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Abstract 

Faculty of Engineering  
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Doctor of Philosophy 

Optimal production planning and scheduling of mixed batch 

and continuous industrial processes 

By Georgios Georgiadis 

The use of techniques for the optimization of decision-making procedures in the 

process industries (chemicals, food, pharmaceuticals, pulp and paper, oil and gas, cement, 

etc.) is more relevant than ever. Current markets are characterised by increased 

competitiveness that forces process industries to operate with miniscule profit margins. 

Therefore, improved production and resource efficiency is critical for the viability and 

future growth of all industries. Moreover, the European Union has identified energy and 

resource efficiency as a key milestone on the path towards a sustainable circular 

economy. Consolidated targets on this path for 2030 are: 

• a 40% cut in greenhouse gas emissions compared to 1990 levels, 

• a 27% to 30% share of renewable energy consumption and 

• 27% to 30% energy savings compared with the business-as-usual scenario. 

These targets can be achieved not only by technical innovations and new plants, 

but also with the introduction of computer-aided optimization technique tools and 

methodologies. Production planning and scheduling is the process related to the efficient 

allocation of resources, such as equipment, utilities and manpower, over a given time 

horizon of interest, e.g., daily, weekly etc., so that all required tasks are executed, and 

incoming orders are satisfied. Efficient production planning and scheduling is extremely 

beneficial to all industries, since some of the induced benefits are increased productivity, 

lower production costs and reduced energy needs and waste. Despite the increased use 
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of digitalization, production planning and scheduling remains a manual process mainly 

due to the lack of optimized methods that can handle real-life problems.  

This thesis considers the development of mathematical frameworks to provide 

optimized solutions for a wide range of high complexity production planning and 

scheduling problems. The proposed methodologies are based on mixed integer linear 

programming (MILP) modelling frameworks. A known issue of this modelling technique 

is that the model size increases exponentially with the problem size. As a result, large-

scale problems become easily intractable. Therefore, several novel solution algorithms 

have been investigated to allow the applicability of the presented methodologies in real-

life industrial problems. The proposed solution strategies can address large-scale 

problems using commercially available MILP solvers, such as CPLEX and GUROBI. 

More specifically, the first chapters consider the production scheduling problem 

of multiproduct plants comprising of mixed batch and continuous processes, a layout 

commonly met in several industrial sectors, such as food, pharmaceuticals, specialty 

chemicals etc. First, two MILP-based mathematical frameworks with distinct advantages 

are presented for the optimal production scheduling problem of such industrial facilities. 

The developed frameworks are then successfully applied on a real-life scheduling 

problem of a food industry. Near-optimal solutions are efficiently generated, comparing 

favourably with manually derived  schedules by the production engineers. 

Next, an optimization-based solution strategy is proposed for the integrated 

production planning and scheduling problem in breweries. Beer production consists of 

multiple batch and continuous processing steps, but it is also characterized by a long lead 

time, making the efficient coordination of production a difficult task. An extensive 

computational analysis shows the superiority of the developed methodology compared 

to other approaches in the open literature, while a problem originating from a real Greek 

brewery is used to illustrate the applicability of the proposed framework. 

The optimal planning of COVID-19 vaccine supply chains is addressed in the final 

part of this thesis. A novel MILP model is developed to generate optimal tactical and 

operational decisions for the underlying supply chain problem. Key issues of the COVID-

19 vaccine supply chain e.g., vaccination targets, transportation lead-times and vaccine 

perishability, are cleverly incorporated in the model to optimise an economic objective. 
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Furthermore, a decomposition strategy is introduced to address realistically sized case 

studies and applied to a case simulating the Greek COVID-19 vaccination program. 

Finally, a rolling-horizon technique is introduced to address uncertainty factors such as 

demand fluctuations due to cancelled vaccination appointments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

     Περίληψη Abstract in Greek 
Το ερευνητικό έργο που παρουσιάζεται σε αυτή τη διδακτορική διατριβή  

πραγματεύεται την ανάπτυξη μαθηματικών μοντέλων μεικτού ακέραιου γραμμικού 

προγραμματισμού (MILP) και αποδοτικών μεθόδων επίλυσης σύνθετων προβλημάτων 

βελτιστοποίησης που αφορούν θέματα i) χρονοπρογραμματισμού παραγωγής, ii) 

ενοποιημένου χρονοπρογραμματισμού και σχεδιασμού παραγωγής και iii) σχεδιασμού 

και λειτουργίας δικτύων εφοδιαστικών αλυσίδων εμβολίων COVID-19.  

Ο χρονοπρογραμματισμός παραγωγής αποτελεί τη διαδικασία λήψης 

αποφάσεων κατά την οποία κατανέμονται οι διαθέσιμοι πόροι μιας βιομηχανικής 

εγκατάστασης στις διάφορες διεργασίες που είναι απαραίτητες για την παραγωγή των 

τελικών προϊόντων. Οι πόροι αυτοί μπορεί να περιλαμβάνουν τον εξοπλισμό 

επεξεργασίας, αποθήκευσης και μεταφοράς υλικών, το ανθρώπινο δυναμικό και τις 

βοηθητικές παροχές, π.χ. ηλεκτρισμό, νερό, κ.α. Ο σχεδιασμός παραγωγής αποτελεί μια 

άλλη διαδικασία λήψης αποφάσεων, η οποία αφορά επίσης την κατανομή των 

διαθέσιμων πόρων και η οποία προηγείται του χρονοπρογραμματισμού παραγωγής, με 

την έννοια ότι οι αποφάσεις που λαμβάνονται κατά τον σχεδιασμό αποτελούν είσοδο 

του χρονοπρογραμματισμού παραγωγής. Οι διαφορές ανάμεσα σε 

χρονοπρογραμματισμό και σχεδιασμό παραγωγής έγκειται στον υπό μελέτη χρονικό 

ορίζοντα (μέρες-εβδομάδα για χρονοπρογραμματισμό και εβδομάδες-μήνες για 

σχεδιασμό) και στην λεπτομέρεια των αποφάσεων (πιο λεπτομερείς κατά τον 

χρονοπρογραμματισμό). Στην πράξη τα δύο αυτά στάδια αποφάσεων μελετώνται 

ξεχωριστά, ωστόσο εκτενείς έρευνες έχουν δείξει ότι η ενοποιημένη μελέτη του 

χρονοπρογραμματισμού και του σχεδιασμού παραγωγής οδηγεί σε σημαντική  αύξηση 

της αποδοτικότητας μιας βιομηχανικής μονάδας. 

Τα τελευταία 30 χρόνια έχει προταθεί ένα μεγάλο εύρος μεθόδων για την 

αντιμετώπιση αυτών των συνδυαστικών προβλημάτων, ωστόσο η πλειονότητα τους 

αναλώνεται σε προβλήματα που δεν αντικατοπτρίζουν την βιομηχανική 

πραγματικότητα. Συνήθως εμπλέκεται ένας μεγάλος αριθμός εξοπλισμού για την 

παραγωγή μιας πληθώρας τελικών προϊόντων, μέσω μιας ιδιαίτερα περίπλοκης 

παραγωγικής διαδικασίας, η οποία υπόκειται σε απαιτητικούς τεχνικούς, οικονομικούς 

και λειτουργικούς περιορισμούς. Έτσι, τα ρεαλιστικά προβλήματα 
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χρονοπρογραμματισμού παρουσιάζουν εξαιρετικά υψηλή υπολογιστική 

πολυπλοκότητα, με αποτέλεσμα να μην μπορούν να επιλυθούν σε χρόνους αποδεκτούς 

από την βιομηχανία. Επομένως, κρίνεται αναγκαία η ανάπτυξη νέων υπολογιστικών 

τεχνικών, οι οποίες θα συνδυάζουν αποτελεσματικότητα, απόδοση και ταχύτητα, έτσι 

ώστε να υποστηρίξουν τις διοικήσεις των επιχειρήσεων στη διαδικασία λήψης 

αποφάσεων. Προς αυτή την κατεύθυνση, στην παρούσα διατριβή πραγματοποιείται 

τόσο η ανάπτυξη νέων μαθηματικών μοντέλων, λαμβάνοντας υπόψη ρεαλιστικά 

χαρακτηριστικά, όσο και η ανάπτυξη νέων αλγορίθμων για την επίλυση των 

προβλημάτων σε σύντομο υπολογιστικό χρόνο. 

Στο τελευταίο τμήμα του διδακτορικού, εφαρμόστηκε η τεχνογνωσία που είχε 

αποκτηθεί στον τομέα της μαθηματικής μοντελοποίησης, στο πρόβλημα βέλτιστης 

λειτουργίας και σχεδιασμού μιας εφοδιαστικής αλυσίδας για την διανομή των εμβολίων 

COVID-19. Το πρόβλημα αυτό αφορά κυρίως τον καθορισμό των μεταφερόμενων και 

αποθηκευμένων ποσοτήτων αλλά και τον προγραμματισμό των εμβολιασμών στα 

εμβολιαστικά κέντρα. Ο συγκεκριμένος τύπος εφοδιαστικής αλυσίδας εμφανίζει 

χαρακτηριστικά τα οποία δυσχεραίνουν την εύρυθμη λειτουργία του, κυρίως λόγω των 

ιδιαιτεροτήτων των εμβολίων τύπου mRNA, συγκεκριμένα τον περιορισμένο χρόνο ζωής 

των εμβολίων και τις ανάγκες αποθήκευσης σε βαθιά κατάψυξη. Συνεπώς, η «τυφλή» 

αποθήκευση εμβολίων δεν αποτελεί αποδοτική λύση, καθώς οδηγεί σε τεράστιο 

λειτουργικό κόστος, αλλά και σε απώλειες πολύτιμων δόσεων. Η βιβλιογραφία για τη 

βελτιστοποίηση ιατρικών εφοδιαστικών αλυσίδων περιορίζεται κυρίως σε φάρμακα και 

βρίσκονται ελάχιστες μελέτες για την εφοδιαστική αλυσίδα εμβολίων, οι οποίες 

αφορούν κυρίως την διανομή εμβολίων σε χώρες του τρίτου κόσμου. Επίσης δεν 

βρίσκεται μελέτη στη βιβλιογραφία για εφοδιαστικές αλυσίδες εμβολίων για την 

αντιμετώπιση πανδημίας, καθώς και για εμβόλια mRNA. Τα παραπάνω δημιουργούν ένα 

ερευνητικό κενό μεγάλου ενδιαφέροντος ιδιαιτέρως λόγω των τελευταίων εξελίξεων. 

Για τους παραπάνω λόγους αναπτύχθηκαν νέα μοντέλα και αλγόριθμοι επίλυσης για την 

βελτιστοποίηση των αποφάσεων που αφορούν την εφοδιαστική αλυσίδα εμβολίων 

COVID-19. Επιπλέον ορίζεται ένα νέο πρόβλημα, στο οποίο καθορίζεται ταυτόχρονα και 

το πρόγραμμα εμβολιασμών σε κάθε εμβολιαστικό κέντρο, μέσω της ενσωμάτωσης 

αποφάσεων που αφορούν τις ανάγκες σε υγειονομικό προσωπικό. 
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Όλα τα προτεινόμενα μοντέλα και οι αλγόριθμοι επίλυσης υλοποιήθηκαν με 

χρήση του λογισμικού GAMS και του επιλυτή CPLEX. 

Αναλυτικότερα, η συνεισφορά της παρούσας διδακτορικής διατριβής 

συνοψίζεται στις παρακάτω παραγράφους. 

Αρχικά μελετάται το πρόβλημα του βέλτιστου χρονοπρογραμματισμού 

παραγωγής σε βιομηχανίες πολλών σταδίων, που αποτελούνται από μεικτές συνεχείς 

και διακριτές διεργασίες. Για την αντιμετώπιση αυτών των προβλημάτων 

αναπτύχθηκαν δύο νέα μαθηματικά πλαίσια. Στο πρώτο προτείνεται ένα νέο μοντέλο 

μεικτού-ακέραιου γραμμικού προγραμματισμού για την ελαχιστοποίηση του συνολικού 

χρόνου παραγωγής (makespan minimization). Συγκεκριμένα εφαρμόζεται μεικτή, 

συνεχής και διακριτή, χρονική αναπαράσταση, όπου η διακριτή κλίμακα χρησιμοποιείται 

για τους περιορισμούς ισορροπίας υλικών (material balances), ενώ η συνεχής για τις 

αποφάσεις χρονοπρογραμματισμού, όπως κατανομή των παρτίδων σε συσκευές, 

εκκίνηση και αλληλουχία διεργασιών). Επιπλέον, εισάγονται νέοι ευρετικοί περιορισμοί, 

οι οποίοι επιταχύνουν την επίλυση του μαθηματικού μοντέλου, χωρίς να αλλοιώνουν την 

ποιότητα της λύσης. Για την επίλυση προβλημάτων μεγάλης κλίμακας, αναπτύσσεται 

ένας νέος αλγόριθμος διάσπασης, όπου σε κάθε επανάληψη  βελτιστοποιείται το 

πρόγραμμα παραγωγής για ένα υποσύνολο των παραγγελιών. Με το πέρας κάθε 

επανάληψης σταθεροποιούνται οι δυαδικές μεταβλητές για το υποσύνολο που 

εξετάζεται. Με την τελευταία επανάληψη προκύπτει το τελικό πρόγραμμα παραγωγής.  

Στο δεύτερο μαθηματικό πλαίσιο προτείνεται μια πρωτοποριακή μέθοδος για τη μείωση 

της πολυπλοκότητας του συνδυαστικού προβλήματος βελτιστοποίησης. Με βάση αυτή 

τη νέα μέθοδο, αναπτύχθηκαν δύο νέα μοντέλα μεικτού-ακέραιου γραμμικού 

προγραμματισμού, ένα γενικής προτεραιότητας (general precedence) για την 

ελαχιστοποίηση του χρόνου παραγωγής και ένα γενικής προτεραιότητας ως προς κάθε 

συσκευή (unit-specific general precedence) για την ελαχιστοποίηση του χρόνου 

εναλλαγών (changeover minimization). Τέλος, το μοντέλο εντάσσεται σε ένα αλγόριθμο 

διάσπασης, παρόμοιο με αυτό που εφαρμόστηκε στο πρώτο μαθηματικό πλαίσιο, ώστε 

να υπάρχει δυνατότητα επίλυσης προβλημάτων βιομηχανικής κλίμακας.  Η κύρια 

διαφορά των δύο μεθόδων έγκειται στην λεπτομέρεια των αποφάσεων που 

λαμβάνονται, καθώς η πρώτη εξάγει λεπτομερή προγράμματα για όλα τα στάδια 
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παραγωγής, ενώ η δεύτερη μόνο για τα συνεχή. Ωστόσο, η δεύτερη μέθοδος είναι 

υπολογιστικά σαφώς ανώτερη της πρώτης. 

Τα παραπάνω μοντέλα εφαρμόζονται σε ένα πραγματικό βιομηχανικό πρόβλημα 

μεγάλης κλίμακας. Συγκεκριμένα, μελετήθηκε η παραγωγική διαδικασία της ισπανικής 

βιομηχανίας τροφίμων «Frinsa del Noroeste». Αυτή αποτελείται από πολλά στάδια 

παραγωγής, συνεχούς και διαλείπουσας, λειτουργίας, σε κάθε ένα από τα οποία 

λειτουργούν παράλληλα πολλαπλές μηχανές, ενώ σε εβδομαδιαία βάση εξυπηρετούνται 

πάνω από 100 παραγγελίες. Πραγματοποιήθηκαν εκτενής μελέτες σε προβλήματα 

βέλτιστου χρονοπρογραμματισμού που αντιστοιχούν στις εβδομάδες που πιέζουν 

περισσότερο την παραγωγική διαδικασία. Χρησιμοποιήθηκαν πραγματικά δεδομένα 

ζήτησης και λειτουργίας της μονάδας, τα οποία εξήχθησαν από τα υπολογιστικά 

συστήματα της εταιρείας, για ορισμένες ιστορικές εβδομάδες. Χρησιμοποιώντας το 

πρώτο μαθηματικό πλαίσιο, προτείνονται σχεδόν βέλτιστα προγράμματα παραγωγής σε 

μία ώρα, τα οποία μειώνουν το χρόνο παραγωγής κατά ~15%, συγκριτικά με τα 

προγράμματα παραγωγής που είχαν προτείνει οι μηχανικοί παραγωγής. Στον αντίποδα 

η εφαρμογή του δεύτερου μαθηματικού πλαισίου απαιτεί λιγότερο υπολογιστικό χρόνο  

(~15 λεπτά) για την εξαγωγή λύσεων πλησίον των βέλτιστων. Η ταχύτητα επίλυσης 

επιτρέπει τον ταχύτατο επαναπρογραμματισμό σε περίπτωση απρόοπτων αλλαγών 

(π.χ. αλλαγή παραγγελιών), αλλά και την αξιολόγηση εναλλακτικών σεναρίων από τους 

μηχανικούς παραγωγής. Επίσης με το δεύτερο μαθηματικό πλαίσιο δίνεται η 

δυνατότητα μελέτης προβλημάτων ελαχιστοποίησης του χρόνου εναλλαγών. Με τη 

συγκριτική μελέτη μεταξύ των προγραμμάτων παραγωγής που εξάγονται από τα 

ανεπτυγμένα μοντέλα του δεύτερου μαθηματικού πλαισίου και αυτών που προτείνονται 

από τους μηχανικούς παραγωγής της βιομηχανίας,  διαπιστώνεται σημαντική αύξηση 

της αποδοτικότητας της μονάδας, μέσω της μείωσης του χρόνου παραγωγής (~10%) ή 

της μείωσης του χρόνου εναλλαγών (~15%). 

Επιπλέον μελετήθηκε ο χρονοπρογραμματισμός και σχεδιασμός παραγωγής σε 

βιομηχανίες ζύθου. Συγκεκριμένα προτείνεται ένα νέο μοντέλο μεικτού-ακέραιου 

γραμμικού προγραμματισμού για τον ενοποιημένο βέλτιστο χρονοπρογραμματισμό και 

σχεδιασμό παραγωγής, ώστε να ελαχιστοποιηθεί το κόστος παραγωγής σε μια 

ζυθοποιία. Η δυσκολία στην εξαγωγή βέλτιστων αποφάσεων χρονοπρογραμματισμού σε 

μια ζυθοποιία έγκειται κυρίως στον πολύ μεγάλο χρόνο παράδοσης, ο οποίος δημιουργεί 

την ανάγκη μελέτης εκτεταμένου χρονικού ορίζοντα, συνεπώς τη δημιουργία μεγάλων 
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μοντέλων MILP. To πρόβλημα αυτό αντιμετωπίζεται με την εφαρμογή μεικτής χρονικής 

αναπαράστασης και την διάσπαση του χρονικού ορίζοντα σε δύο τμήματα. Στο πρώτο 

λαμβάνονται αποφάσεις σχεδιασμού και χρονοπρογραμματισμού παραγωγής, ενώ στο 

δεύτερο μόνο σχεδιασμού παραγωγής . Παρουσιάζεται μια εκτενής συγκριτική μελέτη 

μεταξύ του προτεινόμενου μοντέλου και του μοναδικού ανάλογου μοντέλου της 

βιβλιογραφίας, σε ένα μεγάλο εύρος προβλημάτων, η οποία αποδεικνύει την 

ανωτερότητα του αναπτυγμένου μοντέλου. Επιπλέον, αναπτύχθηκε μια στρατηγική 

επίλυσης προβλημάτων μεγάλης πολυπλοκότητας, η οποία αποτελείται από δύο στάδια. 

Στο πρώτο κατασκευάζεται μια αρχική λύση, η οποία στη συνέχεια βελτιώνεται μέσω 

μιας επαναληπτικής εξοντωτικής διαδικασίας εφαρμογής τελεστών χαλάρωσης και 

βελτιστοποίησης των μεταβλητών του προβλήματος (fix-and-optimize). Η παραπάνω 

στρατηγική επίλυσης εφαρμόζεται επιτυχώς σε ένα ρεαλιστικό βιομηχανικό πρόβλημα. 

Στο τελευταίο τμήμα της διδακτορικής διατριβής μελετάται το πρόβλημα 

βελτιστοποίησης του σχεδιασμού και της λειτουργίας εφοδιαστικών αλυσίδων 

εμβολίων COVID-19. Συγκεκριμένα μελετάται η ταυτόχρονη βελτιστοποίηση των 

αποφάσεων της εφοδιαστικής αλυσίδας, π.χ. μέγεθος στόλου, επίπεδα αποθηκών, αλλά 

και των αποφάσεων σχετικά με το πρόγραμμα εμβολιασμών στα εμβολιαστικά κέντρα. 

Αυτό το πρόβλημα προγραμματισμού εξετάζεται για πρώτη φορά, οπότε η μελέτη αυτή 

το εισάγει στη διεθνή βιβλιογραφία. Για την αντιμετώπιση αυτού του συνδυαστικού 

προβλήματος αναπτύσσεται ένα νέο μαθηματικό μοντέλο για την ελαχιστοποίηση του 

κόστους διανομής εμβολίων COVID-19. Η εφοδιαστική αλυσίδα αποτελείται από τρία 

επίπεδα, τα εργοστάσια παραγωγής, τις κεντρικές αποθήκες εμβολίων και τα 

εμβολιαστικά κέντρα. Εξετάζεται χρονικός ορίζοντας δύο εβδομάδων, ώστε να 

υπερκαλύπτεται η μειωμένη διάρκεια ζωής ορισμένων εμβολίων σε συνθήκες απλής 

ψύξης (πέντε μέρες). Λαμβάνονται υπόψη όλες οι τεχνικές ιδιαιτερότητες του 

προβλήματος, όπως η μειωμένη διάρκεια ζωής εμβολίων και ο χρόνος που απαιτείται για 

τη μεταφορά των εμβολίων. Η επίλυση του μαθηματικού μοντέλου οδηγεί σε βέλτιστες 

αποφάσεις όσον αφορά τα επίπεδα αποθηκευμένων εμβολίων στις κεντρικές αποθήκες 

και τα εμβολιαστικά κέντρα, τις μεταφερόμενες ποσότητες ανάμεσα στα επίπεδα της 

εφοδιαστικής αλυσίδας, το ημερήσιο πρόγραμμα εμβολιασμών, το νοσηλευτικό 

προσωπικό και το μέγεθος του στόλου οχημάτων. Η αποτελεσματικότητα του μοντέλου 

δεν επαρκεί για την ταχεία επίλυση προβλημάτων που αντιστοιχούν σε εθνικά 

εμβολιαστικά προγράμματα, οπότε προτείνεται ένας αλγόριθμος επίλυσης για 
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προβλήματα μεγάλης πολυπλοκότητας. Αρχικά τα εμβολιαστικά κέντρα κατανέμονται 

στις κεντρικές αποθήκες βάση γεωγραφικών κριτηρίων. Στη συνέχεια τα εμβολιαστικά 

κέντρα συγκεντρώνονται σε συστάδες (clusters) με βάση τις περιφερειακές ενότητες 

στις οποίες ανήκουν. Έπειτα λύνεται ένα συγκεντρωτικό μοντέλο (με βάση τις 

παραμέτρους για τις συστάδες) και τέλος η λύση αυτή χρησιμοποιείται στο επόμενο 

στάδιο, οπού λύνεται ένα λεπτομερές μοντέλο για όλα τα εμβολιαστικά κέντρα . Η 

παραπάνω μέθοδος εφαρμόστηκε επιτυχώς σε ένα πρόβλημα που προσομοιώνει το 

εμβολιαστικό πρόγραμμα της Ελλάδας. Σε αυτό εξετάζονται πέντε κεντρικές αποθήκες, 

351 εμβολιαστικά κέντρα, πολλαπλές γραμμές εμβολιασμού ανά κέντρο και τέσσερα 

διαφορετικά εμβόλια. Ως αποτέλεσμα επιτυγχάνονται σχεδόν βέλτιστες λύσεις σε 

σύντομο χρονικό διάστημα, ενώ τα εμβόλια που πετιούνται λόγω κακής διαχείρισης της 

εφοδιαστικής αλυσίδας είναι ελάχιστα. Τέλος, μελετάται ο επανασχεδιασμός της 

εφοδιαστικής αλυσίδας, με χρήση ενός αλγόριθμου κυλιόμενου ορίζοντα, σε περίπτωση 

μεταβολής της ζήτησης, λόγω ακύρωσης ραντεβού ή μη-έλευσης πολιτών σε 

προκαθορισμένα ραντεβού. 
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Introduction  

1.1 Motivation and objectives 

Process industries operate in an environment characterized by increasing 

competitiveness and minuscule profit margins. Therefore, they must strive more than 

ever for efficiency and increased productivity. In addition to significant economic 

benefits, the better coordination of production leads to important reduction in energy 

needs, thus allowing industries to achieve a more environmentally friendly production 

process. The decision-making process that allows for the efficient management of 

production and thus can directly affect the productivity of any facility is production 

scheduling. This process refers to the efficient allocation of resources, such as equipment, 

utilities and manpower, over a given time horizon of interest, e.g. daily, weekly etc., so 

that all required tasks are executed and incoming orders are satisfied (Pinedo 2016). The 

importance of optimal production scheduling has been long recognised by academia; 

therefore, a plethora of works written across different scientific communities can be 

found in literature (Harjunkoski et al. 2014). An abundance of optimization-based 

algorithms has been proposed to address the production scheduling problem. Most of 

them express the production scheduling problem as a mixed-integer linear programming 

(MILP) problem, since it proved to be extremely flexible and rigorous, while ensuring 

optimality. However, production facilities comprising of multiple batch and continuous 

operations have received nearly no attention compared to other type of production 

processes, despite being the norm in a large variety of industries, such as, food and 

beverage, chemicals, pharmaceuticals, etc. Therefore, efficient mathematical frameworks 

for the optimal production scheduling of mixed batch and continuous processes is a 

known research gap. Concerning the above observation, we study the optimal production 
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scheduling of facilities comprising of mixed batch and continuous processes by 

developing novel mathematical frameworks.  

Digitalization of manufacturing is attracting a lot of attention within all process 

industries and is expected to have a significant impact on how the industry operates  

(Isaksson, Harjunkoski, and Sand 2017). However, in terms of production scheduling, the 

current industrial reality is different. In most cases schedules are manually generated by 

production engineers or operators, based on rules and heuristics, that arise from their 

multiyear experience and understanding of the production process. Due to the complex 

nature of real scheduling problems, that involve a large number of items, like tasks, 

intermediate and final products, multiple parallel machines, many processing stages and 

production routes, manually generating good schedules becomes an extremely difficult 

and tedious task. Hence, numerous iterations and a significant number of working hours 

are required daily, which generally lead to sub-optimal results. In some cases, industries 

utilize commercially available scheduling tools (Intelligen Inc.), in order to automate the 

procedure and to generate fast and feasible production schedules. However, the 

schedules are created based on simple heuristics that mostly ensure their feasibility. 

Consequently, either when schedules are manually generated by the engineers or when 

simulation-based tools are employed, the extracted solutions are far from being optimal. 

Furthermore, generated and later executed schedules cannot be evaluated in terms of 

their efficiency, so the managers cannot assess the true potential benefits realized on the 

plant. As a result, productivity is reduced, resources are underutilized, customers are 

dissatisfied and there are significant profit losses, which result to a decrease in the 

industries’ competitiveness. The deployment of optimization-based tools in industrial 

problems can address these issues by assisting the production engineers into 

systematically improving their decisions, thus leading to important economic, 

environmental and social benefits (Harjunkoski 2016). Therefore, a high interest has 

been expressed for real-life industrial case studies and problem specific solutions have 

been generated for real industrial facilities. Moreover, the ever-increasing computational 

power, allowed the handling of larger problem instances. However, there is still a 

significant gap between the academic research and the industrial practice, as only a few 

contributions have been successfully applied in real-life scheduling problems. Due to the 

lack of real-life applications, all proposed mathematical frameworks are employed on 

large-scale instances of industrial problems.  
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The unprecedented effects of the SARS-COV-2 virus, which resulted in the COVID-

19 pandemic, have risen an immense global interest regarding the development and 

distribution of safe and effective vaccines. Until the completion of this thesis, more than 

160 million people have been already infected and close to 3.5 million could not 

overcome this catastrophic disease worldwide. In addition, the necessitated protective 

measures and lengthy lockdowns have a severe financial impact on society. The urge to 

rapidly decrease the toll of COVID-19 on health and global economy led to significant 

scientific breakthroughs and the authorization of various vaccine candidates within a 

record time. While the focus in the vaccine world has been on developing the required 

vaccines and measuring their effectiveness, struggle to understand and properly address 

the issues of the Vaccine Supply Chain (VSC), greatly reduces the impact of any 

vaccination program (Lee and Haidari 2017). Mass vaccination of the world’s population 

will achieve herd immunity, the first step for the progressive transition to the pre-COVID-

19 normalcy. As a result, the biggest vaccination program in human history is currently 

in action pushing the COVID-19 VSC to its limits. Furthermore, special characteristics of 

the COVID-19 VSC, like limited shelf life and storage requirements in freezing conditions, 

makes its management a logistical challenge. Multiple decisions are required e.g., on 

central hub locations, vaccination locations, facility layouts, the order people are 

vaccinated, staffing levels etc. Efficient and effective planning and operation of the supply 

chain is critical for the success of the vaccination program, otherwise, numerous valuable 

doses will be wasted, and the program’s progress will slow down, imposing important 

financial losses. Due to the aforementioned difficulties, the COVID-19 VSC optimization 

problem, has been addressed only by a handful of contributions, which mainly focus on 

manufacturing issues of mRNA vaccines (Kontoravdi, Shattock, and Shah 2021), while the 

optimal distribution of the COVID-19 vaccines has never been addressed. As a result, the 

current scientific knowledge is expected to be greatly broadened with the introduction of 

an optimization-based framework for the optimal planning of the COVID-19 VSC.  

The primary objectives of this thesis are: 

• To develop novel optimization-based frameworks based on MILP 

techniques for the optimal production scheduling of multiproduct mixed 

batch and continuous facilities. 



Chapter 1                                                                                         Introduction 
 

4 
 

• To develop a new MILP model that tackles the integrated optimal 

production planning and scheduling problem in mixed batch and 

continuous processes. 

• To propose efficient solution strategies, which combine decomposition 

techniques, heuristic algorithms, and MILP models, in order to generate 

optimal or near-optimal solutions for large-scale problem instances in low 

Central Processing Unit (CPU) times. 

• To introduce a new problem in the open literature that simultaneously 

considers short-term planning decisions for the COVID-19 VSC along with 

the vaccination plans in the associated vaccination centres.  

• To develop appropriate MILP-based solution strategies capable of solving 

a nation-wide COVID-19 VSC planning problem. 

• To reduce the existing gap between scientific research and industrial 

reality by successfully applying the proposed mathematical frameworks in 

real-life, large-scale industrial cases studies, either using real data, or 

simulated data that correspond to real-life conditions.  

