion policies, to decide on the most appropriate one, according
to the imposed solution time limitations. In contrast, to the makespan minimization,
products are now scheduled to minimize the total changeovers. Thus, no consideration
of processing the orders as soon as possible exists. As aresult, the fixed decisions on unit
allocationand general precedence on products scheduled on previous iterations maylead
to infeasible situations for the products yet to be scheduled. This occurs in the 1-by-1
insertion policy as shown in Table 3.3. In order to avoid this situation, the problem must
be less decomposed. The best results are generated when a 5-by-5 insertion is employed,
in which a total changeover time of 42.7 hours is achieved, a solution that represents a
10-15% improvement compared to the one proposed by the schedulers. Inserting more
products in each iteration could not further improve the objective since no integer
solution is found within the allowed CPU time. In general, changeover minimizationis a
more difficult objective due to the utilization of the unit-specific general precedence
model M2, which necessitates the further incorporation of immediate precedence
variables and more sequencing constraints comparedto model M1, thus leading to larger

and more difficult problems.
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Table 3.2: Comparison of insertion policies (makespan minimization)

Insertion policy Objective (h) CPU time (s)

1-1 104.6 94

2-2 97.6 120

5-5 96.0 159

10-10 95.3 221
20-20 94.4 356
40-40 94.6 900
Monolithic - 900

Table 3.3: Comparison of insertion policies (changeover minimization)

Insertion policy Objective (h) CPU time (s)
1-1 Infeasible -
2-2 43.5 89
5-5 42.7 850
10-10 - 900

Aninevitable characteristicofthe applied decompositionalgorithmisthat the size
of the model continuously increases with each iteration. Let us consider the 20-by-20
policy for the makespan minimization problem,where in total five iterations of model M1
are solved. The number of binaries in the five MILP models generated is 9319, 18604,
29150, 43684 and 48144 accordingly. Consequently, the problems are, in general, getting
harder and take more time to be solved. Main reason for this incremental tendency is the
pairs of sequencing decisions that are not fixed, alongside the variables used for the
feasibility constraints, which employ the discrete-time grid. In order to reduce the model
sizes,we could fix all timingdecisions (startingand completiontimes) aftereach iteration
in the decomposition algorithm. However, this approach is less flexible and results in

much worse scheduling decisions.

3.2.2.4 Industrial casell

In this case, we examine another problem instance of the same facility, however,

this one represents a week during the most demanding production of the year. A total of
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126 products must be scheduled, a number significantly larger than the one examined in
instance I, which results in a scheduling problem of extremely high combinatorial
complexity. The total demand is such that an overtime production is unavoidable;
therefore, a scheduling horizon of 7 days is chosen. The demand of this case and all
operational data, e.g., processing rates, product to line availability in each stage,

sterilization times, changeovers, etc. are provided in Appendix B.

Model M1 is employed with a 20-by-20 insertion policy to propose a minimum
makespanproductionschedule. The proposed solution strategy generatesa near-optimal
schedule inless than 10 minutes.A makespanof133.1 hours isachieved, which compares
favourably with the solution proposed by the schedulers. The executed weekly schedule
demanded the uninterrupted operation of the plant throughout the weekend (G4 =
148h), thus the proposed solution significantly reduces the overtime production. In
Figure 3.5 the Gantt chart of the proposed schedule is illustrated for both the filling and
sealing and packing stage. Notice that the labeller constraints are respected and at no
point, a simultaneous operation of pairs of packing lines 1 - 2 and 5 - 6 occurs. Moreover,
the number of utilized sterilizers never exceeds the total available resource installed in

the plant (16 sterilizers) as depicted in Figure 3.4.

18
16
14
12
10

Number of Sterilizers

e N AT -]

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time (h)

Figure 3.4: Number of sterilizers used at each time point of the scheduling horizon

89



Chapter 3 Real-life Industrial Applications

- :
~1HLINT I DiNE——  §E -
I H B -
s-Amclimmn im0 0 1
IIl:II[-II_II il N -
Al NEREEN NN e -

I NN e N :
-| BN IHE I 158 ||l .

0 20 40 60 80 160 1é0 140
Time (h)

]

w
—
—
||
==

c.n

U)

5
@®
~
[ -

Fllllng and Sealmg Iines

Packing lines

5 =
@ ] @ @
L=

~
T

"B RN 1N e
SN TR 1
w1 S —— ) : |

0 20 40 60 80 100 120 140
Time (h)

Figure 3.5: Gantt chart (makespan minimization)

Changeover minimization is considered for the industrial study case, using model
M2 and a decomposition algorithm, in which products are inserted in a 5-by-5 fashion.
The proposed schedule is generated in just under 15 minutes and the total changeovers
required are reduced to 62.6 hours. Compared to the executed schedulesan improvement
of around 15% is accomplished, while the generated schedule has been fully validated by
the production engineers of the plant. Figure 3.6 depicts the Gantt charts for both
continuous stages. It is shown that choosing the minimal changeovers for each stage has
a negative feedback on the total production time since it results in a worse

synchronization between processes.
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Figure 3.6: Gantt chart (changeover minimization)

3.3 General considerations

Prior to the development of an efficient scheduling solution for a real industrial

case, two critical issues must be thoroughly considered. More specifically, the proper

description of the scheduling problem at hand and the accuracy of the input data. If the

specifics of the production process are not explicitly pre-defined or the given data are

inaccurate, then the proposed methods result to solutions that cannot be practically

applied to the real plant. Furthermore, data inaccuracies make the assessment of the

model’s efficiency extremely difficult or even impossible. In the specific industrial case,
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both issues resulted to significant delays, mainly due to miscommunication reasons
between the model developers and the production engineers. A representative example
is the existence of the common labellers which became known to the model developers
after months of work. Another issue was that some important parameters were initially
not available at all. Therefore, the extraction of this information required a significant
amount of work from the industrial partners’ side. Through the constant collaboration
between all partners, these issues were eventually resolved. In its final form, the
developed model can depict the reality of the production process and propose realistic
solutions,while all required data are now automatically provided by the plant’s computer

systems.

A direct comparison of the two mathematical frameworks is not meaningful for
two main reasons. First and foremost, they consider different aspects of the industrial
problem. Approach A considers a daily demand when a weekly demand is optimized in
approach B. Moreover, the speciallabeller constraints cannot be incorporated in the first
approach. Furthermore, changeover minimization is possible only when using approach
B, while approach A provides detailed decisions for all processing stages. Secondly,
approach B is clearly superior in terms of computational efficiency, since problem
instances of similar if not higher complexity can be solved in just a fraction of the time

required by approach A.

3.4 Conclusions

In this chapter, the optimal production scheduling problem of a large-scale, real-
life food industry, for both makespan and total changeover time minimization, is
considered. The overall scheduling problem is characterized by a significant
combinatorial complexity. More specifically, the industrial facility is described by
multiple production stages, each consisting of multiple parallel units, while both
continuous and batch processes exist. Over 100 products must be processed within the
scheduling horizon, resulting to a very large number of decisions to be made. To the best
of our knowledge, a problem of such complexity has not been successfully solved in a
reasonable computational time. In order to efficiently address this problem, the
mathematical frameworks developed in Chapter 2 are utilized and their applicability and

efficiency is illustrated. The two proposed mathematical frameworks can be
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interchangeably used depending on the needs of the production engineers. Approach A
is suitable for the cases where detailed scheduling decisions for the sterilizationstage are
required, the given demand is daily, and shutdowns are required at the end of each day.
In all other cases approach B must be employed as it is computationally superior. A
decompositionalgorithm hasbeeninvestigated for the efficient solution of the scheduling
problem within a desired computational time limit. In the proposed methodologies, the
products to be scheduled are optimized iteratively, according to a user-defined insertion
policy. Moreover, the extraction of validated results for industrial cases that directly use
real-life data by the ERP and MES of the plant, make the proposed strategies suitable for
the development of a computer-aided scheduling tool, that will assist decision-makers to
generate fast and near-optimal schedules. Finally, this chapter illustrates the successful
implementation of an optimization-based method for the production scheduling of a real
industrial problem, which is a step towards filling the existing gap between industrial

reality and research.
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Chapter 4

Optimal Production Planning and
Scheduling in Breweries

4.1 Introduction

Beverage industrial facilities display production characteristics e.g., multiple
mixed batch and continuous processes, an ever-expanding product portfolio,
intermediate due dates, etc., which make the optimal production planning and scheduling
of real-life industrial problems extremely challenging. Few contributions have addressed
the production scheduling of the soft drink industry, using either optimization-based
(Ferreira, Morabito,and Rangel 2009; Ferreira et al. 2012) or non-exactmethods (Toledo
et al. 2009). The generic optimal production scheduling problem for beverage industries
can be addressed using the mathematical frameworks proposed in Chapter 2. However,
the optimal production scheduling of breweries displays some special characteristics,
which makes this optimization problem even more difficult, thus exceeding the
capabilities of the previously presented solution strategies. The increased difficulty
originates mainly from the very long lead times that characterize these industries. In
particular, liquid preparation (fermentation and maturation) lasts from 3 up to 41 days,
therefore, the synchronization of the various processing stages becomes a very difficult
task. Moreover, an extended horizon must be examined, while both planning and
scheduling decisions are required. Consequently, larger models are generated that must
tackle the integrated planning and scheduling problem. Due to the size and complexity of
such models, they become easily intractable when studying real-life industrial cases. As a
result, only a handful of works have properly addressed the production planning and
scheduling problem in breweries. Kopanos, Puigjaner,and Maravelias (2011) proposed a
novel mixed discrete-continuous MILP model for the optimal production planning and

scheduling of parallel continuous processes. The proposed model effectively addressed
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industrial-scale problems of a real brewery, while it required very low computational
times. However, their analysis focused solely on the bottling lines and was based on the
assumption that the packing stage constitutes the production bottleneck, which does not
always hold true. Baldo et al. (2014) were the first to study the optimal integrated
production planning and scheduling problem of a beer production facility. They assumed
that the production can be divided into two processing steps, liquid preparation, and
bottling. Based on this valid simplification they developed a novel MIP model and
proposed MIP-based heuristics in order to solve large-scale problems. Recently, Lee and
Maravelias (2020) employed the general discrete and continuous algorithm (DCA) (Lee
and Maravelias 2018) for the optimal production lot-sizing and scheduling of a large
brewery. The authors modelled the beer production as a four-stage problem that
consisted of four processingstages (brewing, fermentation, maturation and bottling) and
were able to propose optimized schedules. Due dates were not modelled, rather monthly
production targets were to be achieved and the main objective addressed was profit

maximization.

The main contribution of this chapter is the development of a novel optimization-
based solution approach for the integrated planning and scheduling problem of
breweries. Anew MILP model based on a mixed discrete-continuous time representation
is developed. In order to reduce the size of the generated model, only the production
bottlenecks of the processare modelled, while the considered horizon is divided into two
sub-horizons. In the first one a detailed optimal production schedule is extracted, while
in the second only planning decisions are considered. To the best of our knowledge the
only model found in literature that can tackle such a process is proposed by Baldo et al.
(2014). An extensive analysis is included that proves the superiority of the developed
model both in solution quality and computational time. However, the large number of
involved tanks, lines, and products and mostimportantly the large lead times, results to
extremely complex models especially when dealing with real-life problems. Thus, the
direct application of the developed model in industrially-sized cases leads to intractable
models. Therefore, we propose a novel solution strategy that consists of a constructive
and an improvementstep.Inthe firstaninitialsolutionis generated that is then improved

in the second step of the proposed algorithm. Finally, the suggested method is

95



Chapter 4 Optimal Production Planning and Scheduling in Breweries

successfully applied to anindustrial case study provided by a large Greek beer production

facility.

4.2 Problem Statement

Beer productionis a complex process that comprises of multiple production steps
thatinvolve numerous shared resources.Any beer type consists of four main ingredients,
in particular, water, malt (from barley grains), hop (responsible for the bitter taste of
beer) and yeast (saccharomyces cerevisiae forale beer or saccharomyces pastorianus for
lager beer). The various beer products are diversified in terms of raw materials and the
required processing time in each production step. Despite the distinct process required
for each beer type, all products go through the same processing steps, which can be
categorized into two main production stages, liquid preparation, and bottling (Figure

4.1).

Some breweries produce their own malt; therefore, a malting process is taking
place prior to the brewing process. The malting process is divided into three subprocess;
steeping, where the humidityof the grainis increased, germination, which transformsthe
grains into malt and finally drying in kiln, to remove most of the humidity from the malt.
In this study we assume that the malt is a raw material that is ready to be brewed,
therefore the malting process is not considered. In the liquid preparation stage two main
processes take place, specifically, brewing and fermentation/maturation. The brewing
process consists of several batch tasks, namely mashing, lautering, boiling, whirlpooling
and cooling, that transform the raw materials into different worts. Mashing involves the
additionof water into the prepared malt and the heating of the mixture, while in lautering
the mixtureis filtered from any solids. Then the hops are added, and the mixtureis heated
in the boiling process. Finally, the wort is filtered (whirlpooling) and quickly cooled
(cooling). In the next processing step, the yeast is added into the cooled wort and the
fermentation/maturation process begins. This subprocess constitutes one of the main
production bottlenecks, since it lasts 3 to 41 days, depending on the type of beer
produced. Atthis momentbeer of a given worttype is obtained, referred to as bright beer.

Finally, bright beeris transferred from the fermentation/maturation tanks to bright beer
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tanks (BBTs), where it is filtered, diluted, and carbonated. At the end of the liquid

preparation process the beer is referred to as ready beer or ready liquid.

Bottling is the last stage of the production process, where the ready liquid is
bottled in cans, bottles, or kegs and then the final products are packed and palletized.
Multiple subprocesses take place during the bottling process. First the returnable bottles
are cleaned and sterilized, while cans and kegs are simply washed. Next the filling
subprocess takes places, which is the main production bottleneck of the bottling stage.
The products are then sealed and pasteurized in a bath of hot water to ensure that they
are not infected by any harmful microorganisms. Finally, labelling, packing and
palettizing takes place and the final products are loaded on a transport vehicle or stored

in a warehouse.

hops
water
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L Mashing Lautering Boiling Whirlpooling Cooling
Brewing
yeast
Ready Liquid |SE{TAEHEET T Fermentation/ |
Carbonation Maturation
K Liquid Preparation (Stage I)/
4 I
. o Sealing and . .
Cleaning Filling . Labelling Packing
Liquid Bottling (Stage Il
\_ Ha g (Stage ll) )

Figure 4.1: Description of the beer production process

The brewery industry, like most food and beverage industries, can be described
as a make-and-pack industry, where in the initial stages the raw materials are processed
based on a given production recipe and then are packaged in the desired final form. In
order to efficiently address the optimal production planning and scheduling problem of
breweries, only those processes that constitute the main bottlenecks of production are
modelled. The most challenging task in the first stage is the proper utilization of the

fermentation and maturation tanks. The rest of the subprocesses of this stage only take a
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few hours, when the fermentation/maturation task requires a processing time that lasts
multiple days, thus making it the bottleneck of the liquid preparation stage. Similarly, the
limited capacity of the filling subprocess makes it the most difficult task of the second
stage and therefore its production bottleneck. Moreover, the more ready liquid is bottled
in the filling process, the faster the tanks empty and therefore become available to
process a new batch of liquid. As a result, the beer production process is extremely
simplified, leading to relatively small sized models, while containing all necessary

information for the generation of feasible and optimal production schedules (Figure 4.2).

/Liquid Preparation\ / Liquid Bottling \

Raw Tank 1 Ready Filling Line 1 Final
materials Liquid Products

Filling line 2 :1>

Filling line j

/I II
L

Figure 4.2: Simplified process description focusing on production bottlenecks

Based on the aforementioned simplifications, the brewery facility can be
described as a multistage, multiproduct facility that combines both a batch
(fermentation/maturation) and a continuous (filling) process with multiple parallel
units. The first stage involves a number of tanks, which are non-identical in terms of
capacity, but can process all liquids. In contrast, each filling line of the second stage can
only processa specificsubset of the final products, depending on the packingand bottling
type of the line. Tanks can only prepare a single liquid at a time and likewise filling lines
can only bottle a single product at a time. In terms of availability of connections, a tank
can simultaneously supply multiple lines withreadyliquid, howevereachline canreceive
ready beer from a single tank at a time. Furthermore, tanks must be cleaned in-between

the fermentation/maturation process of two different batches, thus a sequence-
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independent setup time is necessary. On the contrary, sequence dependent setup times
for cleaning and/or machine adjustments are required in the filling lines, whenever a
changeover ofliquids and/or packages occurs. There are no intermediate storage vessels,
however the ready liquid can be temporarily stored in the fermentation and maturation

tanks.

The current industrial reality in most plants imposes the production plans and
schedulesto be generated manually by the decisionmakers. The large number of involved
items (processing stages, units, and products) alongside the tight operational, logistical,
and technical constraints to be considered result to an extremely complex problem. In
addition, the long lead times require an extended planning horizon compared to other
industries, while the generated schedules should ensure the proper synchronization of
the liquid preparation and bottling stages. Thus, it is very difficult for the production
engineers to consider the integrated planning and scheduling problem even using simple
heuristics. In order to propose feasible schedules, the decision-making process is divided
into two steps. First, the production plan for the sterilization and maturation tanks is
generated. In this step the timing of all filling and emptying operations in each tank and
the allocation of liquids into tanks is defined. The plans are determined for a monthly
horizon based on the given demand and the capacity limitations of the units. At this point
the goal of the production engineers is to utilize the tanks as much as possible while
trying to reduce backlogs and maintain a relatively small inventory. Then the plan is
thrown over the wall to the department responsible for production scheduling, which
generates a feasible schedule for the filling lines. Here, the tank to filling line connections
are determined (which tank will provide liquid to which line), and itis decided when will
each filling process take place (timing) and at what order will every final product be

processed (sequencing).

The decision-making procedure described above lacks efficiency since the two
main production stages of the plant are considered separately without the employment
of optimization-based methods. Therefore, the realized production plans and schedules
are far from being optimal, resources are underutilized, productivity is decreased, and
total profits are reduced. Thus, the efficientintegration of both planning and scheduling
decision is an area with great potential for improvement, that could be translated to

significantbenefits forthe brewing industry. Main goal of thiswork isto develop an MILP-
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based solution method for the integrated production planning and scheduling problem
that provides near-optimal decisions in short computational times. The developed
solution strategy can be the core of a computer-aided tool that facilitates the decision-

making process and assists the production engineers of any brewery plant.
The problem under study can be formally stated as follows.
Given:

e A known planning horizon H divided into a set of time periods t € T. The horizon
is further divided into two subset of time periods, t; € T, and t, €T, ,(T =T, U
T,). In the first precise production schedules are determined, while in the latter
only production plans are generated.

e Asetof fermentation/maturationtanks o € O anda set of filling lines j € J.

e Asetofliquids! € L to be prepared and a set of final products i € I that must be
produced with the given horizon.

e The multidimensional set I; that denotes whether product i contains liquid L

e The mappingsetl; thatdefinesthe set of productsi that can be processedon filling
line j.

e All production related parameters, in particular, demand {;, liquid preparation
time A, filling rate for each final product p; ;, capacity of each tank y,, and quantity
of liquid required for a single unit of product j, 7; ;.

e A sequence-dependent setup for cleaning and/or machine changes necessary in
the filling lines j whenever there is a changeover of production between two final
products i and i". Every changeover task requires a specifictime y; ;- ;.

e The cost coefficients associated with inventory g;, backlog ; and changeover

operations K ;/ ;.

Determine:

e The planning decisions for the liquid preparation stage. More specifically,
determine the filling and emptying operations in each tank as well as the material
balance (amount of ready liquid) in each tank.

e The amountofliquid that is being transferred from each tank to eachfilling line.
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e The allocation of products into filling lines, as well as the sequencing between
products in each line and the completion time of each filling operation.
e The production amounts of final products as well as the product inventories and

backlogs.

,s0 thatan economic objective including inventory, backlog and changeover costs,
is minimized. All data used are deterministic, meaning that any type of uncertainty is
omitted in this study, while we assume that raw materials are always available. Resource
limitations, such as manpower or utilities, e.g., cold water, electricity, are not considered.
No intermediate storage vessels exist; however, the ready liquid can be stored in the
fermentation and maturation tanks. We assume an instantaneous transfer of liquid
between the two stages and that the fermentation/maturation process in a tank only

starts at the beginning of a time period and is completed at the end of a time period.

4.3 MIP-based solution method

An MILP model is presented to efficiently address the integrated production
planning and scheduling problem for a multistage multiproduct facility typically found in
the brewing production process. The model is based on a precedence-based framework
that utilizes a mixed discrete-continuous time representation, inspired by the works of
Kopanos, Puigjaner, and Maravelias (2011) and Baldo et al. (2014). Operational and
technical constraints, such as demand requirements and tank capacities, as well as
specific characteristics of the production are incorporated to produce feasible plans that
minimize the total production cost, which, in this study, comprises of the inventory,
backlog and changeover cost terms. However, the high combinatorial complexity of the
problem, especially when addressing large-scale industrial cases, is such that the direct
application of known MILP solvers, e.g.,, CPLEX, GUROBI etc., results into low quality
solutions. Moreover, computational times prohibitive for any industrial application are
required. Therefore, we also introduce a two-step decomposition strategy, consisting of
a constructiveand animprovementstep, in order to promptly generate feasible and near-

optimal plans.
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4.3.1 MILP model

The detailed modelling of all processing steps of the brewery facility would result
to large and complicated models. Therefore, only the main production bottlenecks are
considered, in particular, the fermentation/maturation process in the liquid preparation
stage and the filling process in the liquid bottling stage. Thus, the facility at hand is
reduced to a two-stage multiproduct one. This make-and-pack type of process is very
common in food and beverage facilities. Therefore, an abundance of various techniques
that can optimally solve this type of problems can be found in the literature. However,
beer production displays characteristics that significantly differentiate them to other
production processes. Compared to other food and beverage industries, the preparation
step (fermentation/maturationinthe case of breweries) requires alarge processingtime
that spans from some days to multiple weeks, resulting in large production lead times.
Hence, planning mustbe considered in synchronization with short term scheduling since
product preparation lasts more than the usual scheduling horizon (one week).In case of
optimizingjust the scheduling decisions ofthe filling process (Stage 2), there is a high risk
of generating schedules that overestimate the capacity of the fermentation/maturation

tanks (Stage 1), thus leading to an infeasible solution.