1.2 Production scheduling  

1.2.1 Classification of scheduling problems 

Traditionally, scheduling problems are defined in terms of a triplet α/β/γ (Pinedo 

2016). The α field describes the production environment, while the β field denotes the 

special characteristics and production constraints. Finally, field γ describes the problem’s 

objective e.g., minimization of cost. The entries of this triplet can be extremely diverse 

between process industries, since a great variety of aspects needs to be considered when 

developing optimization models for process scheduling. As a result, many classes of 

scheduling problems exist. However, the general production scheduling problem can be 

summarized in the following.  

Given are: 

• Facility data, e.g., processing stages and units, storage vessels, processing 

rates, unit to task compatibility.  
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• Production targets that need to be satisfied. 

• Availability of raw materials and resource limitations, e.g., maintenance of 

units, availability of utilities. 

The first term denotes the characteristics of the facility and can be considered 

static input to the scheduling problem, since it remains the same for all problem instances 

of a facility, unless any redesign studies are considered. The remaining terms are inputs 

from other decision-making processes in the manufacturing environment. Scheduling is 

not a standalone problem; it is part of the manufacturing supply chain and has strong 

connections to other planning functions. Production targets and materials availability 

come from the planning level, while resource availability is an output of the control level, 

thus there is a significant flow of information from other planning functions to scheduling 

(Figure 1.1). 

 

Figure 1.1: Information flow towards scheduling level 

 

Main goal is to propose a schedule that reaches the production targets, while 

respecting all operational, logistical, and technical constraints, and achieve a certain 

objective, such as the maximization of profit, the minimization of the total cost, earliness 

and/or tardiness, and production makespan.  

The general scheduling problem seeks to optimally answer the following 

questions (Figure 1.2): 
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• What tasks must be executed to satisfy the given demand (batching/lot-

sizing)? 

• How should the given resources be utilized (task-resource assignment)? 

• In what order are batches/lots processed (sequencing and/or timing)? 

 

Figure 1.2: Decisions of production scheduling in the process industries 

 

Note that depending on the specifics of the problem at hand, some of these 

decisions are not considered in the scheduling level. When developing a model for the 

optimal scheduling problem all characteristics of the production must be considered to 

ensure the feasibility of the proposed schedules. However, the production needs to be 

portrayed in an abstract way to reduce the computational complexity of the problem. This 

is even more crucial when dealing with real-life industrial applications, which are 

typically characterized by complex structures, ever-expanding product portfolios and a 

huge number of constraints that must be considered. 

Scheduling is a critical decision-making process in all process industries, from the 

chemical and pharmaceutical to the food and beverage and the petrochemical sector. 

Besides the aforementioned general description of scheduling, industrial applications 

display strong differences to each other, due to the facility itself, the production policy or 

market and business considerations. First step when approaching an industrial 
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scheduling problem is to identify its problem specifics, in order to accurately portray the 

problem at hand. Moreover, a strong correlation between different classes of scheduling 

problems and the available mathematical modelling frameworks exists. The scheduling 

problems found in process industries are classified in terms of: (a) the production facility, 

(b) the interaction with the rest of the production supply chain, and (c) the specific 

processing characteristics and constraints. A short description of these terms follows, and 

further details can be found in the excellent reviews of Maravelias (2012) and 

Harjunkoski et al. (2014). 

1.2.1.1 The production facility 

At this point we should note that the following analysis focuses on production 

scheduling. However, many scheduling problems in the process industries target to the 

optimization of material transfer operations rather than production operations. 

Characteristic examples are crude oil and pipeline scheduling. With this in mind, the 

production facility is classified based on the type of process (batch/continuous) and the 

production environment (sequential or network). 

1.2.1.1.1 Process type 

The type of production processes found in the process industries can be defined 

as continuous or batch. In continuous mode, units are continuously fed and yield constant 

flow. Continuous processes are appropriate for mass production of similar products, 

since they can achieve consistency of product quality, while manufacturing costs are 

reduced, due to economies of scale. The main characteristic of batch processes is that all 

components are completed at a unit before they continue to the next one. Batch 

production is advantageous for production of low-volume high-added value products, or 

for production of seasonal demands which are difficult to forecast. One of the main 

advantages of batch production is the reduced initial capital investment, therefore it is  

especially profitable for small business or trial runs of new facilities. From a scheduling 

point-of-view, both batch and continuous processes require the same type of decisions. 

Tasks are characterized as batches in batch and lots in continuous processing. 

Assignment (batches/lots to units), sequencing (between batches/lots) and timing (of 

batches/lots) decisions are identical, while selection and sizing of tasks (batching/lot-

sizing) display more degrees of freedom in continuous processes. Capacity restrictions in 
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continuous processes refer to processing rates and processing times and are usually 

unrestricted, thus a given order can be satisfied in a single lot (campaign) or multiple 

shorter ones. On the other hand, batch production is capacitated by the amount of 

processed material that a unit can process, thus affecting the number and size of batches 

to be scheduled. Another difference lies in the way inventory levels are affected. At this 

point, it is worth mentioning that many facilities are characterized by more than one type 

of processes. A characteristic example is the “make-and-pack” type of production, where 

several batch or continuous processing stages are followed by a packing (continuous) 

stage. This production flow is very common in the food and beverage and the consumer 

goods industries and requires the consideration of both the characteristics of batch and 

continuous production processes (Baumann and Trautmann 2012; Georgiadis et al. 

2020). 

1.2.1.1.2 Production environment 

Production facilities can be classified as sequential, or network based on the 

material handling restrictions. In sequential processing, each batch/lot follows a 

sequence of stages based on a specific recipe. Throughout its recipe a batch retains its 

identity, since it cannot be mixed with other batches or split into multiple downstream 

batches. Network facilities are characterized as more general and complex and have 

usually an arbitrary topology. Moreover, no restrictions exist for the handling of input 

and output materials, thus mixing and splitting operations are included. Based on their 

topological characteristics, sequential facilities can be further categorized into the 

following:  

• Single stage: Production facility that consists of just one processing stage, 

which may consist of a single unit or multiple parallel units. The product to unit 

compatibility may be fixed (batch can be processed in a single unit) or flexible (batch 

can be processed in multiple units), but in all cases each batch must be processed in 

a single unit. 

• Multistage: Each batch must be processed in more than one processing 

stages, each consisting of a single unit or multiple parallel units. The multistage 

environment can be further categorized into multiproduct and multipurpose, 

depending on the imposed routing restrictions. Multiproduct facilities are equivalent 

to flowshop environments in discrete manufacturing, where all products go through 



Chapter 1                                                                                         Introduction 
 

9 
 

the same sequence of processing stages. In contrast, a facility is characterized as 

multipurpose when the routings are product-specific, or when a processing unit 

belongs to different processing stages depending on the product, thus being 

equivalent to jobshop environments in discrete manufacturing. 

Early studies mainly focused on scheduling problems that are characterized as 

sequential (Egli and Rippin 1986; Vaselenak, Grossmann, and Westerberg 1987). Process 

industries with a sequential environment are very similar to discrete manufacturing, 

from a scheduling point-of-view. Sequential facilities can be easily modelled in terms of 

batches and production stages, like jobs and operations in discrete manufacturing. 

However, this does not hold true for network facilities, thus they cannot be modelled in a 

similar straightforward manner. In the early 90s, the research team of Prof. Sargent in 

Imperial College London was the first to propose general representations for network 

facilities. In particular, they introduced the concepts of the State-Task-Network (STN) 

(Kondili, Pantelides, and Sargent 1993; Shah, Pantelides, and Sargent 1993) and the 

Resource-Task-Network (RTN) (Pantelides 1994), which allowed the development of 

optimization models for scheduling problems of such complex structures. A classification 

of the production environments for process industries is illustrated in Figure 1.3. 

1.2.1.2 Interaction with other planning functions 

Scheduling is strongly interconnected to the rest of the planning functions of the 

manufacturing supply chain; therefore, it cannot be approached as a standalone problem. 

The interactions between scheduling and the other decision-making processes in a 

manufacturing environment must be accounted for, since they determine significant 

aspects of the scheduling problem; in particular: a) the input parameters of the 

scheduling problem, b) the decisions to be optimized by the scheduler, c) the type of 

scheduling problem to be solved and d) the problem’s objective. 

Planning and scheduling are often confused since no distinct differentiation exists 

between them. However, it is generally accepted that planning determines the input of 

the scheduling problem in terms of production targets like order sizes, due, and release 

dates. Additionally, batching/lot-sizing decisions can be made in the planning level, thus 

affecting the type of decisions that needs to be made in the scheduling level. In that case 

batching/lot-sizing decisions are pre-fixed, and the scheduling decisions are narrowed  
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Figure 1.3: Categorization of scheduling problems based on the production environment 
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down to just unit to task assignment, sequencing, and timing of tasks. There is also an 

important flow of information between scheduling and control; more specifically the 

optimized schedule provides the reference points to the control level while resource  

availability is in turn provided to the scheduling level. Most studies until the early 2000s, 

approach production scheduling as a standalone problem. However, the scientific 

community acknowledged the importance of integrating the decision-making process of 

the various functions (planning, scheduling and control) that comprise the 

manufacturing supply chain of a process industry (Grossmann 2005). The integrated 

planning and scheduling problem has been studied in multiple works over the last 

decades (Li and Ierapetritou 2010; Kopanos, Puigjaner, and Maravelias 2011) and also 

implemented in industrial case studies with great success (Baldo et al. 2014; Sel et al. 

2015; Georgiadis, Elekidis, and Georgiadis 2021). In contrast the integrated scheduling 

and control and integrated planning, scheduling and control problems have been only 

recently examined (Du et al. 2015; Charitopoulos, Dua, and Papageorgiou 2017). 

The demand volume and variability defined by the market environment in which 

an enterprise operates plays a pivotal role, since it specifies the type of the scheduling 

problem to be solved. On the one hand, high-volume production with relative constant 

demand based on forecasting favors a “make-to-stock” production policy, while the low-

volume production with irregular demand follows a “make-to-order” policy. In the 

former the generated schedule is repeated periodically (“cyclic scheduling”), while in the 

latter a short-term schedule must be frequently generated. Finally, the objective of the 

production scheduling problem is usually imposed by the relation between the capacity 

of the plant and the demand to be satisfied. More specifically, when the demand 

overcomes the capacity of the plant, then objectives such as, the minimization of backlogs 

or the maximization of throughput are chosen. On the contrary, if the capacity is enough 

to satisfy the demand, the production goal is the minimization of total cost. 

1.2.1.3 Processing characteristics and constraints 

Scheduling problems may refer to facilities that exhibit various special processing 

characteristics and constraints. These aspects complicate the problem but must be 

considered, in order to ensure the feasibility of the generated production schedules.  In 
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the next section we will shortly review some of them. Further details can be found in 

(Méndez et al. 2006). 

Resource considerations, aside from task-unit assignments and task-task 

sequences, are of great importance. These may involve auxiliary units (e.g., storage 

vessels), utilities (e.g., steam and water) and manpower. Resources are mainly classified 

into renewable (recover their capacity after being used in a task, e.g., labor) and non-

renewable (their capacity is not recovered after being consumed by a task, e.g., raw 

materials). Renewable resources can be further classified into discrete (e.g., manpower) 

and continuous (e.g., electricity, cooling water). Another important characteristic in 

process industries is the handling of storage, which is usually referred to as the storage 

policy. Depending on the duration a material can be stored, the storage policies are 

described as i) Unlimited Intermediate Storage (UIS), ii) Non-Intermediate Storage (NIS), 

(iii) Finite Intermediate Storage (FIS) and (iv) Zero Wait (ZW). Setups are a critical factor 

in most processing facilities as they represent operations like re-tooling of equipment, 

cleaning, or transitions between steady states. They are associated with a specific 

downtime that can be sequence-independent or sequence-dependent (changeovers) 

inducing an additional cost to the production process. To reduce the complexity 

associated with the consideration of setups, products are categorized into families. In that 

case setups exist only between products of different families. 

This classification illustrates the complexity of scheduling problems and the 

tremendous diversity of aspects that must be accounted for when dealing with real 

industrial applications (Figure 1.4). The inherent diversification of scheduling problems 

in the process industries hindered the initial efforts of the academic community to 

propose a unified general mathematical framework. Therefore, research turned into the 

development of less general methods which can address industrial cases that share 

similar characteristics. As a result, a multitude of efficient specialized methods for the 

optimization of scheduling in the process industries have been proposed in the last 30 

years. 
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Figure 1.4: Information extracted from problem characteristics 

1.2.2 Classification of modelling approaches 

As mentioned in the previous subsection, scheduling problems in the process 

industries are defined by extremely diverse features (e.g., production environment, 

processing characteristics etc.), while different aspects need to be taken into account 

based on external parameters, like the market environment in which the industry under 

study operates. Therefore, the initial attempts of proposing a mathematical framework 

that would constitute a panacea to all scheduling problems, were unsuccessful and soon 

solutions that take advantage of the problem-specific characteristics emerged. The 

struggle to overcome the computational complexity associated with scheduling 

problems, gave rise to numerous scheduling models. It should be noted that in this thesis 

we focus on optimization-based approaches, more specifically, the models presented are 

mixed-integer programming (MIP) models. Nevertheless, we should mention that an 

abundance of alternative solution approaches, e.g. constraint programming models  ( 

Zeballos, Novas, and Henning 2011; Malapert, Guéret, and Rousseau 2012), heuristics 

(Bassett, Pekny, and Reklaitis 1996) and metaheuristics (Panek et al. 2008), exist in the 

literature. These methods can provide fast and feasible solutions, thus being a very 

attractive solution for industrial case studies. However, their superiority in terms of 

computational time comes with a cost since optimality of the generated schedules is not 

ensured. To combine the advantages of both optimization and non-optimization 

approaches, hybrid methods have emerged that are able to provide near-optimal 

solutions in low computational time (Kopanos, Méndez, and Puigjaner 2010). 
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The three main aspects that describe all optimization models for scheduling are: 

(i) the optimization decisions to be made, (ii) the modelling elements and (iii) the 

representation of time. 

1.2.2.1 Optimization decisions 

The optimization decisions are affected by the handling of batches/lots. As we 

underlined in subsection 1.2.1.2, batching decisions may be optimized in the planning 

level, thus be prefixed and be an input to the scheduling problem. Even if this is not the 

case, the scheduler has the flexibility to decide whether the batching decisions will be 

part of the optimization model. For example, the decision-maker can heuristically specify 

the number and size of batches and then utilize an optimization approach for the unit 

allocation, sequencing, and timing decisions. Usually models for sequential environments 

favor this two-step approach. In contrast, a monolithic approach, consisting of 

batching/lot-sizing, unit assignment, sequencing, and timing decisions, is used for 

network environments. Few recent works have proposed a monolithic approach to deal 

with scheduling problems in sequential environments (Prasad and Maravelias 2008; 

Sundaramoorthy and Maravelias 2008; Lee and Maravelias 2017b). In some special cases, 

like in the single machine problems, only sequencing and timing decisions are optimized, 

thus reducing the scheduling problem to a traditional Travelling Salesman Problem 

(TSP).  

1.2.2.2 Modelling elements 

According to the entity used to enforce the resource constraints on processing 

units, modelling approaches are classified into i) batch-based and ii) material-based. In 

sequential environments, where the identity of each batch remains the same throughout 

the processing stages, batch-based approaches are used. On the contrary a material-

based approach is favoured, when dealing with network environments, where batches 

are mixed or split. It is important to mention that the modelling elements used are tied to 

the optimization decisions. More specifically, in monolithic approaches the scheduling 

problems are modelled using a material-based approach, while a batch-based approach 

is followed, whenever the batching decisions are known a priori.  
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The modelling elements are strongly tied with the representation of the 

manufacturing process, which is the core of every scheduling model. Goal of a successful 

representation is to translate the real problem (orders, units, stages) into mathematical 

entities (variables, constraints) in an abstract way, that will allow for the fast generation 

of optimal and feasible schedules. Even a simple manufacturing process may consi st of 

multiple operations, therefore the use of a simplified representation is essential. The 

oldest type of manufacturing process representation is used to model scheduling 

problems of sequential production environment and is based on (i) processing stages, (ii) 

processing units in each stage and (iii) batches or products (depending on whether 

batching decisions are prefixed or not). The second type of representation emerged in the 

early 90s from the novel works of Kondili et al. (1993) and Pantelides (1994), who 

introduced the STN and RTN, both based on the modelling of materials, tasks, units and 

utilities. The STN represents manufacturing processes as a collection of material states 

(feeds, intermediate final products) that are consumed or produced by tasks. The main 

difference between STN and RTN is that in the latter states, units and utilities are 

represented uniformly as resources that are produced and consumed by tasks. While 

originally introduced for scheduling problems in network environments, recent works 

have addressed problems in sequential environments using the RTN representation 

(Castro, Grossmann, and Novais 2006; Velez and Maravelias 2013). 

1.2.2.3 Time representations 

The most studied topic and the one that mostly differentiates optimization models 

for scheduling is the representation of time. Depending on the way sequencing and timing 

of tasks are considered, modelling approaches are categorized in two broad approaches, 

in particular precedence-based and time-grid-based. Based on their type, precedence-

based models are classified into general, immediate, and unit-specific general precedence 

models and time-grid-based into discrete and continuous. Continuous-time formulation 

may employ single or multiple-time grids. Figure 1.5 illustrates the various time 

representation approaches in optimization models for scheduling. 

All precedence-based models consist of unit-task allocation and task-task 

sequencing constraints (Pinto and Grossmann 1998). The latter are expressed as 

precedence relationships between tasks processed in the same unit, while the former 
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ensure that each batch/lot is processed by exactly one unit in each stage. Binary 

sequencing variables are introduced to enforce the precedence relationships and ensure 

the generation of a feasible schedule (no processing of multiple tasks simultaneously in 

the same unit). Another main characteristic of any precedence model is that the timing 

variables are not mapped onto an external time reference, rather their exact values are 

specified within the scheduling horizon based on the interactions (timing constraints) 

between pairs of batches/lots or between processing stages of the same batch. Two types 

of precedence variables exist: (i) general, where precedence relationships are established 

between all pairs of batches/lots and (ii) immediate, where they are established only 

between consecutive pairs. General precedence models require fewer variables, so they 

are more computationally efficient. However, these models do not identify subsequent 

tasks, making it difficult to consider changeover costs and heuristics, such as pre-fixing 

or forbidding certain processing sequences. To overcome this limitation Kopanos et al. 

(2010) proposed the unit-specific general precedence approach that combines both 

general and immediate sequencing variables. In all cases precedence-based models can 

provide high quality solutions with low computational cost, thus being an attractive 

alternative when dealing with real-life industrial problems. One of the main 

disadvantages of this approach is the quadratic increase of the size of the model with the 

number of batches/products considered. The use of information such as product families 

or pre-fixing of sequences mitigates this phenomenon and vastly improves the efficiency 

of the models (Kopanos, Puigjaner, and Georgiadis 2010). 

Time-grid-based models enforce timing and sequencing constraints through the 

utilization of a single or multiple time grids, onto which events (e.g., starting or 

completion of task) are mapped. A great variety of time-grid-based approaches exist 

depending on the representation of events (time slots, global periods, time points or 

events), which are classified into discrete and continuous. In discrete-time models the 

time-grid is portioned into a pre-fixed number of global time periods of a known duration, 

both of which need to be specified by the modeler. Most discrete formulations use a 

common time frame for all shared resources. However, Velez and Maravelias (2013) 

proposed a discrete model that employs multiple time frames. One of the main challenges 

when setting up discrete models is the proper selection of the number of time periods 

that needs to be employed. A fine grid results to solutions of higher quality but in cost of 

larger less computationally efficient models. An advantage of discrete-time models is 
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their capability of monitoring inventory and backlog levels, material balances, as well as 

the availability and consumption of utilities without introducing nonlinearities. 

Moreover, time-dependent utility-pricing, holding and backlog costs can be linearly 

modelled, while integration with higher planning levels is straightforward (Maravelias 

and Sung 2009). Additionally, discrete-time formulations are superior to their continuous 

counterparts in terms of solution quality (Sundaramoorthy and Maravelias 2011). 

Nevertheless, discrete formulations result to very large, however tight, models, especially 

when small discretization of time is mandatory. In continuous models, the horizon is 

subdivided into a fixed number of periods of variable length, which is defined as part of 

the optimization procedure. Both single, common, and multiple, unit-specific time frames 

have been successfully employed to continuous-time models. Continuous formulations 

can alleviate some of the computational issues associated with discrete-time models, 

since fewer time periods, thus variables, are required for the representation of the same 

scheduling problem. However, they are not necessarily more computationally efficient 

compared to their discrete counterparts. Finally, it should be mentioned, that few models 

that utilize multiple ways of representing time have been proposed, thus combining both 

the advantages of discrete- and continuous- time formulations (Kopanos, Puigjaner, and 

Maravelias 2011; Lee and Maravelias 2018, 2020). 

1.2.3 Alternative MILP models for process scheduling 

We already illustrated a classification of the various scheduling problems as well 

as the main modelling approaches that have been suggested in the last 30 years. A 

scheduling model is determined by both externally specified (problem class) and user 

selected (modelling approach) factors. On the one hand, the model should be suitable for 

the examined problem environment and the processing specifics of the facility under 

study, and on the other it should be developed in terms of the chosen modelling 

approach’s characteristics. A given problem can be represented in multiple ways, 

however there is a significant relationship between these two aspects. In this subsection 

we will demonstrate the basic aspects of the mathematical models that have been 

proposed by the scientific community. More specifically, we present an overview of the 

models based on the problems they are used for. Further details on the different 

mathematical models for production scheduling can be found in the excellent review of    

Mendez et al. (2006).
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Figure 1.5: Categorization of modelling approaches based on time representation 
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1.2.3.1 Models for network production environments 

In network environments batches do not maintain their identity, since mixing and 

splitting of batches is allowed. Therefore, the problem is presented utilizing either the 

STN or the RTN process representation (batch-based approaches). Moreover, the 

complexity of the production arrangement, with tasks consuming or producing multiple 

materials and materials being processed in different tasks and units, requires the proper 

monitoring of material balances, status of units and utility and inventory levels. This 

necessitates the utilization of a time-grid based approach. 

A plethora of modelling formulation emerged after the introduction of the discrete 

STN and RTN models. Reklaitis and Mockus (1995) were the first to propose a 

continuous-time formulation based on the STN formulation, exploiting its generality. A 

common resource grid is used, with the timing of the grid points (“event orders” in their 

terminology) determined by the optimization. The model is an MINLP, which may be 

simplified to a mixed integer bilinear problem by linearizing terms involving binary 

variables, which is solved using an outer-approximation algorithm. Zhang and Sargent 

(1994, 1996) presented a continuous time formulation based on the RTN representation 

for both batch and continuous operations, with the possibility of batch size-dependent 

processing times for batch operations. Again, the interval durations are determined as 

part of the optimization. An MINLP model ensues; this is solved using a local linearization 

procedure combined with what is effectively a column generation algorithm. 

One of the major drawbacks of the first models developed according to the 

continuous STN and RTN mathematical frameworks was the large integrality gap. This 

deficiency was addressed by Schilling and Pantelides (1996). They modified the 

formulation of Zhang and Sargent (1996), simplifying it and improving its general 

solution characteristics, while they developed a hybrid branch-and-bound solution 

procedure which branches in the space of the interval durations as well as in the space of 

the integer variables. 

Castro, Barbosa-Póvoa, and Matos (2001) proposed a relaxation of Schilling 

(1997), allowing tasks to last longer than the actual processing time. Consequently, their 

model is less degenerate, and less CPU time is required. Some of the co-authors further 

improved this formulation, allowing the optimization of continuous processes (Castro et 

al. 2004). A novel common-grid STN-continuous formulation was introduced by 
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Giannelos and Georgiadis (2002). They utilized a non-uniform time grid, that eliminates 

any unnecessary time events, thus leading to small MILP models. Maravelias and 

Grossmann (2003) suggested a general continuous STN-model that accounts for various 

processing characteristics such as, different storage policies, shared storage, changeover 

times and variable batch sizes. The model of Sundaramoorthy and Karimi (2005) is 

another well-known continuous MILP model that introduced the idea of several balances 

(resource, time, masses etc.). 

The concept of multiple unit-specific time grids was first proposed by Ierapetritou 

and Floudas (1998). This approach decouples the task events from the unit events, thus 

less slots are required. As a result, smaller MILP models are generated, leading to a 

significant decrease in computational effort. Multiple works have been proposed ever 

since, improving the computational characteristics and expanding the scope of the initial 

formulation (Vin and Ierapetritou 2000; Janak, S.L., Lin, X., Floudas 2004; Shaik and 

Floudas 2009). 

Velez and Maravelias (2013) were the first to introduce the concept of multiple, 

non-uniform discrete time grids. The multiple grids can be unit-, task- and material-

specific. The same authors extended this work with the consideration of general 

resources and characteristics like changeovers and intermediate storages (Velez and 

Maravelias 2015). It should be noted that while these formulations were initially 

proposed for network facilities, they can be also used for the scheduling of sequential 

environments. 

1.2.3.2 Models for sequential production environments 

Scheduling problems of sequential environments do not share the same 

complexity, in terms of problem representation, with the ones encountered in network 

environments. Therefore, both precedence-based and time-grid based approaches can be 

employed to address them. Each of these approaches display specific advantages and 

drawbacks. On the one hand precedence-based models generate smaller, more intuitive 

models that provide high quality solutions, on the other hand time-grid based models are 

usually tighter and computationally superior. As a result, a great variety of models have 

been proposed to address sequential production environments. 
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One of the most impactful time-grid based models was suggested by Pinto and 

Grossmann (1995). They described an MILP model for the minimization of earliness of 

orders for a multiproduct plant with multiple equipment items at each stage. The 

interesting feature of the model is the representation of time, where two types of 

individual time grids are used: one for units and one for orders. Castro and Grossmann 

(2005) proposed a non-uniform time grid representation for the scheduling problem of 

multistage multiproduct plants. They tested their formulation for various objectives e.g., 

minimization of makespan, total cost and total earliness and compared it with other 

known formulations, concluding that a model’s efficiency highly depends on the objective 

and the problem characteristics. The same authors extended their work with the 

consideration of sequence-dependent setup times (Castro et al. 2006). 

Unlike to most of the other contributions, which propose continuous-time models, 

the work of Maravelias and co-workers thoroughly investigated the employment of 

discrete-time models in sequential environments. Sundaramoorthy, Maravelias, and 

Prasad (2009) suggested a discrete time model to incorporate utility constraints for the 

scheduling problem of multistage batch processes. Merchan, Lee, and Maravelias (2016) 

developed four novel formulations, two of them based on the STN and RTN 

representation and two more inspired by the Resource-Constrained Project Scheduling 

Problem (RCPSP). Moreover, the authors introduced tightening constraints and 

reformulations that allowed for significant computational enhancements. Recently, Lee 

and Maravelias (2017a) presented two new MIP models for scheduling in multipurpose 

environments using network representations. Interestingly, states and tasks were 

defined based on batches instead of materials, making possible the consideration of 

material handling constraints in sequential production environments. The authors 

displayed the potential of the proposed models by incorporating important process 

features, such as time-varying data and limited shared resources, and by solving medium-

size problem instances to optimality. 

The concept of precedence has been extensively studied by the Process Systems 

Engineering (PSE) community (Gupta and Karimi 2003; Kopanos, Laı, and Puigjaner 

2009). Numerous unit-specific immediate (Cerda, Henning, and Grossmann 1997), 

immediate (Méndez, Henning, and Cerdá 2000) and general precedence models ( 

Méndez, Henning, and Cerdá 2001; Mendez and Cerdá 2004) have been proposed for 

scheduling problems in sequential environments. In initial studies the batches to be 
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scheduled was a problem data, however later contributions suggested models for the 

simultaneous batching and scheduling problem (Castro, Erdirik-Dogan, and Grossmann 

2008). 

1.2.4 Real-life Industrial Applications 

As described in the previous section, a plethora of different mathematical models 

has been proposed to tackle the production scheduling problem. Except from solving 

literature problem examples, several researchers expressed a high interest for handling 

real-life industrial case studies. Numerous modelling approaches and methods can be 

found in the open literature, addressing a great variety of industrial process scheduling 

problems. We will present a literature review of contributions considering a variety of 

industrial sectors, e.g., chemical, pharmaceutical, petrochemical, steel, and consumer 

goods industries, and then we will focus on works studying the optimal scheduling 

problem of food industries. Notice that the presented literature review is limited on 

MILP-based approaches for the offline scheduling problem, excluding other solution 

methods (e.g., heuristic rules, metaheuristic algorithms etc.). 

One of the main industrial sectors widely studied, considers chemical plants, 

where a variety of new products is produced via the chemical transformation of multiple 

raw materials. Floudas and Lin (2004) proposed a continuous time, event-based MILP 

scheduling model and a decomposition methodology, to solve large-scale industrial cases 

of multiproduct batch plants. Janak et al. (2006) extended the previous approach, by 

adapting intermediate due dates and other technical constraints. Westerlund et al. (2007) 

introduced a mixed discrete-continuous time formulation to tackle short-term and 

periodic scheduling problems of multi-product plants, including intermediate storage 

constraints, while in Velez, Merchan, and Maravelias (2015), a strategic planning tool was 

developed based on the proposed model and applied to an industrial plant, importing 

demand data from the plant’s Enterprise Resource Planning (ERP) system. The 

introduced methods have been applied to a real case study from the Dow company (Nie 

et al. 2014). 

A special subsector of the chemical plants is the pharmaceutical industry. Castro, 

Harjunkoski, and Grossmann (2009) presented a decomposition-based algorithm for 

tackling the high complexity of large-scale problems of multiproduct facilities. A case 
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study comprising of 50 production orders, 17 units and six stages is efficiently solved in 

less than one minute. The same pharmaceutical study case has been also considered by 

Kopanos et al. (2010). They proposed a decomposition-based solution strategy relying on 

two precedence-based MILP models in order to optimize different objectives, such as 

makespan, changeover-time and cost minimization. Stefansson et al. (2011) studied a 

large-scale industrial case study from a pharmaceutical company, including up to 73 

products and 35 product families. Moniz et al. (2014) motivated by a real-world 

scheduling problem of a chemical-pharmaceutical industry, developed a case-specific 

discrete-time MILP scheduling model for batch plants. A representative industrial case 

including four products, nine shared processing units and 40 tasks, has been studied.  

A special interest is expressed for the scheduling problem of oil refineries or 

petroleum industries. Zhang and Hua (2007) deployed a plant-wide multi-period 

planning model, aiming to the integration of the plant processes and the utility system, in 

order to reduce the energy consumption. The applicability of the approach is illustrated 

in a real study case that considers a refinery industry, located in South China. Shah, Sahay, 

and Ierapetritou (2015) motivated by a study case provided by Honeywell Process 

Solutions (HPS), considered an MILP based heuristic algorithm. The initial oil refinery 

problem is spatially decomposed into two subproblems, one considering the production 

and blending and the other the delivery of the finished products.  

One of the main consumer goods group is the Fast Moving Consumer Goods 

(FMCG), which are characterized by frequent purchases, rapid consumption and low 

prices. 10 large-sized instances provided by The Procter & Gamble Company that 

consisted of up to 1391 operations have been solved within reasonable CPU times by 

Honkomp et al. (2000). Giannelos and Georgiadis (2003) developed an MILP model to 

address the scheduling problem in fast consumer goods manufacturing processes.  The 

STN-based formulation was tested on a medium-sized industrial consumer goods 

manufacturing process, considering cases with up to 35 final products and five packing 

lines. Georgiadis et al. (2005) presented two different scheduling approaches, based on 

the RTN and the STN representations, respectively. A significant decrease in the 

operational cost was reported in a variety of problem instances provided by a large 

manufacturing company located in Greece. Elzakker et al. (2012) presented an algorithm 

based on a unit-specific, continuous time interval MILP model and ten industrial case 

studies are considered, as provided by Unilever. Optimal schedules have been generated 
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for problem instances of up to 73 batches of eight products allocated to six storage tanks 

and two packing lines within three minutes. Baumann and Trautmann (2014) proposed 

a hybrid method for large-scale, short-term scheduling problems that comprises of an 

MILP model and a heuristic algorithm. Elekidis, Corominas, and Georgiadis (2019) 

developed an immediate-general precedence-based model that focuses mainly on the 

packing stage. Various real-life case studies have been considered that include up to six 

packing lines and 130 final products.  

Another important field of interest is the steel-making process industry. Various 

challenges arise, due to the large variety of final products, the complex process that take 

place and the volatile electricity prices. Biondi, Saliba, and Harjunkoski (2011) studied 

the scheduling problem of a hot rolling mill in a steel plant. Strict production constraints 

related to metallurgic production are taken into account. Li et al. (2012) considered the 

scheduling problem of steel making industries, focusing mainly on the steelmaking 

continuous casting process. A novel unit-specific event-based continuous-time MILP 

model is proposed, relied on material continuity and other technological requirements 

constraints in order to ensure the generation of feasible schedules. Yang et al. (2015) 

proposed an MILP mathematical formulation that optimizes the byproduct gas systems 

in steel plants. A representative case study from a steel plant in China has been 

considered and a significant reduction in the operation cost was noticed. Hadera et al. 

(2015) proposed a new general precedence MILP scheduling model adapting energy 

awareness. Wang et al. (2016) investigated the bi-objective single machine batch 

scheduling problem o f a real-world scheduling problem in a glass company located in 

Shanghai, China. An exact ε-constraint method is adapted to the MILP model in order to 

minimize the makespan and the total energy costs. Gajic et al. (2017) studied the 

integrated scheduling and electricity optimization problem of a hot rolling mill, taking 

also into account electricity costs and prices. An approach that combines MILP models 

and intelligent heuristics has been successfully implemented in the melt shop at Acciai 

Speciali Terni S.p.A. 

A special interest has been expressed for the problem of trim loss minimization, 

mainly in the paper industry. Westerlund, Isaksson, and Harjunkoski (1998) studied the 

trim-loss problem of a Finnish paper-converting mill, resulting to waste savings of 2% of 

the turnover. Roslöf et al. (2000) developed various sophisticated heuristics that can be 

utilized in large scale industrial problems to provide feasible suboptimal solutions in 
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reasonable computational times.  The real-life case studies provided by a Finnish paper 

mill included 61 scheduling jobs and a single processing unit. Giannelos and Georgiadis 

(2001) proposed a slot-based MILP scheduling model, which relied on a continuous time 

representation, to examine an industrial case study, provided by a paper mill company 

(Macedonian Paper Mills, S.A., Greece). Castro, Barbosa-Póvoa, and Matos (2003) 

proposed an MILP and an MINLP mathematical model, which were based on a continuous 

and a discrete time RTN representation and were applied to an industrial case study from 

a pulp mill plant located in Portugal. 

1.2.4.1 Applications on Food industries  

The scientific community has also shown significant interest for the scheduling of 

food industries. Common characteristics of food processing industrial facilities, such as 

intermediate due dates, shelf-life considerations and multiple mixed batch and 

continuous processing stages, substantially complicate the optimization of scheduling 

decisions. The above combined with market trends that enforce the gradual increase of 

the product portfolio, the demand profile (high variability-low volumes), and the multiple 

identical machines and shared resources, make the consideration of real-life industrial 

cases extremely challenging. 

As the food industry focuses mainly on the production of perishable final products 

a make-to-stock production policy is not efficient, since the generation of high inventory 

levels should be avoided. A plethora of industrial case studies have been considered from 

various subsectors of the food industry. An immediate precedence-based MILP 

formulation for the packing stage of a brewery company was developed using a mixed 

discrete-continuous time representation in Kopanos, Puigjaner, and Maravelias (2011). 

The scheduling decisions are defined in a continuous manner, while material balances 

are expressed at each discrete time period to ensure the generation of feasible schedules. 

The idea of grouping the products into product families leads to significant reduction of 

the computational cost. Changeover times among sequential time periods are also taken 

into account. The industrial study case under consideration consists of eight processing 

units and 162 products grouped into 22 product families are produced. The generated 

solutions are better than the ones extracted by commercial tools. Baldo et al. (2014), 

motivated by a real study case from a Portuguese brewery, proposed a novel MILP-based 
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relax and a fix heuristic algorithm, for the integrated fermentation and packing problem. 

The time horizon is discretized in two subperiods. The first subperiod is scheduled in 

detail, as for the second subperiod only the main planning decisions, such as the 

inventory levels, are optimized. Small and big sized problem instances have been 

considered, with five filling lines and up to 40 products. Although a direct comparison 

with the company plan was not possible, good quality schedules were generated. 

Recently, Georgiadis et al. (2021) proposed an optimization-based solution strategy for 

the optimal production planning and scheduling of breweries. Their approach generated 

superior solutions compared to Baldo et al. (2014) and was successfully tested on a real-

life case provided by a large Greek brewery. Koulouris, Misailidis, and Petrides (2021) 

discussed the concept of digital twin models and their application in the production 

scheduling problem of food industries. With the help of a large-scale brewery case study, 

the authors underlined the potential benefits from implementing a digital modeling 

approach. Simpson and Abakarov (2009) investigated the scheduling problem of food 

canneries focusing on the sterilization stage, allowing the possibility of the simultaneous 

sterilization of different products in the same retort. A graphic user interface, able to 

identify the nondominated simultaneous sterilization vectors, is connected to the 

proposed MILP model. Different cases are solved depicting a reduction of up to 25% in 

total plant operation time. Georgiadis et al. (2020) studied the scheduling problem of a 

large-scale canned fish Spanish industry. An MILP based decomposition algorithm is 

utilized to tackle the high computational cost, as the products are inserted in an iterative 

way until the final schedule is generated. Nearly optimal schedules of a large-scale 

problem instance, with 126 final products, have been generated in just 15 minutes. A 

study case of a real-world edible-oil deodorized industry is studied by Liu, Pinto, and 

Papageorgiou (2010). The plant is described as a single-stage multiproduct batch 

process. The final products are grouped into product families having the same due date. 

The proposed approaches rely on mixed discrete and continuous MILP mathematical 

formulations and classic TSP constraints. A real study case of 128 hours’ time horizon of 

interest was studied. 70 orders of 30 different final products of seven groups of different 

release time have been scheduled. The new formulations are shown to be more efficient 

than previously proposed methods found in the literature. Polon et al. (2018) studied a 

sausage production industry aiming to the profit maximization by solving an MILP 

scheduling model for batch processes. The packing stage, which often constitutes the 
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main production bottleneck has not been considered. The plant operates in a single 

campaign mode and eight products are produced in total. 

A special subsector of food industries is dairy manufacturing. Numerous products 

are produced, such as yoghurt, cheese and butter and distributed to customers 

worldwide. Touil, Echchatbi, and Charkaoui (2016) deployed an MILP model for a small 

multiproduct milk industry, located in Morocco, aiming at the minimization of makespan. 

The stages of homogenization, pasteurization and packing are scheduled for four final 

products, seven packing lines, two pasteurization units and one homogenizer. The 

production scheduling problem of an ice cream facility has been tackled by Kopanos, 

Puigjaner, and Georgiadis (2012). A real-life study case of eight final ice cream products, 

two packing lines and six aging vessels is addressed. The simultaneous optimization of all 

processing stages is achieved, and 50 problem instances are optimally solved. An MILP-

based decomposition strategy is proposed to handle scheduling problems of large-scale 

food process industries. High quality solutions were generated for larger cases of up to 

24 final products utilizing the proposed decomposition technique. Doganis and Sarimveis 

(2007) solved the scheduling problem of a single yoghurt production line taking into 

account inventory, manpower and capacity restrictions. The model was tested using data 

from a yoghurt production line of a Greek dairy industry, where 18 products are 

produced. A novel mixed discrete-continuous MILP formulation is deployed by Kopanos, 

Puigjaner, and Georgiadis (2011) for the scheduling problem of a Greek yoghurt 

production facility. The idea of product families is adapted similarly to the other 

aforementioned works from the same authors. The packing stage is scheduled in detail, 

but mass balance constraints related to the production stage are also adapted, using a 

discrete time representation. 93 final products (grouped into 23 product families) are 

allocated in four packing lines. Novel resource constraints can adapt realistic limitations 

to various types of resources (e.g., manpower) and ensure the generation of feasible 

solutions. Based on a similar approach, the scheduling problem of another large scale 

Greek dairy industry has been studied (Georgiadis et al. 2019). A rolling horizon 

technique is embedded to reactively adjust the schedule in case of disturbances, like the 

cancellation or modification of orders, the sudden arrival of new orders or any 

digressions from the planned production. 158 final products (grouped into 44 product 

families) are allocated to six parallel packing lines, while the time horizon of interest is 

five days. A total cost decrease of 20% is achieved in comparison with the schedules 
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generated by the company. An integrated software tool with a user-friendly graphical 

interface has been developed to connect the proposed MILP model to the input data, 

located in excel files (parameter values such as changeover times etc.) and the ERP 

system (providing the demand values). As a result, optimal solutions can be generated 

automatically in less than 10 minutes. The integrated planning and scheduling problem 

of a small size Balkan type semi-continuous yoghurt facility, with 8 final product types, 

produced by three intermediates has been investigated by Sel, Bilgen, and Bloemhof-

Ruwaard (2017). The evaluation of the proposed MILP approach has been utilized via a 

simulation model. 32 different scenarios were considered and a significant decrease in 

the total waste and makespan is achieved. 

1.3 Supply chain optimization 

Modern markets are characterized by increased competitiveness, while the 

current entrepreneurial environment is inherently dynamic, highly complex and 

uncertain. Therefore, the viability and later growth of companies requires their constant 

effort of developing a competitive advantage (Shadid 2018). To achieve that, a company 

should efficiently manage its whole supply chain, consisting of all entities, e.g., suppliers, 

manufacturing plants, warehouses, and customers, needed for the fulfilment of the 

requested demands. These entities are interconnected by material, information, and 

financial flows, which are represented by the known Supply Chain Network (SCN). 

Coordinating all necessary activities required to transform the raw materials into final 

products which are then delivered to the customers is called Supply Chain Management 

(SCM) (Stadtler et al. 2015). Enhancing these operations through the incorporation of 

optimization-based techniques is known as Supply Chain Optimization (SCO). The 

decisions related to SCM can be categorized into strategic, tactical, and operational based 

on the considered horizon. Strategic decisions are related to the long-term planning of 

the supply chain, i.e., the installation of new distribution centres. Medium-term planning 

decisions, such as, determining the inventory levels of a warehouse are tactical and lastly, 

the short-term decisions, like daily distribution of products, are included in the 

operational level. Recently, the scientific community has shown an increasing interest in 

the integration of the various decision levels, since it leads to a significant increase in the 

overall efficiency of the supply chain (Aguirre, Liu, and Papageorgiou 2018). 
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Acknowledging the positive effect optimal planning has on the efficiency of supply chains, 

the scientific community has extensively researched the topic, proposing a plethora of 

mathematical programming models (Mula et al. 2010). Liu and Papageorgiou (2013) 

defined the problem of integrated production, distribution, and capacity planning of 

global supply chains in terms of an MILP model. Multiple objectives (cost, flow time and 

lost sales) were investigated employing a lexicographic minimax and an ε-constraint 

approach. Ramos, Gomes, and Barbosa-Póvoa (2014) proposed a mathematical 

formulation and solution approach to support tactical and operational decisions in supply 

chains with reverse flows considering economic, environmental, and social objectives.  

1.3.1 Healthcare supply chains 

The healthcare supply chain considers the flow of medical products and services, 

in particular, pharmaceuticals, surgical or hygiene consumables, medical devises and 

vaccines, between several locations, such as, drug manufacturing plants, hospitals, clinics 

and patients (Imran, Kang, and Ramzan 2018). Information flow may involve, i) orders 

and processing data, ii) information on inventory levels, iii) pricing data and iv) the 

patient’s medical information. Common financial flows are i) credit terms, ii) payment 

schedules and iii) consignment agreements. 

Most contributions on healthcare supply chains consider problems of the 

pharmaceutical industry. This industry necessitates a complex set of processes involved 

in the discovery, development, and manufacturing of drugs. The supply chain of the 

pharmaceutical industry is like any other industry in the manufacturing phase. Despite 

the rich literature on SCO, only a small fraction of these studies addresses cases of the 

pharmaceutical sector. In one of the first significant contributions Papageorgiou, 

Rotstein, and Shah (2001) developed an MILP model in order to facilitate the strategic 

decision-making process for pharmaceutical industries. The suggested optimization 

approach is able to simultaneously select product development, introduction strategy, 

long-term capacity planning as well as investment strategy at multiple sites.  Gatica, 

Papageorgiou, and Shah (2003) extended the previous work with the incorporation of 

uncertainty of clinical trials. Key issues regarding the long lead times of pharmaceutical 

products and the difficulties in balancing future capacity with anticipated demands 

considering the clinical trials uncertainty are underlined by Shah (2004). A generic 
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approach for planning and scheduling of supply chains with reverse flows is presented 

by Amaro and Barbosa-Póvoa (2008) and applied in a case study inspired by the 

pharmaceutical sector. Masoumi, Yu, and Nagurney (2012) consider the perishability of 

vaccines and the fact that they need to be refrigerated.  The authors constructed an 

oligopoly model, that incorporates multiple firms competing in different markets, using 

variational inequality theory. Liu, Xie, and Garaix (2014) developed a tabu search 

metaheuristic that incorporates feasible and infeasible intra-route local search schemes 

to tackle a periodic vehicle routing problem for home healthcare logistics. Reverse flows 

in the pharmaceutical supply chain are investigated by Weraikat, Zanjani, and Lehoux 

(2016). More specifically, a decentralized negotiation process is proposed for the 

coordination needed to collect any unwanted medications at the customer zones. The 

integrated sustainable-resilient pharmaceutical supply chain under uncertainty was 

investigated by Zahiri, Zhuang, and Mohammadi (2017). The authors incorporated an 

MILP model with a possibilistic-stochastic programming approach to address 

uncertainty issues. Perishability issues were included in the optimization design problem 

of a pharmaceutical supply chain network in the work of Savadkoohi, Mousazadeh, and 

Torabi (2018). Jankauskas, Papageorgiou, and Farid (2019) solved the integrated 

capacity planning and scheduling problem of a biopharmaceutical industry. They 

proposed a genetic algorithm, whose hyperparameters are fine-tuned by a post-

optimization procedure, based on the particle swarm optimization approach. The vehicle 

routing problem for the delivery of pharmaceutical products to healthcare facilities is 

addressed by Kramer, Cordeau, and Iori (2019). A multi-start iterated local search 

algorithm is employed to handle both realistic and artificial case studies. Recently, Sarkis 

et al. (2021) discussed the challenges and opportunities that emerge from the rise of 

personalised and complex drug production in both manufacturing and distribution. 

Few recent contributions focused on supply chains of CAR T-cell therapies. These 

therapies require a complex and precise biomanufacturing process, which necessitates 

specialized staff, facilities, and equipment. The CAR T-cell SCN is highly complex, since 

blood must be first collected from the patient in a specialized treatment facility, which is 

then transferred to a manufacturing plant where the therapy is produced. Finally the 

patient must revisit the treatment facility so that the cell therapy is administered. Wang 

et al. (2018) proposed a multi-objective stochastic programming model for the optimal 

design of the CAR T-cell SCN and underlined the benefits achieved by the optimization 
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process. A review of the challenges associated with the CAR T-cell supply chains is 

presented by Papathanasiou et al. (2020). Recently, Karakostas et al. (2020) presented a 

novel modelling framework and an efficient solution approach to optimize the CAR T-cell 

supply chain. The authors proposed a patient-centric network structure, where the 

administration of CAR T-cell therapies is performed in local treatment facilities located 

close to patients’ sites. They developed a General Variable Neighbourhood Search (VNS) 

algorithm, which was able to tackle realistically sized problems. 

1.3.2 Vaccine supply chain 

Immunization is one of the most successful and cost-effective public health 

interventions. Production, quality control and marketing authorization of vaccines is 

extremely complex due to three main reasons. Firstly, medical science advances resulted 

to highly sophisticated and effective vaccines that led to more complex manufacturing 

and testing procedures. Therefore, top quality facilities that can consistently produce 

quality vaccines are needed. Secondly, vaccine production utilizes globalized 

manufacturing chains to increase production capacity, Thirdly, strict regulatory 

requirements are imposed, to ensure public safety. Subsequently, the prolonged testing 

leaves less time for the distribution and administration of vaccines to patients. To deal 

with these complexities, the Vaccine Supply Chain (VSC) needs to be optimized in terms 

of structure, planning and operation, while considering the associated supply chain 

characteristics.  

The VSC is characterized by two main phases, the manufacturing, and the 

distribution phase. A generic representation is provided in Figure 1.6. The manufacturing 

phase comprises of the first two steps (supply of raw materials and manufacturing of 

vaccines), while the rest belong to the distribution phase. Commonly the consumers are 

clustered, so the last two steps, customers, and consumers, can be considered to be the 

same step. 

Managing the VSC brings many logistical questions. These are grouped into four 

components, i) what kind of vaccine should be used ii) how many doses should be  

produced and when, iii) who should be vaccinated and iv) how should the vaccines be 

distributed (Duijzer, van Jaarsveld, and Dekker 2018). Distributing the vaccines involves 
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design decisions e.g., related to the location and capacity of the various nodes 

(manufacturing plants, warehouses, and clinics), as well as, planning decisions, for 

example on the inventory levels and the routing decisions. Vaccines are perishable 

products, therefore, shelf-life issues must be considered. Furthermore, vaccines must 

always remain in low temperature conditions. Depending on the type of vaccine, they 

must remain refrigerated or frozen throughout their transportation and storage, making 

the VSC a temperature-controlled supply chain, or a cold chain as usually found in the 

literature. Keeping the cold chain uninterrupted throughout production, storage and 

distribution is critical to maintain the quality of the vaccines and ensure the effectiveness 

of the vaccination program. A special characteristic of the VSC that differentiates it from 

other supply chains is the need for mass distribution under high time pressure, especially 

in cases of sudden outbreaks. 

 

 

Figure 1.6: Vaccine supply chain structure (Ribeiro 2016) 
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In recent years, the scientific community has shown an increasing interest in VSCs. 

The distribution of thermosensitive vaccines is a challenging task especially for low - and 

middle-income countries, where the required infrastructure is unavailable. Therefore, 

Lee et al. (2012) developed a discrete-even simulation model for the Niger vaccine supply 

chain, to investigate the impact of making thermostable vaccines. They found out that 

making any vaccine thermostable strongly alleviates supply chain bottlenecks. Zaffran et 

al. (2013) state that designing products and packing in a way that meets the needs of 

developing countries will strengthen the logistics systems. Moreover, they underline the 

importance of information systems and internet connectivity for improving the decision-

making process. Another paper proposes the integration of VSCs with other supply 

chains, like health commodities, to decrease costs (Yadav et al. 2014). This study provides 

a framework that decides where such integration offers significant benefits. However, 

integrating multiply supply chains poses a great challenge, since it further complicates 

any unique demand and supply characteristics. The design/redesign problem of VSC 

networks, especially in developing countries, has been considered in many contributions 

lately. Assi et al. (2013) generated a discrete-event simulation model of the Niger’s supply 

chain to investigate the effect of removing the regional level. As a result, a remarkable 

increase in vaccine availability is reported. Two additional studies on the Benin’s (Brown 

et al. 2014) and the Mozambique’s supply chain (Lee et al. 2016) showed that redesigning 

significantly benefits the supply chain in both cost savings and vaccine accessibility. Two 

extensive literature reviews on the topic of VSCs were recently published. Lemmens et al. 

(2016) focus on models for the design of VSC networks, while Duijzer et al. (2018) review 

all issues related to the VSC from product selection to production, allocation and finally 

distribution of the vaccines.  

Despite, the rich literature, only a handful of contributions consider the optimal 

planning of VSCs. This may be attributed to the fact that for traditional vaccines the most 

critical supply chain issues are related to the optimal design decisions in developing 

countries. Chen et al. (2014) developed the first planning model for a World Health 

Organization's Expanded Program on Immunization (WHO-EPI) distribution chain in 

developing countries. The proposed mathematical model can be used as a planning and 

evaluation tool, to understand bottlenecks and improve immunization rates. Another 

study proposed a multi-objective, multi-period model to address the simultaneous 

optimal design and planning of sustainable VSCs (de Carvalho, Ribeiro, and Barbosa-
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Povoa 2019). The model is evaluated on a case study representing a European supply 

chain. Trade-offs between the sustainability dimensions considered (economic, 

environmental, and social) are highlighted. Recently, Yang (2020) investigated the 

optimal design and operation of WHO-EPI vaccine distribution chains. The author 

developed an MILP model and a disaggregation-merging technique to generate optimal 

solutions for real-world cases. Moreover, a systematic way to plan outreach operations 

with mobile clinics that will increase vaccine accessibility in regions of developing 

countries without access to direct clinic services is introduced. 

The scientific community has not yet properly addressed the COVID-19 VSC. 

Recently, Kontoravdi et al. (2021) focused on the production phase of the vaccine. They 

emphasize the challenges of producing the required doses for the global vaccination 

campaign. The techno-economic feasibility of production is assessed for various RNA 

vaccines under development. The authors showed that the time required to meet global 

demand strongly depends on the RNA amount per dose, and the development of lower 

dose saRNA vaccines will significantly improve the production rates. The distribution 

phase of the COVID-19 supply chain has not been addressed so far. Only a few papers are 

published on the effect of the COVID-19 pandemic on other distribution supply chains 

(Rastegar et al. 2021). The COVID-19 distribution chain displays special characteristics 

that differentiate them from other VSCs. A prominent concern regarding the distribution 

of COVID-19 vaccines is the extreme temperature requirements during transportation 

and storage. The mRNA vaccines provided by Pfizer and Moderna must remain in deep-

freeze conditions, -70oC and -20oC accordingly, while their lifetime in refrigerated 

conditions is limited. Especially in the case of the Pfizer vaccine, inefficient planning can 

lead to many valuable doses being wasted and to increased operational costs. These 

negative implications are further enhanced due to the enormous scale of the COVID-19 

vaccination programs. 

1.4 Thesis overview 

This thesis is organized as follows: 

Chapter 2 addresses the optimal production scheduling in multiproduct 

multistage plants that comprise of both batch and continuous processes. Two 
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modelling approaches are presented based on MILP frameworks. The first 

generates detailed optimal schedules for all processing stages involved, while the 

second proposes a novel aggregation technique that reduces the problem’s 

complexity and allows its faster solution. At the end of the chapter, a 

computational analysis is performed to illustrate the efficiency of the proposed 

solution strategies.  

Chapter 3 applies the methods presented in the previous chapter in a real-life 

large-scale industrial problem. More specifically, the optimal production 

scheduling of a food industrial process that includes two continuous preparation 

stages, a batch sterilization stage and finally a continuous packing stage, is studied. 

The process structure under consideration is commonly found in several 

industries. It is shown that both methods are able of providing near-optimal 

solutions leading to significant benefits in very low CPU times, compared to 

manually derived schedules generated by the production engineers.  

Chapter 4 studies the integrated production planning and scheduling problem in 

breweries. The special characteristics that differentiate this production process 

are underlined. A new MILP model is developed to effectively address small- to 

medium-sized problem instances. To tackle larger problems, which are closer to 

the industrial reality, a two-step solution strategy is developed, relying on a 

decomposition and a re-optimization procedure. A computational analysis reveals 

that the newly proposed MILP model is superior to alternative approaches from 

the open literature. Furthermore, the developed solution strategy is successfully 

applied to case studies, which represent a real-life brewery. 

Chapter 5 investigates the optimal short-term planning of the COVID-19 VSC. A 

novel MILP model is developed to address this problem. Multiple critical decisions 

such as inventory levels, transferred quantities and scheduling of vaccinations in 

the vaccination centres, are optimally taken. The solutions minimize the overall 

cost of the supply chain, including the cost due to doses that have been wasted. 

The proposed model is integrated in a solution strategy based on an aggregation 

and a divide-and-conquer approach to study complex problem instances including 

nation-wide supply chains. A case study simulating the Greek COVID-19 VSC is 

used to illustrate the applicability of the methods developed in this chapter. 
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Chapter 6 provides a synopsis of the research outcomes of this thesis and 

proposes possible future research directions. 

 

 



 

Chapter 2 

 

Optimal Production Scheduling of 

Multistage Multiproduct Process 

Industries 

2.1 Introduction 

In this chapter we address the optimal production scheduling problem in 

multistage multiproduct process industries. In particular, we focus on facilities that 

comprise of multiple mixed batch and continuous processes, a very common plant layout 

in various industrial processes, like pharmaceuticals, fast-moving consumer goods 

industries (FMCG) and especially food industries. Most of those industries usually consist 

of several processing stages that prepare the final products based on a given recipe, 

followed by a packing stage. These types of facilities are also known as make-and-pack. 

The stages that prepare the final products are batch, continuous or a mix of both, while 

the packing stage is a continuous process, thus resulting to a production procedure that 

consists of both batch and continuous processes. Despite the extensive scientific work on 

the subject of optimal production scheduling these types of facilities were not sufficiently 

addressed, thus underlying a significant gap in the literature. This gap is even more 

evident when considering characteristics of real-life industrial problems, e.g., tight 

technical and logistical constraints, a large number of products and multiple processing 

lines.  

Goal of the work presented in this chapter is to effectively fill this scientific gap, by 

proposing novel mathematical frameworks that can solve large-scale production 

scheduling problems for mixed batch and continuous processes. Two optimization-based 

methods are introduced that approach differently the problem at hand. In the first 

approach, detailed production schedules are generated for all stages involved. The 

second follows a more aggregated approach that reduces the process into a purely 
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continuous one by indirectly including the batch process through a new set of feasibility 

constraints. Core of both solution strategies are new MILP models inspired by the 

precedence-based mathematical framework, while two different decomposition 

techniques are utilized to extend the applicability of the proposed methods into larger 

problem instances which are closer to the industrial reality. 

2.2 Problem statement 

A plant layout common in many make-and-pack industries is considered. The 

multistage multiproduct facility consists of both batch and continuous processes. In 

particular, the plant consists of three processing stages, i) a continuous process that 

transforms the raw materials into intermediate products based on a given recipe  

(preparation stage), ii) a sterilization process required to ensure the quality of the final 

products and iii) a packing stage necessary to bring the products into their final form. The 

sterilization process has been chosen as a general process since it is a very common 

procedure in many industries, thus extending the applicability of the study. 

In total, two continuous stages are considered, with a batch processing stage 

(sterilization) in between. All stages comprise of multiple parallel machines. Each 

product must go through all processing stages. A product can be processed only by a 

subset of the available equipment in the continuous stages since the continuous lines of 

the preparation and packing stages have different capabilities. In contrast all sterilization 

chambers are identical, therefore a product may be processed in any of them. It is 

assumed that the intermediate products in the output of the preparation stage are 

grouped into carts to be transferred to the sterilization chambers. The implementation of 

other more general grouping methods can be done in a straightforward manner. To 

ensure the safety and quality of the final products, a maximum waiting time is allowed 

between the preparation and the sterilization stage. This is a rather low waiting time that 

incommodes the computational speed of the proposed method, however incorporating it 

is critical to ensure the feasibility of the generated production schedules. A single 

campaign policy is favored by most industries, therefore order splitting is not considered. 

A product order is continuously processed in a single line in the continuous stages of the 

facility. However, most product orders are larger than the capacity of the sterilization 
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chambers, therefore, they are divided into several batches. To improve the efficiency of 

the plant these can be processed by multiple sterilizers. Conclusively, a product order is 

split into numerous batches, whose associated lots are processed continuously in a single 

line in the continuous stages but can be processed by multiple sterilizers in the batch 

stage. This production process poses difficult synchronization issues that must be 

considered to significantly improve the efficiency of the plant. 

The problem under study can be formally stated as follows. 

Given: 

• A known scheduling horizon H divided into a set to time periods 𝑛 ∈ 𝑁 . 

• A set of continuous processing stages 𝑠 ∈ 𝑆. 

• A set of continuous processing lines 𝑗 ∈ 𝐽. 

• The multidimensional set 𝐽𝑆𝑗,𝑠 describing whether a line j belongs in a processing 

stage s. 

• A set of products 𝑝 ∈ 𝑃 to be processed within the scheduling horizon, with all 

production related parameters, such as, demand, due date, processing rate in the 

continuous lines 𝜏𝑗,𝑝
𝑟𝑎𝑡𝑒  and sterilization time 𝜏𝑝

𝑠𝑡𝑒𝑟 . 

• The multidimensional set 𝐽𝑃𝑗,𝑝 denoting which lines can process each product p. 

• A set of product batches 𝑏 ∈ 𝐵. This set is required since the order-sizes are usually 

larger than the capacity of the sterilization chambers. 

• The multidimensional set 𝑃𝐵𝑝,𝑏  denoting which batches b belong to a product p. 

• A changeover task required in any continuous line j whenever the production is 

changed between two different products. Every changeover operation requires a 

specific time 𝛾𝑗,𝑝,𝑝′. 

• The parameters related to the sterilization stage, in particular the capacity of each 

cart for every product p, (𝜒𝑝) the number of carts that fill up a sterilization 

chamber (𝜒𝑆𝑇)  and the number of available sterilizers in the facility (𝑣 𝑆𝑇) . 

Determine: 

• The allocation of products into lines in every stage. 
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• The sequencing between products in each line. 

• The starting and completion time for the processing of each product p in each 

stage s. 

, in order to minimize the production makespan or the total changeover time. 

This problem definition is more general and encompasses both mathematical 

frameworks presented in the next section. Both tackle the optimal production scheduling 

problem of multistage multiproduct facilities with mixed batch and continuous 

processes, however from a different point of view. The special characteristics of each 

approach that add on top of the general problem statement presented above are provided 

in the beginning of the related subsection. 