In orderto address this optimization problem,an MILP model has been developed,
that employsa mixed discrete-continuoustimerepresentation. The discrete time grid has
a period length of one day and is used to seamlessly monitor the production, inventory,
and backlog levels of both stages. A lot-sizing model is introduced for the planning
decisions of both stages, that considers the given processing times of the tasks and the
capacity of the units involved. Within each time period a continuous representation of
time is utilized, and constraints inspired by the immediate precedence framework are
incorporated to determine the sequencing decisions in the liquid bottling stage (Stage 2).
Notethatsequencingdecisionsare notrequired in the first stage,since itdoes notinvolve
any sequence-dependent setup times. The planning horizon is divided into two sub-
horizons. In the first one (T:), both planning and scheduling decisions are considered,
while in the second one (72) a coarser optimization is done, than only determines the lot-
sizing and unit utilization decisions. Figure 4.3 portrays the employed time grid, as well
as the decisions that are made for each stage and in each sub-horizon. The orange oval

shape contains the considered decisions for Stage 1, while the green oval shape displays
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the determined decisions for Stage 2. Blue-coloured text denotes the planning decisions,
while red-coloured text signifies the scheduling decisions. The intersection of the two
shapes encloses the decisions that connect the two stages, specifically, the amount of

liquid that is transferred from the tanks to the filling lines.
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Planning
and Planning
Scheduling
Stage 1
liquid to tank allocation lot-sizing of liquids in tanks
start of liquid preparation ready liquid stored in tanks
amount of liquid transferred from tanks to lines
production guantities exact timing of filling processes
inventory and backlog levels sequencing of filling processes

products to lines allocation

Stage 2

Figure 4.3: a) Time representation and description of sub-horizons, b) considered
planning and scheduling decisions in each stage

Let us describe the main decision variables of the developed model for the
integrated planning and scheduling problem in breweries. The liquid is transferred into
the tanks and the fermentation/maturation process starts. When the required processing
time A; passes,thenan amount L, . ofliquid gets ready. Binary variable Y, , denotes that

liquid /in tank o gets ready in time period t. The ready liquid is either used on filling lines
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j toproduce itemsiin period t (Lg,j,l-,t) or is stored in tank o for future production (L% ).

In case the ready liquid is used to produce items on filling lines, then an amount of item i
(Qo,i,j¢) is processed on filling line j in period t made of liquid fed by tank o. This amount
is used to satisfy the demand on the current or previous time periods (t" < t) oris stored
to meet future demand of item i (t' > t). Note that the outputs of Stage 1 (liquid
preparation) are the inputs of Stage 2 (liquid bottling), so the production in the filling
lines takes place only when there is available ready liquid to be fed from the
fermentation/maturation tanks. In terms of scheduling decisions, unit allocation
variables (Yl-’zj,t) are used to denote that a product i is processedin line j in time period t
and two sets of immediate precedence variables (X;; ;,and X; s ;,) are employed to
indicate direct precedence of tasks. The first is enabled whenever there is direct
precedence of production between two final products, i and 7', in line j in the same period
t, while the latter indicates precedence of filling tasks between consecutive periods.
Continuousvariables U; , and U; , are used to properly model changeovers betweentasks
in consecutive time periods. Lastly timing variables C; ;. are employed to signify the
completion of a filling task of product i in time period t. An overview of the main decision

variables isillustrated in Figure 4.4.

Next, we present the developed model, categorizing the constraints based on the
production stage and the types of decisions they subject to. To facilitate the presentation
of the model, we use lowercase Latin letters for indices, uppercase Latin letters for
variables and lowercase Greek letters for parameters. From now on we will refer to this

model as GEG.

Stage 1 (Liquid preparation)

In the first stage, the constraints are mainly responsible for properly modelling
the lot-sizing of the fermentation/maturation tanks. More specifically, they must
guarantee that the processed liquid lots do not exceed the capacity of the fermentation
tanks and that the liquids remain in the tanks at least for the required

fermentation/maturation processing time.
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Figure 4.4: Description of main decision variables

Constraints (4.1) ensure that if aliquid gets ready in time period t (Y, ,, = 1), then
no ready liquid is stored in the tank during the previous A; time periods. During this
period the fermentation/maturation process of the liquid takes place. In order to have an
amount L ;. of ready liquid in time period ¢, the tank must be empty in time period t —
(4;+1), so that it can receive the liquid to initiate its preparation
(fermentation/maturation) process. Constraints (4.2) are introduced to guarantee that at
most one batch of liquid gets ready in a tank within a time segment equal to the
fermentation/maturation time. Finally, constraint set (4.3) imposes the upper bound on
the amount of liquid getting ready based on the available capacity of the

fermentation/maturation tanks.
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L) <Xo ¥y Yo,lt (4.3)

Stage 1 and Stage 2

Constraints (4.4) are responsible for connecting the decision variables of the two
stages, while they monitor the liquid balance between them. More specifically, they state
that the stored amount of liquid /in tank o in time period ¢t (Lf;,z,t) is equal to the stored
amount in the previous period plus the amount of liquid getting ready in period ¢ (Lf),l,t)'
minus the liquid that is transferred to the filling lines.

s _ S T P
Lo,l,t - Lo,l,t—l - z Z Lo,/',l',t + Lo,l,t Yo,lt (4.4)

iel/v Jjel;

Stage 2 (Liquid bottling)

The second stage requires a more detailed model since additional to the lot-sizing
and unit allocation constrains it also considers the timing and sequencing decisions for
the filling lines. In order to generate the required modelling constraints, the immediate
precedence framework is employed within a mixed discrete-continuous time

representation (Kopanos, Puigjaner, and Maravelias 2011).
Material balance constraints

The material balances for every final product are imposed by constraint set (4.5).
At the end of each time period ¢, the inventory (S;.) and backlog (B;.) are monitored
based on the daily production, demand and the inventory and backlog levels in the
previous time period t-1. The number of products i that use liquid fed by tank o and are
processedin line j and time period t is expressed by constraints (4.6).

Sie =B =Sia= Bt Z ZQa, Joit - Vit (4.5)

JjeJ; o
_ T , .
Qojit =i Lo j i vo.pielt (4.6)

Line utilization constraints

The constraints below introduce the line utilization variable, which is enabled, i.e.,

Vi = 1,whena filling line j is used in time period t. In particular, constraints (4.7) ensure
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that a filling line j is utilized in time period ¢, if at least one product i is processed in this
line and time period. Furthermore, constraint set (4.8) force the unit utilization variable

to take a value of 0, in case no product is processed in that particular line and time period

t.
V> Yf/.lt Vi,je] teT (4.7)
2
Vees2 Yo, VijeJ teT (4.8)
1

Sequencing and timing constraints

The binary variable X; ;s ;. is introduced to define the immediate precedence
relation between two products i and i’ in line j and time period t. Moreover, we employ
the binary variables WLF]t and ij,t, which define the first and last product being
processedin line j and time period t accordingly. Constraints (4.9) and (4.10) guarantee
that if a product is processed in filling line j and time period ¢t (Yi'zj't = 1), it will have at
most on predecessorand one successor. In case product i is processed first in line j and
time period t, then it has no predecessor and similarly if it is processed last, it has no
successor. Finally, tightening TSP-based constraints (4.11) are introduced, which specify
the exact number of active sequencing variables. More specifically, they ensure thatifline
jisusedintime period ¢, then the total number of enabled sequencing variables is equal

to the number of products being processed minus 1. Otherwise, all sequencing variables

for that specificline and time period are forced to zero.

The timing considerations are imposed by the next two constraints. Constraint set
(4.12) guarantees that the filling process for a product i’ that is processed right after
product i, must be completed after the completion of product i plus the required
processing and changeover time. The constraint is formulated as a big-M constraint,
meaning that when the successionrelation is absent (X; ;s ;, = 0), then the constraint
becomes inactive. The big-M parameter used is w, which corresponds to the daily time
availability of each filling line. In this particular study this is assumed to be 24 hours.

Furthermore, constraints (4.13) are employed to ensure that the filling process for each

product is completed after the required processing time.
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o

Sequencing constraints between adjacent periods

In order to model changeover operations between processes that take place in

adjacent periods, we introduce binary variables X;s Constraints (4.14) and (4.15)

i)t
state that this variable is active only for the products i’ that are processed first in line j
and in time period t and products i that are processed last in line j and time period ¢-1.
Furthermore, continuous, and positive variables Uj ¢ and Uj,t are introduced, to represent
time fractions of changeoveroperationsbetweenadjacent periods. Constraints (4.16) are
imposed to facilitate the proper incorporation of these newly introduced variables in the
model. Assume there is changeover that starts in period t-1 and finishes in period t. Then
the fraction of the changeover operation that is performed in time period t-1 is
represented byU; .4, while the time fraction of the changeover that takes place in time

period t is modelled by U; ;. Of course, the addition of these times must equal the total

changeover time y;; .

,]t Z X1 ALt Vi,je] teT (4.14)
1¢11€1 I

1/t1 Z X11,]t Vi,jeJ teTl t>1 (4.15)
1¢11€1 '

108



Chapter 4 Optimal Production Planning and Scheduling in Breweries

Ujt +Uj,t_1 - Z Z 7/1',1',/'X1"j"/'t Vjie/,tel :t>1 (4.16)

161/-1 #1,1 611'

Time availability constraints

Constraints (4.17) bound the operations in a filling line, based on the available
production time. In particular, the summation of the changeover times, either within the
same time period or between adjacent time periods, and the total processing time of all
products being processed, must be less than the total available production time of the
line. Note that all sequencing constraints are specified only for those subperiods that

belong to the planning and scheduling sub-horizon (t € T;).

ﬁ/',t +Uj,t—l + Z ij,j .Qo,j,i,t

1e[]- 0

ViteTl t>1 417
+ Z Z 71’,1",/'X1',1",j,t N / ' ( )

161]-1 #1,1 elj-

Lot-sizing constraints

Finally, constraints (4.18) and (4.19) bound the production in the liquid bottling
stage based on the given processing rates for each product and the available daily
production time for each line. Note that in contrast to the timing and sequencing

constraints, lot-sizing constraints are constructed for all time periods of the given

horizon.
w 2
<= .Y-
2.0 Py vije/teT (4.18)
;;PU iy =@ Vje/,teT (4.19)
Objective

The overarching goal of the optimization problem is to minimize the total
production costs, which is modelled by three cost terms, inventory, backlog costs and

changeover cost. The changeover cost term is only defined for the subperiods of the
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planning and scheduling horizon (t € T;) since sequencing decisions are considered only

for these time periods.

minimize
ZZ(O‘I. 'Si,t + B, -BI.,[)+Z z Z Z KI.'I..J.(XI.J..J.I +Xiijt) (4.20)
It il je(J;n ] p)tely

4.3.2 MILP-based solution strategy

In the previous subsection, we presented a new MILP model for the two-stage
planning and scheduling problem of beer production facilities. Despite the efficiency of
the presented model, the direct application of commercially available MIP solvers
requires large computational effort, that may lead to increased solution times and
suboptimal production plans. This is especially noticeable when dealing with real-life
industrial applications, since brewery facilities are characterized by numerous
fermentation/maturation tanks, filling lines, liquids, and final products. Consequently,
the industrially-sized problems result in intractable case studies, which is unacceptable,
since the developed solution method must always propose a production plan, even if it is
suboptimal. Moreover, the industry works on a very tight schedule, therefore strict time
limitations are imposed to any proposed solution. To ensure the viability of the proposed
method as a computer-aided tool that can be a part of the any facility’s IT infrastructure,
itmustprovide solutionsin computationaltimes accepted by the industry. Thus, to satisfy
these prerequisitesadecompositionstrategyis employed that guarantees the generation
of a near-optimal production plans and reduces the combinatorial complexity of the
optimization problem. A two-step decomposition technique, consisting of a constructive
and an improvement step, is proposed. In the first part, an initial good solution is
promptly generated, while in the second part an iterative method is used to improve the
initial solution. The following subchapters describe the developed solution algorithm in

detail.

4.3.2.1 Constructive step

In order to generate a feasible and good initial solution, a spatial decomposition

approach is introduced, where the two production stages are considered independently.
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Main goal of this method is to disaggregate the binary decisions of each stage, thus
decrease the complexity of the initial model. We end up withtwo MILP-subproblems,one
for Stage 1 (GEG_S1) and one for Stage 2 (GEG_S2), which are solved in that order. More
specifically, GEG_S1 is solved to determine the decisions related to the
fermentation/maturation tanks (in which tank will the liquids be prepared, when they
are going to be ready and the corresponding amount that will be ready during the given
horizon). Then this information is used in GEG_S2 to optimize the planning and
scheduling decisions of the filling lines and finally generate the production plan for the
whole process. The order in which the models are solved (first for Stage 1 and then for
Stage 2) has been decided since the alternative (first GEG_S2 and then GEG_S1) could
potentially lead to infeasibilities. This may occur due to an overestimation in the capacity
of resources of the first stage. The productions plans for the filling lines generated by
GEG_S2 are inapplicable in casethe required amountofready liquid exceedsthe available
capacity of the tanks in the first stage. On the other hand, this is not an issue in the
suggested solution strategy since Stage 2 is more flexible than Stage 1. Due to the natural
flow of material in the problem at hand and the capability of storing or backlogging final
products, the filling lines can always adapt to the production plans of the
fermentation/maturation tanks. This is crucial since the proposed solution method and
possible future core of a computer-aided tool must ensure the generation of production
plans and schedules for any possible case that could occur in the industrial facility. So, the
constructive stepis further splitinto two steps. The first one focusing on Stage 1 and the

second on Stage 2.

Sub-step 1 (Stage 1)

To develop the model for the liquid preparation stage, we utilize a subset of the
constraints from model GEG. Despite our emphasis on the first stage, we must also
consider some of the constraints related to the liquid bottling stage. It is essential to
include this information in order to avoid the generation of bad production plans that
would lead to increased inventory and backlogging costs. If we ignore the incorporation
ofthis informationin the model, we could even end up to infeasible production plans. For
example, if we do not consider the processing capability of the filling lines, then the model
could impose a tank filling plan that prepares an amount of liquid that overwhelms the

filling lines. So, the tanks could not be emptied in time and could not be ready for the
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initiation of the fermentation/maturation process of the next batch, thus making the

generated plan infeasible.

The goal of this model is to determine the tank filling operations by minimizing
the potential inventory and backlogging costs (4.21). Constraints (4.1) - (4.3) are
included to ensure that the operational constraints for the first stage are considered.
Constraint set (4.4) must be incorporated in the model to properly model the interaction
of liquid between Stage 1 and Stage 2. Furthermore, constraints (4.5) are necessary in
order to monitor the inventory and backlog levels based on the given demand and
optimized production.Finally, constraints (4.18) and (4.19) are responsible for providing
the capacity information of the filling lines, in order to avoid infeasible solutions. The
optimized planning decisions for the tanks, in particular the time period in which each
liquid  getsready intank o and timeperiod t (Y, ) and the correspondingamount (L% ; ),

are saved in parameters ¥}, , and I? ; , respectively, to be later used in the second sub-

step of the constructive step.
GEG_S1

minimize

ZZ(@' 'Si,t +ﬂ1’ 'Bj,t) (4.21)

sit.
(4.1) - (4.5), (4.18), (4.19)

Sub-step 2 (Stage 2)

In the next step, the proposed method solves model GEG_S2 for the second stage
considering the solution of GEG_S1. In particular, itreceives the optimized decisions that
determine when a liquid gets ready and the respective amount. This information is
respected in the model by incorporating constraints (4.22) and (4.23). More specifically,
constraint set (4.22) ensures that a liquid gets ready only at the time imposed by the
solution of the first sub-step (Y4,, = 1) and guarantees that the capacity limitations of
the tanks are not violated. Note that the binary decision for the timing of the filling plan
is fixed to be equal to the solution given by the previous step (¥;,, = ?(},l,t). On the

contrary the amount that gets ready is reoptimized in this step to increase the flexibility
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of the proposed method. Of course, the respective non-negative variable is lower
bounded by the solution of the previous step, so that the tank filling plans generated by
GEG_S1 are respected. Additionally, constraints (4.23) guarantee that the tank will be
empty and ready to receive the liquid and that the liquid will solely occupy the tank
during the fermentation/maturation process. Furthermore, constraint (4.4) from model
GEG is added to ensure that a production in the filling lines occurs only if there is ready
liquid available. Moreover, we include all constraints related to the second stage (4.5) -
(4.19). Finally, the objective of the model is to minimize the total production cost

(inventory, backlog, and changeover costs).

GEG_S2
minimize
ZZ(O-i S +5, 'Bi,t)+z Z Z Ki,i',j(Xi,i',j,t +Xirje) (4.20)
it i iz je(/n),)tel
s.t. LA:JJ[ '};01“ SL‘:“ <K, -)}01‘“ YoeO,lelLteT
(4.22)
Z tz_l“ s 71
L,..<M-Q1-Y ) VoeOlelteT
e - (4.23)

(4.5) - (4.19)

4.3.2.2 Improvementstep

An iterative method is used to further improve the initial feasible solution
generated in the constructive step. A number of improvementoperators based on the fix-
and-optimize heuristic are introduced, similar to the approach proposed by Baldo et al.
(2014). The main idea of the fix-and-optimize heuristicis to define subsets of the model’s
binary variables, relax and re-optimize them, in the search for a bettersolution. Thus, two
disjunctive subsetsofthe model’s binary variables B, are generated. The firstone defines,
which binary variables are relaxed BE, and the second denotes the subset of binary
variables whose values remain fixed Bf. As a result, an MILP subproblem is created that

considers only a small portion of the initial problem. Therefore, each subproblem can be
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solved to optimalityinrelatively small CPU times.Incase the objective ofthe new solution
is better, than the best solution found, the binary variables are updated, otherwise, the
bestsolutionfound sofar is kept. Note thatall continuousvariables are relaxed since they
do not significantly increase the complexity of the model. This procedure is repeated
through an exhaustiveiterativeapproach that ensures thatall subsets of binary variables
are visited. A runtime limit is set to avoid prohibitive computational times that would
constitute the application of the method impractical. We use the model presented in
section4.3.1, in order to address the integrated planning and scheduling problem of the

whole production process.

Algorithm. Pseudocode of fix-and-optimize heuristic
Given the initial solution of the constructive step S¢ with objective value F(S¢)

Define the number of iterations required to visitall subsets (k)
Define the computational limit (/imit)
iter =0
ghest — gC
While (CPU < limit and iter < k) do
k=k+1
Define subsets BY and Bf according to defined rules
Solve generated MILP-subproblem ($™¢%)
If (F(S™") < F(SP¢st)) then
Update binary variables
F(Sbest) = F(Smew)
end-if

end-while

Four improvement operators based on the aforementioned heuristic framework
are employed. These operatorsare differentiated by the way they partition the problem’s
binary variables to form the various MILP-subproblems that will be solved iteratively.
The rules used to define the subsets of the fix-and-optimize heuristic are based on

temporal and/or spatial decomposition of the initial problem.

The fix-and-optimize forward (FO_F) operator employs a time decomposition

scheme that starts at the beginning and ends at the end of the planning horizon (Figure
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4.5a). In each iteration the binary variables of both stages are released for a specific
number of time periods.In other words, the productionplan is reoptimized for a partition
of time. The length of this partitionis equal to the maximum duration of fermentationand
maturation of the involved liquids max{A;}. The algorithm then moves to the next time
partition. The step of this movement is equal to the minimum duration of the
fermentation and maturation process min{4;}. So, in case max{A;}# min{A;}
overlapping occurs, meaning that in each MILP-subproblem we include some of the
decision variables of the previous iteration. This procedure continues until all variables
have been revisited and reoptimized. The fix-and-optimize backward (FO_B; Figure 4.5b)
operator is similar to FO_F, with the only difference being that the iterative procedure

starts at the end of the horizon and finishes at the beginning.

The next two improvement operators FO_F21 (Figure 4.5c) and FO_B21 (Figure
4.5d) employ a bi-level temporal and spatial decomposition strategy. Their main
difference to the first two operators is that in each iteration the binary variables of only

one stage are relaxed, in particular first the ones of Stage 2 and then the ones of Stage 1.

Figure 4.6 illustrates a general overview of the proposed solution strategy for the
optimal production planning and scheduling problem for beer production facilities. First
an initial good and feasible solution is constructed, by disaggregating the decisions of the
two processing stages. GEG_S1 is employed to solve the problem of Stage 1, and then
sends the relevant information to GEG_S2, whichin turn is solved to considerthe second
stage and generate the solution of the constructive step. This solution is then fed to the
improvement step, where a set of improvement operators based on the fix-and-optimize
heuristic are applied. As a result, we can consider large-scale industrial cases and

generate near-optimal production plans in reasonable computational times.

4.4 Computational analysis

In this section numerous case studies are examined in order to evaluate the
efficiency of the proposed model and solution strategy. Moreover, we illustrate the
applicability of the developed solution method in real-life situations by considering a
large-scale, real-life industrial problem of a brewing facility in Greece. In all presented

case studies, the planning horizonis 42 days, while the scheduling decisionsis a week. All
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models and solution algorithms were developed using the GAMS 31.1 interface (Brooke
et al. 1998) and all problem instances were optimally solved using CPLEX 12.0 in a PC
equipped with an Intel Core i7 @3.4GHz CPU and 16 GB of DDR4 RAM.

a) FO_F
iter 1 iter 2 iter k
— T — T ———T
max{Al} min{Al} max{Al}
min{Al}+max{Al}
b) FO_B
iter 1 iter 2 iter k
T —.T T
max{Al} min{A/} max{A}
min{Al}+max{Al}
c) FO_F21
iter 1 iter 2 iter 3
I T — T — | T
max{ A} min{Al} min{Al}
max{Al} min{Al}+max{Al}
iter 4 iter 5 iter k
.—! T [ S— | T —
2-min{Al} 2-min{Al} max{Al}
min{Al}+max{Al} 2-max{Al}
d) FO_B21
iter 1 iter 2 iter 3
| T —T | —.T
max{Al} min{Al} min{Al}
max{Al} min{AI}+max{Al}
iter 4 iter 5 iter k
| T | T T
2-min{A/} 2-min{Al} max{Al}
min{Al}+max{Al} 2-:max{Al}
Stage 1 binary decisions Stage 2 binary decisions Binary decisions of MILP
I:I Initial solution I:I Initial solution reoptimization subproblem
R
|:| Reoptimized \:| Reoptimized D (8,)

Figure 4.5: Fixand optimize improvement operators
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Figure 4.6: Overview of proposed solution strategy

4.4.1 Evaluation of the proposed MILP model

The developed MILP model (GEG) is used to solve numerous test case studies that
represent small to medium integrated planning and scheduling problems of brewing
facilities. In order to evaluate the quality of the generated production plans, we compare
the solutions generated by our model to the ones extracted by the MILP model of Baldo
etal. (2014), which to our knowledge is the only model found in literature that can tackle
the optimization problem at hand. From now on we will use the name BSAM to refer to
that model. A total of 28 case studies have been created, which can be categorized in
seven groups based on the number of involved items of the optimization problem (i.e,
lines, tanks, liquids, and products). The facility characteristics of each type of case study
are displayed in Table 4.1. For each group four alternative case studies are created, that
are differentiated in terms of the rest of the production characteristics, e.g., demand
mixture (size of orders and due dates), processing times changeover times and cost term
coefficients.In order to createrealistic case studies, we employ the methodology of Baldo
et al. (2014). The specific data for each case study are randomly generated by a set of
possible values, that simulate production parameters found in real-life breweries. We
now present the interval of values used in the considered case studies. The demand for
final products in number of items is in the interval [60, 256710] and the due date of each

product is randomly set within the given horizon. Each final product requires an amount
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ofliquid r;; thatis chosen from the set {1.98, 4.00, 4.80, 5.00, 6.00, 6.00, 6.60, 7.92, 12.00,
17.82, 20.00, 30.00, 50.00}. Processing rates of filling lines range between 0.028
units/second and 9.6 units/second, while the fermentation/maturation process may last
from 5 to 21 days. We assume that all filling lines can process every final product.
Regarding the changeover times, we randomly equate them to the following values {30,
40, 45, 60, 75, 90, 100, 120, 150, 160, 165, 180, 195, 210, 240, 260, 300, 380, 480, 900}.
Furthermore, the unitary inventory costcoefficient(g;) of each product over a single time
period are defined from the set [0.012,0.45], while the backlog cost coefficient (£;) is set
to be one hundred times the inventory cost coefficient, since the priority is to meet the
customer demands prior to the given due date. In order to define changeover cost
coefficient, we multiple the respective changeovertime with a factor in the range of [10,
100]. Finally, the capacity of the fermentation/maturation tanks is defined based on the
specific production characteristics of each problem instance. For more details regarding

the generation or realistic case studies refer to Baldo et al. (2014).

Table 4.1: Description of examined case studies

Tanks Lines Liquids Products
Cases 1.* 3 1 1 5
Cases 2.* 3 1 2 10
Cases 3.* 2 2 2 10
Cases 4.* 4 2 3 15
Cases 5.* 8 2 3 15
Cases 6.* 8 3 4 20
Cases 7.* 10 4 5 25

We employ our model (GEG) to optimally solve the 28 testinstances and compare
the extracted production plans to the solutions generated by BSAM. For both models a
computational limit of half an hour is set. Table 4.2 summarizes the results of this
analysis.More specifically, the objective value for each case study, the computational time

required, and the optimality gap of the solution is provided for both models. Finally, the
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improvement achieved using the suggested MILP model is also reported and was

calculated based on the following equation:

Improvement = S gsay ~SrG -100
SBSAM

An improved solution is generated in most cases, proving the superiority of the
proposed model, which is especially notable in the larger problem instances (5.*, 6.* and
7.*). There are very few cases in which our model was not able to provide an improved
solution, e.g., 4.C and 7.B, however, the solution generated by BSAM in these cases is only
marginally better (<5%). In contrast, the utilization of the developed mathematical
model, can immensely reduce the production cost. Characteristically, an improvement
varying from 10% to 55% is accomplished in many instances. As expected, the larger the
problem size the more difficult itis and thus a larger potential for improvement exists. It
is interesting to note thateven in small-sized cases, where the BSAM solution reaches its
best theoretical solution (0% gap), the proposed model can further reduce the objective
value. Another important find of this analysis is that the proposed model is much faster
than BSAM. In the smaller case studies (1.* - 3.*), GEG achieves similar or better quality
solutions using only a fraction of the computational time required by BSAM. For larger
problem instances, both models reach the computational limit, except for case 5.C, and in
nearly all of them GEG produces a better solution. However, the results also show the
limitations of the proposed model. With the exception of small test instances (1.* - 3.%),
the solution displays a very large integrality gap, meaning that it is much worse than the
theoretically best solution. Thus, a monolithic approach does not suffice, and the

development of a sophisticated solution strategy is necessary.

Table 4.2: Comparison between BSAM and GEG models

BSAM GEG
Case Objective C(l; l)J ((;(:2 l)) Objective C(E;J ?;2 l)) lmpr;)://oe)ment
1.A 11177 13.3 0 10067 11.8 0 9.9
1.B 5083 <1 0 5080 <1 0 0.1
1.C 10232 0.15 0 10234 0.15 0 0
1.D 16885 0.5 0 16555 0.2 0 1.9
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2.A 247461 1800 20.8 203674 225 0 17.7
2.B 59074 1800 52.5 52274 600 0 11.5
2.C 14874 1800 0.4 14662 224 0 1.4
2.D 1060844 1800 18.3 929332 950 0 12.4
3.A 2825319 1443 0 2336326 3.7 0 17.3
3.B 467805 310 0 467325 104 0 0.1
3.C 80731 444 0 80731 144 0 0

3.D 2657138 484 0 2656117 131 0 0

4.A 2592330 1800 50.5 2122710 1800 311 18.1
4.B 1112320 1800 62.2 1066094 1800 53.9 4.2
4.C 24518 1800 70.5 25643 1800 61.4 -4.6
4.D 4628488 1800 83.1 3401497 1800 78.8 26.5
5A 324848 1800 91.8 200925 1800 80.6 38.1
5.B 32325 1800 37 32491 1800 29.5 -0.5
5.C 45363 24.8 0 46034 6 0 -1.4
5.D 506431 1800 3.5 309656 1800 1.8 38.9
6.A 2546127 1800 65.7 1693735 1800 47.4 335
6.B 31386 1800 21.7 28298 1800 8.7 9.8
6.C 18467 1800 57.3 16744 1800 61.4 9.3
6.D 2193641 1800 96.6 1351917 1800  93.88 38.4
7.A 6916373 1800 32.5 5541703 1800 16 19.9
7.B 440177 1800 94.3 451862 1800 93.9 -2.6
7.C 339429 1800 58.3 154366 1800 6.8 54.5
7.D 10446975 1800 100 6858949 1800 91.1 34.3

The combinatorial complexity of an MILP modelis mostly affected by the number
of binary variables generated. Figure 4.7 illustrates this metric for both GEG and BSAM
models. Obviously, the proposed model requires fewer binary variables. In the largest
cases, the difference in the number of binary variables between the two models is

significantly increased. In particular, up to 30% fewer binary variables are used in the
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developed model. Consequently, itis generally faster and can generate better solutionsin

the same computational time.
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Figure 4.7: Reduction of number of binary variables in the developed model

4.4.2 Evaluation of construction heuristic

The analysis of the previous subsection has uncovered both the advantages and
limitations of the proposed model. Therefore, we developed a solution strategy based on
that model, in order to address large-scale problems. As described in subsection 4.3.2,
this method consists of a constructive and an improvement step. It is crucial to promptly
get a good initial solutionin the constructive step, in order to improve the performance
of the developed solution algorithm. This would not be possible if we just applied the
developed model, since it lacks computational efficiency, especially when we deal with
real-life situations.Instead, we employed a spatial decompositionapproach, that consists
of the models GEG_S1 and GEG_S2 that we presented in subsection 4.3.2.1. In this
subsection we test how does this approach compare to the monolithic approach of
directly applying model GEG. In total we consider seven cases of divergent complexity,
which are a subset of the test instances we introduced in the previous subsection. Three
approaches are followed in order to solve these cases. In the first two we employ the
monolithic approach (GEG) using different computational time limits, 600 seconds, and

1800 seconds accordingly, while in the third we utilize the suggested decomposition
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approach with a time limit of 600 seconds. To compare the three approaches, we use the

following expression:

_ Found — Best .

R
Found

100

The best solution found (Best) is compared to the solution generated by each
approach (Found). The better the quality of the solution is, the closer the value of Ris to
zero. Table 4.3 shows a summary of the results. We found that in small cases there is no
difference in the quality of the solution, however the decomposition approach is able to
generate faster the optimal production plans. This changes when we are dealing with
medium-sized problem instances. Using the same time limit, the solution of the
decomposition approach is always better. This effect is stronger in larger cases, were an
improvement of up to 50% is reported. The monolithicapproach cannot outperform the
decompositionmethod evenwhen we allow three times the computationaltime. The only
exceptionis case 4.A, where the solution of the decomposition strategy is insignificantly
worse but requires only a third of the CPU time. Conclusively, it is shown that the
decomposition strategy employed can successfully improve the solutions generated in

the constructive step.

Table 4.3: Improvement using construction heuristic

Monolithic (GEG) Decomposition
limit 600s limit 1800s (GEGS1+ GEG_S2)
Case R (%) CPU (s) R (%) CPU(s) R (%) CPU (s)
1.A 0 12 0 12 0 9
2.A 0 225 0 225 0 57
3.A 0 4 0 4 0 1
4.A 5.28 600 0 1800 1.79 600
5.A 10.31 600 2.06 1800 0 600
6.A 16 600 8.23 1800 0 600
7.A 52.7 600 41.62 1800 0 600
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4.4.3 Evaluation of the developed MILP-based solution strategy

In subsection 4.3.2.2 we introduced four improvement operators (FO_F, FO_B,
FO_F21 and FO_B21), based on the fix-and-optimize heuristic, that are used to further
enhance the quality of the initial solution. Preliminary tests on numerous case studies
were done to evaluate the different operators. For each test we generated an initial
solution based on the proposed constructive heuristic and then we applied separately
each operator and reported the improvements achieved. The tests showed that the best
performer is FO_B, followed by FO_B21, FO_F and finally FO_F21. Based on this
informationwe createtwo improvementschemes, that differentiatein the order in which
the improvement operators are applied. In the first, denominated IMP.A, we employ a
greedy approach where the different operators are applied from best to worst (FO_B ->
FO_B21-> FO_F -> FO_F21). The second is denominated IMP.B and the reverse order is
followed. To evaluate the two improvement schemes, 10 large-scale problem instances
are generated. The characteristics of these case studies are as follows. The number of
fermentation tanks is in the range [20, 30], while five filling lines comprise the liquid
bottling stage. Depending on the considered case, 35 to 40 products, requiring 5 to 7
different liquids, are to be processed. The procedure of generating each problem’s
parameters is the same as the one described in subsection 4.4.1. For each case study we
have used the two alternative improvement schemes and the monolithic approach.
Moreover, two time limits (one hour and two hours) were considered for each method.
Consequently, six different runs were done for each case study. Note that the
improvement schemes are applied to the initial solution provided by the constructive
heuristic. Therefore, the available computational time must be shared between the two
stepsofthe proposed solutionstrategy.Preliminary tests showed thatbetter results were
achieved, when a small amount of CPU time is allocated to the generation of the initial
solution. Therefore, a time limit of 450 seconds is set for the constructive step. The rest
of the available CPU time (3150 or 6750 seconds depending on the testinstance) is used
in the iterativeimprovementstep. In Table 4.4 a summary of the results is portrayed. The
relative quality of each solution is reported using the R value described in the previous
subsection. The solutions generated by any of the two proposed methods is much better
than the solutions obtained by the MILP model, even when we use twice the

computationaltime.It should be underlined that on average the initialsolutions provided
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by the constructive step are better than the ones obtained by the model using any time
limit. Note that the constructive heuristic runs only for a very small fraction of time
compared to GEG. On average IMP.B delivered the best solutions, however in some case
studies the application of IMP.A resulted to production plans of better quality. More clear
conclusions can be drawn when a time limit of two hours is employed. Here IMP.B is
clearly the better approach, since it provides the best solutionin nearly all case studies.
Conclusively, both solution strategies seem promising, since they outperform the direct
application of CPLEX on the MILP model (GEG), on every large-scale problem. Thus, the
results indicate that the proposed methods can successfully address real-life industrial
problems. We note that as the runtime limits increase, the performance of both methods
is improved. Finally, the order of applying the improvement operators affects the
performance of the improvement step. In particular, better solutions are extracted in
most cases, when we apply the operators from worst to best.

Table 4.4: Comparison between the MILP model and the proposed solution strategy
approaches for large-scale case studies

Limit (3600s) Limit (7200s)
GEG Constructive IMP.A IMP.B GEG IMP.A IMP.B
% ) (%) %) (%) ) (%) (%)
L1 85.4 68.3 22 29.3 49.7 19.3 0
L2 39.3 18.6 7.4 7.4 39.3 0 1.8
L3 55.7 27.7 12.2 10.5 38.2 11.3 0
L4 52.5 33.3 32 49 49.6 17.8 0
L5 18.4 3.5 0.4 0.4 15.8 0 0.3
L6 68 62.7 47 .4 19.7 43.7 27.9 0
L7 73.7 40.9 1.6 23.1 50.9 0 2
L8 55.7 29.2 4.3 3.2 9.5 2.3 0
L9 67.1 19.2 2.1 3 54.8 0.7 0
L10 72.7 85.7 41 2.3 40.5 25.9 0
Average 58.85 38.91 17.04 10.38 39.2 10.52 0.41
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4.4.4 Industrial application

The applicability of the proposed solution strategy in real-life industrial problems
is tested in this subsection. In particular, a case study provided by a brewery located in
Northern Greece is considered. The facility under consideration consists of 31
fermentation/maturation tanks and two filling lines. The tanks are divided in tree types,
small, medium, and large, depending on their capacity. Regarding the filling lines, the first
one can process all products that use aluminium cans or glass bottles, while the second
only produces final items that use kegs. A total of nine products that require two types of
liquids are produced in the facility. However, multiple orders for each final product that
usually have differentamounts and due dates mustbe satisfiedinthe considered horizon,
thus increasing the complexity of the problem. The planning horizon is set to six weeks,
while the optimal scheduling decisions are required over a weekly horizon. The plant
operates throughout the clock, so thereis a 24 /7 availability for all processing units. Due
to confidentiality reasons, we cannot share any processing data and therefore we also
cannot compare the optimized production plans with the ones generated by the
production engineers. In the considered problem instance, a total of 36 orders must be
met. The proposed solution method is employed to generate optimal production plans
that minimize the total production costs (inventory, backlog, and changeover) of the
facility. In the improvement step, we apply the operators from worst to best (IMP.B
approach), due to its superior performance. The chosen computational limit is set to 2

hours.

Figure 4.8 illustrates the Gantt chart of the optimized solution for each
fermentation/maturation tank. Each block signifies the fermentation/maturation
processof aliquid that takes places in a tank. Note that by the end of the planning horizon
no fermentation process occurs. This is justified by the limited considered horizon. The
fermentation/maturation process requires a total of 21 days, consequently, no liquid can

be prepared in the available time, therefore no additional process can start.

In Figure 4.9 the Gantt chart of the filling lines is portrayed. Each coloured block
denotes that a filling process for a specific order is taking place. At a first look one would
say that there is no need for incorporating this stage and that the production bottleneck
is the fermentation/maturation stage. It is true that the results, underline an overdesign

issue of the filling lines in the examined facility. However, they must be included in the
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optimization problem for two reasons. Firstly, the changeovers that take place in the
liquid filling stage mustbe incorporated since they induce significant costs either due to
the loss of production time or the due to the resourcesrequired for cleaning operations
e.g., water and manpower. Moreover, there must always be available filling lines for the
tanks to empty the ready liquid and be refilled to initiate the next fermentation process.
[t must be ensured that the capacity of the filling lines is never violated, otherwise no

feasible production plan can be achieved for the fermentation tanks.

[N

Fermentation tanks
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Planning horizon (days)

Figure 4.8: Gantt chart of the fermentation/maturation tanks

] 3 10 15 20 25 30 35 40
Planning horizon (days)

Filling lines

Figure 4.9: Gantt chart of the filling lines
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Finally, Figure 4.10 depicts the amount of stored ready liquid in a representative sample
of the fermentation tanks. It can be observed that the tank capacity limitations are

respected throughout the planning horizon.

Large (40000 1)

Medium

Figure 4.10: Amount of liquid stored in a representative sample of the fermentation
tanks

4.5 Conclusions

In this chapter a new MILP-based solution strategy is proposed for the optimal
production planning and scheduling problem of breweries. The overall production
procedure consists of a batch (liquid preparation) and a continuous (liquid bottling)
processing stage. Numerous parallel non-identical units such as fermentation/tanks and
filling lines are available in each stage, while a large number of orders must be satisfied
as close as possible to their specified due dates. A salient characteristicof this processare
the very long lead times originating from the large processing time required for the
fermentation/maturation process. Therefore, a long planning horizon must be
considered, resulting to a very difficult optimization problem. In order to efficiently
address the problem, a new MILP modelisdeveloped based on the immediate precedence
framework and relying on a mixed discrete-continuous time representation. A
comprehensive analysis demonstrated that the developed model performs superior to
the only other suitable model currently available in literature. However, the direct
application of the MILP model is limited to small problem instances. Therefore, an
optimization-based solution strategy is introduced, in order to tackle large-scale case

studies that simulate the industrial reality. The suggested algorithm consists of a
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constructive step, that utilizesa spatialdecompositionheuristicto proposean initialgood
solution and an improvement step, where four operators based on the fix-and-optimize
heuristic are applied to achieve high quality solutions. The proposed solutions strategy is
successfully applied in a real-life industrial problem of a Greek brewery. Optimized
production plans that minimize the total production costs are generated in low CPU
times. The suggested optimization framework can be the core part of a computer-aided
tool, that will facilitate the decision-making process in any brewing facility of arbitrary
complexity. As a result, near-optimal production plans can be promptly generated, thus
leading to significant economic benefits and to the overall improvement of the industry’s

competitive advantage.

Nomenclature

Indices

i,i'el  products to be processed within the planning horizon
/,1"e L liquids required for the final products

oe0 fermentation/maturation tanks

Jej filling lines

t,t'eT setoftime periods for the whole planning horizon

Sets
71 subset of time periods that comprise the first part of the planning horizon
T2 subset of time periods that comprise the second part of the planning horizon
]/- mapping set defining filling lines j that can process product i
/1- mapping set defining products i that can be processed by filling line j
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]1 mapping set defining products i that are made of liquid /
Parameters

/1] fermentation/maturation time required for liquid /

X, maximum capacity of fermentation/maturation tank o

T, amount of liquid / required for each unit of product i

oy processing rate of product i in filling line j

Y:r,;  hecessary changeover time between products i and i’ in filling line j

i

demand of product i in time period ¢
inventory cost coefficient

backlog cost coefficient

ARSI

K,r;  changeover costcoefficient
0] available processing time in each time period
Y big-M parameter used for the lot-sizing constraints of the liquid preparation
stage
Variables
Binary
Stage 1
Yol’/,t =1 whenliquid I gets ready in tank o in time period ¢
Stage 2
2
it =1 when product i is processed in filling line j in time period ¢
Vj-,t =1 whenfilling line j is utilized
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VV,[;t =1 when product i is processed firstin filling line j in time period ¢t

VV,th =1 when product i is processed last in filling line j in time period t’

=1 when product i is processed right before product i’ in line j and time

Xili'ljlt .
period ¢t

= =1 when product i is the last to be processed in line j period t and product i’
Lijr . . . C e .
7 is the first to be processed in the same line in time period t+1

Continuous

Stage 1

Lg,l,t amount of liquid / that gets ready in tank o in time period t

Li ;.  amountofstored liquid / that gets ready in tank o in time period ¢

Stage 1+2

T

»;ic  amountofliquid I being transferred from tank o to line j in time period ¢

Stage 2

0 number of items i that use liquid from tank o and are processedin line j in
2.4t time period t

C completion time of the filling process for product i in filling line jand time
L2E period t

U time within period t used for a changeover operation that is completed in
sk the next period in filling line j

i time within period t used for a changeover operation that started in the
st previous period in filling line j

inventory level of product i in time period ¢

it backloglevel of product i in time period ¢
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Chapter 5

Optimal Planning of the COVID-19
Vaccine Supply Chain

5.1 Introduction

The focus of this thesis so far is on the optimization of production planning and
scheduling on a large variety of industrial problems. This chapter addresses an emerging
supply chain optimization problem related to the COVID pandemic. Production planning
and scheduling constitute the most important decision-making procedure in
manufacturing, which is an integral part and considered as a critical phase of any supply
chain. Furthermore, the mathematical frameworks for production planning and supply
chain optimization illustrate significant similarities. So, in this chapter, we broaden the
field of our research by extending the knowledge acquired in chapters 2 to 4 to study a
new and challenging supply chain planning problem emerging from the COVID-19

vaccination.

More specifically, this chapter is considered with the optimal short-term planning
of the COVID-19 supply chain by proposing a novel MILP-based framework. Tacticaland
operational decisions regarding the inventory levels in the central hubs and the
vaccination centres, the flows between the variouslocations of the distribution network,
the fleet requirements, the scheduling of citizens’ vaccinations, as well as, staffing of the
vaccination centres are considered. The developed model cleverly addresses key issues
of the COVID-19 supply chain, like storage and supply limitations, multiple cold storage
technologies, demanding vaccination targets, transportation lead-times and vaccine
perishability. Goal of the optimizationisthe minimizationof costincluding, storage costs,
fleet rental, fuel consumption, drivers’ wages, cost of wasted doses and possible needs in
additional healthcare personnel. An optimization-based solution strategy is introduced
to address large-scale realistic case studies and is successfully applied to a case

simulatingthe Greek COVID-19 supply chain. Furthermore, a rolling-horizon technique is
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incorporated to replan the supply chain, in case of demand fluctuations originating from
citizens that reschedule their vaccination appointment at the last minute or do notarrive

on a scheduled appointment.

5.2 Problem Statement

The problem addressed in this chapter considers the optimal short-term planning
of the COVID-19 VSC, as well as the optimal planning of appointments in the vaccination
centres, in order to minimize the total costs. Figure 5.1 illustrates a generic
representation of the underlying network. The supply chain consists of three echelons:
the manufacturing plants with a known maximum production capacity, the hubs, where
the vaccine vials are stored and transferred to the vaccination centres, where the citizens
are vaccinated. The product (vaccines) flow is unidirectional, from the manufacturers to
the hubs and finally to the vaccination centres. Reverse flows from the vaccination
centres to the hubs are not allowed, while intralayer flows between the hubs or the
vaccination centres are not considered. Finally, the vaccines are used in the vaccination
program of the population. Planning of the appointments is considered simultaneously
with planning the distribution of the COVID-19 vaccines. The capacity of each vaccination
centre depends on the number of active vaccination lines. Each vaccination line operates
in two 6-hour shifts from Monday to Saturday, and employs two health workers, one
nurse and one doctor. The vaccination centres are closed on Sundays. To properly
consider the low shelf-life of sensitive vaccines (5 days), a 14-day horizon is considered.
The described problem is implemented in terms of an MILP model that relies on a daily
discretization of the bi-weekly time horizon. Within the given horizon a specificnumber
of completed appointments must be satisfied. The model distributes this number
throughout the available time periods. As a result, optimal decisions regarding the daily
appointments at each centre are generated, which impose the needs in healthcare

personnel in each centre and time period.
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Manufacturing plants Hubs Vaccination centres Citizens

& i, I N S 202

N
Figure 5.1: COVID-19 Vaccine Supply Chain Representation

A total of four vaccines simulating the different characteristics of the main
vaccines currently used in Europe and the USA are considered in the overall vaccination
plan and supply chain. In particular, the vaccines of Astrazeneca (A), Johnson& Johnson
(J), Moderna (M) and Pfizer (P) are considered. Extension to more types of vaccines is
straightforward. The hubs are equipped with all necessary cold storage technologies for
the long-term storage of the vaccines. More specifically, deep freezers (-70°C) are
required for Pfizer and regular freezers (-20°C) for Moderna vaccines, while simple
refrigeration suffices for the non-mRNA alternatives (A and ]). In contrast, the vaccination
centres are only equipped with regular refrigerators. This reinforces the need for the
proper organization of the supply chain, since mRNA vaccines, especially the Pfizer
vaccine, cannot be maintained long-term in such conditions. Otherwise, a huge number
of valuable doses may be spoiled, thus hindering the prompt vaccination of the citizens.

Therefore, all perishability considerations are included in the proposed MILP model.