2.3 Mathematical frameworks 

2.3.1 Approach A: Detailed production scheduling of mixed batch and 

continuous processes 

In this first modelling approach, all processing stages are modelled explicitly. 

Detailed decisions for all stages involved are specifically provided. The scheduling 

horizon is divided into n daily time periods.  

In particular, we determine: 

• The allocation of products into units in every stage s and time period n 𝑌𝑝,𝑠,𝑗,𝑛 and 

the allocation of all batches b of each product p in the sterilization stage 𝑌̅𝑝,𝑏,𝑗,𝑛 . 

• The sequencing between products in each line and stage, which is expressed by 

general precedence variables 𝑋𝑝,𝑝′ ,𝑗,𝑛. 

• The starting 𝐿𝑝,𝑏,𝑠,𝑛  and completion time 𝐶𝑝,𝑏,𝑠,𝑛  for the processing of each product 

p and batch b in each stage s and time period n. 

The developed MILP-based solution strategy consists of free main pillars (Figure 2.1): 

• A pre-processing algorithm that translates production orders into batches 

presented in subchapter 2.3.1.1. 

• The mathematical model describing the scheduling problem. 
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• A decomposition technique that splits the initial problem into tractable easily 

solvable subproblems.  

 

Figure 2.1: Illustrative description of developed solution strategy 

2.3.1.1 Batching algorithm 

The goal of this batching algorithm is to convert the product orders into batches 

in the sterilization stage to fully satisfy the given demand. Moreover, in this step, we 

calculate the processing time required for the first batch in the first continuous stage and 

the last batch in the packing stage. These parameters are later required in the 

mathematical models. In many industries the industrial practice imposes the operation 

of the intermediate batch processes to their maximum capacity. The maximum utilization 

of the sterilization stage allows for high production levels while ensuring minimization 

of changeovers between products. Thus, the batching problem can be solved a priori. 

After the completion of the previous process, the intermediate products are loaded in 

carts that are pushed into the sterilization chambers. All product orders are at least the 

size of one full batch, but the capacity of the sterilizers may not be an exact divisor of the 

order size. Therefore, the last batch of any order may be smaller than the rest. To calculate 

the necessary batch-related parameters, we employ the following equations: 
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In equation (2.1) the total number of required carts for each product is calculated, 

by dividing product demand 𝜁𝑝 over the capacity of the carts 𝜒𝑝, which depends on the 

product’s size. Equation (2.2) defines the minimum number of batches required to satisfy 

demand (𝑛𝑝
𝑏 ), by dividing the calculated number of carts over the number of carts that fill 

each batch processing equipment 𝜒𝑆𝑇 . Since every batch equipment has the same 

specifications, this number is constant. However, the total number of carts for each 

product may not be exactly divided by this number. Therefore, in equation (2.3) we also 

define 𝑛𝑝
𝐹𝑢𝑙𝑙 , which is the number of fully utilized batches. Based on that information, the 

quantity processed in the first and last batch is calculated. The quantity of the first batch 

of each product order is always equal to the capacity of each cart multiplied by the 

number of carts that fill a batch processing equipment, as shown in equation (2.4). 

However, the capacity of the last batch depends on whether it is a full batch or a batch of 

reduced size (2.5). Finally, the required processing time for the first batch 𝜏𝑗 ,𝑝
𝐹𝐵  and the 
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last batch of each product in every available continuous line 𝜏𝑗 ,𝑝
𝐿𝐵 , is calculated using 

equations (2.6) and (2.7) accordingly.  

In Figure 2.2 the flowchart of the batching algorithm is illustrated. 

 

Figure 2.2: Flowchart of batching algorithm 

 

To better clarify the meaning of these parameters, let us consider an example of 

an order with a size of 120000 units of a specific product, with a cart capacity of 5000 

units. In that case, the total amount of required carts is: 

120000
24

5000
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Furthermore, let us assume that this product can only be processed by one line in 

the first continuous stage and one in the packing stage, with a rate of 45000 units/hour. 

Therefore, the considered processing times will be 

,
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for the last batch in the continuous stages. 

2.3.1.2 MILP model 

The proposed MILP model is inspired by the general precedence framework. A 

daily discretization of the considered horizon is employed. Moreover, a cyclic heuristic is 

implemented for the sterilization stage, to reduce the problem’s combinatorial 

complexity. The daily demand must be satisfied within the specified time period, so 

backlogs are not allowed. The batches and associated lots in the continuous processes, 

calculated from the batching algorithm, must be completed within the given time period. 

It is assumed that the plant shuts off at the end of each time period for maintenance 

purposes, so all production processes must be completed within one time period. For 

example, a product order cannot undergo the preparation and the sterilization stage in 

time period n and the packing process in time period n+1. The constraints of the 

developed model are presented below and are categorized based on the type of decisions 

that they include.  

Allocation constraints. Constraints (2.8) – (2.10) impose the allocation constraints 

of the model, introducing the binary variables 𝑌𝑝,𝑠,𝑗,𝑛, 𝑌̅𝑝,𝑏,𝑗,𝑛 , and 𝑌𝑝,𝑗,𝑛
𝐹 . To comprehend 

these constraints, we must introduce the subset 𝑆𝐵𝑝,𝑛. This includes all products that 
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consist of a single batch. In those cases, it is not required to specify an additional index b 

in the associated allocation variable. More specifically, constraints (2.8) pose the 

allocation constraints for the continuous stages (𝑠 ≠ 2), but also for the products 

consisting of a single batch in the sterilization stage. Constraints (2.9) focus on the 

sterilization stage and the products that comprise of multiple batches and guarantee that 

all product batches p, b to be scheduled on day n will be processed by exactly one 

sterilizer. Finally, constrains (2.10) are necessary for the cyclic heuristic that follows. 

Variable 𝑌𝑝,𝑗,𝑛
𝐹  denotes the allocation of the first batch of product p in the sterilization 

stage. The constraints ensure that the first batch of every product must be processed by 

exactly one sterilizer. 
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Cyclic allocation heuristic. A great increase in the problems computational 

complexity originates from the flexibility of production in the sterilization process. The 

products can be processed in any of the available sterilizers, which often are many. 

Therefore, the solver used for the developed MILP model will have to examine numerous 

nodes, which result to same quality solutions. Since the sterilizers have the same 

characteristics, it does not make any difference in the schedule’s quality whether a 

product batch is processed in sterilizer 1 or sterilizer 2 etc. Therefore, an algorithm is 

introduced that heuristically allocates the product batches in the sterilization chambers. 

This algorithm is inspired by Kopanos, Puigjaner, and Georgiadis (2012) and states that 

the only decisions that must be optimally taken by the model, are the allocation decisions 

of the first batch of each product 𝑌𝑝,𝑗,𝑛
𝐹 , the rest of the allocation decisions in the 

sterilization stage can be heuristically extracted without affecting the solution quality. 

The heuristic specifies that every next batch of a product will be processed by the next 

indexed sterilizer. For example, if the first batch of a product is processed in sterilizer 

ST_1, then the next will be processed in ST_2, the next in ST_3 and so on. To further reduce 

the model’s size, we can specify the “size” of this cycle, or the number of units used for 
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the sterilization process of the order’s batches. To define this number, we assume that an 

uninterrupted process is desired in the packing stage. Usually, the sterilization stage is 

the slowest process of the facility. Since a single campaign policy is required in the 

packing stage, an uninterrupted processing procedure requires the employment of 

multiple sterilizers. The number of sterilizers used in the cyclic heuristic for a product is 

calculated as the minimum number of sterilizers that ensure an uninterrupted process in 

the packing stage. For example, if the packing process lasts 1 hour for a product, while 

the sterilization process lasts 2 hours for the same product, then 2 sterilizers will be used 

in the cyclic heuristics of this product. Alternatively, if the sterilization process lasts 2.5 

hours, then 3 sterilizers will be employed in the heuristic. Figure 2.3 provides an 

illustrative example of the proposed heuristic. Let us assume that a product order 

consists of 10 batches and that the heuristic employs 3 sterilizers. The optimization 

model generates a solution which states that the first batch of product P1 must be 

processed in sterilizer ST_1. The heuristic decides on the rest of the allocation variables 

as shown, without burdening the optimization procedure. As a result, a significant 

reduction in CPU times is reported. 

 

Figure 2.3: Description of cyclic heuristic in the sterilization stage 

 

Constraints (2.11) – (2.13) imprint mathematically the cyclic heuristic described 

above. Subset 𝐶𝑦𝑐𝑝,𝑏,𝑛 is introduced, which includes all batches that utilize the same 

sterilizer with the first batch. In the example presented in Figure 2.3, 𝐶𝑦𝑐𝑝,𝑏,𝑛 =

{(𝑝1, 𝑏1, 𝑛), (𝑝1, 𝑏4, 𝑛), (𝑝1, 𝑏7, 𝑛), (𝑝1, 𝑏10, 𝑛)}. First, constraints (2.11) define that the 

sterilizer used for processing the first batch of a product p in time period n, is the same 

with the sterilizer used for the rest of the batches in subset 𝐶𝑦𝑐𝑝,𝑏,𝑛. The next two 

sterilizers
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constraint sets focus on the rest of the batches 𝑏 ∉ 𝐶𝑦𝑐𝑝,𝑏,𝑛 . Constraints (2.12) state that 

if a batch b is processed in sterilizer j, then the next batch b+1 will be processed in 

sterilizer j+1. Finally, constraints (2.13) examine the special case, where batch b is 

processed in the last available sterilizer LSTj. In that case, the next batch b+1 must be 

processed in the first sterilizer FSTj. 
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Timing constraints. Constraints (2.14) impose the timing constraints in the 

sterilization stage. They state that the completion of the sterilization process for every 

product batch to be scheduled in a day (𝐶𝑝,𝑏,𝑠,𝑛) is equal to the starting time of the task 

(𝐿𝑝,𝑏,𝑠,𝑛) plus the required sterilization time (𝜏𝑝
𝑠𝑡𝑒𝑟). Similarly, constraints (2.15) define 

the completion time for the continuous stages. Synchronizing the stages necessitates the 

introduction of constraints (2.16). The continuous variable 𝑊𝑝,𝑏,𝑠,𝑛 defines the waiting 

time between each stage. 
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Sequencing constraints. Constraints (2.17) and (2.18) guarantee the proper timing 

between the batches of the same product. The first focuses on the continuous stages while 

the second on the sterilization stage. In particular, (2.17) respects the single campaign 

policy by stating that a batch b of product p finishes before starting the next batch of the 

same product. Expressing this constraint for the sterilization stage is slightly more 

complicated due to the cyclic heuristic. More specifically, the sterilization process for 
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batch b of product p must be completed prior to the start of the sterilization process for 

batch 𝑏′ = 𝑏 + 𝜅𝑝,𝑛, where 𝜅𝑝,𝑛 denotes the number of sterilization chambers used for the 

product based on the cyclic heuristic (2.18). The sequencing constraints between batches 

of different products are given in constraints (2.19) - (2.22). The first two are related with 

the continuous stages for all products and the sterilization stage for products consisting 

of a single batch, while the next two are related with the sterilization stage for the rest of 

the products. A general precedence variable 𝑋𝑝,𝑝′ ,𝑠,𝑛 is introduced. When it is active, it 

denotes that product p’ follows product p in stage s and time period n. Constraints (2.19) 

state that if a product p is processed prior to p’ in stage s and period n (𝑋𝑝,𝑝′ ,𝑠,𝑛 = 1) and 

both products are processed in the same unit (𝑌𝑝,𝑠,𝑗,𝑛 = 𝑌𝑝′,𝑠,𝑗,𝑛 = 1), then the starting 

time of the first batch of product p’ must be greater than the completion time of the last 

batch of product p (𝑃𝐵𝐿𝑝,𝑏,𝑛) plus any required changeover time (𝛾𝑗,𝑝,𝑝′). Constraints 

(2.21) pose the same but for the sterilization stage and for products with multiple 

batches. Here the sequencing constraints are imposed on sets 𝐹𝐶𝐵𝑝,𝑏,𝑛 and 𝐿𝐶𝐵𝑝,𝑏,𝑛. 

These denote the first 𝜅𝑝,𝑛 and last 𝜅𝑝,𝑛 batches of the product, accordingly, as defined by 

the cyclic heuristic. Notice that we choose to define the sequencing constraints between 

batches of different products only for the first and last batches of the products. The 

sequencing of the rest of the batches between different products are irrelevant, due to 

constraints (2.17) and (2.18) and would only increase the size of the model without 

providing any useful information. As a result, the model’s size remains as small as 

possible allowing for a faster solution. Constraints are defined only for p<p’, a known 

technique used in the general precedence framework for model size reduction, therefore 

the complementary constraints (2.20) and (2.22) are required. 
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Quality constraints. Constraint set (2.23) enforces the waiting time between the 

preparation and the sterilization stage to be less than a specific limit 𝑄𝑝. This limit 

ensures the safety and quality of the final product. 
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Objective. Goal of the MILP model is the minimization of the total production makespan 

𝐶𝑚𝑎𝑥 , which is expressed by the following constraints: 
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2.3.1.3 Decomposition strategy 

The complexity of the examined plant is such that an exact method cannot solve 

the scheduling problem in a reasonable CPU time. Therefore, a two-step decomposition 

algorithm is employed to split the initial problem into several tractable subproblems. 

First, the weekly scheduling problem is decomposed in a temporal manner into n daily 

scheduling subproblems, depending on the number of time periods in the considered 

horizon. Then, an order-based decomposition is utilized to solve the daily scheduling 

problem for a specific number of products in each iteration. Figure 2.4 illustrates the 
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flowchart of the proposed solution strategy. At first the batching subproblem is solved to 

translate the product orders into batches. Afterwards, the number of orders to be 

scheduled in each iteration are set. Then, the MILP model is solved for the specified 

subproblem area (day and number of products) and all binary variables (unit allocation, 

sequencing) are fixed. In contrast, the continuous variables are reoptimized after every 

iteration, thus increasing the flexibility of the solution strategy. When all orders are 

scheduled for a given day, all variables are fixed, and the algorithm continues to the next 

day. Finally, when all days are considered, the complete optimal schedule is generated. 

 

 

Figure 2.4: Flowchart of solution strategy implementing a two-step decomposition 
algorithm 

2.3.2 Approach B: Aggregated production scheduling of mixed batch and 

continuous processes 

In the previous approach we have stressed the importance of efficiently modelling 

the sterilization stage, due to the combinatorial complexity it introduces to the model. 

Therefore, a cyclic heuristic has been proposed to reduce the involved constraints and 

decision variables. In this section we present an alternative approach that further reduces 

the items involved with the sterilization stage. In fact, this stage is completely omitted 

from the optimization model with the introduction of a novel aggregated approach that 

however incorporates all significant considerations related to the sterilization stage. 

Conclusively, more efficient models are generated that provide faster, feasible solutions, 

which however do not include detailed decisions for the sterilization stage. The improved 

efficiency allows for the consideration of more complicated objectives, e.g., changeover 
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minimization, impossible to be studied in reasonable CPU times using the first approach. 

Moreover, a unified scheduling horizon is employed that increases the production 

flexibility of the plant, since the production process of an order can last multiple days. 

This approach also includes a useful extension for many industries. Often equipment is 

shared between processing lines, therefore an additional set of constraints is included 

that considers the case where some packing lines may share the same labelling machine. 

Of course, this can be easily extended to any type of shared resource. 

Two MILP models are presented to efficiently address the scheduling problem of 

a multistage multiproduct industrial facility. The first is based on the general precedence 

framework, while the second is inspired by the unit-specific general precedence 

formulation (Kopanos et al. 2009). Specific characteristics of the production are exploited 

to formulate aggregated models, that significantly simplify the problem. However, the 

combinatorial complexity of the examined problem is still prohibitive for the 

straightforward application of these models in large-scale problem instances using any 

known solver, like CPLEX. Therefore, we also investigate a decomposition strategy, that 

allows for the fast generation of feasible schedules.  

2.3.2.1 Conceptual model design 

Using MILP-based frameworks to model all processing stages together leads to 

problems that are intractable with the current computational power. This is mostly due 

to the large number of involved items, in particular, processing stages, units and products. 

A common way of addressing complicated problems using low computational times is the 

simplification of the overall process by solely focusing on the scheduling of a specific 

stage that constitutes a production bottleneck. Unfortunately, such an assumption cannot 

be done in this problem since the production bottleneck shifts according to the demand 

profile. Therefore, other ways of reducing the problem’s complexity, however without 

generating infeasible schedules, must be investigated. One of the main sources of 

increased combinatorial complexity is the batch process, since in contrast to the rest of 

the processing stages, each product can be processed by any of the available machines. 

Unfortunately, we cannot neglect it entirely. However, it is noticed that the scheduling 

decisions related to the batch stage, do not affect the quality of the final schedule. This 

occurs, since all batch processing machines are identical and as such no sequence-
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dependent setups exist. Therefore, the inclusion of the batch stage is a potential source 

of degenerate solutions. For instance, let us consider a simple case, in which only two 

sterilizers ST1 and ST2 exist and two products P1 and P2 are to be scheduled. Note that 

alternate allocation decisions i.e. {P1 → ST1; P2 → ST2} or {P1 → ST2; P2 → ST1} are 

equivalent, since the batch time for both products is the same using any machine. The 

same holds for the sequencing decisions. Since no changeovers exist, it does not matter 

whether P1 is processed before P2 or vice versa. Based on this observation, the batch 

processing equipment can be viewed as a finite renewable resource, similar to e.g., 

manpower. Therefore, while it is not explicitly modelled, it is indirectly incorporated in 

the model. Feasibility constraints related to the availability of time and units are imposed. 

These constraints ensure that: a) enough time between the continuous processes of a 

product exists for the required batch process and b) that at any time point there is 

available equipment to complete the batch process. Consequently, the process is reduced 

to a purely continuous one, consisting of two stages and a number of feasibility 

constraints for the batch stage in-between. The use of this aggregated approach 

significantly reduces the combinatorial complexity of the problem at hand.  

To exploit the benefits of both time representation approaches, a mixed discrete-

continuous time representation is used. The size of the problem necessitates the 

employment of a continuous-time representation, since fewer variables are required and 

smaller, easier solvable, models are generated. However, a known disadvantage of this 

approach is its inability to efficiently monitor the consumption and/or availability of 

resources (Floudas and Lin 2004). This is an extremely important feature that must be 

included in the model since batch equipment is described as a renewable resource. 

Therefore, a discrete-time grid is employed on top of the continuous one. More 

specifically, all scheduling decisions related to the continuous stages are modelled in the 

continuous timeframe, but the feasibility constraints are expressed using the discrete-

time grid. The solution quality depends strongly on the duration of the time periods. A 

finer discretization results to more exact solutions, but to larger and more difficult to be 

solved models. Multiple tests have shown that a duration smaller than the fastest batch 

process is adequate since good schedules are generated in low computational times. 

In order to further illustrate how time is represented in the developed models, let 

us consider the simple case illustrated in Figure 2.5. In this example three products P1, 
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P2 and P3 are scheduled, over two continuous processing lines (FS_1 and FS_2) and one 

packing line (P_1). The continuous timeframe determines, where each product is 

processed in the continuous processes (𝑌𝑠,𝑗,𝑝), in what sequence (𝑋𝑗 ,𝑝,𝑝′
𝐺 ,  𝑋𝑗 ,𝑝,𝑝′

𝐼 ) and exact 

timing (𝐿𝑠,𝑝, 𝐶𝑠,𝑝,). Simultaneously, the timing decisions are mapped on the discrete-time 

grid. At this point, it is assumed that a sterilization process takes place in all discrete-time 

points between the two continuous stages. This is denoted in the figure by the coloured 

blocks on top of the discrete grid, whose height expresses the number of sterilizers 

required for each product. This number is extracted by the following simple heuristic: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑟𝑖𝑙𝑖𝑧𝑒𝑟𝑠 (𝜅𝑃) =  
𝑆𝑡𝑒𝑟𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑏𝑎𝑡𝑐ℎ

𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑏𝑎𝑡𝑐ℎ
 

 

, that allows for a constant production in the packing stage while using the 

minimum number of sterilizers. It must be noticed, that while a fully continuous process 

is modelled, this only occurs due to the employed aggregated approach. In reality, a mixed 

batch-continuous process takes place, and each product-lot is split into multiple batches 

in the batch stage. This process characteristic must be considered. In Figure 2.5 it is clear 

that the batch processing units are occupied between two time points, one being a little 

bit later than the start of the first continuous stage and the other a little bit earlier than 

the completion of the packing stage. This happens since the batch process will only start 

after processing the first batch in the continuous stage and will stop once the last batch 

enters the packing stage. A properly small period duration must be employed, to ensure 

a good quality of the results. At each time point, the total number of batch processing 

units used are monitored and bounded to not violate the maximum resource limit. 
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Figure 2.5: Time representation: a) continuous timeframe; b) discrete timeframe 

2.3.2.2 General precedence model (M1) 

All models based on the general precedence framework are significantly smaller 

compared to models generated using other continuous MILP frameworks. This is due to 

the fewer required constraints, making the general precedence model attractive for large-

scale scheduling problems. For the problem under consideration, we propose an MILP 

model based on the aggregated approach presented in the previous subsection and the 

general precedence framework. Next, we present the developed model, categorizing the 

constraints according to the type of decisions they subject to.  

Allocation constraints. Constraints (2.25) ensure that all products p, to be scheduled 

within the time horizon of interest, will be processed by a single unit j in every stage s, 

using the binary allocation variable 𝑌𝑠,𝑗,𝑝. Constraints (2.26) activate the unit utilization 

variable 𝑉𝑗 . In particular, they state that a unit is used (𝑉𝑗 = 1), whenever at least one 

product is processed by it (𝑌𝑠,𝑗,𝑝 = 1). 
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Timing constraints. Constraints (2.27) define the connection between the starting 

𝐿𝑠,𝑝  and the completion time 𝐶𝑠,𝑝 of every product p at each stage s. Since all orders are 

completed in a single campaign the required processing time can be simple calculated by 

dividing the demand by the given processing rate  𝜏𝑗,𝑝 =
𝜁𝑝

𝜏𝑗,𝑝
𝑟𝑎𝑡𝑒. Constraints (2.28) state 

that the completion time of a product p in each stage s must be larger than the necessary 

processing time of the product  𝜏𝑗 ,𝑝 plus the processing times of all products p’ that are 

previously processed in the same line (𝑋𝑗 ,𝑝,𝑝′
𝐺 = 1). In the next constraints, the 

synchronization of production between stages is guaranteed. More specifically, 

constraints (2.29) ensure that the starting time of the packing process of a product, is 

larger than the starting time of the first process, plus the processing time of the first batch 

in the first stage 𝜏𝑗,𝑝
𝐹𝐵  and the required sterilization time 𝜏𝑝

𝑠𝑡𝑒𝑟 . Similarly, constraints (2.30) 

guarantee the synchronization of the completion times in each stage. 
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Sequencing constraints. To ensure the proper sequencing of production, big-M 

constraints (2.31) and (2.32) are employed. The big-M parameter is set equal to the 

duration of the scheduling horizon. According to constraints (2.31), the starting time of a 

product p’ processed after another product p in the same unit j, is forced to be larger than 

the starting time of product p plus the required processing time and the necessary 

changeovers 𝛾𝑗,𝑝,𝑝′. Notice that these constraints are only defined for p<p’, therefore the 

complementary constraint set (2.32) must be introduced.   
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Tightening constraints. Constraints (2.33) impose that a general precedence 

variable between two products is active, only when both products are processed in the 

same unit. On the other hand, constraint set (2.34) guarantees that in case both products 

p and p’ are processed in the same unit j, then product p may be either processed before 

product p’ or vice versa. In order to satisfy the given due dates 𝜏𝑝
𝜁 , constraints (2.35) are 

introduced.  
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Sterilization feasibility constraints. Constraints (2.36) - (2.39) utilize a discrete-

time grid to enforce the sterilization stage-related feasibility constraints. The auxiliary 

binary variables 𝑋𝑝,𝑛
𝑆𝑇  and 𝑍𝑝,𝑛

𝑆𝑇  are introduced to define the binary variable 𝐶𝑅𝑝,𝑛
𝑆𝑇  that is 

activated when a sterilization process occurs for a product p in time period n. In 

particular, constraints (2.36) enable variable 𝑋𝑝,𝑛
𝑆𝑇  for all time periods after the completion 

of the first batch in the filling and sealing process, plus a waiting time 𝑊𝑝 between the two 

processes. This variable is bounded to be less than 𝑄𝑝 hours, to ensure final product 

safety and quality. The exact time of each time period is calculated by the term 𝛿 ∙ 𝑛, with 
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δ being the duration of each time period. Thus, constraints (2.36) define the beginning of 

a sterilization process for a product p. Similarly, constraints (2.37) set the completion of 

the sterilization process, by activating the corresponding variable 𝑍𝑝,𝑛
𝑆𝑇 , for all time 

periods before the time point defined by the completion of the preparation process, plus 

the waiting time and the required sterilization time. It is assumed that the waiting time 

for both the first and last batch are equal, since defining two separate variables does not 

affect the quality of the solution, while the size of the model is further increased. 

Constraints (2.38) impose that a sterilization process for product p (𝐶𝑅𝑝,𝑛
𝑆𝑇 = 1) takes 

place for those time periods n, that both 𝑋𝑝,𝑛
𝑆𝑇  (the process starts before n) and 𝑍𝑝,𝑛

𝑆𝑇  (the 

process finishes after n) are activated. Figure 2.6 illustrates graphically the role of each 

variable in the feasibility constraints. 

 

Figure 2.6: Explanation of binary variables introduced for the sterilization stage 
feasibility constraints 

 

Finally, constraints (2.39) impose the resource capacity limitations for the 

sterilization stage. The number of sterilizers used for each product is defined by 

parameter 𝜅𝑝, that is only enabled when a sterilization process occurs for this product. It 

is ensured that at each time point the total number of used sterilizers is less than the 

available resource 𝑣 𝑆𝑇.  
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Extension - Labeller constraints. A significant resource limitation in many 

industrial facilities is the utilization of a single labeller machine in multiple packing units. 

Hence, these units cannot operate simultaneously. These design constraints must be 

considered to ensure the generation of feasible schedules. Therefore, we employ 

constraints (2.40) - (2.45), which were first proposed by Kopanos, Puigjaner, and 

Georgiadis (2011). The global sequencing variables 𝑋
𝑗 ′ ,𝑝′ ,𝑗,𝑝
𝐿  are introduced for each pair 

of products p’ and p that are assigned to different packing units sharing the same labeller. 

Constraints (2.40) and (2.41) impose that variables 𝑋𝑗 ′ ,𝑝′ ,𝑗,𝑝
𝐿  are activated when product 

p’ starts in unit j’ before product p starts being processed in another unit j. In constraints 

(2.42) a very small number λ is added to cope with the special case of two products 

starting at the same time. Auxiliary variables 𝑍𝑗 ′ ,𝑝′,𝑗,𝑝
𝐿  are active whenever product p’ is 

completed in unit j’ after the starting time of product p in another unit j, as constraints 

(2.43) state. Finally, binary variables 𝐶𝑅𝑗′ ,𝑝′ ,𝑗,𝑝
𝐿  are added, which denote that the 

production of p’ in j’ overlaps the one of p in unit j. As imposed by constraints (2.44), the 

variables are active only when both auxiliary variables are equal to one. Finally, 

constraints (2.45) do not allow any overlap in the production of products in lines sharing 

the same labeller machine. 
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Objective. Goal of this model is the minimization of the production makespan (2.46). 

,
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s p
C C  , 2in

p
p P s  =  (2.46) 

2.3.2.3 Unit-specific general precedence model (M2) 

Despite their computational prowess, general precedence models cannot be used 

when changeover minimization is the main overarching goal of the scheduling problem. 

To consider this objective, a unit-specific general precedence model is developed. This 

model (M2) is very similar to the previously presented M1 model, sharing most 

constraints, with the main difference being the introduction of immediate precedence 

variables 𝑋𝑗,𝑝,𝑝′
𝐼 . More specifically, model M2 consists of constraints (2.25) – (2.27), (2.29) 

– (2.45) and the following: 
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Constraints (2.47) constitute an alteration of constraints (2.28), since they 

guarantee that the completion time of a product p in stage s is larger than the required 

processing time, plus the processing time of all previously completed products in the 

same line, plus the changeover between product p and its direct predecessor p’. In 

contrast to model M1, a single set of sequencing constraints (2.48) is required, which 

forces the starting time of product p’ to be larger than the starting of product p that is 

processed right before it, plus the processing time of p and the required changeover time. 

Four additional tightening constraints are employed. More specifically, constraints (2.49) 

state that the total number of processed products in a unit in each stage must be equal to 

the sum of enabled immediate precedence variables in that unit plus the unit activation 

variable. Constraints (2.50) and (2.51) impose that at most one product p’ is processed 

right before or after p. Finally, constraints (2.52) guarantee that a product p can be an 

immediate predecessor of another product p’ only if it is also a general predecessor. The 

objective of model M2 is the minimization of the total changeover time CH , as depicted 

by constraint (2.53). 

2.3.2.4 Decomposition algorithm 

The aggregated modelling approach presented in the previous subsection 

significantly reduces the combinatorial complexity of the problem. However, the direct 

solution of the MILP model in real-life industrial problems still requires large 

computational effort, thus resulting in intractable case studies. Moreover, the industry 

requires the fast solution of the weekly scheduling problem. This will allow production 

engineers to undergo multiple what-if analyses, and promptly encounter any order-
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related uncertainties, like sudden change in demands, cancellations, or arrivals of new 

orders. The main goal of this study is to generate fast near-optimal schedules, which will 

be readily available to the decision-makers. This is essential for the developed strategy to 

be potentially used as the core of a future computer-aided scheduling tool that will be 

utilized by the production engineers. Therefore, to satisfy the prerequisites set by the 

industry a decomposition algorithm is employed, that further reduces the complexity of 

the optimization problem.  

An order-based decomposition algorithm is employed to split the initial problem 

into smaller subproblems. The final schedule is generated iteratively. In each iteration, 

only a subset of the original set of product orders 𝑝 ∈ 𝐼𝑝
𝑖𝑛 is scheduled. Therefore, the 

generated MILP models are smaller and can be solved much faster. A characteristic of the 

developed approach, that strongly affects the quality of the solution, is the insertion 

policy, which consists of: a) the way products are sorted and b) the number of products 

optimally scheduled in each iteration. Regarding the first decision, multiple possible 

sorting algorithms were studied. The best solutions were extracted when sorting from 

largest to smallest product order size was chosen. This may not be trivial but can be easily 

justified since larger orders occupy more time in the scheduling horizon. So, in case other 

smaller orders are scheduled first, this may be done in a manner that does not allow for 

the optimal placement of the larger orders. The second decision is a user-defined 

parameter (σ). Larger values result in better solutions since the initial problem is less 

decomposed, but on the other hand, require more computational time. Thus, the value of 

this parameter must be set as high as possible, but not so large that the computational 

limitations of the examined study case are not met. 