Ahomogeneousfleetof trucksis employedto transport the vaccines from the hubs
to the vaccination centres. The trucks are equipped with the necessary technology to
maintainlow temperatures during transportation and ensure that the cold chain remains
uninterrupted. Vehicle routing is not considered in this study. [t is assumed that in each
time period a truck can visita single vaccination centre and must return to the hub from
which it started. A specific time is necessary for the transportation of vaccines between
the echelons of the supply chain. The lead time could be easily incorporatedin case a finer
discrete time grid, e.g., hourly, was utilized, however that would lead to a huge MILP
model, thus worseningits computationalefficiency.To bypass this obstacle, itis assumed
that the vaccines must remain for a period in every location of the supply chain. For

example, if a quantity of vaccines is transferred in period t from the manufacturing plant
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to a hub, then this quantity is only available to be transferred to the vaccination centres
after period t+1. Similarly, if a quantity arrives in a vaccination centre in period t+1, this

will only be available to be used in an appointment after period t+2.

An important issue in VSCs is related with the wasted doses. This is especially
relevant for perishable products like the mRNA COVID-19 vaccines. The World Health
Organization (WHO) categorizes the wasted doses into closed vial wastage, which is
caused by inefficiencies in the supply chain and open vial wastage, which is further
divided into avoidable and unavoidable open vial wastage (World Health Organization
2019). The first is attributed to immunization workers’ and include errors in patient’s
reactions, suspected contamination, reconstitution, and excess heat. The latter refers to
the discarded doses from multidose vials. Notice that each vial contains multiple doses,
once a vial is firstly opened, all doses must be used within the same day, otherwise all
remaining doses must be discarded. Closed vial wastage and avoidable vial wastage are
included in the model based on the wastage ratios recommended by WHO. The
minimization of the unavoidable open vial wastage is included in the objective function

of the proposed model.
The problem under study can be formally stated as follows. Given:

e Aknown planning horizon H divided into a set of time periods t € T.

e Asetoflocations i € I with an initial storage of vaccine v «; ,,, a wastage ratio f;
and a desired safety stock ¢; ,,. Furthermore, the distance between all locations is
given y; ;, as well as a minimum and maximum flow of vaccine vials between each

min
L]

pair of locations, p{’;™ and p;’**accordingly.

e Asetof manufacturing plants f € F.

e Asetofhubs h € H that can handle a maximum supply of vaccine v j*}*

e A set of vaccination centres vc € VC, with a maximum storage capacity 8,,., a
vaccination appointment goal within the horizon {,. and a number of readily
available healthcare workers ¢,.

e A setofvaccines v € V to be distributed and a subset of vaccine types sl € SL,,
that are characterised by a limited shelf-life. Also given are the doses per vial of

vaccine v 6, the shelf-life 4, and the cost of each dose of vaccine type &,,.
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e Asetofcold storage technologies ¢ € C to safely store the different vaccine types
with a given operating cost y.. Moreover, the storage capacity of each technology
in the hubs (yp, ) is provided.

e The multidimensionalset IJ; ; that denotes the connectivity between the various
locations of the supply chain.

e The multidimensionalset CV, , that defines the cold storage technology required
for every vaccine type.

e The multidimensional set FV;, which characterises the vaccines that are

produced by each manufacturing plant.
Determine:

e The amount of vaccine vials that is supplied by the manufacturers at each period
Pyt

e The transferred amounts of vials of each vaccine between the locations of the
supply chainin each period X; ; ,, ;.

e The inventory profile in all locations and every period S; ,, .

e The daily vaccinationappointments in each locationand period DA, .

e Thevials of each vaccine type thatare opened in each period VU, , . and the doses
that are used in the vaccination plan DU, ;.

e The doses that are wasted due to open vials that are not fully exploited within a
period WD, or due to expiration WE; ;.

e The number of healthcare workers required to realize the vaccination plan HW; .

e The fleet size of trucks necessary to distribute the vaccines from the hubs to the

vaccination centres NT.

, so that the total cost of the supply chain consisting of i) the storage costs, ii) the
distribution costs (fuel consumption and drivers’ wages), iii) the compensation for any
additional healthcare personnel, iv) the wasted doses and v) the rental cost of the fleet, is

minimized.
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5.3 Mathematical framework

In this chapter the MILP-based mathematical frameworks that have been
developed to deal with the optimization problem of planning the COVID-19 VSC are
presented. A novel MILP model is presented that can generate optimal decisions for small
to medium problems. Specific characteristics of the COVID-19 VSC such as the limited
shelflife of the vaccines, are cleverly incorporated. Despite the efficiency of the proposed
models, the combinatorial complexity of large nation-wide problems exceeds the
computational capabilities of any known solver, e.g., CPLEX, therefore, a solutionstrategy

based on the proposed MILP model is also investigated.

5.3.1 MILP model

The developed model utilizes a discrete time grid to efficiently encapsulate the
inventory balances in the various locations of the supply chain. The constraintsrelated to
the material balances, inventory capacities and vaccine flows are inspired by the model
proposed in Carvalho, Ribeiro, and Barbosa-Povoa (2019), which studies the long-term
design and planning problem of a VSC. In contrast, this paper considers the short-term
planning of the VSC, while taking into account the undergone vaccination plan in each
vaccination centre. Therefore, the studied two-week planning horizon is discretized into
14 daily time periods. Additional to the material balance, inventory capacity and flow
limitation constraints, the proposed model introduces efficient constraints for the
incorporation of lead time, shelf-life limitations, and the vaccination plan. All constraints
of the model are described in detail below. To facilitate the presentation of the model],
lowercase Latin letter are used for indices, uppercase Latin letters for variables and

lowercase Greek letters for parameters.

Supply constraints

The supply limitations provided by the manufacturer are expressed by the
following constraints. More specifically, constraint (5.1) ensures that the vials of vaccine

v supplied by the corresponding manufacturer f (Pr,,) throughout the considered

planning horizon are limited by the upper bound of production (;';*). Furthermore, it
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is assumed that each manufacturer f can supply each hub h at most once per week, as

imposed by constraint (5.2).

DIDN /ST s Vhv (5.1)
feFV t
t;WYfﬁ,t <1 Y, hw (5.2)
Material balances

Constraints (5.3) - (5.7) encapsulate the material balances around each location of
the supply chain. Firstly, constraints (5.3) guarantee that the amount of a vaccine v
transferred from a factory fto all hubs h (X¢ 5, ;) equals the total amount supplied by the
factory in time period t. The next two constrains set the material balances around the
hubs. Constraints (5.4) state that the inventory at the end of the first time period equals
the initial inventory of the hub (ay,) plus the amount transferred from the factories,
minus the amount that has been sent to the vaccination centres (X}, ,,c,,¢) and the amount
of vials lost (LS ). For all next time periods, the constraints remain the same, but
instead of using the initial inventory, the inventory of the previous period is used.
Similarly, constraints (5.6) and (5.7) monitor the material balances around the
vaccination centres. Finally, constraint (5.8) calculates the vials of vaccine v lost in each
locationi and time period ¢, as the factor of the stored vials and the known wastage ratio

of the location (p;).

ZX”L” =Pf’V,t Vfefv,v,t
7 (5.3)
Sh,V,t - ab,v +2Xf,]1,v,t - Z X[],VC,V,t _LSh,V,t Vb'V’t =1
f veeHVC (5.4)
Yhv,t>1
Sh,V,t :Sh,V,t—l + Z Xf,b,V,t o Z Xb,Vc,V,t _LSh,V,t (5.5)
fefvV vceHVC
Yve,v,t =1
SVC,V,t :aVC,V + Z Xh,Vc,V,t _VUVC,V,t _LSVC,V,t (5.6)

heHVC
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Yve,v,t >1
SVC,V,t :SVC,V,t—l + Z Xh,Vc,V,t _VUVC,V,t _LSVC,V,t (57)
heHVC
YViv,t
LS., =S, . P (5:8)

Inventory constraints

The following constraints are concerned with the inventory considerations of the
supply chain. Constraint (5.9) imposes a minimum safety stock at the end of the planning
horizon (¢; ,,), which is required to ensure the future availability of vaccines in the hubs
and the vaccination centres. The storage capacities ofthe various technologiesinthe hubs

(v¥cn) and the vaccination centres (6,.) are respected by constraints (5.10) and (5.11)

accordingly.
ZSI',V,t - 281',V Vie (VCI. U bi)’t - ‘T‘ (5.9)
|4 14
Z Shve<Ven Vhct (5.10)
veClV
ZSVC,V,t s QVC Vve,t (5.11)
|4

Flow limitations

A minimum (p] ]”‘) and a maximum flow (p/;"*) is allowed during the
transportation of vaccine vials between two locations. These bounds are set for the vial
flows between factories and hubs and between hubs and vaccination centres by
constraints (5.12) and (5.13) accordingly. Notice that when a connection is not realized
in time period t (Y ; = 0), the associated transferred quantities (X ;,,.) are pushed to
Zero.

mIH )/hvct_ ZFV f,hy t_ maX )/lzvct Vf’b’t (5'12)
ve
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pllzntlzlcl 'Yb,vc,t < ZXII,VC,V,[ < pllz],jjj 'Y;z,vc,t Vhe HVC ve,t (513)
|4

Transportation time considerations

Animportant characteristicof the studied supply chain that should be considered,
concerns the required transportation time between the supply chain nodes.
Theoretically, within the same day a vial could be transferred from the manufacturers to
the hubs and then the vaccination centres to be used. However, this would require a finer
discretization of time, that would lead to large and inefficient models. Therefore, to
ensure the feasibility of the proposed logistics operations using a daily discretization, it
isassumed thata vial that is transferred from a factory to a hub in time period ¢, can only
be further transferred to a vaccination centre after the next time period (t+1).The same
holds for the hubs to vaccination centres connections. In particular, a vial that is
transferred from a hub to a vaccination centre in time period t can only be used for the
vaccination plan of a vaccination centre after time period t+1. This assumption is
introduced to the model through constraints (5.14) and (5.15). Figure 5.2 illustrates the
role of the constraint for the vaccination centres. More specifically, the vials of vaccine v
used in the vaccination plan in a centre for all time periods t’ < t, must be less than or
equal to the initialinventory of vials plus the vials that arrived from the hubs in all time

periods t”” <t — 1, minus the vials lost in the same time periods. A similar logic is

followed for the hubs.
ZZX]I,VC,V,[' Sah,v + Z Z Xf,h,V,t"_ Z LSh,V,t" Vh!V't
ve t'<t FeFV t"<t-1 t"<t-1 (5.14)
ZVUVC,V,I' - aVC 174 + Z Xl],VC,V,t" - Z LSVC,V,['" Vh»V!t
£t h t'<t-1 t"<t-1 (5.15)
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Vials transferred from hubs

Lost vials

inventory ¢ -1 T
Y
Y

Vials used for vaccinations

Figure 5.2: Description of transportation time constraints

Shelf-life of vaccines

To incorporate shelf-life issues in the model, a new variable L, , +, is introduced,
which defines the quantity of vials of vaccines v used in centre vc in time period t’ that
have been transferred to the centre in time period t. Constraints (5.16) state that the vials
transferred to a vaccinationcentre in time period t are eitherused in the vaccinationplan
of the next time periods within the shelf-life of the specific vaccine (Ay;) or are spoiled
WE,. . In case the time periods after t exceed the considered horizon, constraints (5.17)
are activated, to ensure that the vials used do not surpass the vials transferred. Another
continuous variable is included to model the quantity of vials that existed in the initial
inventory and were used in the vaccination plan of time period t (SU,,,). The next
constraints connect the total quantity of vials used in the vaccination plan of period ¢
(VU ), withthe newly introduced variables. Figure 5.3 depicts the connectionbetween
variables Ly, ¢ ¢ VUyc e and Xy ¢ ¢ In the illustrated example, the vials used in time
period t5 originate from quantities transferred in the vaccination centre in time periods
t1 and t3.Finally, constraints (5.20) calculate the number of vials that belong in the initial

inventory and are spoiled (WE}, ,). Notice that the constraints below are only generated

for the vaccines with shelf-life issues (v € sl).
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t+y

Z l‘ﬁ/C,V,t,t' +WEVC,t = z Xh,Vc,V,t VveveSLt S(‘T‘_ﬂ’sl) (5.16)
t>t+1 heHVC

S Lpvin< Y Xpeos vveveSLt>(T|-2,)  (5.17)
t">t+1 heHVC
VUVC,S/,t' = SUVC,S/,I" + leﬁ/c,sl,t,t' v VC’SJ’t' = /151 (5-18)

t<t'—
t'-1
VUVC,S/,Z" = 2,1 LVC,SI,t,t' v VC'Sj’t' > Z“s/ (5-19)
t>t'- =

SU, , +WE! =«
,s1,t sl
t;;l vc,S. vc vC,S. VVC,S[ (520)
Xh,vc,v,t4
X
Xh,vc,v,tl h,vc,v,t3
Xh,vc,v,tZ
ch,v,tl,tS
Shelf-life [\ 4
I‘vc,v,t3,t5
VU

vc,v,t5 w

Figure 5.3: Relationship between variables Lycv,tand VUyc,,t

Vaccination plan constraints

The daily vaccination appointments in centre vc and period t (DA,..) are
calculated as the summation of the doses of all vaccines v used in the respective centre

(DU, ,t), as given in constraints (5.21). Constraints (5.22) define the number of vaccine
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doses as the product of the vials used and the number of doses in each vial. Attaining the

vaccination target within the planning horizon is ensured by constraints (5.23).

ZDUVC,V,I' :DAVCI Yvc,t (5.21)
Wy, 0,=DU,,, Vet (5.22)
2.DA.,=¢,. Y ve (5.23)

3
Healthcare workers and fleet constraints

Constraints (5.24) and (5.25) define the requirements in healthcare personnel for
the vaccination plan. The number of daily appointments in a vaccination centre is
dependent on the number of active vaccination lines in the centre (HW,,.). Each
vaccinationline consists of two health workers that can complete 1 vaccinations per time
period. Every vaccination centre has a base number of vaccination lines available (t,.).
The additional number of lines required for the optimal vaccination plan is portrayed by

variable (AH,..). The fleet size required for distributing the vaccines from the hubs to the

vaccination centres (NT) is calculated by constraints (5.26).

DA, <n-HW,_, Vet (5.24)
AH,  >2HW, -1, Vve,t (5.25)

> Y, SNT Yve,t (5.26)
T vceAVC .

Wasted doses constraints

The vaccine doses wasted due to open vials that are not completely used withina
period are included in the model by constraints (5.28). An integer variable is introduced
to calculate the actual number of vials of vaccine v opened in vaccination centre vc and

time period t (VU] ), as shownin constraints (5.27). Finally, the doses available in the
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opened vials are subtracted by the actual doses used in the vaccination plan to calculate

the number of wasted doses (WD, ¢)-

VUVIC’” WU, , . Vve,v,t (5.27)
WDVC,V,t = (VUVIC,V,t _VUVC,V,t) ) §V VVC’V’t (5-28)

An economic objective is considered to minimize the total cost of the vaccine

supply chain (5.29). The total cost terms include the following in the respective order:

Storage operating costs in the hubs are given by the number of vials stored in each
hub (S, ;) multiplied by the unitary storage costs for each storage technology
(c)-

Storage operating costs in the vaccination centres are given by the multiplication
of the vials stored in each vaccination centre and the unitary storage costs. Only
the refrigeration storage technology is employed in the vaccination centres.

The transportation costs consisting of the costs for fuel and the cost of the drivers.
These costs are included in the objective function, only when a connection
between a hub and a vaccination centre exists in period ¢ (Y, = 1). The fuel
consumption costis provided by multiplying the distance travelled (2 - uy, ,,c), the
costof fuel (k) and the average fuel consumptionper 100km (¢). Notice that since
the trucks need to return to the corresponding hubs in each period, the distance
(4nvc) mustbe multiplied by two.Regarding the drivers’ cost,itis calculated based
on the total hours a driver is employed, which is given by dividing the distance
travelled and the average speed of a truck (7), and the hourly wage of a single
driver (o).

Cost of wasted doses due to unproper planning in the vaccination centres is given
by three terms. In the first the wasted doses of open vials which are not fully used
in the daily vaccination program (WD, ,, ;) are multiplied with the cost of a single
vaccine dose (&,). The next two terms consider the vials that were initially stored

and the vials that were transferred withinthe studied horizon which have expired

(WE!, and WE,, accordingly). To calculate these terms, the associated values of
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spoiled vials are multiplied with the cost of the vaccine dose and the number of
doses in each vial (dg;).

e Additional health workers costs are simply given as the multiplication of the
summation of additional health workers employed (AH,..) and their daily wage
(o).

e The rental cost of the fleet is given by the multiplication of the number of trucks

required NT and the cost of each truck v.

min ZZ Z Z‘Shvt K +ZZZ VCVl’ refngerator

|4 CGCSV vc v

Hp e
+Z Z Zz’luh,vc (100) hVCt+Z Z Zz L 'O'Y;I,VC,t

7 veelVC T 7 vceAVC T T

+ZZZW ve vt §V +;WE§{] '551 '§SJ+;ZWESJ,t '551 "fs/

vc v

+0- ZZA ct tV- NT (5.29)

In total, the developed MILP model for the cost minimization of COVID-19 VSCs

comprises of constraints (5.1) to (5.28) and the objective function (5.29).

5.3.2 MILP-based solution strategy

For the solution of large, nation-wide problems, an MILP-based solution strategy,
that utilizes a decomposition algorithm is employed. Let us assume a relatively small
problem with one manufacturing plant, two hubs and 20 vaccination centres. The
problem is decomposed employing the following rationale. First, the problem is divided
into two subproblems, one for each hub, where the vaccination centres are pre-allocated
to the closest hub. This assumption is motivated by the observation that in large
problems, the vaccination centres will never be supplied by the hubs that are far away
from them. So, this approach does not strongly affect the quality of the solution, however,
it reduces immensely the combinatorial complexity of the problem, since many binary

variables (connections of hubs to vaccination centres) are predefined. Next, the
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vaccination centres are grouped into clusters based on existing political boundaries. As
shown in Figure 5.4, four clusters are generated, two for each subproblem. The number
of vaccination centres in a cluster may vary and it solely depends on the size of the
political boundaries used. Then, the two subproblems are solved using the cluster
entities,instead ofthe vaccination centres. To generate the models, all related parameters
of the vaccination centres, e.g., vaccination targets, storage capacities etc. are aggregated
to extract the parameters for each cluster. Through this aggregated approach, small
problems are generated, that can be quickly solved. The solution of these models
proposes optimal decisions considering the clusters as the last echelon of the vaccine
supply chain. To disaggregate these decisions an additional step is introduced. Here, all
binary variables are fixed, and the previous solutionis used as a start point for the solver.
This means that if in a time period ¢, the hub h is supplying vaccines to cluster ¢l (Y, ¢ ¢ =
1), then at this time period the hub will supply all vaccination centres of this cluster. Since,
no binary variables are optimized, the modelisreduced to an LP model, soit can be solved

very fast.

Conclusively, the proposed solution strategy consists of two steps.In the first step,
small subproblems are generated, first through a divide-and-conquer approach that
creates MILP-subproblems for each hub, and then by an aggregation technique that
reduces the number of involved entities, by grouping the vaccination centres into
clusters. At this point the reduced MILP-subproblems are solved to provide optimal
solutions for the clusters. In the second step of the algorithm, the binary decisions are
fixed, and an LP-model is now solved for all vaccination centres. Sequentially, the MILP-
subproblems for each hub are solved and finally the optimal plan for the entirety of the

supply chainis created.

5.3.3 MILP-based replanning algorithm

Often citizens do not come to the planned appointment or reschedule their
appointment at the last minute. This is a known issue in COVID-19 VSCs that must be
considered, otherwise these variations between the planned and the actual vaccinations,
may result to suboptimalor even infeasible solutions.Possible consequences could be the
spoilage of numerous doses, the failure of achieving the vaccination targets, the violation

of inventory limitations or the miscalculation of the needs in healthcare personnel. For
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Figure 5.4: Decomposition approach

that purpose, a reactive approach can be employed, utilizing the aforementioned MILP-
based solution strategy in the context of a rolling horizon algorithm, in order to ensure

that the supply chain is properly replanned.

The introduction of four new subsets T,, T, Tr and T is required for the
implementation of the algorithm. T, defines the prediction horizon, which includes all
time periods considered by the optimization model at each iteration. In this study a bi-
weekly prediction horizon is considered (|T,| = 14). Fully reoptimizing the plan will
provide the best possible solutions in terms of the underlying economic objective;
however, it may require a significant number of changes, leading to nervousness, that
could not be implemented in practice. Therefore, the prediction horizon subsetis further

divided into two subsets T, and T;. The first corresponds to the initial part of the
prediction horizon, in which the decisions related to the binary variables (Y; ; ;) and the
daily number of vaccines used (VU, ;) remain fixed and equal to the previous solution.

The second horizon is more flexible since the previous solution for the variables related
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to the connections between locations of the supply chain and the vaccines used is applied
as a lower bound. This ensures that the scheduled appointments will not be rescheduled,
however more appointments or additional connections are possible to improve the
quality of the plan. The length of these horizons can be freely chosen by the decision-
makers based on their specific goals. In this study, equally length horizons are used
(IT.| = |T,| = 7), which achieves a good trade-off between nervousness and solution
quality. The rest of the variables, e.g., inventory profiles, transferred quantities etc., are
fully relaxed throughout the prediction horizon. Finally, T, corresponds to the control
horizon, that includes all time periods, for which the optimized decisions are applied.
Usually, the control horizon is set to a minimal of one time period, which allows the re-
optimization of the plan after every time period (|T.| = 1). The initial state of the supply
chain in a given prediction horizon T, , equals to the final state of the previous control
horizonT, ,_;. At the end of each time period the model receives the new information
regarding the actual vaccination appointments and the new inventory levels at the

vaccination centres.

Let us assume an illustrative example with the following horizon lengths, |T,| =
14, |T.| =|T,| =7, and |T.| =1 with initial time periods {t;,...,t14}, {t;,...,t;},
{tg, ..., t14} and {t,} accordingly. Initially the solution strategy computes the optimal plan
for T, = {t1, ..., t14}. At this point the size of fleet is decided, which is the only decision
variable that remains fixed. This decisionremains fixed, since rental contracts are at least
monthly, thus it would not be possible to change the fleet size intraweek. The plan will be
implemented only for time period t;. The information for the actual vaccinations done
and the true levels of inventory in the vaccination centres becomes available at the end
ofthe time period. The subsetsare updated so that, T, = {t,, ..., t15}, T, = {t3, ..., tg}, Ty =
{to,...,t1s}and T, = {t,}. Using the new information and the previous solution, the
proposed optimization-based solution strategy is employed. In particular, for time
periods {t,, ..., tg} all binaries and the decisions related to the scheduled appointments
remain fixed, while for rest of the time periods {t,, ..., t;5} the previous solution is used
as a lower bound. This procedure continues iteratively until the finalization of the
vaccination program. So, in the employed rolling horizon algorithm the prediction
horizon is moving forward in steps of |T | time periods. Figure 5.5 illustrates the defined

horizons for four consecutive iterations of the rolling horizon algorithm.
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The implementation of this algorithm incorporates uncertainties of the COVID-19
supply chain related to the differences between the planned and the actual appointments
in the modelling approach. Thus, the decision-makers can deal with such uncertainties
and constantly improve the extracted plans using the current state of the supply chain.
Decisions related to transferred quantities, employed healthcare personnel and
inventories can be promptly adjusted to include any new information, ensuring the

success of the vaccination program, while minimizing the total operational costs.

iteration
1 ‘ T,: Prediction horizon
\ ¢ Updated information
" T,: Rigid prediction
2~ B horizon
> ¢ T;: Flexible prediction
| horizon
3 N T.: Control horizon
4 ‘ ¢ B Realized plan
| -
h [ ey Iy Ay B
Time periods
Figure 5.5: Replanning via a rolling horizon approach
5.4 Results

In this section the developed optimization-based framework is tested. First, an
illustrative example is used to test in detail the efficiency of the proposed MILP-model
Then, a large-scale problem that simulates the Greek COVID-19 VSC is studied, and near-
optimal planning decisions are generated by employing the proposed MILP-based
solution strategy. Finally, the applicability of the replanning algorithm is illustrated even
for extreme disturbances in the vaccination plan. All models and solution algorithms
were developed using the GAMS 30.1 interface and all instances were solved in an Intel

Corei7 @3.4Gz with 16GB RAM using the commercial solver CPLEX (Brooke et al. 1998).

148



Chapter 5 Optimal Planning of the COVID-19 Vaccine Supply Chain

5.4.1 Illustrative example

Letus assume a COVID-19 supply chain consisting of one hub and five vaccination
centres. Two vaccines (P and M) are available, supplied by two manufacturing plants.
Each plant is exclusively producing and supplying to the hubs only one vaccine type. A
14-days horizon is considered, and all related data e.g. storage capacities, vaccination
goals, distances etc. are provided in Appendix C (Table C.1 - Table C.6). The Pfizer-type
vaccine can be stored for up to 5 days in the vaccination centres, while perishability
constraints are not enforced on the Moderna-type vaccine, whose shelf-life in
refrigerated conditions (30 days) greatly exceeds the planning horizon. The daily ratio of
stored vaccines is set to 0.25% for the hubs and 1% for the vaccination centres. It is

assumed that the Pfizer-type vaccines included in the initial inventory (a,,) of the

vaccination centres have just been transferred.

The developed MILP model is employed to minimize the total cost for the
distribution of the vaccines and the scheduling of the vaccination program in the
vaccination centres. For the examined problem instance, the model consists of 1623
variables, 363 of them binary, and 1595 equations. Within 30 CPU seconds, an optimal
solution with a minimum cost of 22059 RMUs! is generated. The most significant costs
are associated with the operation of the storage technologies, especially the freezers and
deep freezers in the hubs. In particular, 59.8% of the total costs originate from storingthe
vaccines in the hubs and 19.1% are due to storage costs in the refrigerators of the
vaccination centres. Thus, inventory costs comprise the 78.9% of the total cost,
emphasizing the importance of generating decisions that optimize the inventory profiles
of the supply chain. Regarding the rest of the cost terms, the ones related to the
transportation of the vaccines, specifically the fuel costs, the drivers’ wages, and the
rental cost for the trucks, cover 3.8%, 9.3% and 6.1% of the total cost accordingly. Only
26 doses are lost translating to 1.8% of the total costs. Notice that no additional
healthcare personnel are used, therefore the associated cost term is zero. Table 5.1
reports the number of vaccine vials stored in the hub and the vaccination centres

throughout the considered horizon (S;,.). Further detailed results on the vials

transferred (X;;,.), the vials opened (VUL-”U_t), the doses used (DU;,,), the daily

1 Relative Monetary Units
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appointments (DA; ), the solution statistics and the cost distribution are found in Tables

5.2 -5.6.

Table 5.1: Stored vials in the hub and in the vaccination centres (Si;t)

t1 t2  t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

P 3 3 975 21 21 3 2 977 240 240 240

M 735 1234 269 242 242 242 242 242
Ci P 5 2 1 332 184 42 7 4 289 289 289
Ci1 M 177 89 254 166 77 6 6 3 333 264 175 87 87 87
C2 P 098 2 2 1 1 1 276 138 7 2 1 213 213 213
C2 M 105 80 244 161 79 320 238 155 74 74 74
C3 P 88 1 176 87 3 138 138 138
C3 M 51 50 157 103 50 207 154 100 47 47 47
C4 P 56 12 9 5 4 95 50 9 5 1 68 68 68
C4 M 23 22 72 47 20 99 73 48 23 23 23
C5 P 15 67 46 26 12 31 31 31
C5 M 56 53 40 27 15 3 3 3 2 25 20 8 8 8

Table 5.2: Vials opened (VU[,,,)
t1 t2 t3 t4 t5 t6 t7 8 t9 t10 t11 t12 t13 t14

Ci P 88 3 1 1 148 148 35 1 148
Cil M 36 8 88 88 89 71 68 88 88
cC2 P 81 96 1 1 136 136 5 1 1 136
C2 M 33 24 81 81 81 79 79 81 81
C3 P 53 88 1 88 88 3 0 88
C3 M 21 51 52 52 50 51 52 53
C4 P 24 44 4 4 1 4 44 44 4 4 3 44
cC4 M 12 24 24 26 20 24 24 25
c5 P 10 15 20 20 15 12 20
C5 M 6 3 12 12 12 12 3 4 12
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Table 5.3: Doses used (DUiv,)

t1  t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

C1 P 528 18 6 6 888 888 208 6 886
Cl1 M 360 860 880 880 888 710 680 880 880
C2 P 486 576 6 6 816 816 26 6 6 816
CZ M 330 240 810 810 810 790 790 810 810
C3 P 318 528 6 528 528 18 0 528
3 M 210 510 520 520 500 510 520 528
C4 P 144 264 24 24 4 24 264 264 24 24 14 264
C4 M 120 240 240 260 200 240 240 250
C5 P 60 90 120 120 90 72 120
C5 M 60 30 120 120 120 120 30 40 120
Table 5.4: Daily appointments (DA )
t1 t2 t3 t4 t5 t6 t7 8 t9 t10 t11 t12 t13 t14
Cl1 888 878 886 886 888 710 888 888 888 886 880 886
C2 8l6 816 816 816 810 810 816 816 816 816 816 816
C3 528 528 510 526 520 520 528 528 528 528 528 528
C4 264 264 264 264 264 264 264 264 264 264 264 264
C5 120 120 120 120 120 120 120 120 120 120 120 120

Table 5.5: Solution statistics

Solution

CPU (s) Variables Binary Variables Equations (RMU)

Gap

30 1623 363 1505 220059 <5%
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Table 5.6: Cost distribution

Storage cost Storage cost ) Cost of Cost of
. . . Fuel cost Drivers cost
in hubs in clinics wasted doses trucks
13194 4213 836 2058 408 1350

5.4.2 Large-scale case study: The Greek COVID-19 VSC

In order to evaluate the developed MILP-based framework for realistically-sized
COVID-19 supply chains, the problem of the panhellenic vaccination program is
simulated. At the time of writingthis paper, the Greek stateis using five hubs in total. Due
to security reasons the exact locations of these hubs are unknown. However, it is known
that two are in the region of Attica, near Athens, one is in the region of Thessaloniki, one
in the region of Karditsa and one in Crete. Based on this knowledge the locations of the
hubs are approximately chosen. The hospitals and health centres of Greece as provided
by the Hellenic Ministry of Health are used as vaccination centres. Except for Crete, which
has its own hub, Greek islands are not takeninto account in the study. As a result, a total
of 351 vaccination centres, each consisting of multiple vaccinationlines, are considered.
Four vaccine types are available (P, M, A, ]) each one produced and supplied exclusively
by a single manufacturing plant. Conclusively, the supply chain consists of four
manufacturing plants, five hubs and 351 vaccination centres. To create the required data,
the population data of Greece from the Population and Housing Census conducted by the
Hellenic Statistical Authority are used (Hellenic Statistical Authority 2011). The
population is divided based on the regional unity and the vaccination centres are
allocated to their respective regional unit. Four types of vaccination centres, more
specifically hospitals, large, medium, and small health centres, that differentiate on the
daily vaccination capacity, are considered. A relevant vaccination capacity between them
is assumed. Each hospital, large and medium health centre has the capacity of 8, 4 and 2
small health centres accordingly. Based on this information, the total vaccinationdemand
for each centre has been calculated. To generate the vaccination targets for the
considered horizon of 14 days, itis assumed that the vaccination program for the entirety
of the population must be realized within 6 months. So, the total demand for each
vaccination centre is divided by 12 to get the bi-weekly vaccination targets. The straight-

line distances between the hubs and the vaccination centres are calculated from google
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maps. They are then approximately converted to real distances (using roads) by
multiplying them with 1.417, as proposed in Boscoe et al. (2012). According to this
contribution, if errors up to 10 percent or 10 kilometres are accepted, then the
approximation above is accurate for 96% of the cases. To ensure the feasibility of the
problem, the initialinventory in the hubs and the vaccination centres is enough to satisfy
atleastthe vaccinationdemand of the first two time periods. Otherwise, the required lead
time would make itimpossible to supply the necessary vaccines to the centres on time. It
is assumed that Pfizer vaccines in the initial inventory arrived the day prior to the start
of the considered horizon. Vaccine inventories in the manufacturing plants are not

considered as they are irrelevant for the problem under consideration.

The above problem is solved by employing the proposed MILP-based solution
strategy. Each vaccination centre is allocated to a single hub based on the geographical
criteria. For the first aggregation step of the solution algorithm, the 351 vaccination
centres are grouped into 54 clusters based on their regional unit. Detailed data of the
considered problem instance e.g., maximum vaccine supply, distance matrix, hub to
vaccination centres connectivity and vaccination centres to clusters allocation, are
provided in Tables C7 - C12 of Appendix C. To generate near-optimal solutions for the
entirety of the supply chain, five individual subproblems, one for each hub are solved.
First the clusters are considered, and aggregate solutions are proposed and then the
detailed solutions for all vaccination centres of the subproblems are created. The solver
terminates either when the computational time limit of one hour (3600 seconds) is
exceeded, or when an optimality gap of 5% is achieved. Table 5.7 portrays the solution
statistics for all iterations of the individual subproblems. It is shown that the
computational time limit is reached for the more complicated cases (H1, H2 and H3) in
the first step of the solution strategy. However, the optimality gaps achieved are very
close to the desired target. It must be noticed that for these cases relatively good
optimality gaps (15%-20%) were achieved in very low CPU times, of around 15 minutes,
displaying the model's capability of quickly proposing good solutions for complex
problems. On the contrary, subproblems H4 and H5 are promptly solved to optimality.
The time required for the second step is very low in comparison. Even the most difficult
subproblem (H1) is resolved within three minutes. This is expected, since all binary
variables are fixed, reducing the problem into a simple LP. Comparing the problem sizes

of the first and second step it is observed that the aggregated approach significantly
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reduces the number of variables and equations, making the consideration of large and
complex problem instances feasible. The computational time required in total is close to
3.5 hours, however the utilization of parallel computing techniques reduces it to around

1 hour.

Table 5.7: Solution statistics for the Greek case study

First step (Aggregate solution)

CPU Variables Vgli*inaabrl}(’e < Equations  Solution Gap
H1 3600 18993 986 12269 283808 7%
H2 3600 15073 986 10309 189815 8%
H3 3600 13421 738 8845 171274 8%
H4 25 13323 614 8477 384564 <5%
H5 1365 4846 304 3441 65194 <5%

Second step (Detailed solution)

CPU Variables VaBiinaa;l}:e s Equations  Solution Gap
H1 158 47391 5088 41731 291435 <1%
H2 71 32446 3408 28431 192462 <1%
H3 25 32425 3456 28587 176151 <1%
H4 13 35190 3792 31135 387297 <1%
H5 1.6 10718 1104 9575 66164 <1%

Figure 5.6 displays the distribution of the various cost terms for the case study of
Greece. Similar conclusions to the ones for the illustrative example can be drown. Storage
costs in the hubs and the vaccination centres are the most significant terms, comprising
togetherthe 78% of the total costs. Next come the transportation costs, more specifically
the wage of the drivers (9%), the cost of renting the trucks (8.4%) and the cost of fuel
(3.8%). Finally, very few doses are lost (0.7%), while extra healthcare workers are rarely
required (0.3%). The precise cost distributionfor each ofthe five subproblems solved are

provided in Table 5.8.
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Figure 5.6: Costdistribution for the Greek COVID-19 VSC

Table 5.8: Detailed costdistribution for each hub of the Greek COVID-19 VSC

Storage Storage Fuel Drivers Wasted Healthcare Fleet Total
Hubs Centres Doses Personnel Rental

H1 109571 110123 11722 28855 1791 753 28620 291435
H2 59040 77979 10461 25751 1321 359 17550 192461
H3 40694 75248 11041 27179 2169 381 19440 176152
H4 199633 144638 5781 14231 1272 412 21330 387297

H5 25382 26486 2144 5278 379 285 6210 66164
Total 434320 434474 41149 101294 6932 2190 93150 1113509

Figure 5.7 illustrates the inventory profiles in each of the hubs and aggregated for

all vaccination centres. [t is noticed that the stored amounts are sustained relatively low

to reduce as much as possible the storage costs. This is especially evident for the Pfizer

and Moderna-type vaccines, which consistently do not remainin storage, rather they are

used as fast as possible. This isexpected since the mRNA vaccinesare stored using special

technologiesthatimposehigh operational costs. The stored amounts are increased in the

end of the horizon to satisfy safety stock requirements. Low quantities of Pfizer-type

vaccine are observed in the inventory profiles of the vaccination centres which ensure

that the vaccines are not spoiled due to perishability issues. Moreover, the inventories of

the vaccination centres at the end of Saturdays (time periods 6 and 13) are practically

zero since it is assumed that no vaccinations are done on Sundays.
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Figure 5.7: Inventory profiles in hubs and vaccination centres

In the study so far, it was assumed that the fleet size is unbounded. Therefore, a
sensitivity analysis is done to show the effects that the size of the homogeneous fleet size
has on the solution quality. Five scenarios with varying upper bound of fleet size are
solved for all subproblems. The maximum number of rented trucks is defined as a
percentage of the total connections between each hub and the vaccination centres. For
the five scenarios studied, this percentage is setto 100%, 90%, 80%, 70% and 60%. For
example, if a problem consists of 100 vaccination centres, then the maximum number of
rented trucks will be 100, 90, 80, 70 and 60 in the different scenarios. Figure 5.8 displays

the results of this analysis. The y-axis portrays the relevant difference a solution has to
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the optimal one. For example, if a hub with a specific fleet availability has a y-value of 1.1,
then the total costis 10% higher than the lowest found. As expected, the best solution is
always provided, when the fleet size is unbounded. A clear correlationis observed in all
subproblems. Lowering the maximum allowed fleet size has a negative effect on the
solution, meaning that the cost of the supply chain increases. However, the effect is
significant (>5%) only for extreme cases, where the fleet size is strongly bounded (60%

of possible connections).
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Figure 5.8: Sensitivity analysis on fleet size

5.4.3 Replanning the COVID-19 VSC

In this subsection the problem of replanning the COVID-19 supply chain in cases
of disturbances due to citizens not arriving to scheduled appointments is studied. The
MILP-based replanning technique is implemented to deal with such unexpected

alterationin a reactive manner.

The case study used replicates the subproblem of hub H1 from the Greek
nationwide problem presented in the previous section. First, the model is solved for the
initial 14-day horizon. At the end of the first period, the decision makers gather the

following information. All scheduled appointments were completed in only 26
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vaccination centres.In 15 of them 5% of the appointments were not realized, while 10%
and 15% of the citizens did not arrive in the appointments in 44 and 21 vaccination
centres accordingly. Similar alterations between planned and actual appointments
occurred in the next two periods. In the second period, the percentage of unrealized
appointments was 2% in 45, 8% in 11 and 12% in 30 centres, while on the third period
these were 4% in 30, 10% in 40 and 25% in 6 vaccination centres. Those disturbances
call for the immediate replanning of the supply chain since the actual inventory profiles
are significantly different to the planned ones. Therefore, when the new information
becomes available, the proposed solution strategy is employed to reactively replan the
supply chain. The costdistributionafter every iteration ofthe solutionalgorithm is shown
in Table 5.8. It is shown that the costs remain low, despite the significant disturbances.
Interestingly, very few doses are wasted, while storage costs are not increased, showing
the flexibility of the proposed solutions in case of unexpected disturbances, as well as the

efficiency of the reactive strategy.

Table 5.9: Cost distribution for every iteration of the rolling horizon algorithm

Storage Storage Wasted  Healthcare Fleet

Iter Hubs Centres Fuel Drivers Doses Personnel Rental Total
1 27202 47520 7548 18580 846 954 21330 123981
2 22703 44329 6280 15457 1337 1080 21330 112517
3 24401 37839 5442 13395 803 1018 21330 104228
4 24202 37367 5676 13971 791 1022 21330 104359

An interesting observation can be made regarding the wasted doses, the large
majority of which are Astrazeneca-type vaccines. Very few Pfizer-type and Johnson &
Johnson-type vaccines are spoiled, while nearly no Moderna-type vaccines are wasted.
The model correctly prioritizes the use of the costly mRNA vaccines, although very few
Pfizer-type vaccines are lost due to their limited shelf-life and the least expensive
alternative (Astrazeneca-type vaccines) is chosen to be wasted. Detailed information on

the wasted doses per iteration are given in Table 5.10.
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Table 5.10: Number of wasted doses with disturbances in the vaccination plan

Wasted doses
Iter
P M A ]
1 2 0 228 49
2 39 1 454 5
3 3 0 431 0
4 7 0 378 4

5.5 Conclusions

In this chapter, the optimal planning of the COVID-19 VSC is considered. Specific
problem characteristics, such as special cold storage requirements, extremely limited
shelf-life of some vaccine types in refrigerated conditions and the unprecedented time
pressure for the realization of the vaccination program, differentiates it from other
supply chain problems. To the best of our knowledge, this is the first work to address the
planning problem of the COVID-19 vaccine distribution chain in an integrated manner.
Furthermore several extensions havebeen made by integrating various decisions related
to optimally planning the daily vaccination program in every vaccination centre. A novel
MILP modelis developed to tackle this integrated problem. The efficiency of the proposed
model is first illustrated in a small example. Optimal decisions leading to the
minimization of total cost are generated in very low CPU times. Furthermore, a
decomposition strategy is developed to extend the applicability of the model on
realistically sized problems. A simulated instance of the Greek COVID-19 VSC is used to
illustrate the capabilities of the proposed framework. Decisions on the transferred
vaccine quantities, inventory profiles, transportation, and staff requirements, as well as,
daily vaccination plans, for a nationwide problem, are optimally taken in low CPU times.
Finally, areactive approach that utilizes a rolling horizonalgorithm is proposed to handle
uncertainties related to unexpected disturbances in the daily vaccination plan of the

vaccination centres.
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Nomenclature

Indices

I,j Locations (manufacturing plants-hubs-vaccination centres)

|4 Vaccine
c Cold storage technology
t Time periods
w weeks
Sets
f Manufacturing plants
i
h Hubs
i
Ve Vaccination centres
i

cl Clusters
i

FV  Vaccine v produced in manufacturing plant f

/i Connectivity between the locations of the supply chain

HVC Connectivity between hubs h and vaccination centres vc
CV  Cold storage technology c necessary for long term storage of vaccine v

S Subset of vaccines that have a shelf-life smaller than the considered horizon

Parameters

ﬂ;njx Maximum supply of vaccine v to hub h (vials)

a. Initial stored amount of vaccine v in location i (vials)
iv

Yij Ratio of vaccine v wasted inlocation i
i

y Storage capacity of technology c in hub h (vials)
h,c
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Storage capacity in vaccination centre vc (vials)

ve

£, Safety stock of vials v in location i
I{H/{'H Minimum flow allowed between a locations i and j
imjx Maximum flow allowed between a locations i and j

by Doses per vial of v
v

y) Shelf-life of v in refrigeration (days). Only relevant for vaccines with a

max
vc

vc

shelf-life smaller than the considered horizon.

Vaccination goal for each vc

Number of vaccinations done daily by a vaccination line (Two health
workers)

Maximum number of healthcare workers in vaccination centre
Base number of healthcare workers in vaccination centre

Operating cost of cold storage technology c (€ per daily storage of a single

Y.
vial)
K Average fuel consumption of truck transporting vaccines (litres per 100
km)
@ Fuel price (€ per litre)
i, . Distance betweenlocationi and j (km)
i
T Average speed of vehicles transferring the vaccines
o Cost of employing a driver (€/hour)
£ Cost of vaccine v (€/dose)
14
o Cost for utilizing extra healthcare workers (daily)
1% Cost of renting a truck (Two weeks)
Variables
N Amount of vaccine v transferred from locationi to j in period t (vials)
1,],v,t
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Amount of vaccine v stored in locationi in period t (vials)

It
P Amount of vaccine v supplied by manufacturing plant fin ¢ (vials)
fy,t
LS Wasted vials of vaccine v in location i in time period ¢
vt
vy Vials of vaccine v used in vc in period ¢
ve vt
Amount of vaccine v (vials) transferred in vc in t and usedin t’
ve,w,t,t'
WD Wasted doses of vaccine v in vaccination centre vc in period t
vew,t
DU Doses of vaccine vused in vc in period ¢
ve,vt
DA Vaccination appointmentsinlocationiin time period t
ve,t
VA Appointments using vaccine v in locationi in time period t
vt
WE Vials of vaccine v wasted due to expirationinlocation i in time period t
It
WE' Vials of initially stored vaccine wasted due to expirationin location i in
1
time period ¢t
HW Number of health care workers required in locationin location 7 in time
it
period t
AH Additional health workers (more than base) required in location i in time
It
period t
NT Number of trucks required for transportation
Vials of initially stored vaccine slv used in vc in period ¢t
ve,slv t
vy Integer number of vials of vaccine v used in period t
ve,v,t
)2 Equals 1 if vaccines are transferred betweenlocations i and j in period t
i,j,t
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

The objective of this thesis has been to develop optimization-based techniques to
address the production planning and scheduling problem of complexindustrial processes
and the short-term planning of the COVID-19 VSC. Various instances of a mixed-integer
linear programming (MILP) modelling framework have been developed in combination
with novel heuristic methods and solution strategies for large-scale industrial problems.
Applying the research output of this thesis in real-life problems is expected to have a

significant economic and environmental impact.