In Figure 2.7 a schematic representation of the developed solution strategy is 

presented. The input in this method is the plant data provided by the ERP system and 

Manufacturing Execution System (MES) and the insertion policy as defined by the user. 

In the pre-processing step the orders are sorted according to the preferred sorting 

algorithm and then the batching algorithm calculates all batch related parameters. Then, 

the scheduled problem is solved through an iterative method. The first σ products are 

inserted in the aggregated models presented in the previous subsection and the MILP 

model for the specified subproblem area is solved. The selected model depends on the 

scheduling problem’s overarching goal. In particular, for makespan minimization, model 
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M1 is used, while model M2 is employed when changeover minimization is the main 

objective. Afterward, the unit allocation and the general precedence variables are fixed 

for the subproblem area. All other related variables, like the utilization of sterilizers and 

the completion and starting times for the products already scheduled can be freely 

adjusted in the next iterations to ensure flexibility and improve final results. Then, the 

algorithm returns to the initial step of the iterative method and the next set of products 

is inserted. When all product-orders are considered, the complete schedule is generated. 

 

Figure 2.7: Optimization-based solution strategy 

 

In Figure 2.8 an illustrative example displaying the allowed and forbidden 

sequencing decisions, when employing the decomposition algorithm, is presented. In this 
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simple example, we assume that only one unit exists. Two products have been already 

scheduled, while in the current iteration, just one product is newly inserted. It is 

illustrated, that the new product can be freely placed anywhere in the scheduling horizon 

and in any sequence to the others. However, the sequence between the already scheduled 

products is set and therefore cannot be changed. Notice, that the immediate precedence 

variables are not fixed when model M2 is used. Thus, the flexibility in changing decisions 

in future iterations of the iterative method is increased, which leads to schedules closer 

to optimality.  

 

Figure 2.8: Flexibility of sequencing decisions 

2.4 Computational analysis 

In this section we display the efficiency of the proposed mathematical frameworks 

using a small illustrative example. We consider a multistage multiproduct facility, 

consisting of three processing stages. The first stage comprises of two continuous lines, 

next follows a sterilization stage consisting of two batch units and finally the products are 

packaged in two packing lines. A total of 25 products are produced during the 5-day 

scheduling horizon. Each product can be processed by any of the available sterilizers, but 

only by a subset of the continuous lines as shown in Table 2.1, where {S1_L1; S1_L2} and 

{S3_L1;S3_L2} are the available processing lines of the first and second continuous stage 
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accordingly. The problem definition is slightly different for the two developed solution 

strategies. Approach A considers a daily demand with different orders for each product 

within the studied horizon. Moreover, it is assumed that the plant shuts down at the end 

of every day for maintenance purposes. On the contrary, Approach B is considered with 

a weekly demand with various due dates for each product order, while the plant operates 

24/7. In addition to makespan minimization, approach B is employed also for the 

minimization of changeovers. Detailed data for the considered example are provided in 

Appendix A. All instances are solved using the GAMS interface and the CPLEX solved in a 

PC with a 1.8Ghz CPU and 8 GB of DDR4 RAM. 

Table 2.1: Products that can be processed by the available continuous processing lines 
 

S1_L1 S1_L2 S3_L1 S3_L2 
 

S1_L1 S1_L2 S3_L1 S3_L2 

P1 1 1 
 

1 P14 1 
 

1 1 

P2 
 

1 1 
 

P15 1 1 1 
 

P3 
 

1 1 1 P16 
 

1 
 

1 

P4 1 1 1 
 

P17 1 
 

1 
 

P5 1 1 
 

1 P18 1 
 

1 1 
P6 

 
1 

 
1 P19 1 1 1 

 

P7 1 
 

1 
 

P20 1 1 
 

1 
P8 1 1 

 
1 P21 1 1 

 
1 

P9 1 1 
 

1 P22 1 
 

1 1 
P10 

 
1 

 
1 P23 

 
1 1 

 

P11 1 1 1 1 P24 1 
 

1 1 
P12 

 
1 1 

 
P25 1 

 
1 1 

P13 1 1 1 
      

2.4.1 Approach A 

Due to the small size of the examined example, only a temporal decomposition of 

the problem is employed. In each iteration of the algorithm, the daily schedule for all 

orders is optimized. An optimal solution that minimizes the production makespan in each 

individual day is extracted in just 1.7 CPU seconds. Table 2.2 shows the optimal objective 

value for each day, as well as the solution statistics for each daily MILP-subproblem. All 

orders are satisfied within the available horizon, while in some cases (day 2 and day 3) 

the optimal schedule is completed very fast, displaying the increased productivity 

potential of the studied facility. Notice that the solver spends most computational 

resources on the optimization of the first day, which happens to create the largest MILP-

subproblem.  It is shown that a low number of equations and variables is necessary for 
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the representation of this small, however complicated scheduling problem. As a result, 

optimal decisions can be taken instantaneously. Figure 2.9 Illustrates the Gantt chart of 

the optimal schedule for all processing stages. Each coloured block signifies a processing 

task of a batch/lot in the corresponding continuous line or sterilizer.  

Table 2.2: Solution and model statistics using approach A on the illustrative example 

Day 
Objective 
value (hr) 

Equations 
Continuous 
Variables 

Binary 
Vars 

CPU (s) 

1 22.29 615 128 248 1.55 
2 19.71 226 80 92 0.05 
3 13.18 163 48 72 0.03 
4 23.69 220 56 93 0.02 
5 20.26 121 80 52 0.02 

2.4.2 Approach B 

First, we consider the minimization of the production makespan employing model 

M1 in the context of the solution strategy developed in approach B. The size of the 

problem allows for a monolithic approach without the use of the proposed order-based 

decomposition strategy. Model M1 generates an optimal schedule with a minimal 

makespan of 71 hours in just 18.8 CPU seconds. The solution strategy achieves an 

improved synchronization between the processing stages and optimally exploits the 

available resources leading to a schedule which denotes that the plant’s productivity can 

be significantly increased. The resulting model consists of 7563 equations, 8032 binary 

variables and 126 continuous variables. Notice the high number of binary variables, 

which originate from the utilization of a discrete time horizon required for the introduced 

feasibility constraints. However, the model is tight enough and can provide optimal 

solutions in low computational times. Figure 2.10 presents the optimal Gantt chart of the 

continuous stages for makespan minimization. Due to the employed aggregated 

approach, detailed optimal decisions are not generated for the sterilization stage. 

However, the available sterilizes can realize the proposed optimal schedule without 

affecting the solution quality.  
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Figure 2.9: Gantt chart for makespan minimization extracted using approach A 

 

Furthermore, we examine the impact of the decomposition strategy on the 

extracted schedules. Therefore, three decomposition scenarios are tested. In particular, 

the mathematical framework of approach B is employed using i) a 1-by-1, ii) a 5-by-5 and 

iii) a 10-by-10 insertion policy. The comparative results are shown in Table 2.3. As 

expected, the holistic approach provides the best possible solution, while a finer 
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decomposition (schedule optimized for fewer products in each iteration) leads to faster 

but worse solutions. An interesting conclusion is drawn by the fact that the solution 

extracted by a less fine decomposition (10-by-10) is only 5% worse than the one provided 

by the monolithic approach, when it requires only a tenth of the CPU time, thus displaying 

the effectiveness of the proposed mathematical framework. This is even more evident in 

larger problem instances and is further discussed in subchapter 3.2.  

Table 2.3: Comparing the solution for various decomposition approaches 

Insertion 

policy 

Objective 

(hr) 

CPU 

(s) 

Improvement 

(%) 

1 by 1 88 0.5 -23.94 

5 by 5 80 1.5 -12.68 

10 by 10 75 1.8 -5.64 

Monolithic 71 18.8 0 

 

Next, the same problem is examined but with the overarching goal being the 

minimization of changeovers. Therefore, model M2 is used. Compared to the 

minimization of makespan, minimizing the total changeover time is a more challenging 

task. Monolithically solving the model without the incorporation of a decomposition 

algorithm, cannot provide an optimal solution within a reasonable computational time 

(900 s) for the problem at hand. The best schedule is generated when utilizing a 10-by-

10 insertion policy in the proposed decomposition algorithm. The solution strategy 

achieves a minimal changeover time of 10.4 hours and generates the optimal schedule 

illustrated in Figure 2.11 in just 16 seconds. 
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Figure 2.10: Gantt chart for makespan minimization extracted using approach B  
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Figure 2.11: Gantt chart for changeover minimization extracted using Approach B 



 

2.5 Conclusions 

This chapter considers the optimization-based scheduling of multistage 

multiproduct facilities with mixed batch and continuous processes. The problem under 

consideration illustrates significant complexity, due to the mixed type of processing 

stages, and the numerous shared resources. The inherent complexity of this type of 

problems requires the development of novel solution strategies. Two new mathematical 

frameworks were proposed, both consisting of three main pillars: i) a common pre-

processing step for the batching subproblem, ii) an MILP model and iii) a decomposition 

algorithm. Core of the first approach is a new precedence-based model that cleverly 

reduces the size of the generated models by utilizing a cyclic allocation heuristic in the 

sterilization stage. In the second approach a novel set of feasibility constraints is 

introduced in two precedence-based models, one for makespan and one for changeover 

minimization. Both approaches display distinct strengths. In approach A, detailed optimal 

schedules for each processing stage are generated. Approach B considers the sterilization 

stage in an aggregated way, thus ignoring detailed scheduling decisions. This approach is 

computationally more efficient and can also consider the changeover minimization 

objective. As shown in the computational analysis, both methods can efficiently deal with 

the scheduling problem under consideration and can be used according to the specific 

goals of the optimization, the plant design and the operational characteristics. The 

considered make-and-pack structure (one or multiple batch or continuous processes 

followed by a packing stage) is typically met in most food and consumer packed good 

industries, but also in other type of industries like pharmaceuticals and specialty 

chemicals, hence the developed mathematical framework can assist the decisions makers 

in a great variety of process industries real-life scheduling problems. 
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Nomenclature 

Indices 

,p p P  products to be processed within the scheduling horizon 

,b b B  batches of products required to fulfil the order  

, 'j j J  processing units 

s S  processing stages 

n N  time periods of considered horizon 

 

Sets 

Common for both approaches 

in

p
I  

subset of products being optimized in an iteration of the decomposition 

algorithm 

,j p
JP  Mapping set defining the units j that can process product p  

,j sJS  mapping set defining lines j that belong in stage s  

, , 'j p pJPP  mapping set defining units j that can process both products p and p’ 

Approach A 

in
n

I  days considered in the decomposition algorithm 

, ,p b n
PB  denotes the batches b of product p processed in period n 

,p n
SB  orders of product p in period n that comprise of a single batch 

, ,p b n
Cyc  batches b of product p in period n that are first in the cyclic heuristic 
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, ,p b n
PBL  last batch of product p in period n 

, ,p b n
FCB  subset denoting the first 

,p n
  batches of product p in time period n  

, ,p b n
LCB  subset denoting the last ,p n

  batches of product p in time period n 

s
ST  subset of s denoting the sterilization stage 

s
CS  subset of s denoting the continuous stages 

j
FST  first sterilizer 

j
LST  last sterilizer 

Approach B 

, 'j j
CL  packing lines j and j’ utilizing the same labeller device 

 

Parameters 

Common for both approaches 

,

rate

j p
  processing rate of each product p processed by continuous line j 

, , 'j p p
  changeover time required between product p and p’ processed in line j 

ster

p
  sterilization time required for each product p 

p
  capacity of cart when filled with product p 

ST  number of carts to fill each sterilizer 

pQ  
Maximum allowed waiting time between the preparation and the 

sterilization stage 

M  big-M number 

Approach A 

, ,j p n
  processing time of each product p processed by continuous line j  
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, , FB

j p n
 

processing time for the first batch of each product p processed by 

continuous line j in period n 

, , LB

j p n
 

processing time for the last batch of each product p processed by continuous 

line j in period n 

, p n
 

number of sterilizers for each product order p used according to the applied 

cyclic heuristic in period n 

, p n
 demand for product p in period n 

,

c

p n
n  number of carts used for product p in period n 

,

b

p n
n  number of batches used for product p in period n 

,

FB

p n
n  number of full batches used for product p in period n 

,

FB

p n
q  quantity of product p processed in a full batch in period n 

,

LB

p n
q  quantity of product p processed in the last batch in period n 

Approach B 

,j p
  processing time of each product p processed by continuous line j 

, FB

j p
 

processing time for the first batch of each product p processed by 

continuous line j 

,

LB

j p  
processing time for the last batch of each product p processed by continuous 

line j 

 p
 

number of sterilizers for each product order p used according to the applied 

cyclic heuristic 

 p
 due date for product p 

 p
 demand for product p 

c

p
n  number of carts used for product p 

b

p
n  number of batches used for product p 

FB

p
n  number of full batches used for product p 

FB

p
q  quantity of product p processed in a full batch 

LB

p
q  quantity of product p processed in the last batch 

STv  number of available sterilizers 
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  a very small number 

 

Variables 

Binary 

Approach A 

, , ,p s j n
Y  = 1 when product p is processed in unit j in processing stage s and period n  

, , ,p b j nY  = 1 when a batch b of product p is processed in sterilizer j in period n 

, ,

F

p j n
Y   = 1 when the first batch of product p is processed in sterilizer j 

, ',p p s
X  = 1 when product p is processed before product p’ in stage s 

Approach B 

, ,s j p
Y  = 1 when product p is processed in unit j in processing stage s  

j
V  = 1 when unit j is being utilized 

, , '

G

j p p
X   = 1 when product p is processed before product p’ in unit j 

, , '

I

j p p
X  = 1 when product p is processed right before product p’ in unit j 

', ', ,

L

j p j p
X  

= 1 when product p’ starts being processed in unit j’ before or exactly p at 

the time that product p starts in unit j 

', ', ,

L

j p j p
Z  

=1 when product p’ is completed being processed in unit j’ after the 

starting time of product p in unit j 

', ', ,

L

j p j p
CR   = 1 when the production of p’ in j’ overlaps the one of p in another unit j 

,

ST

p n
X  auxiliary variable for ,

ST

p n
CR  

,

ST

p n
Z  auxiliary variable for ,

ST

p n
CR  
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,

ST

p n
CR   

= 1 when sterilization process for product p takes place for those time 

periods n, 

 

Continuous 

Approach A 

, , ,p b s n
C   completion time for batch b of product p in processing stage s and period n 

, , ,p b s n
L   starting time for batch b of product p in processing stage s and period n 

, , ,p b s n
W  waiting time of processing batch b for product p between stages in period n 

Approach B 

,s p
C   completion time for product p in processing stage s 

,s p
L   starting time for product p in processing stage s  

p
W  waiting time between stages 

 

Objectives 

CH    total changeover time 

max
C  makespan 

 



 

Chapter 3 

 

Real-life Industrial Applications 

3.1 Introduction 

The importance of applying optimization-based scheduling solutions on real-life 

industrial cases is widely recognized. However, only a few successful industrial 

applications are reported, e.g. in the Dow Chemical Company (Wassick and Ferrio 2011), 

despite key research developments in the field of production scheduling (Georgiadis et 

al., 2019a). The main reason for this disconnect between academia and industry is the 

fact that most contributions address small- or at best medium-sized problem instances, 

that do not represent the size and complexity of real-life industrial facilities. Hence, there 

is a continuously growing interest in solving large scheduling problems. It must be 

however emphasized, that the successful use of computer-aided scheduling tools by the 

industrial operators and managers, is not solely dependent on the efficiency of the 

proposed solution strategies. Numerous practical issues need to be resolved prior to the 

on-site application, like ease of use, development and maintenance of the application, 

stable system integration, and ability to dynamically make minor adjustments and adapt 

to new information. 

Food industrial facilities display characteristics like intermediate due dates, 

multiple mixed batch and continuous production stages and product quality/safety-

related considerations, that substantially complicate the optimization of the scheduling 

decisions. The above considerations combined with market trends that impose the 

gradual expansion of the product portfolio, product demand profiles which are 

characterized by high variability and low volumes and many identical production units 

and shared resources, make the application of optimization-based scheduling solutions 

in real-life industrial problems extremely challenging. 

 In this chapter we address the real-life optimal scheduling problem of a large 

multistage multiproduct facility that comprises of both continuous and batch processes. 
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Researchers have considered a plethora of industrial case studies from various 

subsectors of the food industry in the last decades. However, most studies focus on small 

to medium-sized problems (Doganis and Sarimveis (2007), Simpson and Abakarov 

(2009), and Liu et al., (2010)) or simple production processes (Kopanos et al., (2010a), 

Sel et al., (2017) and Georgiadis et al., (2019b)). The process under consideration is 

characterized by many involved items in terms of processing stages, available units and 

products to be scheduled. Moreover, tight operating and design constraints, as well as the 

need to generate near-optimal schedules in low CPU times, lead to a scheduling problem 

of extreme combinatorial complexity, that has never been systemically examined and 

efficiently solved in the open literature. Therefore, we employ the frameworks proposed 

in chapter 2 to successfully address a real-life large-scale industrial scheduling problem. 

3.2 Industrial Problem 

A real-world food process industry is considered in this chapter. More specifically, 

the scheduling problem of the Spanish industry Frinsa del Noroeste S.A., one of the largest 

canned fish producers in Europe, is addressed. The studied facility can produce more than 

400 product codes, a number that is constantly increasing, to cover market needs and 

fulfils more than 100 orders every week. The production process is extremely 

complicated, comprising of several, batch, and continuous processes. In order to simplify 

the description of the production process, we identify four major processing stages, in 

particular, thawing, filling and sealing, sterilizing and packing, each consisting of multiple 

parallel units (Figure 3.1). Initially, the fish arrives in tracks in the form of frozen blocks, 

which are defrosted in the thawing stage. Then, the blocks are cut in the proper size and 

filled in cans along with other ingredients (e.g., tomato-sauce, oil, brine etc.) according to 

the product’s recipe. In the same processing stage, the cans are sealed and transferred 

into carts. Afterward, the carts are manually inserted in the sterilization retorts. Each 

sterilizer has a capacity of nine carts. To avoid the growth of bacteria, the transfer 

between the filling and sealing lines and the sterilization retorts must guarantee a near 

zero-wait policy. Therefore, no more than two hours must elapse between the completion 

of the filling and sealing process and the initiation of the sterilization process. The 

sterilization process is critical for food safety and final product quality. The cans are 

heated at a temperature of around 110°C, which is maintained for a specific time, 
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ensuring the targeted bacteria lethality, and finally, they are cooled down to room 

temperature. Depending mainly on the size and shape of the cans, but also on the type of 

fish and the rest of the ingredients, the duration of the sterilization process varies from 

82 to 180 minutes. Horizontal retorts are used, while the temperature is managed 

through a water spraying system. After the completion of the sterilization process, the 

carts are manually extracted from the retorts and are transferred to the packing stage, 

where the cans are packaged in the final product form (single, 6-pack, boxes etc.). An 

important operation of this stage is labelling. However, not all packing lines have an 

individual labeller. In particular, lines 1-2 and 5-6, share the same labelling machine, 

therefore they cannot operate simultaneously. Finally, after the completion of the packing 

stage, the end products are stored in the warehouse, to be distributed in the market.  

 

Figure 3.1: Process description 

 

The plant can be described as a multistage, multiproduct facility that combines 

both batch (thawing, sterilizing) and continuous (filling and sealing, packing) processes 

with multiple parallel units. In particular, four thawing chambers, eight filling and sealing 

lines, 16 sterilizers and ten packing lines exist, making up a total of 38 available units in 

the whole production process. Moreover, more than 100 different products are to be 
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scheduled in a weekly basis. Consequently, an extremely large number of involved items 

is reported, making the scheduling problem under study extremely complex. One should 

also consider that the order-sizes are usually larger than the sterilization chamber’s 

capacity, therefore each order is split into multiple order-batches, thus significantly 

increasing the total number of items to be scheduled. An important feature of the plant is 

the high production flexibility. Each product can be processed by all batch units, but only 

specific continuous lines, which have different processing rates. Furthermore, the 

processing time of each stage significantly varies, thus making the efficient 

synchronization of all processes a difficult task. In order to reduce the problem’s size, it 

was concluded that the thawing stage can be omitted for two main reasons: a) the 

capacity of the thawing chambers is significantly larger than the rest of the processing 

lines, b) the defrosted fish can be stored in the chambers for a significant amount of time 

(more than 24hours). Therefore, any schedule generated by considering all other stages, 

can be fulfilled by the thawing stage. Despite this simplification, the complex mixed batch 

and continuous process, combined with the number of production units and orders, 

production flexibility and the absence of clear bottlenecks, results to a computationally 

exhaustive scheduling problem.  

The plant operates from Monday to Friday, however in cases of large weekly 

demands overtime operation during the weekend is allowed. Therefore, the short-term 

scheduling horizon varies from 5 to 7 days depending on the case study, whereas all 

processing units are available 24 hours each day. Most products have a single due date at 

the end of the scheduling horizon; nonetheless, some exceptions may occur. Full demand 

satisfaction is a prerequisite and orders must be delivered on time, so tardiness is not 

allowed. Due to product quality considerations and space-related limitations, once a 

product campaign starts in the thawing stage, it must be carried out until the completion 

of all processing stages. Moreover, a single campaign policy is favored in the plant, 

therefore order splitting is not possible.  

In practice, production schedules are generated manually by the plant engineers. 

The extreme combinatorial complexity of the underlying problem makes it impossible for 

the production engineers to consider the weekly integrated scheduling problem of all 

processing stages even using simple heuristic rules. In an attempt to generate a feasible 

schedule, they decompose the decision-making process into multiple steps. First, they 
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receive the weekly demand from the ERP system and plan the daily production based on 

capacity limitations. They consider the filling and sealing stage as the most critical 

process, due to the existence of large changeover times. Therefore, a weekly plan for the 

filling and sealing stage is firstly generated, so that large changeover times are avoided. 

Afterward, this plan is thrown over the wall to the department responsible for the 

packing stage, which checks the feasibility of the plan. At this point, there is a constant 

back and forth communication until a final plan is achieved. After settling on a weekly 

plan, a daily schedule is generated, two days before the day under examination, 

separately for the filling and sealing and the packing stage. During the whole procedure, 

the sterilizers are not considered at all. The basic rationale of the production engineers is 

that the main reason for reduced productivity is the existence of changeover times, 

therefore they try to minimize them separately in each stage. This approach is however 

myopic since they do not consider at all the synchronization of production between 

stages and the limitations imposed by the sterilization stage. Consequently, the actual 

schedules vary significantly from the planned ones, thus requiring multiple re-iterations 

throughout the week.  

The complexity of the problem results in a decision-making approach which lacks 

efficiency and generates schedules far away from the optimal operation. The 

optimization-based frameworks proposed in Chapter 2 consider all involved stages and 

constraints which affect the efficiency of the generated schedules. Therefore, they are 

applied in this industrial case to assess their efficiency into dealing with real-life 

scheduling problems. 

All data considered are real and provided directly by the plant’s computer 

systems, so they correspond to the industrial reality faced by the schedulers. The demand 

is provided directly by the plant’s ERP system, while all operational data, e.g., processing 

rates, changeover times etc., are supplied by the MES installed at the facility. Moreover, 

MES provides the Overall Equipment Effectiveness (OEE) factor of all processing lines, 

which represents any deviations from the lines’ nominal speeds , due to i) equipment 

breakdowns, ii) minor stoppages, iii) reduced machine speeds, iv) start-up scrap and v) 

product scrap and is calculated based on historical data. Incorporating the OEE factors in 

the scheduling problem, provides a way to consider uncertainties on the processing rates, 

thus increasing the robustness of the generated schedules. All data are assumed to be 
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deterministic, while resources like manpower, steam, electricity etc. are not considered. 

All MILP models were implemented in GAMS 25.1 and solved in an Intel Core i7 @3.4Gz 

with 16GB RAM, using CPLEX 12.0. 

3.2.1 Industrial application of approach A 

We first consider the utilization of the detailed optimal production scheduling 

process. An industrial study case using real data from the Frinsa production plant is 

presented. In total 136 final products are to be scheduled, corresponding to a real weekly 

demand from a period with intensive production. Since the developed model cannot 

incorporate shared resource constraints, the related labelling constraints are not 

considered. To solve this complex case, the proposed solution strategy is utilized. In each 

iteration the daily schedule for half of the product-orders was chosen to be optimized. 

Goal of the optimization is the minimization of the daily production makespan. Optimality 

is reached for all iterations of the suggested solution strategy. Figure 3.2 illustrates the 

complete schedule generated for all units of every processing stage.  

Compared to the real weekly schedule proposed by Frinsa, the optimized schedule 

of the proposed strategy illustrates interesting results. To satisfy the given demand, the 

manually derived schedule by Frinsa, requires the addition of a shift on Saturday, while 

the optimized schedule satisfies all orders within five days. The developed mathematical 

framework requires approximately one hour of CPU time for the solution of the problem 

which is acceptable for offline scheduling. However, it was in the desires of the 

production engineers to significantly reduce the total computational time, in order to 

allow for fast and efficient rescheduling actions, in case of possible disturbances within 

the considered horizon. So, despite the successful application of approach A in a real-life 

problem, it was incapable of proposing near-optimal schedules in computational times 

acceptable by the industry. Therefore, a more computationally efficient mathematical 

framework is necessitated to properly address the problem under consideration.  
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Figure 3.2: Gantt chart for makespan minimization using approach A for a real-life 
industrial problem 
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3.2.2 Industrial application of approach B 

The applicability and efficiency of the MILP-based optimization framework 

presented in subchapter 2.3.2 is illustrated using real-life, large-scale industrial case 

studies, provided by the canned-fish facility. 

Relevant labeller constraints are introduced in the packing stage. In particular, the 

pairs of packing lines {P_1; P_2} and {P_5; P_6} share the same labelling machine, 

therefore it is forbidden to operate simultaneously. The implementation of a discrete-

time grid requires the discretization of the relevant scheduling horizon into equisized 

periods. A duration of one hour is chosen for each time period, since the longest 

sterilization process lasts 82 minutes. Employing a finer discretization may provide more 

exact solutions, but the computational cost is prohibitive for the solution of the problem 

in reasonable CPU times. A challenging prerequisite set by the production engineers is 

the total computational time required for the generation of near-optimal schedules, to be 

less than 15 minutes. This may be considered as a relatively small CPU time for weekly 

scheduling, however, such a low solution generation time will allow production engineers 

to run multiple what-if analyses and re-run the model whenever new information arrives 

in the plant. Thus, making a future computer-aided tool much more appealing to the 

production engineers and plant managers. 

3.2.2.1 Problem size reduction 

Let us first underline the impact the developed aggregated approach has on the 

industrial problem’s size. The multistage, multiproduct, semi-continuous plant under 

consideration consists of four processing stages, i.e., thawing, filling and sealing, 

sterilization and packing. However, the utilization of the proposed aggregation approach 

reduces the optimization problem into two continuous processes (filling and sealing, 

packing). Exact schedules are generated only for these stages. However, due to the valid 

assumptions and the imposed feasibility constraints of the aggregated approach, the 

proposed schedules will be realized by all stages, without violating any capacity or other 

limitations. The total number of available sterilizers in the plant is 16 and they are 

modelled as a common renewable resource. The reduction of the problem’s complexity 

using this approach is illustrated in Figure 3.3, where all possible production routes for a 

single product are depicted. It is evident that the suggested aggregated approach 
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decreases substantially the underlying decisions and results into smaller and more 

efficient MILP models.  

 

Figure 3.3: Possible production routes of a single product when a) considering the fully 
sized problem, b) omitting the thawing stage and c) explicitly modelling only the 

continuous stages. 

3.2.2.2 Evaluation of the Decomposition Algorithm 

The decomposition algorithm constitutes a crucial component of the proposed 

scheduling framework, as it allows the solution of this complex real-life problem in a 

computational time acceptable by the production engineers and managers of the specific 

industry. However, the fast generation of schedules is not the sole purpose of the 

proposed method. The quality of solution is essential, and it is the main reason for 

employing an optimization-based approach. It is clear, that the quality of the generated 

schedules is affected by the decomposition algorithm, as initially was shown in 

subchapter 2.4.2. Hence, it is important to evaluate the performance of the algorithm, by 

comparing the extracted solution with the truly optimal one. Therefore, three medium-

sized problem instances (I - III) are considered, which correspond to daily demands of 

the Frinsa plant. The examined cases display an increasing complexity. In particular, 22, 
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31 and 35 products are to be scheduled in cases I, II and III, accordingly. All cases are 

solved twice, once for makespan (MK) and once for changeover (CH) minimization, 

resulting in a total of six instances. Each instance is solved once, directly applying the 

MILP model and then using four different decomposition steps, ranging from 1-1 to 10-

10, while a time limit of 900s is imposed. In all instances a 10-10 decomposition was able 

to generate near-optimal solutions (<1.5%) in just a small fraction of the time required 

by the monolithic approach. Employing a finer decomposition leads to a faster generation 

of schedules, but also to worse solutions. Especially, a 1-1 or 2-2 decomposition may lead 

to non-integer solutions (I.CH, II.CH, I.MK) or solutions far from the optimal (I.CH). Case 

III.CH illustrates special interest since it is the most demanding problem instance (most 

products, difficult objective). Here it is evident, that for complex scheduling problems, the 

monolithic approach cannot return an optimal solution within the given CPU limit. 

However, the proposed decomposition strategy returns a better solution, even when 

applying a 1-1 decomposition step, which is close to the theoretical optimal one. In 

conclusion, these results illustrate that the proposed decomposition strategy does not 

only generate fast, but also high-quality solutions. A summary of the comparative study 

is presented in Table 3.1. The computational time and the objective value for all cases are 

given. Moreover, the integrality gap to the theoretically optimal solution is given for the 

cases solved using the monolithic approach. For the cases employing the decomposition 

approach, the gap displays the quality difference of the solution extracted to the one 

provided by the monolithic approach. A negative value means that the solution provided 

by the decomposition algorithm is better than the solution extracted by the monolithic 

approach. 