Chapter 2 studied the optimal production scheduling problem of industrial
facilities comprising of both batch and continuous processes. Several literature
contributions have already proposed solution methods to address this known problem,
since this is a common plant layout in many industrial sectors. However, their focus was
on the solution of small to medium problems of specific complexity. The combinatorial
complexity of this problem is such that the generation of optimized schedules for large-
scale problems is extremely difficult. Therefore, two alternative methods have been
proposed, which can effectively address even the mostchallenging problems often metin
industrial applications. The specific industrial case includes two continuous processes
witha sterilizationprocessin between.Both approaches consistof two subsequentsteps.
First a batching algorithm translates the incoming orders into production batches that
needto be scheduled and then a novel MILP-based decomposition methodisusedtosolve
the optimal production scheduling problem. In the first approach, an MILP model based
on the general precedence framework is developed to minimize the production
makespan. A cyclic allocation heuristic has been introduced to decrease the problem’s
combinatorial complexity. To further accelerate the solution method, we incorporated
the model withina bi-level decompositionalgorithm that optimizesthe schedules for one

time period and a subset of orders in each iteration. In the second approach a novel
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aggregation method is introduced thatincorporates a set of feasibility constraints for the
sterilization stage. This reduces the productioninto a two-stage continuous process thus
enhancing its efficiency. Based on this rationale two MILP modes, one for makespan
minimization and one for changeover minimization were developed. A new order-based
decomposition algorithm is proposed that is characterized by increased flexibility, thus
providing near-optimal solutions. We have shown that both solution strategies can

successfully address the problem at hand.

Chapter 3 is a direct continuation of the previous chapter and places particular
emphasis on the successful implementation of the developed mathematical frameworks
in a production scheduling problem of a real-life food industry. The overall scheduling
problem is characterized by a significant combinatorial complexity, since more than 100
products must be processed withinthe scheduling horizon. Real operational and demand
data have been used as extracted by the MES and the ERP system for several historical
production weeks. Both approaches were able of providing near-optimal solutions in
relatively low computational times. It was shown that the developed solution methods
have distinctstrengths. Approach A addresses problem instances where the facility needs
to shut down at the end of each day, while it generates detailed schedules for all
processing stages. In contrast, approach B which can also address the changeover
minimization objective, is computationally superior to approach A, however, it does not
provide detailed scheduling decisions for every processing stage. A comparative study
between the proposed optimized schedules and the ones generated manually by the
production engineers, illustrates the superiority of the developed mathematical
frameworks.Improvements ofapproximately 10% to 15% are reported in the production
makespanand the total changeovertime, depending on the overarching goal of the model
used. The proposed optimization framework can be easily extended to address similar
large-scale scheduling problems. Moreover, the extraction of validated results for
industrial cases that directly use real-life data, make the proposed strategies suitable for
the development of computer-aided scheduling tool, that will facilitate the production

engineers into taking better and fast decisions.

Chapter 4 is considered with the integrated production planning and scheduling
problem of breweries. The special characteristics of the beer production process, mainly

the long lead times due to the required fermentation process,does not allow for the direct
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application of the methods presented in Chapter 2. To efficiently address the underlying
problem, the main production bottlenecks, were solely modelled, namely the
fermentation process and the filling process, without loss of significant accuracy.
Consequently, the production procedure is reduced into a two-stage production,
consisting of a batch and a continuous process. A novel MILP model based on the
immediate precedence framework was developed. A mixed discrete-continuous time
representationis employed, in which the discrete time grid is used to monitorinventories
and backlogs, while in the continuous time representation all necessary scheduling
decisions, e.g. allocation, timing and sequencing, are considered. To allow the
examination of longer time horizons, two subsets of time periods were considered. In the
first, detailed scheduling and planning decisions are taken, while in the second only
planning decisions are extracted. It was showed that the developed model provides
superior schedules compared to the only other relevant optimization method found in
the open literature. In order to extend the applicability of the method in large-scale
problems, which better simulate the industrial reality, the proposed model was
incorporated into a novel decomposition algorithm. This consists of a constructive and
an improvement step. In the first step an initial good solution is promptly generated by
spatially decomposing the studied problem, which is iteratively enhanced in the latter
step. Improving the initial solution is done by a set of fix-and-optimize heuristics, which
first relax a subset of the considered variables through spatial and/or temporal
decompositionand then reoptimize it. Multiple case studies were used to illustrate the
efficiency and applicability of the proposed methods towards high quality solutions in
low CPU times. A real-life case study inspired by a Greek brewery was additional used for

the application of the optimization frameworks.

Finally, in chapter 5 the scope of this thesis was extended by considering the
emerging topic related to the planning of the COVID-19 VSC. This is one of the first
contributions in the open literature to study the problem of simultaneously providing
optimal short-term planning decisions for the VSC (e.g. inventory levels, vaccine flows
etc.) and decisions related to the optimal vaccination plans of the citizens in the
vaccination centres. An MILP model was developed to model this integrated problem. All
special characteristics related to the COVID-19 VSC, such as the requirements of special
cold storage technologies, the limited shelf-life of mRNA vaccines in refrigerated

conditions and the extreme time pressure for the realization of mass vaccination
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programs, are taken into account. The proposed model generates optimal decisions on
the inventory levels, flows, vaccine orders, the required fleet size and the needs on
healthcare personnel so that the total cost of the supply chainisminimized. The economic
objective includes the storage costs, the cost of transportation (fuel and drivers’ wages),
the cost for additional healthcare workers and the cost of wasted doses. A small example
problem first illustrates the efficiency of the model by generating fast optimal solutions
and underlines its inability of handling complex, real-life nation-wide vaccination
programs. Therefore, an efficient solution strategy was proposed. According to this, first
a number of subproblems are systematically created according to a divide-and-conquer
approach and then an aggregation technique clusters the vaccination centres, to reduce
the associated binary decisions. Finally, a set of LP subproblems are solved to take
detailed decisions for all supply chain nodes involved. The above strategy is successfully
tested in a large case study that simulates the Greek COVID-19 VSC. In relatively short
CPU solutions times near-optimal solutions are derived for the entire VSC. A
comprehensive computationalanalysisillustrated that the dominantcost factoris related
with the cost for vaccines’ storage. Finally, a rolling-horizon algorithm was proposed to
consider disturbances in the vaccination schedule originating mainly from citizens
cancelling or not arriving on scheduled appointments. Several tests have shownthat even
in extreme situations, very few valuable doses are wasted by solving the integrated

vaccine supply chain distribution planning problem.

6.2 Main contributions of this work
In summary, the main contributions of this thesis have been:

¢ Two novel mathematical programming frameworks have been developed for the
optimal production scheduling of mixed batch and continuous processes.
Approach A introduces a new set of allocation heuristic constraints, while
approach B proposes an aggregation technique based on novel feasibility
constraints for thebatch stage. As aresult, the developed modelsare characterized
by increased efficiency. Both makespan and changeover minimization have been

explored.

166



Chapter 6 Conclusionsand Future Research

o Efficient solution strategies, which comprise of a pre-processing algorithm, the
proposed MILP models for optimal production scheduling in mixed batch and
continuous processes and a decomposition algorithm, have been developed, to
address large-scale case studies. A bi-level temporal/order-based decomposition
is applied in approach A, while a novel, flexible order-based decomposition
technique is proposed in approach B. The computational analysis underlined the
efficiency and applicability of the developed solution strategies.

e Application of the developed mathematical frameworks in a real-life industrial
problem. Significant benefits due to the integrated optimization of several
production stages have been revealed. Rather than undergoing the laborious task
of manually generating sub-optimal schedules, the developed solution algorithms
can assist production engineers and managers towards fast generation of
improved schedules.Several instances ofa real-life food industrial case study have
been introduced in the open literature.

e A mixed-integer programming model for the integrated optimal production
planning and scheduling of breweries have been developed. It has been shown
that the proposed method is superior to the alternatives found in the open
literature. Furthermore, a novel two-step decomposition algorithm have been
developed to considerlarge-scale problems.

e The introduction of efficient solution methods for large-scale problems and their
successful implementation in real-life problems are important steps into closing
the existing gap between scientific knowledge and industrial reality.

e The optimal short-term planning problem of the COVID-19 VSC has been
introduced in the open literature. The first mathematical model to address this
problem have been developed, while a two-step solution strategy has been
proposed for the consideration of nation-wide problems. Optimal operational
decisions of the VSC that minimize an economic objective are generated in low
CPU solutions times. The developed mathematical framework can facilitate

nation-wide VSCs and ensure the success of large vaccination programs.
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6.3 Recommendations for future directions

A range of issues requiring further investigation have been revealed in the course of this

work. In particular,

o The methods proposed in Chapter 2 are limited by the fact that the sterilization
chambers must be identical. The consideration of a more general sterilization
stage whose equipment have different characteristics will further extend the
applicability of these mathematical frameworks.

e The main drawback of the aggregated approach presented in Chapter 2 is the
generation of decisions solely for the continuous stages. Therefore, a step that
creates feasible detailed decisions for the sterilization stage could be added.

e [nmany breweries buffers are used between the liquid preparation and the liquid
bottling stages, as intermediate storage for the ready liquid. Extending the
developed mathematical framework so that these buffers can be efficiently
modelled is expected to further improve the plant’s productivity.

e The main focus of this thesis have been the offline scheduling of complex
optimization problems. Since production scheduling is highly dynamic, the
incorporation of real-time uncertainties in the developed models is critical for
their application in real-life situations. A computationally efficient method is the
introduction of a reactive scheduling approach that employs a rolling-horizon
algorithm.

e Acomputer-aidedtoolwhich usesas core the proposed mathematicalframeworks
can be developed to tackle industrial scheduling problems in real time. Possible
issues are expected to be ensued and their resolution will rectify the benefits
reaped from the developed optimization methods.

e Room for improvement exists regarding the solution strategy developed for the
COVID-19 VSC. More sophisticated clustering techniques, e.g. k-means algorithm,
will enhance the effectiveness of aggregating the vaccination centres into clusters.
Furthermore, an additional step can be added to reoptimize the solution
generated by the divide-and-conquer approach. After generating the initial
solutions, critical binaries can be relaxed and reoptimized. These binaries
represent connections betweennodes for clusters that are between multiple hubs.

This will add flexibility to the method allowing for higher quality solutions.
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Further improvements are expected by integrating tactical and more detailed
operational decisions, such as, vehicle routing decisions.
e Finally, the mathematical frameworks developed in chapters 4 and 5 can be

applied to real-life problems of breweries and COVID-19 VSC accordingly.
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Appendix A
Data for Illustrative Example (Chapter 2)

Table A.1: Demand used for Approach A

P1 P2 P3 P4 P5 P6 P7
Monday 211377 1550 123984 112089 252
Tuesday 14061 6578
Wednesday
Thursday
Friday 5310 105912
P8 P9 P10 P11 P12 P13 P14
Monday 42525 37617 445565
Tuesday 296097
Wednesday
Thursday 32912 61989 90078
Friday 372420
P15 P16 P17 P18 P19 P20 P21
Monday 46079 555 267366 32528
Tuesday 51042
Wednesday 32508 57078
Thursday 21020 248655
Friday 2961
P22 P23 P24 P25
Monday
Tuesday 3428 575486
Wednesday 38174 5544 285674
Thursday 488981
Friday
Table A.2: Demand used for Approach B
Demand Due date Demand Due date
Product iems) (hr) Product (items) (hr)
P1 211377 24 P14 372420 24
P2 6860 120 P15 46079 120
P3 14061 48 P16 3516 120
P4 105912 120 P17 21020 96
P5 123984 24 P18 516021 120
P6 112089 120 P19 83550 120
P7 6830 120 P20 57078 72

P8 42525 24 P21 32528 24
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P9 32912 96 P22 38174 72
P10 37617 24 P23 5544 72
P11 741662 120 P24 3428 48
P12 61989 96 P25 1350141 120
P13 90078 96

Table A.3: Processing rate in the continuous lines (items/hr)

P1 P2 P3 P4 P5 P6 P7 P8

S1.L1 45128 0 0 45128 45128 0 41026 45128
S1.L2 45128 45128 30800 45128 45128 41026 0 45128
S3_L1 0 41026 28000 50400 0 0 40320 0

S3_L2 50400 0 28000 0 50400 40320 0 42000
P9 P10 P11 P12 P13 P14 P15 P16
S1.L1 45128 0 45128 0 45128 45128 45128 0
S1.L2 45128 45128 45128 45128 45128 0 45128 41026
S3_L1 0 0 50400 50400 40320 42000 42000 0
S3_L2 42000 40320 50400 0 0 42000 0 50400

P17 P18 P19 P20 P21 P22 P23 P24 P25

S1.L1 41026 41026 45128 45128 41026 41026 0 45128 45128
S1.L2 0 0 45128 45128 41026 0 45128 0 0

S3_L1 50400 50400 50400 0 0 50400 50400 50400 50400
S3_L2 0 42000 0 42000 42000 42000 0 50400 50400

Table A.4: Data related to the sterilization processing stage

Sterilization Sterilizer Cart capacity
Product time (min) capacity (items) (items)
P1 102 29484 3276
P2 98 29484 3276
P3 215 2673 297
P4 168 13770 1530
P5 98 29484 3276
P6 124 22500 2500
P7 124 13770 1530
P8 168 6804 756
P9 98 29484 3276
P10 98 29484 3276
P11 127 13770 1530
P12 98 29484 3276
P13 98 29484 3276
P14 161 6804 756
P15 120 15390 1710
P16 122 29484 3276
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P17 98 29484 3276
P18 98 29484 3276
P19 107 29250 3250
P20 162 13770 1530
P21 98 29484 3276
P22 98 29484 3276
P23 98 29484 3276
P24 98 29484 3276
P25 98 29484 3276
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Case Study I. - Aggregated Approach
Table B.1: Demand ({,) - Case study I

Product D(ec I;l;lsl;d Product D(i I::Sl;d Product D(ecr;?;d
P1 796068 P35 68850 P69 29484
P2 501228 P36 67500 P70 29484
P3 427500 P37 61560 P71 29484
P4 412776 P38 61560 P72 29484
P5 383292 P39 58968 P73 29484
P6 270000 P40 58968 P74 29484
P7 247860 P41 58968 P75 29484
P8 235872 P42 58968 P76 29484
P9 206388 P43 58968 P77 29484
P10 205200 P44 58968 P78 29484
P11 195750 P45 58968 P79 29484
P12 194076 P46 58968 P80 29484
P13 188100 P47 58968 P81 29484
P14 151650 P48 58968 P82 29484
P15 151650 P49 58968 P83 29484
P16 147420 P50 58968 P84 29484
P17 147420 P51 51300 P85 29484
P18 147420 P52 48519 P86 29250
P19 147420 P53 45000 P87 27540
P20 117936 P54 41310 P88 16173
P21 117936 P55 32346 P89 16173
P22 113211 P56 30330 P90 15390
P23 104220 P57 30330 P91 13770

P24 104220 P58 30330 P92 13770




Appendix B Data for Food Process Industry (Chapter 3)

P25 90990 P59 30330 P93 13770
P26 90000 P60 30330 P94 13608
P27 88452 P61 29484 P95 8019
P28 88452 P62 29484 P96 6804
P29 88452 P63 29484 P97 5130
P30 88452 P64 29484 P98 2673
P31 88452 P65 29484 P99 2673
P32 85806 P66 29484 P100 2673
P33 82620 P67 29484 P101 1674
P34 69498 P68 29484 P102 1197

Table B.2: Products p each unitj can process for the filling and sealing stage - Case
study |

FS_1 FS_2 FS_3 FS_4 FS_5 FS_6 FS_7 FS_8

P1 1 1 1

P2 1 1 1

P3 1

P4 1 1 1

P5 1 1 1

P6 1

P7 1
P8 1 1 1

P9 1 1 1

P10 1
P11 1

P12 1

P13 1
P14 1 1 1

P15 1 1 1

P16 1

P17 1 1 1

P18 1 1 1

P19 1 1 1
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P20 1 1 1

P21 1

P22 1
P23 1

P24 1

P25 1

P26 1

P27 1 1 1

P28 1 1 1

P29 1

P30 1 1 1

P31 1 1 1

P32 1

P33 1
P34 1

P35 1
P36 1

P37 1
P38 1

P39
P40
P41
P42
P43 1

P44 1 1 1

P45 1

P46 1

P47 1

P48 1 1 1

P49 1 1 1

P50 1 1 1

P51 1

P52 1

O N Y
[ T N Y
[ S = W =Y
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P53
P54
P55
P56
P57
P58
P59
P60
P61

Appendix B

P62
P63
P64
P65
P66

P67
P68
P69
P70
P71
P72
P73

P74
P75
P76
P77
P78
P79

P80
P81
P82
P83

P84
P85
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P86 1 1 1
P87 1
P88 1

P89 1 1
P90 1

P91 1

P92 1

P93 1 1
P94
P95
P96
P97
P98
P99
P100
P101
P102

T N S O SV Y

Table B.3: Products p each unitj can process in the packing stage - Case study I

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 1 1
P2 1 1
P3 1 1 1

P4 1 1 1 1 1
P5 1

P6 1 1 1
P7 1 1 1 1
P8 1 1
P9 1

P10 1

P11 1 1 1

P12 1 1 1
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P13 1

P14 1 1 1 1
P15 1 1 1 1
P16 1 1

P17 1

P18 1

P19 1 1 1
P20 1 1

P21 1 1 1 1
P22 1 1 1

P23 1

P24 1 1

P25 1 1 1
P26 1 1 1

P27 1

P28 1

P29 1 1 1 1
P30 1 1 1
P31 1 1 1 1
P32 1 1

P33 1 1 1

P34 1

P35

P36

P37

P38

P39 1
P40 1

P41 1

P42 1

P43 1 1 1 1
P44 1 1 1
P45 1 1 1 1 1

e S = =Y

O e S = =\

S S S\
o = N =N

[ S = O =\
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P46
P47
P48
P49

P50
P51
P52
P53

P54
P55
P56
P57
P58
P59
P60
P61
P62
P63

P64
P65
P66
P67
P68
P69
P70
P71
P72
P73

P74
P75
P76
P77
P78
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P79 1 1 1 1 1
P80 1 1 1 1 1
P81 1 1 1 1 1
P82 1 1 1 1 1
P83 1 1 1 1 1
P84 1 1 1 1 1
P85 1 1 1 1 1
P86 1 1 1 1 1
P87 1 1 1

P88 1 1 1

P89 1 1 1

P90 1 1 1
P91 1

P92 1 1 1
P93 1 1 1

P94 1 1 1
P95 1

P96 1 1 1
P97 1

P98 1

P99 1

P100 1

P101 1

P102 1

Table B.4: Processingrate (cans/hour) of product p in unitj in the filling and sealing
stage - Case study |

FS_1 FS_2 FS_3 FS_4 FS_5 FS_6 FS_7 FS_8
P1 24586 22324 23361
P2 25434 23094 24167
P3 16824
P4 27977 25403 26583
P5 27977 25403 26583
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P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P20
P21
P22
P23
P24
P25
P26
P27
P28
P29
P30
P31
P32
P33
P34
P35
P36
P37
P38

27977
24586

27977
27977

24586
27977
27977
27977

27977
27977

27977
27977

25403
22324

25403
25403

22324
25403
25403
25403

25403
25403

25403
25403

26583
23361

26583
26583

23361
26583
26583
26583

26583
26583

26583
26583

16824
14688
11569
16824
16824
11569
18574
18574
17626
11569
11569
23217
16824
20895
7078
14688
3539
14688
16824
17626
16824

196



Appendix B Data for Food Process Industry (Chapter 3)

P39 24586 22324 23361
P40 27977 25403 26583
P41 27977 25403 26583
P42 27977 25403 26583

P43 19502
P44 27977 25403 26583

P45 20895
P46 20895
P47 20895

P48 27977 25403 26583
P49 27977 25403 26583
P50 27977 25403 26583

P51 15939

P52 17626
P53 16824

P54 7078

P55 17626
P56 23217

P57 18574

P58 18574

P59 18574

P60 18574

P61 20895

P62 27977 25403 26583
P63 27977 25403 26583
P64 24586 22324 23361
P65 27977 25403 26583
P66 24586 22324 23361
P67 24586 22324 23361
P68 27977 25403 26583
P69 18574
P70 19502
P71 27977 25403 26583
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P72 27977 25403 26583
P73 27977 25403 26583
P74 27977 25403 26583
P75 27977 25403 26583
P76 27977 25403 26583
P77 27977 25403 26583
P78 27977 25403 26583
P79 27977 25403 26583
P80 27977 25403 26583
P81 25434 25403 26583
P82 27977 25403 26583
P83 27977 25403 26583
P84 27977 25403 26583
P85 27977 25403 26583
P86 27977 25403 26583

P87 17626
P88 16824

P89 18595 15422
P90 11569

P91 16824

P92 7078

P93 17710 14688
P94 7078

P95 3539

P96 7078

P97 1769

P98 3539

P99 3539

P100 3539

P101 1769

P102 1769
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Table B.5: Processingrate (cans/hour) of product p in unit; in the packing stage - Case
study |

P_1 P_2 P_3 P_4 P_5 P_6 pP_7 P_8 P9 P_10

P1 46476 30947
P2 46476 30947
P3 12684 13552 13557

P4 22964 24862 31371 19296 20632
P5 22964

P6 16021 17119 14786
P7 16021 17119 17124 14786
P8 46476 30947
P9 22964

P10 7693

P11 16021 17119 17124

P12 12684 13552 16505
P13 7693

P14 22964 24862 31371 19296 20632
P15 22964 24862 31371 19296 20632
P16 19137 20718 20632
P17 46476 30947
P18 46476 30947
P19 19137 20718 19296 20632
P20 20027 21406 20632
P21 22964 24862 31371 19296 20632
P22 16021 17119 17124 17193
P23 13557 16505
P24 16021 13557 14786
P25 19137 20718 19296 20632
P26 16021 17119 17124

P27 27348 20632
P28 46476 30947
P29 22964 24862 31371 19296 20632
P30 18372 24862 15437 16505
P31 22964 24862 31371 19296 20632
P32 9989 7335 8597
P33 16021 17119 17124
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P34 1956

P35 16021 17119 17124

P36 16021 17119

P37 16021 17119 17124 17193
P38 16021 17119 17124 17193
P39 22964

P40 46476 30947
P41 46476 30947
P42 27348 20632
P43 22964 24862 31371 19296 20632
P44 15310 31371 14472

P45 22964 24862 31371 19296 20632
P46 22964 24862 31371 19296 20632
P47 22964 24862 31371 19296 20632
P48 22964 24862 19296 20632
P49 22964 24862 31371 19296 20632
P50 22964 24862 31371 19296 20632
P51 16021 17119 17124 24070
P52 12684 13552 13557

P53 16021 17119 17124 14786
P54 9989 7335 8597
P55 10551

P56 19296

P57 27348 20632
P58 18372 19889 15437 16505
P59 22964 24862 31371 19296 20632
P60 22964 24862 31371 19296 20632
P61 46476 30947
P62 10991

P63 22964

P64 46476 30947
P65 46476 30947
P66 46476 30947
P67 46476 30947
P68 46476 30947
P69 22964 24862 31371 19296 20632
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P70 22964 24862 31371 19296 20632
P71 18372 19889 15437 16505
P72 22964 24862 19296 20632
P73 22964 24862 31371 19296 20632
P74 22964 24862 31371 19296 20632
P75 22964 24862 31371 19296 20632
P76 22964 24862 31371 19296 20632
P77 22964 24862 31371 19296 20632
P78 22964 24862 31371 19296 20632
P79 22964 24862 31371 19296 20632
P80 22964 24862 31371 19296 20632
P81 22964 24862 31371 19296 20632
P82 22964 24862 31371 19296 20632
P83 22964 24862 31371 19296 20632
P84 22964 24862 31371 19296 20632
P85 22964 24862 31371 19296 20632
P86 22964 24862 31371 19296 20632
P87 16021 17119 17124

P88 12684 13552 13557

P89 12684 13552 13557

P90 3338 7421 14328
P91 7913

P92 8562 7335 8597
P93 16021 17119 17124

P94 9989 7335 8597
P95 2347

P96 9989 7335 8597
P97 1956

P98 2347

P99 2934

P100 2347

P101 1956

P102 1956
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Table B.6: Number of sterilizers used by each product - Case study I

Product Kp Product Kp Product Kp
P1 1 P35 2 P69 2
P2 1 P36 1 P70 2
P3 1 P37 2 P71 1
P4 1 P38 2 P72 1
P5 1 P39 1 P73 1
P6 1 P40 1 P74 1
P7 2 P41 1 P75 1
P8 1 P42 1 P76 1
P9 1 P43 2 P77 1
P10 1 P44 1 P78 1
P11 2 P45 2 P79 1
P12 1 P46 2 P80 1
P13 1 P47 2 P81 1
P14 1 P48 1 P82 1
P15 1 P49 1 P83 1
P16 1 P50 1 P84 1
P17 1 P51 2 P85 1
P18 1 P52 1 P86 1
P19 1 P53 1 P87 2
P20 1 P54 2 P88 1
P21 2 P55 1 P89 1
P22 2 P56 1 P90 1
P23 2 P57 2 P91 1
P24 2 P58 2 P92 2
P25 1 P59 2 P93 2
P26 1 P60 2 P94 3
P27 1 P61 2 P95 2
P28 1 P62 1 P96 3
P29 2 P63 1 P97 1
P30 1 P64 1 P98 2
P31 1 P65 1 P99 2
P32 3 P66 1 P100 2
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P33 2 P67 1 P101 3
P34 2 P68 1 P102 4

Table B.7: Required sterilization time for product p - Case study I

Product Batch_time Product Batch_time Product Batch_time
(min) (min) (min)
P1 82 P35 106 P69 82
P2 85 P36 85 P70 82
P3 85 P37 100 P71 82
P4 82 P38 98 P72 82
P5 82 P39 82 P73 82
P6 85 P40 82 P74 82
P7 103 P41 82 P75 102
P8 82 P42 82 P76 82
P9 82 P43 82 P77 82
P10 115 P44 82 P78 82
P11 120 P45 82 P79 82
P12 85 P46 82 P80 82
P13 115 P47 82 P81 82
P14 85 P48 82 P82 82
P15 85 P49 82 P83 102
P16 102 P50 82 P84 82
P17 82 P51 94 P85 82
P18 82 P52 85 P86 82
P19 82 P53 85 P87 106
P20 82 P54 135 P88 85
P21 82 P55 85 P89 98
P22 85 P56 85 P90 120
P23 85 P57 82 P91 106
P24 120 P58 85 P92 135
P25 85 P59 82 P93 106
P26 85 P60 82 P94 140
P27 82 P61 82 P95 179
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P28 82 P62 82 P96 140
P29 82 P63 82 P97 85
P30 102 P64 82 P98 179
P31 82 P65 82 P99 179
P32 135 P66 82 P100 179
P33 106 P67 82 P101 286
P34 179 P68 82 P102 271

Table B.8: Cart capacity for product p - Case study I

Product ngs;gy Product ngzigy Product ngs:gy
P1 3276 P35 1530 P69 3276
P2 3276 P36 2500 P70 3276
P3 2500 P37 1710 P71 3276
P4 3276 P38 1710 P72 3276
P5 3276 P39 3276 P73 3276
P6 2500 P40 3276 P74 3276
P7 1530 P41 3276 P75 3276
P8 3276 P42 3276 P76 3276
P9 3276 P43 3276 P77 3276
P10 1900 P44 3276 P78 3276
P11 1450 P45 3276 P79 3276
P12 1797 P46 3276 P80 3276
P13 1900 P47 3276 P81 3276
P14 3370 P48 3276 P82 3276
P15 3370 P49 3276 P83 3276
P16 3276 P50 3276 P84 3276
P17 3276 P51 1900 P85 3276
P18 3276 P52 1797 P86 3250
P19 3276 P53 2500 P87 1530
P20 3276 P54 1530 P88 1797
P21 3276 P55 1797 P89 1797
P22 1797 P56 3370 P90 1710
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P23 1930 P57 3370 P91 1530
P24 1930 P58 3370 P92 1530
P25 3370 P59 3370 P93 1530
P26 2500 P60 3370 P94 756
P27 3276 P61 3276 P95 297
P28 3276 P62 3276 P96 756
P29 3276 P63 3276 P97 190
P30 3276 P64 3276 P98 297
P31 3276 P65 3276 P99 297
P32 681 P66 3276 P100 297
P33 1530 P67 3276 P101 186
P34 297 P68 3276 P102 133

Table B.9: Demand - Case study I1

Product Demand Due (hr) Product Demand Due (hr)
(cans) (cans)
P1 762120 148 P64 40000 148
P2 762120 148 P65 40000 148
P3 762120 148 P66 40000 148
P4 750000 148 P67 40000 148
P5 528780 148 P68 40000 148
P6 500000 148 P69 35000 148
P7 500000 24 P70 35000 148
P8 460000 148 P71 30000 148
P9 457920 148 P72 30000 148
P10 457920 148 P73 30000 148
P11 300000 148 P74 30000 148
P12 279936 148 P75 30000 148
P13 250000 148 P76 30000 148
P14 200000 148 P77 30000 148
P15 200000 148 P78 30000 24
P16 200000 148 P79 30000 148
P17 150000 148 P80 30000 148
P18 150000 148 P81 30000 148
P19 150000 148 P82 30000 148
P20 130000 148 P83 30000 148
P21 120000 148 P84 30000 148
P22 120000 148 P85 30000 148
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P23 115000 24 P86 30000 148
P24 107136 148 P87 30000 148
P25 101088 148 P88 26000 148
P26 100000 148 P89 25000 148
p27 100000 148 P90 25000 24
P28 100000 148 P91 22000 148
P29 100000 148 P92 20000 148
P30 100000 148 P93 20000 148
P31 100000 148 P94 20000 148
P32 100000 148 P95 20000 148
P33 100000 148 P96 20000 148
P34 100000 148 P97 20000 24
P35 93312 148 P98 20000 148
P36 93312 148 P99 20000 148
P37 90000 148 P100 20000 148
P38 90000 148 P101 15000 148
P39 87696 24 P102 15000 148
P40 86000 148 P103 15000 148
P41 80000 148 P104 15000 148
P42 80000 148 P105 15000 148
P43 70000 148 P106 15000 148
P44 70000 148 P107 15000 24
P45 60000 148 P108 15000 148
P46 60000 148 P109 13000 148
P47 60000 148 P110 10000 148
P48 60000 148 P111 10000 148
P49 60000 148 P112 10000 148
P50 60000 148 P113 10000 24
P51 60000 148 P114 10000 148
P52 60000 96 P115 10000 148
P53 60000 148 P116 8000 148
P54 60000 148 P117 6000 148
P55 60000 148 P118 6000 148
P56 50000 148 P119 5000 148
P57 50000 148 P120 5000 148
P58 50000 148 P121 5000 148
P59 50000 148 P122 5000 148
P60 50000 148 P123 3500 148
P61 50000 148 P124 3000 148
P62 50000 148 P125 3000 148
P63 43200 148 P126 2000 148
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Table B.10: Products p each unitj can process for the filling and sealing stage- Case
study 11

FS_3 FS_4 FS_5 FS_6 FS_7 FS_8

P1
P2
P3
P4
P5 1
P6
P7 1 1 1

P8 1

P9 1
P10 1
P11 1

P12 1
P13 1 1 1 1

P14 1 1 1

P15 1

P16 1 1 1

P17 1

P18 1
P19 1

P20 1

P21 1 1 1 1

P22 1 1 1

P23 1 1 1

P24 1

P25 1

P26 1 1 1

P27 1 1
P28 1 1 1

P29 1

P30 1
P31 1 1 1

P32 1 1 1

P33 1 1 1

P34 1

P35 1

P36 1
P37 1 1 1 1

P38 1

P39 1
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P40 1

P41 1

P42 1 1 1

P43 1 1 1

P44 1 1 1

P45 1

P46 1
P47 1 1 1

P48 1
P49 1

P50 1 1 1

P51 1 1 1

P52 1

P53 1

P54 1 1 1 1

P55 1

P56 1 1 1

P57 1 1
P58 1

P59 1 1 1

P60 1 1 1

P61 1

P62 1

P63 1

P64 1 1 1

P65 1 1 1

P66 1 1
P67 1

P68 1

P69
P70
P71
P72
P73
P74 1 1
P75 1

P76 1 1 1

P77 1
P78 1 1 1

P79 1

P80 1

P81 1 1 1

P82 1 1 1

S S S W Y

N S G Y

O S S W S
—_
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P83 1
P84 1

P85 1
P86 1 1 1

P87 1

P88 1 1 1

P89 1 1 1

P90 1 1 1

P91 1

P92 1
P93 1 1
P94 1

P95 1

P96 1 1 1

P97 1

P98 1

P99 1

P100 1

P101 1

P102 1 1 1

P103 1 1 1

P104 1

P105 1
P106 1

P107 1 1 1

P108 1
P109 1

P110 1

P111 1
P112 1
P113

P114

P115

P116

P117

P118

P119

P120 1
P121

P122

P123

P124

P125

U Y

T S G Y
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P126 1

Table B.11: Products p each unitj can process for the packing stage- Case study II

P1 P2 P3 P4 PS5 P6 P7 P8 P9 P10
1

P1
P2
P3
P4
P5 1

P6 1

P7 1 1
P8 1 1 1 1 1
P9 1 1

P10 1 1

P11 1

P12 1 1

P13 1 1 1 1
P14 1 1

P15 1
P16 1

P17 1 1 1

P18 1 1 1

P19 1

P20 1 1

P21 1 1 1 1
P22 1 1
P23 1 1 1
P24 1

P25 1 1 1 1
P26 1

P27 1

P28 1 1
P29 1 1

P30 1 1 1

P31 1 1 1 1
P32 1

P33 1

P34 1 1

P35 1

P36 1 1 1

P37 1 1
P38 1 1 1

=
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P39

P40
P41
P42
P43

P44
P45

v o

P46
P47
P48
P49

P50
P51

B B |

P52
P53
P54
P55

P56
P57
P58
P59

i

P60
P61
P62
P63

P64

A B o B e T |

P65
P66
P67
P68

P69
P70

P71
P72
P73

P74
P75
P76
P77
P78
P79
P80
P81
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P82 1 1 1 1 1
P83 1 1 1 1 1
P84 1

P85 1

P86 1 1

P87 1 1
P88 1 1 1 1 1
P89 1 1 1
P90 1

P91 1 1 1 1
P92 1

P93 1 1 1

P94 1 1 1 1
P95 1 1 1 1
P96 1 1 1 1 1
P97 1

P98 1 1 1
P99 1 1 1
P100 1 1 1
P101 1

P102 1 1 1

P103 1 1 1
P104 1 1 1 1
P105 1 1 1 1
P106 1 1 1 1
P107 1

P108 1

P109 1 1

P110 1 1 1
P111 1 1 1 1
P112 1 1 1 1
P113 1

P114 1

P115 1 1 1
P116 1 1

P117 1 1

P118 1 1 1
P119 1

P120 1 1
P121 1

P122 1 1
P123 1 1 1
P124 1
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P125
P126

Table B.12: Processingrate (cans/hour) of product p in unitj in the filling and sealing
stage - Case study II

FS_1 FS_2 FS_3 FS_4 FS_5 FS_6 FS_7 FS_8
P1 27978 25404 26584
P2 27978 25404 26584
P3 27978 25404 26584
P4 27978 25404 26584
P5 16825
P6 24587 22325 23362
P7 25434 23094 24167
P8 18574
P9 17626
P10 17626
P11 16825
P12 17626
P13 27978 25404 26584 23217
P14 27978 25404 26584
P15 7713
P16 27978 25404 26584
P17 11569
P18 27978 25404 26584
P19 20896
P20 16825
P21 27978 25404 26584 23217
P22 27978 25404 26584
P23 27978 25404 26584
P24 16825
P25 16825
P26 27978 25404 26584
P27 16825 14688
P28 27978 25404 26584
P29 11569
P30 17626
P31 27978 25404 26584
P32 24587 22325 23362
P33 27978 25404 26584
P34 7713
P35 16825
P36 17626
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P37 27978 25404 26584 23217

P38 7713
P39 16825

P40 18574

P41 20896

P42 27978 25404 26584
P43 27978 25404 26584

P44 14688
P45 16825

P46 14688
P47 27978 25404 26584

P48 17626
P49 19503

P50 27978 25404 26584
P51 27978 25404 26584

P52 20896

P53 19503

P54 27978 25404 26584 23217

P55 8484

P56 27978 25404 26584

P57 16825 14688
P58 20896

P59 25434 25404 26584
P60 24587 22325 23362

P61 20896
P62 7078
P63 7078

P64 27978 25404 26584
P65 27978 25404 26584

P66 16825 14688
P67 20896
P68 18574

P69 27978 25404 26584

P70 27978 25404 26584 23217

P71 27978 25404 26584 25539

P72 27978 25404 26584

P73 27978 25404 26584

P74 16825 14688
P75 23217

P76 27978 25404 26584

P77 13954
P78 27978 25404 26584

P79 20896
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P80
P81
P82
P83
P84
P85
P86
P87
P88
P89
P90
P91
P92
P93
P94
P95
P96
P97
P98
P99
P100
P101
P102
P103
P104
P105
P106
P107
P108
P109
P110
P111
P112
P113
P114
P115
P116
P117
P118
P119
P120
P121
P122

27978
27978

27978

27978
27978
27978

27978

27978
27978

27978

25404
25404

25404

25404
25404
25404

25404

25404
25404

25404

26584
26584

26584

26584
26584
26584

26584

26584
26584

26584

18574

20896

20896

18596
16825
18574

20896

18596

18596

18596

16825

3539

7078

7078
7078

7078

7078
7078
7078
3539
3539
7078
7078

3539
3539

7713

7713

17626

17626
17626

17626

17626

17626
17626
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P123 3539
P124 3539
P125 7078
P126 3539

Table B.13: Processing rate (cans/hour) of product p in unitj in the packing stage - Case

study II

P_1 P_2 P_3 P_4 P5 P_6 P_7 P_8 P9 P_10
P1 22965 24862 31372 19296 20632
P2 22965 24862 31372 19296 20632
P3 22965 24862 31372 19296 20632
P4 27348 20632
P5 10551
P6 22965
P7 46476 30948
P8 22965 24862 31372 19296 20632
P9 16022 17119
P10 16022 17119
P11 10551
P12 16022 17119
P13 19137 20718 19296 20632
P14 20027 21406 20632
P15 15437
P16 46476 30948
P17 16022 17119 17125 17193
P18 22965 24862 31372 19296 20632
P19 46476 30948
P20 12684 13553
P21 22965 24862 31372 19296 20632
P22 46476 30948
P23 20027 21406 20632
P24 10551
P25 12684 13553 13557 16506
P26 22965
P27 7210
P28 27348 20632
P29 12684 13553
P30 16022 17119 17125 16506
P31 22965 24862 31372 19296 20632
P32 46476 30948
P33 46476 30948
P34 8563 7335 8597
P35 10551
P36 16022 17119 17125
P37 46476 30948
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P38 9990 7335 8597
P39 8793

P40 19137 20718 20632
P41 22965 24862 31372 19296 20632
P42 22965 24862 31372 19296 20632
P43 22965 24862 31372 19296 20632
P44 16022 17119 17125 14786
P45 6595

P46 16022 17119 14786
P47 18372 19890 15437 16506
P48 16022 17119 17125 17193
P49 22965 24862 31372 19296 20632
P50 22965 24862 31372 19296 20632
P51 22965 24862 31372 19296 20632
P52 30948
P53 46476 30948
P54 46476 30948
P55 9990 7335 8597
P56 15310 31372 14472

P57 16022 17119 17125 14786
P58 22965 24862 31372 19296 20632
P59 22965 24862 31372 19296 20632
P60 46476 30948
P61 46476 30948
P62 4282 2934 8597
P63 4710 4303

P64 22965

P65 16689 17838 29229
P66 16022 17119 17125 14786
P67 22965 24862 31372 19296 20632
P68 21406 20632
P69 22965 24862 31372 19296 20632
P70 4342 30948
P71 22965

P72 10991

P73 7655 9648

P74 16022 17119 17125

P75 22965 24862 19296

P76 22965 24862 31372

P77 9346 9986 7421 14328
P78 22965 24862 31372 19296 20632
P79 22965 24862 31372 19296 20632
P80 22965 24862 31372 19296 20632
P81 22965 24862 31372 19296 20632
P82 22965 24862 31372 19296 20632
P83 22965 24862 31372 19296 20632
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P84 1956

P85 8040

P86 31372 19296

P87 13557 24071
P88 22965 24862 31372 19296 20632
P89 19137 20718 20632
P90 19296

P91 22965 24862 19296 20632
P92 6595

P93 12684 13553 13557

P94 16022 17119 17125 17193
P95 18372 19890 15437 16506
P96 22965 24862 31372 19296 20632
P97 7335

P98 4710 4303 4539
P99 9990 7335 8597
P100 9990 7335 8597
P101 27348

P102 22965 24862 31372

P103 19137 20718 20632
P104 12684 13553 13557 13205
P105 16022 17119 17125 17193
P106 12684 13553 13557 13205
P107 19296

P108 8040

P109 9990 7335

P110 3338 7421 14328
P111 8345 13553 8563 17193
P112 16022 17119 17125 14786
P113 7335

P114 7335

P115 9990 7335 8597
P116 4282 2934

P117 4282 2348

P118 9990 7335 8597
P119 5276

P120 3338 14328
P121 1630

P122 3912 4952
P123 4282 3912 4952
P124 3912

P125 9990 7335 8597
P126 1956
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Table B.14: Number of sterilizers used by each product p - Case study II

Product Kp Product Kp Product Kp
P1 2 P43 2 P85 2
P2 2 P44 2 P86 1
P3 2 P45 2 P87 2
P4 2 P46 2 P88 1
P5 2 P47 2 P89 1
P6 2 P48 2 P90 1
P7 3 P49 2 P91 1
P8 2 P50 2 P92 2
P9 2 P51 2 P93 2
P10 2 P52 2 P94 2
P11 2 P53 3 P95 1
P12 1 P54 3 P96 1
P13 2 P55 5 P97 3
P14 2 P56 2 P98 2
P15 3 P57 3 P99 2
P16 3 P58 2 P100 4
P17 3 P59 2 P101 1
P18 3 P60 2 P102 1
P19 3 P61 2 P103 1
P20 2 P62 5 P104 1
P21 2 P63 1 P105 1
P22 3 P64 2 P106 1
P23 2 P65 2 P107 1
P24 2 P66 2 P108 1
P25 2 P67 2 P109 1
P26 2 P68 2 P110 1
P27 2 P69 2 P111 1
P28 2 P70 2 P112 1
P29 2 P71 1 P113 1
P30 2 P72 2 P114 2
P31 2 P73 2 P115 2
P32 3 P74 2 P116 3
P33 3 P75 1 P117 3
P34 2 P76 1 P118 1
P35 2 P77 2 P119 1
P36 2 P78 2 P120 1
P37 3 P79 2 P121 2
P38 2 P80 2 P122 2
P39 1 P81 2 P123 2
P40 2 P82 2 P124 1
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P41 2 P83 2 P125 1
P42 2 P84 4 P126 1

Table B.15: Required sterilization time for product p - Case study II

Batch time Batch time Batch time
Product . Product ) Product )
(min) (min) (min)
P1 82 P43 85 P85 100
P2 82 P44 82 P86 85
P3 82 P45 98 P87 120
P4 82 P46 100 P88 82
P5 98 P47 82 P89 82
P6 82 P48 98 P90 82
P7 85 P49 82 P91 82
P8 82 P50 82 P92 98
P9 103 P51 105 P93 98
P10 103 P52 82 P94 98
P11 98 P53 82 P95 85
P12 82 P54 82 P96 82
P13 82 P55 221 P97 135
P14 82 P56 82 P98 221
P15 120 P57 103 P99 135
P16 82 P58 85 P100 135
P17 120 P59 82 P101 82
P18 103 P60 82 P102 82
P19 82 P61 82 P103 82
P20 98 P62 168 P104 100
P21 82 P63 135 P105 100
P22 82 P64 82 P106 100
P23 82 P65 82 P107 82
P24 98 P66 103 P108 100
P25 98 P67 82 P109 140
P26 85 P68 102 P110 100
P27 120 P69 102 P111 113
P28 82 P70 82 P112 100
P29 120 P71 82 P113 140
P30 100 P72 89 P114 135
P31 85 P73 82 P115 146
P32 82 P74 106 P116 179
P33 85 P75 85 P117 180
P34 140 P76 105 P118 140
P35 120 P77 120 P119 134
P36 106 P78 82 P120 100
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P37 82 P79 82 P121 168
P38 160 P80 82 P122 179
P39 82 P81 82 P123 213
P40 102 P82 82 P124 179
P41 82 P83 82 P125 146
P42 85 P84 179 P126 180

Table B.16: Cart capacity for product p - Case study II

Product Capacity Product Capacity Product Capacity
(cans) (cans) (cans)
P1 372 P43 3276 P85 3276
P2 372 P44 1530 P86 1797
P3 372 P45 1797 P87 2500
P4 3276 P46 3276 P88 3276
P5 1797 P47 3276 P89 3276
P6 756 P48 3370 P90 1797
P7 3276 P49 3276 P91 1530
P8 3276 P50 1530 P92 3370
P9 3370 P51 297 P93 3276
P10 3370 P52 3276 P94 3250
P11 2500 P53 3276 P95 3370
P12 1797 P54 3276 P96 3250
P13 1710 P55 3276 P97 2500
P14 3276 P56 3276 P98 3276
P15 2500 P57 3276 P99 1710
P16 3276 P58 756 P100 1710
P17 3276 P59 3276 P101 3370
P18 2500 P60 3276 P102 3276
P19 3276 P61 756 P103 1530
P20 1797 P62 1797 P104 3276
P21 3276 P63 3276 P105 1710
P22 1710 P64 3370 P106 3276
P23 3276 P65 756 P107 1530
P24 3370 P66 3276 P108 3276
P25 1797 P67 3276 P109 297
P26 1930 P68 1530 P110 756
P27 297 P69 1530 P111 1797
P28 3276 P70 1797 P112 1710
P29 1530 P71 3370 P113 681
P30 756 P72 1530 P114 3276
P31 3370 P73 1530 P115 372
P32 3276 P74 3276 P116 3276
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P33 372 P75 3276 P117 297
P34 1530 P76 3370 P118 1530
P35 3370 P77 1530 P119 3276
P36 1797 P78 3276 P120 1530
P37 3276 P79 3276 P121 3276
P38 1930 P80 1710 P122 1530
P39 320 P81 3276 P123 3276
P40 756 P82 1797 P124 3370
P41 433 P83 1514 P125 3276
P42 3276 P84 3276 P126 1797
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Appendix C