3.2.2.3 Industrial case I 

In this case, we study the scheduling problem of Frinsa del Noroeste over a time 

horizon of 5 days. The orders for 100 products are directly provided by the ERP system 

and correspond to the real demand profile scheduled by the production engineers in the 

plant. All demand-related data are deterministic, however, the use of OEE rates increases 

the robustness of the proposed schedules. Product demands along with all relevant 

operational data are provided in Appendix B. Due to confidentiality issues, the OEE rates 

are not explicitly given, but they are incorporated in the processing rates. The problem is



 

Table 3.1: Evaluation of the decomposition algorithm 

Case Monolithic 1-1 2-2 5-5 10-10 

 
CPU 

(s) 

Obj 

(hr) 

Gap 

(%) 

CPU 

(s) 

Obj 

(hr) 

Gap 

(%) 

CPU 

(s) 

Obj 

(hr) 

Gap 

(%) 

CPU 

(s) 

Obj 

(hr) 

Gap 

(%) 

CPU 

(s) 

Obj 

(hr) 

Gap 

(%) 

I.CH 118 8.17 0.00 - - - 13 11.00 34.64 29 8.95 9.54 59 8.17 0.00 

II.CH 900 22.92 4.00 - - - 16 23.90 4.28 35 23.08 0.70 70 23.00 0.35 

III.CH 900 19.67 12.25 15 17.83 -9.34 18 17.58 
-

10.61 
35 17.50 -11.02 78 17.50 

-

11.02 

I.MK 85 23.45 0.00 - - - 8 23.92 2.00 14 23.70 1.07 29 23.55 0.43 

II.MK 316 23.42 0.00 7 23.97 2.35 16 23.85 1.84 19 23.76 1.45 33 23.53 0.47 

III.MK 390 19.60 0.00 14 20.78 6.02 18 20.51 4.64 27 20.19 3.01 41 19.84 1.22 

 



 

solved twice, one having as objective the minimization of makespan and one the 

minimization of the changeovers.  

Firstly, we use the suggested method with model M1 to examine the minimization 

of production makespan. Various insertion policies are tested, as shown in Table 3.2. As 

expected, a finer decomposition of the initial scheduling problem leads to lower CPU 

times, but also worse objective values. Given the computational time limitations, the best 

policy for this problem is to insert the product orders 20-by-20 in the optimization model. 

The less decomposed problem using a 40-by-40 order decomposition does not provide 

better solutions, since the time limit is reached, and a worse integrality gap is achieved. 

Finally, a monolithic approach cannot provide any integer solution within the allowed 

CPU time. The production schedule suggested and realized by the schedulers required a 

single 8-hour shift on Friday (𝐶𝑚𝑎𝑥 ≈ 104), which is far worse than the generated 

schedule by the proposed solution strategy. Even when we apply a simple 1-by-1 

insertion policy, we get results comparable to the solution proposed by the schedulers. 

However, this is achieved automatically in less than two minutes.  

Next, we test the efficiency of the M2 model in combination with the suggested 

solution strategy, to address the changeover minimization objective. Again, we 

investigate various insertion policies, to decide on the most appropriate one, according 

to the imposed solution time limitations. In contrast, to the makespan minimization, 

products are now scheduled to minimize the total changeovers. Thus, no consideration 

of processing the orders as soon as possible exists. As a result, the fixed decisions on unit 

allocation and general precedence on products scheduled on previous iterations may lead 

to infeasible situations for the products yet to be scheduled. This occurs in the 1-by-1 

insertion policy as shown in Table 3.3. In order to avoid this situation, the problem must 

be less decomposed. The best results are generated when a 5-by-5 insertion is employed, 

in which a total changeover time of 42.7 hours is achieved, a solution that represents a 

10-15% improvement compared to the one proposed by the schedulers. Inserting more 

products in each iteration could not further improve the objective since no integer 

solution is found within the allowed CPU time. In general, changeover minimization is a 

more difficult objective due to the utilization of the unit-specific general precedence 

model M2, which necessitates the further incorporation of immediate precedence 

variables and more sequencing constraints compared to model M1, thus leading to larger 

and more difficult problems.  
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Table 3.2: Comparison of insertion policies (makespan minimization) 

Insertion policy Objective (h) CPU time (s) 

1-1 104.6 94 

2-2 97.6 120 

5-5 96.0 159 

10-10 95.3 221 

20-20 94.4 356 

40-40 94.6 900 

Monolithic - 900 

 

Table 3.3: Comparison of insertion policies (changeover minimization) 

Insertion policy Objective (h) CPU time (s) 

1-1 Infeasible - 

2-2 43.5 89 

5-5 42.7 850 

10-10 - 900 

 

An inevitable characteristic of the applied decomposition algorithm is that the size 

of the model continuously increases with each iteration. Let us consider the 20-by-20 

policy for the makespan minimization problem, where in total five iterations of model M1 

are solved. The number of binaries in the five MILP models generated is 9319, 18604, 

29150, 43684 and 48144 accordingly. Consequently, the problems are, in general, getting 

harder and take more time to be solved. Main reason for this incremental tendency is the 

pairs of sequencing decisions that are not fixed, alongside the variables used for the 

feasibility constraints, which employ the discrete-time grid. In order to reduce the model 

sizes, we could fix all timing decisions (starting and completion times) after each iteration 

in the decomposition algorithm. However, this approach is less flexible and results in 

much worse scheduling decisions. 

3.2.2.4 Industrial case II 

In this case, we examine another problem instance of the same facility, however, 

this one represents a week during the most demanding production of the year. A total of 
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126 products must be scheduled, a number significantly larger than the one examined in 

instance I, which results in a scheduling problem of extremely high combinatorial 

complexity. The total demand is such that an overtime production is unavoidable; 

therefore, a scheduling horizon of 7 days is chosen. The demand of this case and all 

operational data, e.g., processing rates, product to line availability in each stage, 

sterilization times, changeovers, etc. are provided in Appendix B.  

Model M1 is employed with a 20-by-20 insertion policy to propose a minimum 

makespan production schedule. The proposed solution strategy generates a near-optimal 

schedule in less than 10 minutes. A makespan of 133.1 hours is achieved, which compares 

favourably with the solution proposed by the schedulers. The executed weekly schedule 

demanded the uninterrupted operation of the plant throughout the weekend (𝐶𝑚𝑎𝑥 ≈

148h), thus the proposed solution significantly reduces the overtime production. In 

Figure 3.5 the Gantt chart of the proposed schedule is illustrated for both the filling and 

sealing and packing stage. Notice that the labeller constraints are respected and at no 

point, a simultaneous operation of pairs of packing lines 1 - 2 and 5 - 6 occurs. Moreover, 

the number of utilized sterilizers never exceeds the total available resource installed in 

the plant (16 sterilizers) as depicted in Figure 3.4.  

 

 

Figure 3.4: Number of sterilizers used at each time point of the scheduling horizon 
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Figure 3.5: Gantt chart (makespan minimization) 

 

Changeover minimization is considered for the industrial study case, using model 

M2 and a decomposition algorithm, in which products are inserted in a 5-by-5 fashion. 

The proposed schedule is generated in just under 15 minutes and the total changeovers 

required are reduced to 62.6 hours. Compared to the executed schedules an improvement 

of around 15% is accomplished, while the generated schedule has been fully validated by 

the production engineers of the plant. Figure 3.6 depicts the Gantt charts for both 

continuous stages. It is shown that choosing the minimal changeovers for each stage has 

a negative feedback on the total production time since it results in a worse 

synchronization between processes. 
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Figure 3.6: Gantt chart (changeover minimization) 

3.3 General considerations 

Prior to the development of an efficient scheduling solution for a real industrial 

case, two critical issues must be thoroughly considered. More specifically, the proper 

description of the scheduling problem at hand and the accuracy of the input data. If the 

specifics of the production process are not explicitly pre-defined or the given data are 

inaccurate, then the proposed methods result to solutions that cannot be practically 

applied to the real plant. Furthermore, data inaccuracies make the assessment o f the 

model’s efficiency extremely difficult or even impossible. In the specific industrial case, 
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both issues resulted to significant delays, mainly due to miscommunication reasons 

between the model developers and the production engineers. A representative example 

is the existence of the common labellers which became known to the model developers 

after months of work. Another issue was that some important parameters were initially 

not available at all. Therefore, the extraction of this information required a significant 

amount of work from the industrial partners’ side. Through the constant collaboration 

between all partners, these issues were eventually resolved. In its final form, the 

developed model can depict the reality of the production process and propose realistic 

solutions, while all required data are now automatically provided by the plant’s computer 

systems. 

A direct comparison of the two mathematical frameworks is not meaningful for 

two main reasons. First and foremost, they consider different aspects of the industrial 

problem. Approach A considers a daily demand when a weekly demand is optimized in 

approach B. Moreover, the special labeller constraints cannot be incorporated in the first 

approach. Furthermore, changeover minimization is possible only when using approach 

B, while approach A provides detailed decisions for all processing stages. Secondly, 

approach B is clearly superior in terms of computational efficiency, since problem 

instances of similar if not higher complexity can be solved in just a fraction of the time 

required by approach A. 

3.4 Conclusions 

In this chapter, the optimal production scheduling problem of a large-scale, real-

life food industry, for both makespan and total changeover time minimization, is 

considered. The overall scheduling problem is characterized by a significant 

combinatorial complexity. More specifically, the industrial facility is described by 

multiple production stages, each consisting of multiple parallel units, while both 

continuous and batch processes exist. Over 100 products must be processed within the 

scheduling horizon, resulting to a very large number of decisions to be made. To the best 

of our knowledge, a problem of such complexity has not been successfully solved in a 

reasonable computational time. In order to efficiently address this problem, the 

mathematical frameworks developed in Chapter 2 are utilized and their applicability and 

efficiency is illustrated. The two proposed mathematical frameworks can be 
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interchangeably used depending on the needs of the production engineers. Approach A 

is suitable for the cases where detailed scheduling decisions for the sterilization stage are 

required, the given demand is daily, and shutdowns are required at the end of each day. 

In all other cases approach B must be employed as it is computationally superior. A 

decomposition algorithm has been investigated for the efficient solution of the scheduling 

problem within a desired computational time limit. In the proposed methodologies, the 

products to be scheduled are optimized iteratively, according to a user-defined insertion 

policy. Moreover, the extraction of validated results for industrial cases that directly use 

real-life data by the ERP and MES of the plant, make the proposed strategies suitable for 

the development of a computer-aided scheduling tool, that will assist decision-makers to 

generate fast and near-optimal schedules. Finally, this chapter illustrates the successful 

implementation of an optimization-based method for the production scheduling of a real 

industrial problem, which is a step towards filling the existing gap between industrial 

reality and research.  

 



 

Chapter 4 

 

Optimal Production Planning and 

Scheduling in Breweries 

4.1 Introduction 

 

Beverage industrial facilities display production characteristics e.g., multiple 

mixed batch and continuous processes, an ever-expanding product portfolio, 

intermediate due dates, etc., which make the optimal production planning and scheduling 

of real-life industrial problems extremely challenging. Few contributions have addressed 

the production scheduling of the soft drink industry, using either optimization-based 

(Ferreira, Morabito, and Rangel 2009; Ferreira et al. 2012) or non-exact methods (Toledo 

et al. 2009). The generic optimal production scheduling problem for beverage industries 

can be addressed using the mathematical frameworks proposed in Chapter 2. However, 

the optimal production scheduling of breweries displays some special characteristics, 

which makes this optimization problem even more difficult, thus exceeding the 

capabilities of the previously presented solution strategies. The increased difficulty 

originates mainly from the very long lead times that characterize these industries. In 

particular, liquid preparation (fermentation and maturation) lasts from 3 up to 41 days, 

therefore, the synchronization of the various processing stages becomes a very difficult 

task. Moreover, an extended horizon must be examined, while both planning and 

scheduling decisions are required. Consequently, larger models are generated that must 

tackle the integrated planning and scheduling problem. Due to the size and complexity of 

such models, they become easily intractable when studying real-life industrial cases. As a 

result, only a handful of works have properly addressed the production planning and 

scheduling problem in breweries. Kopanos, Puigjaner, and Maravelias (2011) proposed a 

novel mixed discrete-continuous MILP model for the optimal production planning and 

scheduling of parallel continuous processes. The proposed model effectively addressed 
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industrial-scale problems of a real brewery, while it required very low computational 

times. However, their analysis focused solely on the bottling lines and was based on the 

assumption that the packing stage constitutes the production bottleneck, which does not 

always hold true. Baldo et al. (2014) were the first to study the optimal integrated 

production planning and scheduling problem of a beer production facility. They assumed 

that the production can be divided into two processing steps, liquid preparation, and 

bottling. Based on this valid simplification they developed a novel MIP model and 

proposed MIP-based heuristics in order to solve large-scale problems. Recently, Lee and 

Maravelias (2020) employed the general discrete and continuous algorithm (DCA) (Lee 

and Maravelias 2018) for the optimal production lot-sizing and scheduling of a large 

brewery. The authors modelled the beer production as a four-stage problem that 

consisted of four processing stages (brewing, fermentation, maturation and bottling) and 

were able to propose optimized schedules. Due dates were not modelled, rather monthly 

production targets were to be achieved and the main objective addressed was profit 

maximization.  

The main contribution of this chapter is the development of a novel optimization-

based solution approach for the integrated planning and scheduling problem of 

breweries. A new MILP model based on a mixed discrete-continuous time representation 

is developed. In order to reduce the size of the generated model, only the production 

bottlenecks of the process are modelled, while the considered horizon is divided into two 

sub-horizons. In the first one a detailed optimal production schedule is extracted, while 

in the second only planning decisions are considered. To the best of our knowledge the 

only model found in literature that can tackle such a process is proposed by Baldo et al. 

(2014). An extensive analysis is included that proves the superiority of the developed 

model both in solution quality and computational time. However, the large number of 

involved tanks, lines, and products and most importantly the large lead times, results to 

extremely complex models especially when dealing with real-life problems. Thus, the 

direct application of the developed model in industrially-sized cases leads to intractable 

models. Therefore, we propose a novel solution strategy that consists of a constructive 

and an improvement step. In the first an initial solution is generated that is then improved 

in the second step of the proposed algorithm. Finally, the suggested method is 
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successfully applied to an industrial case study provided by a large Greek beer production 

facility.  

4.2 Problem Statement 

Beer production is a complex process that comprises of multiple production steps 

that involve numerous shared resources. Any beer type consists of four main ingredients, 

in particular, water, malt (from barley grains), hop (responsible for the bitter taste of 

beer) and yeast (saccharomyces cerevisiae for ale beer or saccharomyces pastorianus for 

lager beer). The various beer products are diversified in terms of raw materials and the 

required processing time in each production step. Despite the distinct process required 

for each beer type, all products go through the same processing steps, which can be 

categorized into two main production stages, liquid preparation, and bottling (Figure 

4.1).  

Some breweries produce their own malt; therefore, a malting process is taking 

place prior to the brewing process. The malting process is divided into three subprocess; 

steeping, where the humidity of the grain is increased, germination, which transforms the 

grains into malt and finally drying in kiln, to remove most of the humidity from the malt. 

In this study we assume that the malt is a raw material that is ready to be brewed, 

therefore the malting process is not considered. In the liquid preparation stage two main 

processes take place, specifically, brewing and fermentation/maturation. The brewing 

process consists of several batch tasks, namely mashing, lautering, boiling, whirlpooling 

and cooling, that transform the raw materials into different worts. Mashing involves the 

addition of water into the prepared malt and the heating of the mixture, while in lautering 

the mixture is filtered from any solids. Then the hops are added, and the mixture is heated 

in the boiling process. Finally, the wort is filtered (whirlpooling) and quickly cooled 

(cooling). In the next processing step, the yeast is added into the cooled wort and the 

fermentation/maturation process begins. This subprocess constitutes one of the main 

production bottlenecks, since it lasts 3 to 41 days, depending on the type of beer 

produced. At this moment beer of a given wort type is obtained, referred to as bright beer. 

Finally, bright beer is transferred from the fermentation/maturation tanks to bright beer 
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tanks (BBTs), where it is filtered, diluted, and carbonated. At the end of the liquid 

preparation process the beer is referred to as ready beer or ready liquid.  

Bottling is the last stage of the production process, where the ready liquid is 

bottled in cans, bottles, or kegs and then the final products are packed and palletized. 

Multiple subprocesses take place during the bottling process. First the returnable bottles 

are cleaned and sterilized, while cans and kegs are simply washed. Next the filling 

subprocess takes places, which is the main production bottleneck of the bottling stage. 

The products are then sealed and pasteurized in a bath of hot water to ensure that they 

are not infected by any harmful microorganisms. Finally, labelling, packing and 

palettizing takes place and the final products are loaded on a transport vehicle or stored 

in a warehouse.  

 

Figure 4.1: Description of the beer production process 

 

The brewery industry, like most food and beverage industries, can be described 

as a make-and-pack industry, where in the initial stages the raw materials are processed 

based on a given production recipe and then are packaged in the desired final form. In 

order to efficiently address the optimal production planning and scheduling problem of 

breweries, only those processes that constitute the main bottlenecks of production are 

modelled. The most challenging task in the first stage is the proper utilization of the 

fermentation and maturation tanks. The rest of the subprocesses of this stage only take a 
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few hours, when the fermentation/maturation task requires a processing time that lasts 

multiple days, thus making it the bottleneck of the liquid preparation stage. Similarly, the 

limited capacity of the filling subprocess makes it the most difficult task of the second 

stage and therefore its production bottleneck. Moreover, the more ready liquid is bottled 

in the filling process, the faster the tanks empty and therefore become available to 

process a new batch of liquid. As a result, the beer production process is extremely 

simplified, leading to relatively small sized models, while containing all necessary 

information for the generation of feasible and optimal production schedules (Figure 4.2). 

 

Figure 4.2: Simplified process description focusing on production bottlenecks 

 

Based on the aforementioned simplifications, the brewery facility can be 

described as a multistage, multiproduct facility that combines both a batch 

(fermentation/maturation) and a continuous (filling) process with multiple parallel 

units. The first stage involves a number of tanks, which are non-identical in terms of 

capacity, but can process all liquids. In contrast, each filling line of the second stage can 

only process a specific subset of the final products, depending on the packing and bottling 

type of the line. Tanks can only prepare a single liquid at a time and likewise filling lines 

can only bottle a single product at a time. In terms of availability of connections, a tank 

can simultaneously supply multiple lines with ready liquid, however each line can receive 

ready beer from a single tank at a time. Furthermore, tanks must be cleaned in-between 

the fermentation/maturation process of two different batches, thus a sequence-
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independent setup time is necessary. On the contrary, sequence dependent setup times 

for cleaning and/or machine adjustments are required in the filling lines, whenever a 

changeover of liquids and/or packages occurs. There are no intermediate storage vessels, 

however the ready liquid can be temporarily stored in the fermentation and maturation 

tanks.  

The current industrial reality in most plants imposes the production plans and 

schedules to be generated manually by the decision makers. The large number of involved 

items (processing stages, units, and products) alongside the tight operational, logistical, 

and technical constraints to be considered result to an extremely complex problem. In 

addition, the long lead times require an extended planning horizon compared to  other 

industries, while the generated schedules should ensure the proper synchronization of 

the liquid preparation and bottling stages. Thus, it is very difficult for the production 

engineers to consider the integrated planning and scheduling problem even using simple 

heuristics. In order to propose feasible schedules, the decision-making process is divided 

into two steps. First, the production plan for the sterilization and maturation tanks is 

generated. In this step the timing of all filling and emptying operations in each tank and 

the allocation of liquids into tanks is defined. The plans are determined for a monthly 

horizon based on the given demand and the capacity limitations of the units. At this point 

the goal of the production engineers is to utilize the tanks as much as possible while 

trying to reduce backlogs and maintain a relatively small inventory. Then the plan is 

thrown over the wall to the department responsible for production scheduling, which 

generates a feasible schedule for the filling lines. Here, the tank to filling line connections 

are determined (which tank will provide liquid to which line), and it is decided when will 

each filling process take place (timing) and at what order will every final product be 

processed (sequencing).  

The decision-making procedure described above lacks efficiency since the two 

main production stages of the plant are considered separately without the employment 

of optimization-based methods. Therefore, the realized production plans and schedules 

are far from being optimal, resources are underutilized, productivity is decreased, and 

total profits are reduced. Thus, the efficient integration of both planning and scheduling 

decision is an area with great potential for improvement, that could be translated to 

significant benefits for the brewing industry. Main goal of this work is to develop an MILP-
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based solution method for the integrated production planning and scheduling problem 

that provides near-optimal decisions in short computational times. The developed 

solution strategy can be the core of a computer-aided tool that facilitates the decision-

making process and assists the production engineers of any brewery plant. 

The problem under study can be formally stated as follows.  

Given: 

• A known planning horizon H divided into a set of time periods 𝑡 ∈ 𝑇. The horizon 

is further divided into two subset of time periods, 𝑡1 ∈ 𝑇1 and 𝑡2 ∈ 𝑇2 ,(𝑇 = 𝑇1 ∪

𝑇2). In the first precise production schedules are determined, while in the  latter 

only production plans are generated. 

• A set of fermentation/maturation tanks 𝑜 ∈ 𝑂 and a set of filling lines 𝑗 ∈ 𝐽. 

• A set of liquids 𝑙 ∈ 𝐿  to be prepared and a set of final products 𝑖 ∈ 𝐼 that must be 

produced with the given horizon.  

• The multidimensional set 𝐼𝑙 that denotes whether product i contains liquid l.  

•  The mapping set 𝐼𝑗  that defines the set of products i that can be processed on filling 

line j.  

• All production related parameters, in particular, demand 𝜁𝑖,𝑡 , liquid preparation 

time 𝜆𝑙 , filling rate for each final product 𝜌𝑖,𝑗 , capacity of each tank 𝜒𝜊, and quantity 

of liquid required for a single unit of product i, 𝜋𝑖,𝑗 . 

• A sequence-dependent setup for cleaning and/or machine changes necessary in 

the filling lines j whenever there is a changeover of production between two final 

products i and i’. Every changeover task requires a specific time 𝛾𝑖,𝑖′ ,𝑗. 

• The cost coefficients associated with inventory 𝜎𝑖, backlog 𝛽𝑖 and changeover 

operations 𝜅𝑖,𝑖′ ,𝑗.  

Determine: 

• The planning decisions for the liquid preparation stage. More specifically, 

determine the filling and emptying operations in each tank as well as the material 

balance (amount of ready liquid) in each tank. 

• The amount of liquid that is being transferred from each tank to each filling line. 
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• The allocation of products into filling lines, as well as the sequencing between 

products in each line and the completion time of each filling operation.  

• The production amounts of final products as well as the product inventories and 

backlogs. 

,so that an economic objective including inventory, backlog and changeover costs, 

is minimized. All data used are deterministic, meaning that any type of uncertainty is 

omitted in this study, while we assume that raw materials are always available. Resource 

limitations, such as manpower or utilities, e.g., cold water, electricity, are not considered. 

No intermediate storage vessels exist; however, the ready liquid can be stored in the 

fermentation and maturation tanks. We assume an instantaneous transfer of liquid 

between the two stages and that the fermentation/maturation process in a tank only 

starts at the beginning of a time period and is completed at the end of a time period.  

4.3 MIP-based solution method 

An MILP model is presented to efficiently address the integrated production 

planning and scheduling problem for a multistage multiproduct facility typically found in 

the brewing production process. The model is based on a precedence-based framework 

that utilizes a mixed discrete-continuous time representation, inspired by the works of 

Kopanos, Puigjaner, and Maravelias (2011) and Baldo et al. (2014). Operational and 

technical constraints, such as demand requirements and tank capacities, as well as 

specific characteristics of the production are incorporated to produce feasible plans that 

minimize the total production cost, which, in this study, comprises of the inventory, 

backlog and changeover cost terms. However, the high combinatorial complexity of the 

problem, especially when addressing large-scale industrial cases, is such that the direct 

application of known MILP solvers, e.g., CPLEX, GUROBI etc., results into low quality 

solutions. Moreover, computational times prohibitive for any industrial application are 

required. Therefore, we also introduce a two-step decomposition strategy, consisting of 

a constructive and an improvement step, in order to promptly generate feasible and near-

optimal plans.  
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4.3.1 MILP model 

The detailed modelling of all processing steps of the brewery facility would result 

to large and complicated models. Therefore, only the main production bottlenecks are 

considered, in particular, the fermentation/maturation process in the liquid preparation 

stage and the filling process in the liquid bottling stage. Thus, the facility at hand is 

reduced to a two-stage multiproduct one. This make-and-pack type of process is very 

common in food and beverage facilities. Therefore, an abundance of various techniques 

that can optimally solve this type of problems can be found in the literature. However, 

beer production displays characteristics that significantly differentiate them to other 

production processes. Compared to other food and beverage industries, the preparation 

step (fermentation/maturation in the case of breweries) requires a large processing time 

that spans from some days to multiple weeks, resulting in large production lead times. 

Hence, planning must be considered in synchronization with short term scheduling since 

product preparation lasts more than the usual scheduling horizon (one week). In case of 

optimizing just the scheduling decisions of the filling process (Stage 2), there is a high risk 

of generating schedules that overestimate the capacity of the fermentation/maturation 

tanks (Stage 1), thus leading to an infeasible solution.  

In order to address this optimization problem, an MILP model has been developed, 

that employs a mixed discrete-continuous time representation. The discrete time grid has 

a period length of one day and is used to seamlessly monitor the production, inventory, 

and backlog levels of both stages. A lot-sizing model is introduced for the planning 

decisions of both stages, that considers the given processing times of the tasks and the 

capacity of the units involved. Within each time period a continuous representation of 

time is utilized, and constraints inspired by the immediate precedence framework are 

incorporated to determine the sequencing decisions in the liquid bottling stage (Stage 2). 

Note that sequencing decisions are not required in the first stage, since it does not involve 

any sequence-dependent setup times. The planning horizon is divided into two sub-

horizons. In the first one (T1), both planning and scheduling decisions are considered, 

while in the second one (T2) a coarser optimization is done, than only determines the lot-

sizing and unit utilization decisions. Figure 4.3 portrays the employed time grid, as well 

as the decisions that are made for each stage and in each sub-horizon. The orange oval 

shape contains the considered decisions for Stage 1, while the green oval shape displays 
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the determined decisions for Stage 2. Blue-coloured text denotes the planning decisions, 

while red-coloured text signifies the scheduling decisions. The intersection of the two 

shapes encloses the decisions that connect the two stages, specifically, the amount of 

liquid that is transferred from the tanks to the filling lines. 

 

Figure 4.3: a) Time representation and description of sub-horizons, b) considered 

planning and scheduling decisions in each stage 

 

Let us describe the main decision variables of the developed model for the 

integrated planning and scheduling problem in breweries. The liquid is transferred into 

the tanks and the fermentation/maturation process starts. When the required processing 

time 𝜆𝑙  passes, then an amount 𝐿𝑜,𝑙,𝑡
𝑃  of liquid gets ready. Binary variable 𝑌𝑜,𝑙,𝑡

1  denotes that 

liquid l in tank o gets ready in time period t. The ready liquid is either used on filling lines 
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j to produce items i in period t (𝐿𝑜,𝑗,𝑖 ,𝑡
𝑇 ) or is stored in tank o for future production (𝐿𝑜,𝑙,𝑡

𝑆 ). 

In case the ready liquid is used to produce items on filling lines, then an amount of item i 

(𝑄𝑜,𝑖,𝑗,𝑡) is processed on filling line j in period t made of liquid fed by tank o. This amount 

is used to satisfy the demand on the current or previous time periods (𝑡′ ≤ 𝑡) or is stored 

to meet future demand of item i (𝑡′ > 𝑡). Note that the outputs of Stage 1 (liquid 

preparation) are the inputs of Stage 2 (liquid bottling), so the production in the filling 

lines takes place only when there is available ready liquid to be fed from the 

fermentation/maturation tanks. In terms of scheduling decisions, unit allocation 

variables (𝑌𝑖,𝑗,𝑡
2 ) are used to denote that a product i is processed in line j in time period t 

and two sets of immediate precedence variables (𝑋𝑖,𝑖′ ,𝑗,𝑡 and 𝑋̅𝑖,𝑖′ ,𝑗,𝑡) are employed to 

indicate direct precedence of tasks. The first is enabled whenever there is direct 

precedence of production between two final products, i and i’, in line j in the same period 

t, while the latter indicates precedence of filling tasks between consecutive periods. 

Continuous variables 𝑈𝑗 ,𝑡 and 𝑈𝑗 ,𝑡  are used to properly model changeovers between tasks 

in consecutive time periods. Lastly timing variables 𝐶𝑖,𝑗,𝑡 are employed to signify the 

completion of a filling task of product i in time period t. An overview of the main decision 

variables is illustrated in Figure 4.4.  

Next, we present the developed model, categorizing the constraints based on the 

production stage and the types of decisions they subject to. To facilitate the presentation 

of the model, we use lowercase Latin letters for indices, uppercase Latin letters for 

variables and lowercase Greek letters for parameters. From now on we will refer to this 

model as GEG. 

Stage 1 (Liquid preparation) 

In the first stage, the constraints are mainly responsible for properly modelling 

the lot-sizing of the fermentation/maturation tanks. More specifically, they must 

guarantee that the processed liquid lots do not exceed the capacity of the fermentation 

tanks and that the liquids remain in the tanks at least for the required 

fermentation/maturation processing time.  

 



Chapter 4                                       Optimal Production Planning and Scheduling in Breweries 

105 
 

 

Figure 4.4: Description of main decision variables 

 

Constraints (4.1) ensure that if a liquid gets ready in time period t (𝑌𝑜,𝑙,𝑡
1 = 1), then 

no ready liquid is stored in the tank during the previous 𝜆𝑙  time periods. During this 

period the fermentation/maturation process of the liquid takes place. In order to have an 

amount 𝐿𝑜,𝑙,𝑡
𝑃  of ready liquid in time period t, the tank must be empty in time period 𝑡 −

(𝜆𝑙 + 1), so that it can receive the liquid to initiate its preparation 

(fermentation/maturation) process. Constraints (4.2) are introduced to guarantee that at 

most one batch of liquid gets ready in a tank within a time segment equal to the 

fermentation/maturation time. Finally, constraint set (4.3) imposes the upper bound on 

the amount of liquid getting ready based on the available capacity of the 

fermentation/maturation tanks. 
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Stage 1 and Stage 2 

Constraints (4.4) are responsible for connecting the decision variables of the two 

stages, while they monitor the liquid balance between them. More specifically, they state 

that the stored amount of liquid l in tank o in time period t (𝐿𝑜,𝑙,𝑡
𝑆 ) is equal to the stored 

amount in the previous period plus the amount of liquid getting ready in period t (𝐿𝑜,𝑙,𝑡
𝑃 ), 

minus the liquid that is transferred to the filling lines.  
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Stage 2 (Liquid bottling) 

The second stage requires a more detailed model since additional to the lot-sizing 

and unit allocation constrains it also considers the timing and sequencing decisions for 

the filling lines. In order to generate the required modelling constraints, the immediate 

precedence framework is employed within a mixed discrete-continuous time 

representation (Kopanos, Puigjaner, and Maravelias 2011). 

Material balance constraints 

The material balances for every final product are imposed by constraint set (4.5). 

At the end of each time period t, the inventory (𝑆𝑖,𝑡) and backlog (𝐵𝑖,𝑡) are monitored 

based on the daily production, demand and the inventory and backlog levels in the 

previous time period t-1. The number of products i that use liquid fed by tank o and are 

processed in line j and time period t is expressed by constraints (4.6). 
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Line utilization constraints 

The constraints below introduce the line utilization variable, which is enabled, i.e., 

𝑉𝑗,𝑡 = 1, when a filling line j is used in time period t. In particular, constraints (4.7) ensure 
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that a filling line j is utilized in time period t, if at least one product i is processed in this 

line and time period. Furthermore, constraint set (4.8) force the unit utilization variable 

to take a value of 0, in case no product is processed in that particular line and time period 

t.  
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Sequencing and timing constraints 

The binary variable 𝑋𝑖 ,𝑖′ ,𝑗,𝑡 is introduced to define the immediate precedence 

relation between two products i and i’ in line j and time period t. Moreover, we employ 

the binary variables 𝑊𝑖,𝑗,𝑡
𝐹  and 𝑊𝑖,𝑗,𝑡

𝐿 , which define the first and last product being 

processed in line j and time period t accordingly. Constraints (4.9) and (4.10) guarantee 

that if a product is processed in filling line j and time period t (𝑌𝑖,𝑗,𝑡
2 = 1), it will have at 

most on predecessor and one successor. In case product i is processed first in line j and 

time period t, then it has no predecessor and similarly if it is processed last, it has no 

successor. Finally, tightening TSP-based constraints (4.11) are introduced, which specify 

the exact number of active sequencing variables. More specifically, they ensure that if line 

j is used in time period t, then the total number of enabled sequencing variables is equal 

to the number of products being processed minus 1. Otherwise, all sequencing variables 

for that specific line and time period are forced to zero. 

The timing considerations are imposed by the next two constraints. Constraint set 

(4.12) guarantees that the filling process for a product i’ that is processed right after 

product i, must be completed after the completion of product i plus the required 

processing and changeover time. The constraint is formulated as a big-M constraint, 

meaning that when the succession relation is absent (𝑋𝑖 ,𝑖′ ,𝑗,𝑡 = 0), then the constraint 

becomes inactive. The big-M parameter used is ω, which corresponds to the daily time 

availability of each filling line. In this particular study this is assumed to be 24 hours. 

Furthermore, constraints (4.13) are employed to ensure that the filling process for each 

product is completed after the required processing time.  
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Sequencing constraints between adjacent periods  

In order to model changeover operations between processes that take place in 

adjacent periods, we introduce binary variables 𝑋̅𝑖′ ,𝑖,𝑗,𝑡. Constraints (4.14) and (4.15) 

state that this variable is active only for the products i’ that are processed first in line j 

and in time period t and products i that are processed last in line j and time period t-1. 

Furthermore, continuous, and positive variables 𝑈𝑗 ,𝑡 and 𝑈𝑗 ,𝑡 are introduced, to represent 

time fractions of changeover operations between adjacent periods. Constraints (4.16) are 

imposed to facilitate the proper incorporation of these newly introduced variables in the 

model. Assume there is changeover that starts in period t-1 and finishes in period t. Then 

the fraction of the changeover operation that is performed in time period t-1 is 

represented by𝑈𝑗 ,𝑡−1, while the time fraction of the changeover that takes place in time 

period t is modelled by 𝑈𝑗,𝑡. Of course, the addition of these times must equal the total 

changeover time 𝛾𝑖,𝑖′ ,𝑗.   
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Time availability constraints 

Constraints (4.17) bound the operations in a filling line, based on the available 

production time. In particular, the summation of the changeover times, either within the 

same time period or between adjacent time periods, and the total processing time of all 

products being processed, must be less than the total available production time of the 

line. Note that all sequencing constraints are specified only for those subperiods that 

belong to the planning and scheduling sub-horizon (𝑡 ∈ 𝑇1). 
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Lot-sizing constraints 

Finally, constraints (4.18) and (4.19) bound the production in the liquid bottling 

stage based on the given processing rates for each product and the available daily 

production time for each line. Note that in contrast to the timing and sequencing 

constraints, lot-sizing constraints are constructed for all time periods of the given 

horizon.  
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Objective 

The overarching goal of the optimization problem is to minimize the total 

production costs, which is modelled by three cost terms, inventory, backlog costs and 

changeover cost. The changeover cost term is only defined for the subperiods of the 
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planning and scheduling horizon (𝑡 ∈ 𝑇1) since sequencing decisions are considered only 

for these time periods.  

1'

, ', ,, , , ', , ', ,
', ' ( )

( ) ( )
i i

i i j ti i t i i t i i j i i j t
i t i t Ti i i j J J

minimize

S B X X  
  

 +  + +       (4.20) 

4.3.2 MILP-based solution strategy 

In the previous subsection, we presented a new MILP model for the two-stage 

planning and scheduling problem of beer production facilities. Despite the efficiency of 

the presented model, the direct application of commercially available MIP solvers 

requires large computational effort, that may lead to increased solution times and 

suboptimal production plans. This is especially noticeable when dealing with real-life 

industrial applications, since brewery facilities are characterized by numerous 

fermentation/maturation tanks, filling lines, liquids, and final products. Consequently, 

the industrially-sized problems result in intractable case studies, which is unacceptable, 

since the developed solution method must always propose a production plan, even if it is 

suboptimal. Moreover, the industry works on a very tight schedule, therefore strict time 

limitations are imposed to any proposed solution. To ensure the viability of the proposed 

method as a computer-aided tool that can be a part of the any facility’s IT infrastructure, 

it must provide solutions in computational times accepted by the industry. Thus, to satisfy 

these prerequisites a decomposition strategy is employed that guarantees the generation 

of a near-optimal production plans and reduces the combinatorial complexity of the 

optimization problem. A two-step decomposition technique, consisting of a constructive 

and an improvement step, is proposed. In the first part, an initial good solution is 

promptly generated, while in the second part an iterative method is used to improve the 

initial solution. The following subchapters describe the developed solution algorithm in 

detail. 

4.3.2.1 Constructive step 

In order to generate a feasible and good initial solution, a spatial decomposition 

approach is introduced, where the two production stages are considered independently. 
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Main goal of this method is to disaggregate the binary decisions of each stage, t hus 

decrease the complexity of the initial model. We end up with two MILP-subproblems, one 

for Stage 1 (GEG_S1) and one for Stage 2 (GEG_S2), which are solved in that order. More 

specifically, GEG_S1 is solved to determine the decisions related to the 

fermentation/maturation tanks (in which tank will the liquids be prepared, when they 

are going to be ready and the corresponding amount that will be ready during the given 

horizon). Then this information is used in GEG_S2 to optimize the planning and 

scheduling decisions of the filling lines and finally generate the production plan for the 

whole process. The order in which the models are solved (first for Stage 1 and then for 

Stage 2) has been decided since the alternative (first GEG_S2 and then GEG_S1) could 

potentially lead to infeasibilities. This may occur due to an overestimation in the capacity 

of resources of the first stage. The productions plans for the filling lines generated by 

GEG_S2 are inapplicable in case the required amount of ready liquid exceeds the available 

capacity of the tanks in the first stage. On the other hand, this is not an issue in the 

suggested solution strategy since Stage 2 is more flexible than Stage 1. Due to the natural 

flow of material in the problem at hand and the capability of storing or backlogging final 

products, the filling lines can always adapt to the production plans of the 

fermentation/maturation tanks. This is crucial since the proposed solution method and 

possible future core of a computer-aided tool must ensure the generation of production 

plans and schedules for any possible case that could occur in the industrial facility. So, the 

constructive step is further split into two steps. The first one focusing on Stage 1 and the 

second on Stage 2. 

Sub-step 1 (Stage 1) 

To develop the model for the liquid preparation stage, we utilize a subset of the 

constraints from model GEG. Despite our emphasis on the first stage, we must also 

consider some of the constraints related to the liquid bottling stage. It is essential to 

include this information in order to avoid the generation of bad production plans that 

would lead to increased inventory and backlogging costs. If we ignore the incorporation 

of this information in the model, we could even end up to infeasible production plans. For 

example, if we do not consider the processing capability of the filling lines, then the model 

could impose a tank filling plan that prepares an amount of liquid that overwhelms the 

filling lines. So, the tanks could not be emptied in time and could not be ready for the 
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initiation of the fermentation/maturation process of the next batch, thus making the 

generated plan infeasible. 

The goal of this model is to determine the tank filling operations by minimizing 

the potential inventory and backlogging costs (4.21). Constraints (4.1) – (4.3) are 

included to ensure that the operational constraints for the first stage are considered. 

Constraint set (4.4) must be incorporated in the model to properly model the interaction 

of liquid between Stage 1 and Stage 2. Furthermore, constraints (4.5) are necessary in 

order to monitor the inventory and backlog levels based on the given demand and 

optimized production. Finally, constraints (4.18) and (4.19) are responsible for providing 

the capacity information of the filling lines, in order to avoid infeasible solutions. The 

optimized planning decisions for the tanks, in particular the time period in which each 

liquid l gets ready in tank o and time period t (𝑌𝑜,𝑙,𝑡
1 ) and the corresponding amount (𝐿𝑜,𝑙,𝑡

𝑃 ), 

are saved in parameters 𝑌̂𝑜,𝑙,𝑡
1  and 𝐿̂𝑜,𝑙,𝑡

𝑃  respectively, to be later used in the second sub-

step of the constructive step.  

GEG_S1 

, ,( )i i t i i t
i t

minimize

S B  +      (4.21) 

. . s t  

(4.1) - (4.5), (4.18), (4.19) 

Sub-step 2 (Stage 2) 

In the next step, the proposed method solves model GEG_S2 for the second stage 

considering the solution of GEG_S1. In particular, it receives the optimized decisions that 

determine when a liquid gets ready and the respective amount. This information is 

respected in the model by incorporating constraints (4.22) and (4.23). More specifically, 

constraint set (4.22) ensures that a liquid gets ready only at the time imposed by the 

solution of the first sub-step (𝑌̂𝑜,𝑙,𝑡
1 = 1) and guarantees that the capacity limitations of 

the tanks are not violated. Note that the binary decision for the timing of the filling plan 

is fixed to be equal to the solution given by the previous step (𝑌𝑜,𝑙,𝑡
1 = 𝑌̂𝑜,𝑙,𝑡

1 ). On the 

contrary the amount that gets ready is reoptimized in this step to increase the flexibility 
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of the proposed method. Of course, the respective non-negative variable is lower 

bounded by the solution of the previous step, so that the tank filling plans generated by 

GEG_S1 are respected. Additionally, constraints (4.23) guarantee that the tank will be 

empty and ready to receive the liquid and that the liquid will solely occupy the tank 

during the fermentation/maturation process. Furthermore, constraint (4.4) from model 

GEG is added to ensure that a production in the filling lines occurs only if there is ready 

liquid available. Moreover, we include all constraints related to the second stage (4.5) - 

(4.19). Finally, the objective of the model is to minimize the total production cost 

(inventory, backlog, and changeover costs). 

GEG_S2 
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 (4.5) - (4.19)  

4.3.2.2 Improvement step  

An iterative method is used to further improve the initial feasible solution 

generated in the constructive step. A number of improvement operators based on the fix-

and-optimize heuristic are introduced, similar to the approach proposed by Baldo et al. 

(2014). The main idea of the fix-and-optimize heuristic is to define subsets of the model’s 

binary variables, relax and re-optimize them, in the search for a better solution. Thus, two 

disjunctive subsets of the model’s binary variables 𝐵𝑣  are generated. The first one defines, 

which binary variables are relaxed 𝐵𝑣
𝑅, and the second denotes the subset of binary 

variables whose values remain fixed 𝐵𝑣
𝐹 . As a result, an MILP subproblem is created that 

considers only a small portion of the initial problem. Therefore, each subproblem can be 
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solved to optimality in relatively small CPU times. In case the objective of the new solution 

is better, than the best solution found, the binary variables are updated, otherwise, the 

best solution found so far is kept. Note that all continuous variables are relaxed since they 

do not significantly increase the complexity of the model. This procedure is repeated 

through an exhaustive iterative approach that ensures that all subsets of binary variables 

are visited. A runtime limit is set to avoid prohibitive computational times that would 

constitute the application of the method impractical. We use the model presented in 

section 4.3.1, in order to address the integrated planning and scheduling problem of the 

whole production process.  

Algorithm. Pseudocode of fix-and-optimize heuristic 

Given the initial solution of the constructive step 𝑆𝐶  with objective value 𝐹(𝑆𝐶) 

Define the number of iterations required to visit all subsets (k) 

Define the computational limit (limit) 

𝑖𝑡𝑒𝑟 = 0 

𝑆𝑏𝑒𝑠𝑡 = 𝑆𝐶  

While (𝐶𝑃𝑈 ≤ 𝑙𝑖𝑚𝑖𝑡 𝑎𝑛𝑑 𝑖𝑡𝑒𝑟 ≤ 𝑘) do 

 k=k+1 

 Define subsets 𝐵𝑣
𝑅 and 𝐵𝑣

𝐹 according to defined rules  

 Solve generated MILP-subproblem (𝑆𝑛𝑒𝑤)   

 If (𝐹(𝑆𝑛𝑒𝑤) < 𝐹(𝑆𝑏𝑒𝑠𝑡)) then 

  Update binary variables  

  𝐹(𝑆𝑏𝑒𝑠𝑡) = 𝐹(𝑆𝑛𝑒𝑤) 

 end-if 

end-while 

 

Four improvement operators based on the aforementioned heuristic framework 

are employed. These operators are differentiated by the way they partition the problem’s 

binary variables to form the various MILP-subproblems that will be solved iteratively. 

The rules used to define the subsets of the fix-and-optimize heuristic are based on 

temporal and/or spatial decomposition of the initial problem.  

The fix-and-optimize forward (FO_F) operator employs a time decomposition 

scheme that starts at the beginning and ends at the end of the planning horizon (Figure 
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4.5a). In each iteration the binary variables of both stages are released for a specific 

number of time periods. In other words, the production plan is reoptimized for a partition 

of time. The length of this partition is equal to the maximum duration of fermentation and 

maturation of the involved liquids 𝑚𝑎𝑥{𝜆𝑙 }. The algorithm then moves to the next time 

partition. The step of this movement is equal to the minimum duration of the 

fermentation and maturation process  𝑚𝑖𝑛{𝜆𝑙 }. So, in case 𝑚𝑎𝑥{𝜆𝑙 } ≠ 𝑚𝑖𝑛{𝜆𝑙 } 

overlapping occurs, meaning that in each MILP-subproblem we include some of the 

decision variables of the previous iteration. This procedure continues until all variables 

have been revisited and reoptimized. The fix-and-optimize backward (FO_B; Figure 4.5b) 

operator is similar to FO_F, with the only difference being that the iterative procedure 

starts at the end of the horizon and finishes at the beginning.  

The next two improvement operators FO_F21 (Figure 4.5c) and FO_B21 (Figure 

4.5d) employ a bi-level temporal and spatial decomposition strategy. Their main 

difference to the first two operators is that in each iteration the binary variables of only 

one stage are relaxed, in particular first the ones of Stage 2 and then the ones of Stage 1.  

Figure 4.6 illustrates a general overview of the proposed solution strategy for the 

optimal production planning and scheduling problem for beer production facilities. First 

an initial good and feasible solution is constructed, by disaggregating the decisions of the 

two processing stages. GEG_S1 is employed to solve the problem of Stage 1, and then 

sends the relevant information to GEG_S2, which in turn is solved to consider the second 

stage and generate the solution of the constructive step. This solution is then fed to the 

improvement step, where a set of improvement operators based on the fix-and-optimize 

heuristic are applied. As a result, we can consider large-scale industrial cases and 

generate near-optimal production plans in reasonable computational times. 

4.4 Computational analysis 

In this section numerous case studies are examined in order to evaluate the 

efficiency of the proposed model and solution strategy. Moreover, we illustrate the 

applicability of the developed solution method in real-life situations by considering a 

large-scale, real-life industrial problem of a brewing facility in Greece. In all presented 

case studies, the planning horizon is 42 days, while the scheduling decisions is a week. All 
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models and solution algorithms were developed using the GAMS 31.1 interface (Brooke 

et al. 1998) and all problem instances were optimally solved using CPLEX 12.0 in a PC 

equipped with an Intel Core i7 @3.4GHz CPU and 16 GB of DDR4 RAM. 

 

 

Figure 4.5: Fix and optimize improvement operators 
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Figure 4.6: Overview of proposed solution strategy 

4.4.1 Evaluation of the proposed MILP model 

The developed MILP model (GEG) is used to solve numerous test case studies that 

represent small to medium integrated planning and scheduling problems of brewing 

facilities. In order to evaluate the quality of the generated production plans, we compare 

the solutions generated by our model to the ones extracted by the MILP model of Baldo 

et al. (2014), which to our knowledge is the only model found in literature that can tackle 

the optimization problem at hand. From now on we will use the name BSAM to refer to 

that model. A total of 28 case studies have been created, which can be categorized in 

seven groups based on the number of involved items of the optimization problem (i.e., 

lines, tanks, liquids, and products). The facility characteristics of each type of case study 

are displayed in Table 4.1. For each group four alternative case studies are created, that 

are differentiated in terms of the rest of the production characteristics, e.g., demand 

mixture (size of orders and due dates), processing times changeover times and cost term 

coefficients. In order to create realistic case studies, we employ the methodology of Baldo 

et al. (2014). The specific data for each case study are randomly generated by a set of 

possible values, that simulate production parameters found in real-life breweries. We 

now present the interval of values used in the considered case studies. The demand for 

final products in number of items is in the interval [60, 256710] and the due date of each 

product is randomly set within the given horizon. Each final product requires an amount 
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of liquid  𝑟𝑙,𝑖 that is chosen from the set {1.98, 4.00, 4.80, 5.00, 6.00, 6.00, 6.60, 7.92, 12.00, 

17.82, 20.00, 30.00, 50.00}. Processing rates of filling lines range between 0.028  

units/second and 9.6 units/second, while the fermentation/maturation process may last 

from 5 to 21 days. We assume that all filling lines can process every final product. 

Regarding the changeover times, we randomly equate them to the following values {30, 

40, 45, 60, 75, 90, 100, 120, 150, 160, 165, 180, 195, 210, 240, 260, 300, 380, 480, 900}. 

Furthermore, the unitary inventory cost coefficient (𝜎𝑖) of each product over a single time 

period are defined from the set [0.012,0.45], while the backlog cost coefficient (𝛽𝑖) is set 

to be one hundred times the inventory cost coefficient, since the priority is to meet the 

customer demands prior to the given due date. In order to define changeover cost 

coefficient, we multiple the respective changeover time with a factor in the range of [10, 

100]. Finally, the capacity of the fermentation/maturation tanks is defined based on the 

specific production characteristics of each problem instance. For more details regarding 

the generation or realistic case studies refer to Baldo et al. (2014). 

Table 4.1: Description of examined case studies 

 Tanks Lines Liquids Products 

Cases 1.* 3 1 1 5 

Cases 2.* 3 1 2 10 

Cases 3.* 2 2 2 10 

Cases 4.* 4 2 3 15 

Cases 5.* 8 2 3 15 

Cases 6.* 8 3 4 20 

Cases 7.* 10 4 5 25 

 

We employ our model (GEG) to optimally solve the 28 test instances and compare 

the extracted production plans to the solutions generated by BSAM. For both models a 

computational limit of half an hour is set. Table 4.2 summarizes the results of this 

analysis. More specifically, the objective value for each case study, the computational time 

required, and the optimality gap of the solution is provided for both models. Finally, the 
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improvement achieved using the suggested MILP model is also reported and was 

calculated based on the following equation: 

100
−

= BSAM GEG

BSAM

S S
Improvement

S
 

An improved solution is generated in most cases, proving the superiority of the 

proposed model, which is especially notable in the larger problem instances (5.*, 6.* and 

7.*). There are very few cases in which our model was not able to provide an improved 

solution, e.g., 4.C and 7.B, however, the solution generated by BSAM in these cases is only 

marginally better (<5%). In contrast, the utilization of the developed mathematical 

model, can immensely reduce the production cost. Characteristically, an improvement 

varying from 10% to 55% is accomplished in many instances. As expected, the larger the 

problem size the more difficult it is and thus a larger potential for improvement exists. It 

is interesting to note that even in small-sized cases, where the BSAM solution reaches its 

best theoretical solution (0% gap), the proposed model can further reduce the objective 

value. Another important find of this analysis is that the proposed model is much faster 

than BSAM. In the smaller case studies (1.* - 3.*), GEG achieves similar or better quality 

solutions using only a fraction of the computational time required by BSAM. For larger 

problem instances, both models reach the computational limit, except for case 5.C, and in 

nearly all of them GEG produces a better solution. However, the results also show the 

limitations of the proposed model. With the exception of small test instances (1.* - 3.*), 

the solution displays a very large integrality gap, meaning that it is much worse than the 

theoretically best solution. Thus, a monolithic approach does not suffice, and the 

development of a sophisticated solution strategy is necessary. 

Table 4.2: Comparison between BSAM and GEG models 

 BSAM GEG  

Case Objective 
CPU 

 (s) 

GAP 

(%) 
Objective 

CPU  

(s) 

GAP  

(%) 

Improvement 

(%) 

1.A 11177 13.3 0 10067 11.8 0 9.9 

1.B 5083 <1 0 5080 <1 0 0.1 

1.C 10232 0.15 0 10234 0.15 0 0 

1.D 16885 0.5 0 16555 0.2 0 1.9 
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2.A 247461 1800 20.8 203674 225 0 17.7 

2.B 59074 1800 52.5 52274 600 0 11.5 

2.C 14874 1800 0.4 14662 224 0 1.4 

2.D 1060844 1800 18.3 929332 950 0 12.4 

3.A 2825319 1443 0 2336326 3.7 0 17.3 

3.B 467805 310 0 467325 104 0 0.1 

3.C 80731 444 0 80731 144 0 0 

3.D 2657138 484 0 2656117 131 0 0 

4.A 2592330 1800 50.5 2122710 1800 31.1 18.1 

4.B 1112320 1800 62.2 1066094 1800 53.9 4.2 

4.C 24518 1800 70.5 25643 1800 61.4 -4.6 

4.D 4628488 1800 83.1 3401497 1800 78.8 26.5 

5.A 324848 1800 91.8 200925 1800 80.6 38.1 

5.B 32325 1800 37 32491 1800 29.5 -0.5 

5.C 45363 24.8 0 46034 6 0 -1.4 

5.D 506431 1800 3.5 309656 1800 1.8 38.9 

6.A 2546127 1800 65.7 1693735 1800 47.4 33.5 

6.B 31386 1800 21.7 28298 1800 8.7 9.8 

6.C 18467 1800 57.3 16744 1800 61.4 9.3 

6.D 2193641 1800 96.6 1351917 1800 93.88 38.4 

7.A 6916373 1800 32.5 5541703 1800 16 19.9 

7.B 440177 1800 94.3 451862 1800 93.9 -2.6 

7.C 339429 1800 58.3 154366 1800 6.8 54.5 

7.D 10446975 1800 100 6858949 1800 91.1 34.3 

 

The combinatorial complexity of an MILP model is mostly affected by the number 

of binary variables generated. Figure 4.7 illustrates this metric for both GEG and BSAM 

models. Obviously, the proposed model requires fewer binary variables. In the largest 

cases, the difference in the number of binary variables between the two models is 

significantly increased. In particular, up to 30% fewer binary variables are used in the 
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developed model. Consequently, it is generally faster and can generate better solutions in 

the same computational time. 

 

Figure 4.7: Reduction of number of binary variables in the developed model 

4.4.2 Evaluation of construction heuristic 

The analysis of the previous subsection has uncovered both the advantages and 

limitations of the proposed model. Therefore, we developed a solution strategy based on 

that model, in order to address large-scale problems. As described in subsection 4.3.2, 

this method consists of a constructive and an improvement step. It is crucial to promptly 

get a good initial solution in the constructive step, in order to improve the performance 

of the developed solution algorithm. This would not be possible if we just applied the 

developed model, since it lacks computational efficiency, especially when we deal with 

real-life situations. Instead, we employed a spatial decomposition approach, that consists 

of the models GEG_S1 and GEG_S2 that we presented in subsection 4.3.2.1. In this 

subsection we test how does this approach compare to the monolithic approach of 

directly applying model GEG. In total we consider seven cases of divergent complexity, 

which are a subset of the test instances we introduced in the previous subsection. Three 

approaches are followed in order to solve these cases. In the first two we employ the 

monolithic approach (GEG) using different computational time limits, 600 seconds, and 

1800 seconds accordingly, while in the third we utilize the suggested decomposition 
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approach with a time limit of 600 seconds. To compare the three approaches, we use the 

following expression: 

100
Found Best

R
Found

−
=   

The best solution found (Best) is compared to the solution generated by each 

approach (Found). The better the quality of the solution is, the closer the value of R is to 

zero. Table 4.3 shows a summary of the results. We found that in small cases there is no 

difference in the quality of the solution, however the decomposition approach is able to 

generate faster the optimal production plans. This changes when we are dealing with 

medium-sized problem instances. Using the same time limit, the solution of the 

decomposition approach is always better. This effect is stronger in larger cases, were an 

improvement of up to 50% is reported. The monolithic approach cannot outperform the 

decomposition method even when we allow three times the computational time. The only 

exception is case 4.A, where the solution of the decomposition strategy is insignificantly 

worse but requires only a third of the CPU time. Conclusively, it is shown that the 

decomposition strategy employed can successfully improve the solutions generated in 

the constructive step.  

Table 4.3: Improvement using construction heuristic 

 Monolithic (GEG)  Decomposition  

(GEG_S1 + GEG_S2) 
 limit 600s limit 1800s 

Case R (%) CPU (s) R (%) CPU (s) R (%) CPU (s) 

1.A 0 12 0 12 0 9 

2.A 0 225 0 225 0 57 

3.A 0 4 0 4 0 1 

4.A 5.28 600 0 1800 1.79 600 

5.A 10.31 600 2.06 1800 0 600 

6.A 16 600 8.23 1800 0 600 

7.A 52.7 600 41.62 1800 0 600 
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4.4.3 Evaluation of the developed MILP-based solution strategy 

In subsection 4.3.2.2 we introduced four improvement operators (FO_F, FO_B, 

FO_F21 and FO_B21), based on the fix-and-optimize heuristic, that are used to further 

enhance the quality of the initial solution. Preliminary tests on numerous case studies 

were done to evaluate the different operators. For each test we generated an initial 

solution based on the proposed constructive heuristic and then we applied separately 

each operator and reported the improvements achieved. The tests showed that the best 

performer is FO_B, followed by FO_B21, FO_F and finally FO_F21. Based on this 

information we create two improvement schemes, that differentiate in the order in which 

the improvement operators are applied. In the first, denominated IMP.A, we employ a 

greedy approach where the different operators are applied from best to worst (FO_B -> 

FO_B21-> FO_F -> FO_F21). The second is denominated IMP.B and the reverse order is 

followed. To evaluate the two improvement schemes, 10 large-scale problem instances 

are generated. The characteristics of these case studies are as follows. The number of 

fermentation tanks is in the range [20, 30], while five filling lines comprise the liquid 

bottling stage. Depending on the considered case, 35 to 40 products, requiring 5 to 7 

different liquids, are to be processed. The procedure of generating each problem’s 

parameters is the same as the one described in subsection 4.4.1. For each case study we 

have used the two alternative improvement schemes and the monolithic approach. 

Moreover, two time limits (one hour and two hours) were considered for each method. 

Consequently, six different runs were done for each case study. Note that the 

improvement schemes are applied to the initial solution provided by the constructive 

heuristic. Therefore, the available computational time must be shared between the two 

steps of the proposed solution strategy. Preliminary tests showed that better results were 

achieved, when a small amount of CPU time is allocated to the generation of the initial 

solution. Therefore, a time limit of 450 seconds is set for the constructive step. The rest 

of the available CPU time (3150 or 6750 seconds depending on the test instance) is used 

in the iterative improvement step. In Table 4.4 a summary of the results is portrayed. The 

relative quality of each solution is reported using the R value described in the previous 

subsection. The solutions generated by any of the two proposed methods is much better 

than the solutions obtained by the MILP model, even when we use twice the 

computational time. It should be underlined that on average the initial solutions provided 
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by the constructive step are better than the ones obtained by the model using any time 

limit. Note that the constructive heuristic runs only for a very small fraction of time 

compared to GEG. On average IMP.B delivered the best solutions, however in some case 

studies the application of IMP.A resulted to production plans of better quality. More clear 

conclusions can be drawn when a time limit of two hours is employed. Here IMP.B is 

clearly the better approach, since it provides the best solution in nearly all case studies. 

Conclusively, both solution strategies seem promising, since they outperform the direct 

application of CPLEX on the MILP model (GEG), on every large-scale problem. Thus, the 

results indicate that the proposed methods can successfully address real-life industrial 

problems. We note that as the runtime limits increase, the performance of both methods 

is improved. Finally, the order of applying the improvement operators affects the 

performance of the improvement step. In particular, better solutions are extracted in 

most cases, when we apply the operators from worst to best.  

Table 4.4: Comparison between the MILP model and the proposed solution strategy 
approaches for large-scale case studies 

 Limit (3600s) Limit (7200s) 

Case 
GEG 

(%) 

Constructive 

(%) 

IMP.A  

(%) 

IMP.B  

(%) 

GEG 

(%) 

IMP.A  

(%) 

IMP.B  

 (%) 

L1 85.4 68.3 22 29.3 49.7 19.3 0 

L2 39.3 18.6 7.4 7.4 39.3 0 1.8 

L3 55.7 27.7 12.2 10.5 38.2 11.3 0 

L4 52.5 33.3 32 4.9 49.6 17.8 0 

L5 18.4 3.5 0.4 0.4 15.8 0 0.3 

L6 68 62.7 47.4 19.7 43.7 27.9 0 

L7 73.7 40.9 1.6 23.1 50.9 0 2 

L8 55.7 29.2 4.3 3.2 9.5 2.3 0 

L9 67.1 19.2 2.1 3 54.8 0.7 0 

L10 72.7 85.7 41 2.3 40.5 25.9 0 

Average 58.85 38.91 17.04 10.38 39.2 10.52 0.41 
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4.4.4 Industrial application 

The applicability of the proposed solution strategy in real-life industrial problems 

is tested in this subsection. In particular, a case study provided by a brewery located in 

Northern Greece is considered. The facility under consideration consists of 31 

fermentation/maturation tanks and two filling lines. The tanks are divided in tree types, 

small, medium, and large, depending on their capacity. Regarding the filling lines, the first 

one can process all products that use aluminium cans or glass bottles, while the second 

only produces final items that use kegs. A total of nine products that require two types of 

liquids are produced in the facility. However, multiple orders for each final product that 

usually have different amounts and due dates must be satisfied in the considered horizon, 

thus increasing the complexity of the problem. The planning horizon is set to six weeks, 

while the optimal scheduling decisions are required over a weekly horizon. The plant 

operates throughout the clock, so there is a 24/7 availability for all processing units. Due 

to confidentiality reasons, we cannot share any processing data and therefore we also 

cannot compare the optimized production plans with the ones generated by the 

production engineers. In the considered problem instance, a total of 36 orders must be 

met. The proposed solution method is employed to generate optimal production plans 

that minimize the total production costs (inventory, backlog, and changeover) of the 

facility. In the improvement step, we apply the operators from worst to best (IMP.B 

approach), due to its superior performance. The chosen computational limit is set to 2 

hours. 