Data for the COVID-19 Vaccine Supply Chain Problem
(Chapter 5)

Table C.1: Illustrative example - Vaccination centre’s data

Maxi Initial
L aximim Base number Maximum storage
Vaccination Vvaccination number of of healthcare storage
centre goal ({W ) healthcare workers (lb ) ( Vc,v)
workers (l;fax ) ve ('gvc)
P M
C1 10452 54 37 528 88 88
Cc2 9780 51 34 492 82 82
C3 6300 33 22 324 54 54
C4 3168 17 11 168 28 28
C5 1440 8 5 72 12 12
Table C.2: Illustrative Example - Hub’s data
Initial Storage (¢, , ) Maximum storage (7 he )
Hub
P M Freezer (M) Deep freezer (P)
H 260 260 1300 1300
Table C.3: Illustrative example - Vaccines’ data
Maximum Minimum flow  Doses
Vaccine fromhubto  pervial Cost 5,  Shelf-life 1,
supply (7,") min d
hw centres (o) () (RMU) (days)
P 3000 975 6 12 5

M 2000 100 10 18 -




Data for the COVID-19 Vaccine Supply Chain
Appendix C Problem (Chapter 5)

Table C.4: Illustrative example - Distance matrix

Distance x, ~(km)

Cl1 C2 C3 C4 C5
H 114 15 193 96 45

Table C.5: Illustrative example - Cost data A

Healthcare Truck rental Storage technology cost (RMU/day/via)
personnel cost
(RMUt/day) cost (RMU) Refrigerator  Freezer Deep freezer
120 270 0.5 1.5 3
Table C.6: Illustrative example - Cost data B
Fuel consumption Fuel price Average truck Driver’s wage
(1t/100km) (RMU/It) speed (km/h) (RMU /hour)
10 1.3 50 8

T Relative Monetary Units
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Table C.7: Greek Case study - Connectivity between hubs and vaccination centres

Hub vC Hub vC Hub VC Hub vC Hub A\ Hub VC Hub VC

H1 C082 H1 C148 H1 C198 H2 C269 H3 C249 H4 C002 H4 C052
H1 C083 H1 C149 H1 €199 H2 C270 H3 C250 H4 C003 H4 C053
H1 C084 H1 C150 H1 C200 H2 C271 H3 C251 H4 C004 H4 C054
H1 C085 H1 C151 H1 C201 H2 C272 H3 C252 H4 C005 H4 CO55
H1 C086 H1 C152 H1 C202 H2 C273 H3 C256 H4 C006 H4 C056
H1 C087 H1 C153 H1 C203 H2 C279 H3 C257 H4 C007 H4 C057
H1 C088 H1 C154 H2 C091 H2 C280 H3 C258 H4 C008 H4 C059
H1 C089 H1 C155 H2 €092 H2 C281 H3 C260 H4 C009 H4 Co61
H1 C090 H1 C156 H2 €093 H2 C282 H3 C261 H4 Cco10 H4 C062
H1 C09%6 H1 C157 H2 C094 H2 C283 H3 C262 H4 C011 H4 C063
H1 C097 H1 C158 H2 C095 H2 C284 H3 C263 H4 C012 H4 C064
H1 C098 H1 C159 H2 C118 H2 C285 H3 C264 H4 C013 H4 C065
H1 C099 H1 C160 H2 C119 H2 C286 H3 C265 H4 C014 H4 C066
H1 C100 H1 Cle1l H2 C120 H2 C287 H3 C266 H4 C015 H4 Co067
H1 C101 H1 Cle62 H2 €121 H2 C288 H3 C267 H4 C016 H4 C068
H1 C102 H1 C1e63 H2 C122 H2 C289 H3 C274 H4 C017 H4 C069
H1 C103 H1 Cle4 H2 C134 H2 C290 H3 C275 H4 C018 H4 C070
H1 C104 H1 C165 H2 C135 H2 C291 H3 C276 H4 Cc019 H4 C071
H1 C105 H1 Cle66 H2 C136 H2 C292 H3 C277 H4 C020 H4 C072
H1 C106 H1 C1le67 H2 C137 H2 C293 H3 C278 H4 €021 H4 C073
H1 C107 H1 C168 H2 C138 H2 C294 H3 C299 H4 €022 H4 C074
H1 C108 H1 C169 H2 C139 H2 C295 H3 C300 H4 €023 H4 C075
H1 C109 H1 C170 H2 C204 H2 C296 H3 C301 H4 €024 H4 C076
H1 C110 H1 C171 H2 C205 H2 C297 H3 C302 H4 €025 H4 Cco77
H1 C111 H1 C172 H2 C206 H2 C298 H3 C303 H4 C026 H4 C078




H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1

C112
C113
C114
C115
Cl1e
C117
C123
C124
C125
C126
C127
C128
C129
C130
C131
C132
C133
C140
C141
C142
C143
C144
C145
Cl46
C147

H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1

C173
C174
C175
C176
C177
C178
C179
C180
C181
C182
C183
C184
C185
C186
C187
C188
€189
C190
C191
C192
C193
C194
C195
C196
C197

H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2

C207
C208
C214
€217
C218
C219
C220
C221
C222
C223
C224
C225
C226
C227
C228
C229
C230
C231
C232
C233
C253
C254
C255
C259
C268

H2
H2
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3

C328
C329
C060
C209
C210
C211
C212
C213
C215
C216
C234
C235
C236
C237
C238
C239
C240
C241
C242
C243
C244
C245
C246
C247
C248

H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H4

C304
C305
C306
C307
C308
C309
C310
C311
C312
C313
C314
C315
C316
C317
C318
C319
C320
C321
C322
C323
C324
C325
C326
C327
Co01

H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4

Cc027
€028
C029
C030
C031
€032
C033
C034
C035
C036
C037
C038
C039
C040
C041
C042
C043
C044
C045
C046
C047
C048
C049
C050
C051

H4
H4
H4
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5

C079
C080
C081
C330
C331
C332
C333
C334
C335
C336
C337
C338
C339
C340
C341
C342
C343
C344
C345
C346
C347
C348
C349
C350
C351
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Table C.8: Greek Case study - Distribution of vaccination centres into clusters

VC Cluster vC Cluster VC Cluster VC Cluster VC Cluster VC Cluster VC Cluster
C001 CLU25b  CO51 CLUO02 C102 CLU20a  C152 CLU42 C202 CLU13 C252 CLU14 C302 CLU28
C002 CLU25b (€052 CLU25a C103 CLU20a  C153 CLU13 C203 CLU13 C253 CLU30 C303 CLU28
C003 CLU25b  CO053 CLU11 C104 CLU20b  C154 CLU13 C204 CLU23 C254 CLU15 C304 CLU28
C004 CLU25b C054 CLU37 C105 CLU20b  C155 CLU20d (205 CLU30 C255 CLU15 C305 CLUO6
C005 CLU25a  CO55 CLU37 C106 CLU20b C156 CLU20d C206 CLU30 C256 CLU48 C306 CLU28
C006  CLU25b  CO056 CLU35 C107 CLU20c C157 CLU20d C207 CLU33 C257 CLU48 C307 CLUO06
C007 CLU25b  CO57 CLU37 C108 CLU20c C158 CLU20d (208 CLU45 C258 CLU48 C308 CLUO06
C008 CLU25a €059 CLUO02 C109 CLuU20d C159 CLU49 C209 CLUO07 C259 CLU32 C309 CLU16
C009 CLU25a C060 CLUO3 C110 CLuU20d C160 CLU26 C210 CLUO7 C260 CLUO0O4 C310 CLUO06
Cco10 CLUOS8 Co61 CLU11 C111 CLU20a C161 CLU43 C211 CLU14 C261 CLU28 C311 CLU16
C011 CLU25a C062 CLU11 C112 CLU20d C162 CLU43 C212 CLU14 C262 CLU29 C312 CLU16
C012 CLUO8 C063 CLU12 C113 CLU17 C163 CLU43 C213 CLU14 C263 CLUO3 C313 CLU16
C013 CLUOS8 C064 CLU25c C114 CLU17 Cl64 CLU43 C214 CLU15 C264 CLUO3 C314 CLU16
C014 CLUO02 C065 CLU11 C115 CLU38 C165 CLU43 C215 CLU48 C265 CLU34 C315 CLUO4
C015 CLU25a C066 CLU12 Cl1e6 CLU38 Cl66 CLU43 C216 CLU46 C266 CLU29 C316 CLUO4
C016 CLU25b  C067 CLU37 C117 CLU39 Cle67 CLU43 C217 CLU23 C267 CLU34 C317 CLU34
C017 CLU25b  C068 CLU12 C118 CLU27 C168 CLU49 C218 CLU23 C268 CLUO5 C318 CLU34
C018 CLU25a C069 CLU12 C119 CLU27 C169 CLU49 C219 CLU23 C269 CLU40 C319 CLU34
C019 CLU25a €070 CLU11 C120 CLUO09 C170 CLU49 C220 CLU23 C270 CLU21 C320 CLU34
€020 CLU25¢ €071 CLU37 C121 CLU24 C171 CLU49 C221 CLU30 C271 CLU19 C321 CLU34
Cc021 CLUO8 C072 CLU11 C122 CLU47 C172 CLU49 C222 CLU30 C272 CLUO1 C322 CLU29
€022 CLU12 C073 CLU12 C123 CLuU20d C173 CLU10 C223 CLU30 C273 CLUO1 C323 CLU29
€023 CLUOS8 C074 CLU37 C124 CLU20c C174 CLU43 C224 CLU30 C274 CLUO06 C324 CLU29
€024 CLU25¢c €075 CLU35 C125 CLU20a C175 CLU26 C225 CLU30 C275 CLUO06 C325 CLU29
C025 CLUOS8 C076 CLU37 Cl126 CLU20a C176 CLU13 C226 CLU33 C276 CLU16 C326 CLUO4
C026 CLUO02 Cco77 CLU37 Cc127 CLU38 C177 CLU10 C227 CLU33 C277 CLUO06 C327 CLUO4
€027 CLU25¢c €078 CLU11 C128 CLU38 C178 CLU10 C228 CLU33 C278 CLU16 C328 CLU21

227



€028
€029
C030
C031
€032
€033
C034
C035
C036
€037
C038
€039
€040
C041
€042
C043
C044
C045
C046
C047
€048
€049
C050

CLU25c
CLU25c
CLU35
CLU35
CLU25c
CLU25c
CLU35
CLUO02
CLUO02
CLU25c
CLUO02
CLUO02
CLUO02
CLUO8
CLUO02
CLU25a
CLU25Db
CLU25c
CLU25b
CLU25a
CLUO02
CLUO02
CLUO8

€079
€080
C081
€082
€083
€084
C085
C086
€087
€088
€089
€090
€091
€092
€093
C094
C095
C096
€097
€098
€099
C100
Cc101

CLU12
CLU12
CLU37
CLUZ0a
CLUZ20c
CLU20b
CLU20b
CLU39
CLU17
CLU17
CLU38
CLU38
CLU27
CLU27
CLU24
CLUO09
CLU47
CLU20b
CLU20b
CLU20b
CLUZ20a
CLUZ20a
CLUZ20a

C129
C130
C131
C132
C133
C134
C135
C136
C137
C138
C139
C140
C141
C142
C143
C144
C145
C146
C147
C148
C149
C150
C151

CLU38
CLU17
CLU17
CLU39
CLU39
CLU47
CLU24
CLUO09
CLU27
CLU27
CLU27
CLU20b
CLU20c
CLU20d
CLU20c
CLU20c
CLU49
CLUZ26
CLUZ26
CLU22
CLU43
CLU10
CLU36
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C191
C192
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C194
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C197
C198
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CLU22
CLU36
CLU36
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CLU36
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CLU13
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CLU10
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CLUZ20a
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CLU22
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CLU42
CLU36
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C230
C231
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C234
C235
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C241
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€248
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CLU33
CLU45
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CLU46
CLU46
CLU46
CLU46
CLU46
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CLUO07
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CLU14
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CLU14
CLU14
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€280
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€285
C286
€287
C288
€289
C290
C291
€292
C293
C294
C295
C296
C297
C298
C299
C300
C301

CLU21
CLU21
CLU21
CLU19
CLU19
CLU21
CLUOS
CLU19
CLU40
CLU40
CLU40
CLUOS
CLUO1
CLUO1
CLUO1
CLUO1
CLUO1
CLUO1
CLUO1
CLUO1
CLUO03
CLUO3
CLU28

C329
C330
C331
C332
C333
C334
C335
C336
C337
C338
C339
C340
C341
C342
C343
C344
C345
C346
C347
C348
C349
C350
C351
C352

CLU21
CLU18
CLU18
CLU41
CLUS50
CLU31
CLU31
CLU31
CLU31
CLU31
CLU18
CLU18
CLU18
CLU18
CLU18
CLU18
CLU18
CLU41
CLU41
CLU41
CLU41
CLUS0
CLUS0
CLUS0
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Table C.9: Greek case study - Vaccinations centre's data

vC . o 0 VC (. o 0 VC (. o 0 VC ¢ o 0
C001 6300 33 22  C090 6204 32 22 C178 972 5 4 C266 4716 25 17
C002 6300 33 22 C091 6672 35 24 C179 1344 7 5 C267 7956 41 28
C003 6300 33 22 €092 6672 35 24  C180 1044 5 4 C268 7176 37 25
C004 6300 33 22 C093 4776 25 17  C181 1044 5 4 C269 5424 28 19
C005 6300 33 22 C094 3072 16 11 C182 1200 6 5 C270 8328 43 29
C006 6300 33 22 C095 4716 25 17 C183 1044 5 4 C271 4128 22 15
C007 6300 33 22 €096 3168 17 11 C184 1200 6 5 C272 8880 46 31
C008 6300 33 22 €097 3168 17 11 C185 1596 8 6 C273 8880 46 31
C009 6300 33 22 €098 3168 17 11  C186 1344 7 5 C274 10452 54 37
C010 13356 70 47  C099 3168 17 11  C187 816 4 3 C275 10452 54 37
C011 6300 33 22  C100 3168 17 11 €188 924 5 4 C276 7848 41 28
C012 13356 70 47  C101 3168 17 11 €189 1944 10 7 C277 10452 54 37
C013 6696 35 24  C102 3168 17 11 C190 3168 17 11  C278 7848 41 28
C014 7380 38 26  C103 3168 17 11 €191 3168 17 11 C279 8328 43 29
C015 3144 16 11  C104 3168 17 11 €192 3168 17 11 C280 1044 5 4
C016 3144 16 11 C105 3168 17 11 €193 3168 17 11 C281 1044 5 4
C017 6300 33 22  Cl06 3168 17 11  C194 3168 17 11 (€282 516 3 2
C018 6300 33 22  C107 3168 17 11 C195 3168 17 11 (283 516 3 2
C019 6300 33 22  Cl108 3168 17 11  C196 3168 17 11 (€284 1044 5 4
C020 6300 33 22 Cl109 3168 17 11 C197 2676 14 10 €285 900 5 4
C021 13356 70 47  C110 3168 17 11 C198 1044 5 4 €286 516 3 2
C022 13980 73 49  C111 3168 17 11 C199 2376 12 9 C287 672 4 3
C023 13356 70 47  C112 3168 17 11 €200 2076 11 8 €288 672 4 3
C024 3144 16 11  C113 1620 8 6 C201 2592 14 9 €289 672 4 3
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Data for the COVID-19 Vaccine Supply Chain
Appendix C Problem (Chapter 5)

Table C.10: Greek case study - Vaccine's data

Minimum flow from Doses per  cost 5 Shelf-life 1
Vaccine Y Y

hub to centres ( p;’fz”) vial (4)) (RMU) (days)
P 975 6 12 >
M 100 10 18 -
A 240 10 1.78 -
J 480 5 8.5 -

Table C.11: Greek case study - Maximum vaccine supply

P A J M

H1 14720 13342 17664 3382
H2 10917 9895 13101 2508
H3 15386 13945 18463 3535
H4 20575 18649 24690 4728
H5 3675 3331 4410 844




Table C.12: Greek Case study - Distance matrix

Hub VC My, Hub VC My, Hub VC My, Hub VC My, Hub VC My,

H1 €082 11.757 H1 C168 58.926 H2 C229 66.732 H3 C263 78.607 H4 C032  43.404
H1 C083 12.529 H1 Cl169 82.174 H2 C230 92.092 H3 C264 70.71 H4 C033 26.644
H1 C084 11.52 H1 C170  69.933 H2 C231 38.039 H3 C265 135.561 H4 C034 10.919
H1 C085 11.498 H1 C171 54.407 H2 C232 33.64 H3 C266 163.674 H4 C035 30.194
H1 C086  43.022 H1 C172 131 H2 C233 16.876 H3 C267 144.603 H4 C036 10.164
H1 c087  40.489 H1 C173 104.362 H2 C253 28.302 H3 C274 118.489 H4 c037  22.019
H1 C088 53.186 H1 C174  74.097 H2 C254  99.752 H3 C275  99.569 H4 C038 22.304
H1 c089  43.799 H1 C175  31.059 H2 C255 73.035 H3 C276 182.963 H4 C039 11.518
H1 C090  22.858 H1 C176  290.544 H2 C259 192.197 H3 C277 109.35 H4 C040 13.177
H1 C096 11.789 H1 C177 128.625 H2 C268 140.429 H3 C278 164.253 H4 C041  24.406
H1 C097 11.582 H1 C178 119.61 H2 C269 158.33 H3 C299 95.636 H4 C042 22.171
H1 €098 10.778 H1 C179 125.057 H2 C270 100.538 H3 C300 74.898 H4 C043 14.016
H1 €099 10.505 H1 C180 149.501 H2 C271 144.637 H3 C301 64.139 H4 C044  16.496
H1 C100 8.582 H1 €181 139.931 H2 C272 121.83 H3 C302  42.558 H4 C045 17.61
H1 Cc101 9.247 H1 C182 147.348 H2 C273 141.094 H3 C303 58.894 H4 C046  16.584
H1 C102 9.359 H1 €183 135.962 H2 C279 102421 H3 C304 67.411 H4 C047 12.27
H1 C103 2.52 H1 C184 164.634 H2 C280 75.83 H3 C305 116.321 H4 C048  13.665
H1 C104 10.951 H1 €185 256.601 H2 €281 137973 H3 C306 101.541 H4 C049 6.452
H1 C105 11.257 H1 C186 100.026 H2 C282 141.81 H3 C307 122963 H4 C050 11.508
H1 C106 11.433 H1 C187 229.466 H2 C283 126.31 H3 C308 139.923 H4 C051 28.069
H1 C107 14.521 H1 C188  41.086 H2 C284 123.678 H3 C309 168.057 H4 C052 9.424
H1 C108 12.849 H1 C189 96.802 H2 C285 81.57 H3 C310 84936 H4 C053 6.665
H1 C109 17.702 H1 C190 13.319 H2 C286 154.627 H3 C311 174.536 H4 C054  16.682
H1 C110 15.923 H1 C191 10.744 H2 C287 145.731 H3 C312 147.238 H4 CO55  20.452




H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1

C111
C112
C113
C114
C115
Cl16
C117
C123
C124
C125
C126
C127
C128
C129
C130
C131
C132
C133
C140
C141
C142
C143
C144
C145
C1l46
C147
C148

10
22.184
40.714
52.857
44.762
23.684
39.194
18.702
15.718
6.337
5.799
52.505
38.539
58.726
38.224
30
72.7
21.88
12.177
12.642
21.726
13.153
12.252
53.8
35.472
28.701
98.649

H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2

C192
C193
C194
C195
C196
C197
C198
C199
C200
C201
C202
C203
€091
€092
C093
C094
C095
C118
C119
C120
€121
C122
C134
C135
C136
C137
C138

21.684
13.405
10.744
21.606
12.902
100.385
27.859
158.81
133.868
58.057
246.553
192.949
105.918
124.499
120.708
79.234
154.152
105.482
121.922
79.234
119.073
154.145
134.853
123.678
69.287
120
94.317

H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3

€288
C289
C290
C291
C292
C293
C294
C295
C296
C297
C298
C328
C329
C060
C209
C210
C211
C212
C213
C215
C216
C234
C235
C236
C237
C238
C239

141.055
132.368
89.497
124.039
171.395
193.263
163.836
114.04
127.197
148.247
173.201
123.601
143.683
92.015
88.192
54.637
50.903
99.887
125.45
99.029
51911
78.388
84.981
93.876
30.286
54.271
46.242

H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4

C313
C314
C315
C316
C317
C318
C319
C320
C321
C322
C323
C324
C325
C326
C327
C001
€002
C003
C004
C005
C006
C007
C008
C009
Cco10
C011
C012

154.256
137.135
109.615
118.065
153.285
161.924
137.676
162.44
168.134
151.227
161.697
150.556
194.231
119.993
105.936
17.305
16.656
16.635
16.673
15.737
17.162
16.811
15.809
13.433
14.282
15.406
12.867

H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H5
H5
H5

C056
C057
C059
coe61
C062
C063
Co064
C065
C066
Coe67
C068
C069
C070
C071
C072
C073
C074
C075
C076
Co77
C078
C079
C080
C081
C330
C331
C332

21.093
20.778
31.531
5.099
17.318
117.671
40
17.318
7.817
12.222
10.781
14.968
2.716
11.874
5.054
13.2
283.231
18.283
11.718
271.898
11.757
12.279
15.517
9.243
7.635
3.657
52.818

235



H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1
H1

C149
C150
C151
C152
C153
C154
C155
C156
C157
C158
C159
C160
Cle1
Cl62
C163
Cle4
C165
Cle66
C1e67

61.83
96.661
133.526
159.653
192.949
246.553
34.417
25.973
53.945
37.267
36.382
40.474
96.345
88.762
60.957
81.302
64.017
80.952
46.801

H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2

C139
C204
C205
C206
C207
C208
C214
C217
C218
C219
C220
C221
C222
€223
C224
C225
C226
C227
C228

109.251
9.02
28.878
31.206
65.714
22.473
73.977
7.814
26.267
6.783
7.607
53.877
54.934
51.061
37.818
27.704
55.882
66.773
63.53

H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3
H3

C240
C241
C242
C243
C244
C245
C246
C247
C248
C249
C250
C251
C252
C256
C257
C258
C260
C261
C262

63.94
49.118
101.28
36.606

88.27
40.918
36.873
75.906
95.451
83.326
49.592
57.647

103.202
98.722

105.676

108.601
91.349
42.294
123.72

H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4
H4

C013
C014
C015
C016
C017
C018
Cc019
€020
€021
€022
€023
€024
C025
C026
€027
€028
C029
C030
C031

15.856
16.695
15.774
15.838
16.763
12.893
13.724
21.841
22.215
13.973
27.637
22.727
21.165
23.388
21.247
38.874
23.198
16.409
24.314

H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5
H5

C333
C334
C335
C336
C337
C338
C339
C340
C341
C342
C343
C344
C345
C346
C347
C348
C349
C350
C351
C352

87.257
38.022
56.571
79.237
30.568
30.568
20.323
17.078
25.304
32171
22.621
31.379
32.8
24.107
56.545
66.464
41.77
70.936
108.823
120
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