Figure 4.8 illustrates the Gantt chart of the optimized solution for each 

fermentation/maturation tank. Each block signifies the fermentation/maturation 

process of a liquid that takes places in a tank. Note that by the end of the planning horizon 

no fermentation process occurs. This is justified by the limited considered horizon. The 

fermentation/maturation process requires a total of 21 days, consequently, no liquid can 

be prepared in the available time, therefore no additional process can start. 

In Figure 4.9 the Gantt chart of the filling lines is portrayed. Each coloured block 

denotes that a filling process for a specific order is taking place. At a first look one would 

say that there is no need for incorporating this stage and that the production bottleneck 

is the fermentation/maturation stage. It is true that the results, underline an overdesign 

issue of the filling lines in the examined facility. However, they must be included in the 
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optimization problem for two reasons. Firstly, the changeovers that take place in the 

liquid filling stage must be incorporated since they induce significant costs either due to 

the loss of production time or the due to the resources required for cleaning operations 

e.g., water and manpower. Moreover, there must always be available filling lines for the 

tanks to empty the ready liquid and be refilled to initiate the next fermentation process. 

It must be ensured that the capacity of the filling lines is never violated, otherwise no 

feasible production plan can be achieved for the fermentation tanks. 

 

 

Figure 4.8: Gantt chart of the fermentation/maturation tanks 

 

 

Figure 4.9: Gantt chart of the filling lines 
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Finally, Figure 4.10 depicts the amount of stored ready liquid in a representative sample 

of the fermentation tanks. It can be observed that the tank capacity limitations are 

respected throughout the planning horizon. 

 

Figure 4.10: Amount of liquid stored in a representative sample of the fermentation 
tanks 

4.5 Conclusions 

In this chapter a new MILP-based solution strategy is proposed for the optimal 

production planning and scheduling problem of breweries. The overall production 

procedure consists of a batch (liquid preparation) and a continuous (liquid bottling) 

processing stage. Numerous parallel non-identical units such as fermentation/tanks and 

filling lines are available in each stage, while a large number of orders must be satisfied 

as close as possible to their specified due dates. A salient characteristic of this process are 

the very long lead times originating from the large processing time required for the 

fermentation/maturation process. Therefore, a long planning horizon must be 

considered, resulting to a very difficult optimization problem. In order to efficiently 

address the problem, a new MILP model is developed based on the immediate precedence 

framework and relying on a mixed discrete-continuous time representation. A 

comprehensive analysis demonstrated that the developed model performs superior to 

the only other suitable model currently available in literature. However, the direct 

application of the MILP model is limited to small problem instances. Therefore, an 

optimization-based solution strategy is introduced, in order to tackle large-scale case 

studies that simulate the industrial reality. The suggested algorithm consists of a 
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constructive step, that utilizes a spatial decomposition heuristic to propose an initial good 

solution and an improvement step, where four operators based on the fix-and-optimize 

heuristic are applied to achieve high quality solutions. The proposed solutions strategy is 

successfully applied in a real-life industrial problem of a Greek brewery. Optimized 

production plans that minimize the total production costs are generated in low CPU 

times. The suggested optimization framework can be the core part of a computer-aided 

tool, that will facilitate the decision-making process in any brewing facility of arbitrary 

complexity. As a result, near-optimal production plans can be promptly generated, thus 

leading to significant economic benefits and to the overall improvement of the industry’s 

competitive advantage.  

Nomenclature 

Indices 

,i i I  products to be processed within the planning horizon 

,l l L  liquids required for the final products 

o O  fermentation/maturation tanks 

j J  filling lines 

,t t T  set of time periods for the whole planning horizon 

 

Sets 

1
T  subset of time periods that comprise the first part of the planning horizon  

2
T  subset of time periods that comprise the second part of the planning horizon  

jI  mapping set defining filling lines j that can process product i  

iJ  mapping set defining products i that can be processed by filling line j 
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lI  mapping set defining products i that are made of liquid l 

 

Parameters 


l
 fermentation/maturation time required for liquid l 


o

 maximum capacity of fermentation/maturation tank o 

,


i l
 amount of liquid l required for each unit of product i 

,


i j
 processing rate of product i in filling line j 

, ,


i i j
 necessary changeover time between products i and i’ in filling line j 

,


i t
 demand of product i in time period t 


i

 inventory cost coefficient 


i

 backlog cost coefficient 

, ',


i i j
 changeover cost coefficient 

  available processing time in each time period 

M  
big-M parameter used for the lot-sizing constraints of the liquid preparation 

stage 

 

Variables 

Binary 

Stage 1 

1
, ,o l tY  =1 when liquid l gets ready in tank o in time period t 

  

Stage 2 

2
, ,i j tY  =1 when product i is processed in filling line j in time period t 

,j tV  =1 when filling line j is utilized 
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, ,
F

i j tW  =1 when product i is processed first in filling line j in time period t 

, ,
L

i j tW  =1 when product i is processed last in filling line j in time period t` 

, , ,i i j tX  
=1 when product i is processed right before product i’ in line j and time 

period t 

, , ,i i j tX  
=1 when product i is the last to be processed in line j period t and product i’ 

is the first to be processed in the same line in time period t+1 

 

Continuous 

Stage 1 

, ,

P

o l t
L  amount of liquid l that gets ready in tank o in time period t 

, ,

S

o l t
L  amount of stored liquid l that gets ready in tank o in time period t 

  

Stage 1+2 

, , ,

T

o j i t
L  amount of liquid l being transferred from tank o to line j in time period t 

  

Stage 2 

, , ,o j i t
Q  number of items i that use liquid from tank o and are processed in line j in 

time period t 

, ,i j t
C  completion time of the filling process for product i in filling line j and time 

period t 

,j t
U  

time within period t used for a changeover operation that is completed in 

the next period in filling line j 

,j t
U  

time within period t used for a changeover operation that started in the 

previous period in filling line j 

,i t
S  inventory level of product i in time period t 

,i t
B  backlog level of product i in time period t 



 

Chapter 5  

 

Optimal Planning of the COVID-19 

Vaccine Supply Chain 

5.1 Introduction 

The focus of this thesis so far is on the optimization of production planning and 

scheduling on a large variety of industrial problems. This chapter addresses an emerging 

supply chain optimization problem related to the COVID pandemic. Production planning 

and scheduling constitute the most important decision-making procedure in 

manufacturing, which is an integral part and considered as a critical phase of any supply 

chain. Furthermore, the mathematical frameworks for production planning and supply 

chain optimization illustrate significant similarities. So, in this chapter, we broaden the 

field of our research by extending the knowledge acquired in chapters 2 to 4 to study a 

new and challenging supply chain planning problem emerging from the COVID-19 

vaccination. 

More specifically, this chapter is considered with the optimal short-term planning 

of the COVID-19 supply chain by proposing a novel MILP-based framework. Tactical and 

operational decisions regarding the inventory levels in the central hubs and the 

vaccination centres, the flows between the various locations of the distribution network, 

the fleet requirements, the scheduling of citizens’ vaccinations, as well as, staffing of the 

vaccination centres are considered. The developed model cleverly addresses key issues 

of the COVID-19 supply chain, like storage and supply limitations, multiple cold storage 

technologies, demanding vaccination targets, transportation lead-times and vaccine 

perishability. Goal of the optimization is the minimization of cost including, storage costs, 

fleet rental, fuel consumption, drivers’ wages, cost of wasted doses and possible needs in 

additional healthcare personnel. An optimization-based solution strategy is introduced 

to address large-scale realistic case studies and is successfully applied to a case 

simulating the Greek COVID-19 supply chain. Furthermore, a rolling-horizon technique is 
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incorporated to replan the supply chain, in case of demand fluctuations originating from 

citizens that reschedule their vaccination appointment at the last minute or do not arrive 

on a scheduled appointment.  

5.2 Problem Statement 

The problem addressed in this chapter considers the optimal short-term planning 

of the COVID-19 VSC, as well as the optimal planning of appointments in the vaccination 

centres, in order to minimize the total costs. Figure 5.1 illustrates a generic 

representation of the underlying network. The supply chain consists of three echelons: 

the manufacturing plants with a known maximum production capacity, the hubs, where 

the vaccine vials are stored and transferred to the vaccination centres, where the citizens 

are vaccinated. The product (vaccines) flow is unidirectional, from the manufacturers to 

the hubs and finally to the vaccination centres. Reverse flows from the vaccination 

centres to the hubs are not allowed, while intralayer flows between the hubs or the 

vaccination centres are not considered. Finally, the vaccines are used in the vaccination 

program of the population. Planning of the appointments is considered simultaneously 

with planning the distribution of the COVID-19 vaccines. The capacity of each vaccination 

centre depends on the number of active vaccination lines. Each vaccination line operates 

in two 6-hour shifts from Monday to Saturday, and employs two health workers, one 

nurse and one doctor. The vaccination centres are closed on Sundays. To properly 

consider the low shelf-life of sensitive vaccines (5 days), a 14-day horizon is considered. 

The described problem is implemented in terms of an MILP model that relies on a daily 

discretization of the bi-weekly time horizon. Within the given horizon a specific number 

of completed appointments must be satisfied. The model distributes this number 

throughout the available time periods. As a result, optimal decisions regarding the daily 

appointments at each centre are generated, which impose the needs in healthcare 

personnel in each centre and time period. 
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Figure 5.1: COVID-19 Vaccine Supply Chain Representation 

 

A total of four vaccines simulating the different characteristics of the main 

vaccines currently used in Europe and the USA are considered in the overall vaccination 

plan and supply chain. In particular, the vaccines of Astrazeneca (A), Johnson& Johnson 

(J), Moderna (M) and Pfizer (P) are considered. Extension to more types of vaccines is 

straightforward. The hubs are equipped with all necessary cold storage technologies for 

the long-term storage of the vaccines. More specifically, deep freezers (-70oC) are 

required for Pfizer and regular freezers (-20oC) for Moderna vaccines, while simple 

refrigeration suffices for the non-mRNA alternatives (A and J). In contrast, the vaccination 

centres are only equipped with regular refrigerators. This reinforces the need for the 

proper organization of the supply chain, since mRNA vaccines, especially the Pfizer 

vaccine, cannot be maintained long-term in such conditions. Otherwise, a huge number 

of valuable doses may be spoiled, thus hindering the prompt vaccination of the citizens. 

Therefore, all perishability considerations are included in the proposed MILP model.  

A homogeneous fleet of trucks is employed to transport the vaccines from the hubs 

to the vaccination centres. The trucks are equipped with the necessary technology to 

maintain low temperatures during transportation and ensure that the cold chain remains 

uninterrupted. Vehicle routing is not considered in this study. It is assumed that in each 

time period a truck can visit a single vaccination centre and must return to the hub from 

which it started. A specific time is necessary for the transportation of vaccines between 

the echelons of the supply chain. The lead time could be easily incorporated in case a finer 

discrete time grid, e.g., hourly, was utilized, however that would lead to a huge MILP 

model, thus worsening its computational efficiency. To bypass this obstacle, it is assumed 

that the vaccines must remain for a period in every location of the supply chain. For 

example, if a quantity of vaccines is transferred in period t from the manufacturing plant 
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to a hub, then this quantity is only available to be transferred to the vaccination centres 

after period t+1. Similarly, if a quantity arrives in a vaccination centre in period t+1, this 

will only be available to be used in an appointment after period t+2.  

An important issue in VSCs is related with the wasted doses. This is especially 

relevant for perishable products like the mRNA COVID-19 vaccines. The World Health 

Organization (WHO) categorizes the wasted doses into closed vial wastage, which is 

caused by inefficiencies in the supply chain and open vial wastage, which is further 

divided into avoidable and unavoidable open vial wastage (World Health Organization 

2019). The first is attributed to immunization workers’ and include errors in patient’s 

reactions, suspected contamination, reconstitution, and excess heat. The latter refers to 

the discarded doses from multidose vials. Notice that each vial contains multiple doses, 

once a vial is firstly opened, all doses must be used within the same day, otherwise all 

remaining doses must be discarded. Closed vial wastage and avoidable vial wastage are 

included in the model based on the wastage ratios recommended by WHO. The 

minimization of the unavoidable open vial wastage is included in the objective function 

of the proposed model.  

The problem under study can be formally stated as follows. Given: 

• A known planning horizon H divided into a set of time periods 𝑡 ∈ 𝑇. 

• A set of locations 𝑖 ∈ 𝐼  with an initial storage of vaccine v 𝛼𝑖,𝑣, a wastage ratio 𝛽𝑖 

and a desired safety stock 𝜀𝑖,𝑣. Furthermore, the distance between all locations is 

given 𝜇𝑖,𝑗, as well as a minimum and maximum flow of vaccine vials between each 

pair of locations, 𝜌𝑖,𝑗
𝑚𝑖𝑛  and 𝜌𝑖,𝑗

𝑚𝑎𝑥accordingly. 

• A set of manufacturing plants 𝑓 ∈ 𝐹. 

• A set of hubs ℎ ∈ 𝐻 that can handle a maximum supply of vaccine v 𝜋ℎ,𝑣
𝑚𝑎𝑥  

• A set of vaccination centres 𝑣𝑐 ∈ 𝑉𝐶, with a maximum storage capacity 𝜃𝑣𝑐 , a 

vaccination appointment goal within the horizon 𝜁𝑣𝑐  and a number of readily 

available healthcare workers 𝜄𝑣𝑐 . 

• A set of vaccines 𝑣 ∈ 𝑉 to be distributed and a subset of vaccine types 𝑠𝑙 ∈ 𝑆𝐿𝑣, 

that are characterised by a limited shelf-life. Also given are the doses per vial of 

vaccine v 𝛿𝑣, the shelf-life 𝜆𝑣  and the cost of each dose of vaccine type 𝜉𝑣.  



Chapter 5                                           Optimal Planning of the COVID-19 Vaccine Supply Chain 

135 
 

• A set of cold storage technologies 𝑐 ∈ 𝐶 to safely store the different vaccine types 

with a given operating cost 𝜓𝑐 . Moreover, the storage capacity of each technology 

in the hubs (𝛾ℎ,𝑐) is provided. 

• The multidimensional set 𝐼𝐽𝑖,𝑗 that denotes the connectivity between the various 

locations of the supply chain. 

• The multidimensional set 𝐶𝑉𝑐,𝑣 that defines the cold storage technology required 

for every vaccine type. 

• The multidimensional set 𝐹𝑉𝑓,𝑣 which characterises the vaccines that are 

produced by each manufacturing plant.  

Determine: 

• The amount of vaccine vials that is supplied by the manufacturers at each period 

𝑃𝑓,𝑣,𝑡. 

• The transferred amounts of vials of each vaccine between the locations of the 

supply chain in each period 𝑋𝑖,𝑗,𝑣,𝑡. 

• The inventory profile in all locations and every period 𝑆𝑖,𝑣,𝑡. 

• The daily vaccination appointments in each location and period 𝐷𝐴𝑣𝑐,𝑡. 

• The vials of each vaccine type that are opened in each period 𝑉𝑈𝑣𝑐,𝑣,𝑡 and the doses 

that are used in the vaccination plan 𝐷𝑈𝑣𝑐,𝑣,𝑡 .  

• The doses that are wasted due to open vials that are not fully exploited within a 

period 𝑊𝐷𝑣𝑐,𝑣,𝑡 or due to expiration 𝑊𝐸𝑖,𝑡. 

• The number of healthcare workers required to realize the vaccination plan 𝐻𝑊𝑖,𝑡 . 

• The fleet size of trucks necessary to distribute the vaccines from the hubs to the 

vaccination centres 𝑁𝑇. 

, so that the total cost of the supply chain consisting of i) the storage costs, ii) the 

distribution costs (fuel consumption and drivers’ wages), iii) the compensation for any 

additional healthcare personnel, iv) the wasted doses and v) the rental cost of the fleet, is 

minimized.  
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5.3 Mathematical framework 

In this chapter the MILP-based mathematical frameworks that have been 

developed to deal with the optimization problem of planning the COVID-19 VSC are 

presented. A novel MILP model is presented that can generate optimal decisions for small 

to medium problems. Specific characteristics of the COVID-19 VSC such as the limited 

shelf life of the vaccines, are cleverly incorporated. Despite the efficiency of the proposed 

models, the combinatorial complexity of large nation-wide problems exceeds the 

computational capabilities of any known solver, e.g., CPLEX, therefore, a solution strategy 

based on the proposed MILP model is also investigated. 

5.3.1 MILP model 

The developed model utilizes a discrete time grid to efficiently encapsulate the 

inventory balances in the various locations of the supply chain. The constraints related to 

the material balances, inventory capacities and vaccine flows are inspired by the model 

proposed in Carvalho, Ribeiro, and Barbosa-Povoa (2019), which studies the long-term 

design and planning problem of a VSC. In contrast, this paper considers the short-term 

planning of the VSC, while taking into account the undergone vaccination plan in each 

vaccination centre. Therefore, the studied two-week planning horizon is discretized into 

14 daily time periods. Additional to the material balance, inventory capacity and flow 

limitation constraints, the proposed model introduces efficient constraints for the 

incorporation of lead time, shelf-life limitations, and the vaccination plan. All constraints 

of the model are described in detail below. To facilitate the presentation of the model, 

lowercase Latin letter are used for indices, uppercase Latin letters for variables and 

lowercase Greek letters for parameters. 

Supply constraints 

The supply limitations provided by the manufacturer are expressed by the 

following constraints. More specifically, constraint (5.1) ensures that the vials of vaccine 

v supplied by the corresponding manufacturer f (𝑃𝑓,𝑣,𝑡) throughout the considered 

planning horizon are limited by the upper bound of production (𝜋ℎ,𝑣
𝑚𝑎𝑥). Furthermore, it 
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is assumed that each manufacturer f can supply each hub h at most once per week, as 

imposed by constraint (5.2). 

, , ,
max

f v t h v
tf FV

P 


   ,h v  (5.1) 

, , 1f h t
t TW

Y


  , ,f h w  (5.2) 

Material balances 

Constraints (5.3) - (5.7) encapsulate the material balances around each location of 

the supply chain. Firstly, constraints (5.3) guarantee that the amount of a vaccine v 

transferred from a factory f to all hubs h (𝑋𝑓,ℎ,𝑣,𝑡) equals the total amount supplied by the 

factory in time period t. The next two constrains set the material balances around the 

hubs. Constraints (5.4) state that the inventory at the end of the first time period equals 

the initial inventory of the hub (𝛼ℎ,𝑣) plus the amount transferred from the factories, 

minus the amount that has been sent to the vaccination centres (𝑋ℎ,𝑣𝑐,𝑣,𝑡) and the amount 

of vials lost (𝐿𝑆ℎ,𝑣,𝑡). For all next time periods, the constraints remain the same, but 

instead of using the initial inventory, the inventory of the previous period is used. 

Similarly, constraints (5.6) and (5.7) monitor the material balances around the 

vaccination centres. Finally, constraint (5.8) calculates the vials of vaccine v lost in each 

location i and time period t, as the factor of the stored vials and the known wastage ratio 

of the location (𝜌𝑖 ).  

, , , , ,f h v t f v t
h

X P=  , ,f fv v t   

(5.3) 
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
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(5.4) 
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, , , , 1 , , , ,, , ,vc v t vc v t vc v t vc v th vc v t
h HVC

S S X VU LS−


= + − −  
, , 1vc v t   

(5.7) 

, , , ,i v t i v t iLS S =   
, ,i v t  

(5.8) 

Inventory constraints 

The following constraints are concerned with the inventory considerations of the 

supply chain. Constraint (5.9) imposes a minimum safety stock at the end of the planning 

horizon (𝜀𝑖,𝑣), which is required to ensure the future availability of vaccines in the hubs 

and the vaccination centres. The storage capacities of the various technologies in the hubs 

(𝛾𝑐,ℎ) and the vaccination centres (𝜃𝑣𝑐 ) are respected by constraints (5.10) and (5.11) 

accordingly. 

, , ,i v t i v
v v

S                 ( ),i ii vc h t T   =  (5.9) 

, , ,h v t c h
v CV

S 


                 , ,h c t  (5.10) 

, ,vc v t vc
v

S                     ,vc t  (5.11) 

Flow limitations 

A minimum (𝜌𝑖,𝑗
𝑚𝑖𝑛 ) and a maximum flow (𝜌𝑖,𝑗

𝑚𝑎𝑥) is allowed during the 

transportation of vaccine vials between two locations. These bounds are set for the vial 

flows between factories and hubs and between hubs and vaccination centres by 

constraints (5.12) and (5.13) accordingly. Notice that when a connection is not realized 

in time period t (𝑌𝑖,𝑗,𝑡 = 0), the associated transferred quantities (𝑋𝑖,𝑗,𝑣,𝑡) are pushed to 

zero. 

, , , , , , , , ,
min max
f h h vc t f h v t f h h vc t

v FV

Y X Y 
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, , , , , , , , ,
min max
h vc h vc t h vc v t h vc h vc t

v

Y X Y               , ,h HVC vc t   (5.13) 

Transportation time considerations 

An important characteristic of the studied supply chain that should be considered, 

concerns the required transportation time between the supply chain nodes. 

Theoretically, within the same day a vial could be transferred from the manufacturers to 

the hubs and then the vaccination centres to be used. However, this would require a finer 

discretization of time, that would lead to large and inefficient models. Therefore, to 

ensure the feasibility of the proposed logistics operations using a daily discretization, it 

is assumed that a vial that is transferred from a factory to a hub in time period t, can only 

be further transferred to a vaccination centre after the next time period (t+1). The same 

holds for the hubs to vaccination centres connections. In particular, a vial that is 

transferred from a hub to a vaccination centre in time period t can only be used for the 

vaccination plan of a vaccination centre after time period t+1. This assumption is 

introduced to the model through constraints (5.14) and (5.15). Figure 5.2 illustrates the 

role of the constraint for the vaccination centres. More specifically, the vials of vaccine v 

used in the vaccination plan in a centre for all time periods 𝑡′ ≤ 𝑡, must be less than or 

equal to the initial inventory of vials plus the vials that arrived from the hubs in all time 

periods 𝑡′′ ≤ 𝑡 − 1, minus the vials lost in the same time periods. A similar logic is 

followed for the hubs. 

, , , ' , , , , '' , , ''
' '' 1 '' 1

h vc v t h v f h v t h v t
vc t t f FV t t t t
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   −  −
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Figure 5.2: Description of transportation time constraints 

 

Shelf-life of vaccines 

To incorporate shelf-life issues in the model, a new variable 𝐿𝑣𝑐,𝑣,𝑡,𝑡′ is introduced, 

which defines the quantity of vials of vaccines v used in centre vc in time period t’ that 

have been transferred to the centre in time period t. Constraints (5.16) state that the vials 

transferred to a vaccination centre in time period t are either used in the vaccination plan 

of the next time periods within the shelf-life of the specific vaccine (𝜆𝑠𝑙 ) or are spoiled 

𝑊𝐸𝑣𝑐,𝑡. In case the time periods after t exceed the considered horizon, constraints (5.17) 

are activated, to ensure that the vials used do not surpass the vials transferred. Another 

continuous variable is included to model the quantity of vials that existed in the initial 

inventory and were used in the vaccination plan of time period t (𝑆𝑈𝑣𝑐,𝑣,𝑡). The next 

constraints connect the total quantity of vials used in the vaccination plan of period t 

(𝑉𝑈𝑣𝑐,𝑣,𝑡), with the newly introduced variables. Figure 5.3 depicts the connection between 

variables 𝐿𝑣𝑐,𝑣,𝑡,𝑡′, 𝑉𝑈𝑣𝑐,𝑣,𝑡 and 𝑋ℎ,𝑣𝑐,𝑣,𝑡. In the illustrated example, the vials used in time 

period t5 originate from quantities transferred in the vaccination centre in time periods 

t1 and t3. Finally, constraints (5.20) calculate the number of vials that belong in the initial 

inventory and are spoiled (𝑊𝐸𝑣𝑐,𝑡
𝐼 ). Notice that the constraints below are only generated 

for the vaccines with shelf-life issues (𝑣 ∈ 𝑠𝑙). 
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Figure 5.3: Relationship between variables Lvc,v,t and VUvc,v,t 

 

Vaccination plan constraints 

The daily vaccination appointments in centre vc and period t (𝐷𝐴𝑣𝑐,𝑡) are 

calculated as the summation of the doses of all vaccines v used in the respective centre 

(𝐷𝑈𝑣𝑐,𝑣,𝑡), as given in constraints (5.21). Constraints (5.22) define the number of vaccine 

Xh,vc,v,t4

Xh,vc,v,t3

Xh,vc,v,t2

Lvc,v,t1,t5

Shelf-life

VUvc,v,t5

Lvc,v,t3,t5

Xh,vc,v,t1
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doses as the product of the vials used and the number of doses in each vial. Attaining the 

vaccination target within the planning horizon is ensured by constraints (5.23). 

, , ,vc v t vc t
v

DU DA=                         ,vc t    (5.21) 

, , , ,vc v t v vc v tVU DU =                       , ,vc v t  (5.22) 

,vc t vc
t

DA =                                  vc  (5.23) 

Healthcare workers and fleet constraints 

Constraints (5.24) and (5.25) define the requirements in healthcare personnel for 

the vaccination plan. The number of daily appointments in a vaccination centre is 

dependent on the number of active vaccination lines in the centre (𝐻𝑊𝑣𝑐,𝑡). Each 

vaccination line consists of two health workers that can complete η vaccinations per time 

period. Every vaccination centre has a base number of vaccination lines available (𝜄𝑣𝑐 ). 

The additional number of lines required for the optimal vaccination plan is portrayed by 

variable (𝐴𝐻𝑣𝑐,𝑡). The fleet size required for distributing the vaccines from the hubs to the 

vaccination centres (𝑁𝑇) is calculated by constraints (5.26). 

, ,vc t vc tDA HW                              ,vc t  (5.24) 

, ,vc t vc t vcAH HW  −                        ,vc t  (5.25) 



  , ,h vc t
vc HVCh

Y NT                        ,vc t  (5.26) 

Wasted doses constraints 

The vaccine doses wasted due to open vials that are not completely used within a 

period are included in the model by constraints (5.28). An integer variable is introduced 

to calculate the actual number of vials of vaccine v opened in vaccination centre vc and 

time period t (𝑉𝑈𝑣𝑐,𝑣,𝑡
𝐼 ), as shown in constraints (5.27). Finally, the doses available in the 
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opened vials are subtracted by the actual doses used in the vaccination plan to calculate 

the number of wasted doses (𝑊𝐷𝑣𝑐,𝑣,𝑡). 

, , , ,
I

vc v t vc v tVU VU                                     , ,vc v t  (5.27) 

, , , , , ,( )I
vc v t vc v t vc v t vWD VU VU = −       , ,vc v t  (5.28) 

An economic objective is considered to minimize the total cost of the vaccine 

supply chain (5.29). The total cost terms include the following in the respective order: 

• Storage operating costs in the hubs are given by the number of vials stored in each 

hub (𝑆ℎ,𝑣,𝑡 ) multiplied by the unitary storage costs for each storage technology 

(𝜅𝑐). 

• Storage operating costs in the vaccination centres are given by the multiplication 

of the vials stored in each vaccination centre and the unitary storage costs. Only 

the refrigeration storage technology is employed in the vaccination centres. 

• The transportation costs consisting of the costs for fuel and the cost of the drivers. 

These costs are included in the objective function, only when a connection 

between a hub and a vaccination centre exists in period t (𝑌ℎ,𝑣𝑐,𝑡 = 1). The fuel 

consumption cost is provided by multiplying the distance travelled (2 ∙ 𝜇ℎ,𝑣𝑐), the 

cost of fuel (𝜅) and the average fuel consumption per 100km (𝜑). Notice that since 

the trucks need to return to the corresponding hubs in each period, the distance 

(𝜇ℎ,𝑣𝑐) must be multiplied by two. Regarding the drivers’ cost, it is calculated based 

on the total hours a driver is employed, which is given by dividing the distance 

travelled and the average speed of a truck (𝜏), and the hourly wage of a single 

driver (𝑜).  

• Cost of wasted doses due to unproper planning in the vaccination centres is given 

by three terms. In the first the wasted doses of open vials which are not fully used 

in the daily vaccination program (𝑊𝐷𝑣𝑐,𝑣,𝑡) are multiplied with the cost of a single 

vaccine dose (𝜉𝑣). The next two terms consider the vials that were initially stored 

and the vials that were transferred within the studied horizon which have expired 

(𝑊𝐸𝑠𝑙
𝐼  and 𝑊𝐸𝑠𝑙  accordingly). To calculate these terms, the associated values of 
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spoiled vials are multiplied with the cost of the vaccine dose and the number of 

doses in each vial (𝛿𝑠𝑙).  

• Additional health workers costs are simply given as the multiplication of the 

summation of additional health workers employed (𝐴𝐻𝑣𝑐,𝑡) and their daily wage 

(𝜎). 

• The rental cost of the fleet is given by the multiplication of the number of trucks 

required 𝛮𝛵 and the cost of each truck 𝑣. 
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In total, the developed MILP model for the cost minimization of COVID-19 VSCs 

comprises of constraints (5.1) to (5.28) and the objective function (5.29). 

5.3.2 MILP-based solution strategy 

For the solution of large, nation-wide problems, an MILP-based solution strategy, 

that utilizes a decomposition algorithm is employed. Let us assume a relatively small 

problem with one manufacturing plant, two hubs and 20 vaccination centres. The 

problem is decomposed employing the following rationale. First, the problem is divided 

into two subproblems, one for each hub, where the vaccination centres are pre-allocated 

to the closest hub. This assumption is motivated by the observation that in large 

problems, the vaccination centres will never be supplied by the hubs that are far away 

from them. So, this approach does not strongly affect the quality of the solution, however, 

it reduces immensely the combinatorial complexity of the problem, since many binary 

variables (connections of hubs to vaccination centres) are predefined. Next, the 
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vaccination centres are grouped into clusters based on existing political boundaries. As 

shown in Figure 5.4, four clusters are generated, two for each subproblem. The number 

of vaccination centres in a cluster may vary and it solely depends on the size of the 

political boundaries used. Then, the two subproblems are solved using the cluster 

entities, instead of the vaccination centres. To generate the models, all related parameters 

of the vaccination centres, e.g., vaccination targets, storage capacities etc. are aggregated 

to extract the parameters for each cluster. Through this aggregated approach, small 

problems are generated, that can be quickly solved. The solution of these models 

proposes optimal decisions considering the clusters as the last echelon of the vaccine 

supply chain. To disaggregate these decisions an additional step is introduced. Here, all 

binary variables are fixed, and the previous solution is used as a start point for the solver. 

This means that if in a time period t, the hub h is supplying vaccines to cluster cl (𝑌ℎ,𝑐𝑙,𝑡 =

1), then at this time period the hub will supply all vaccination centres of this cluster. Since, 

no binary variables are optimized, the model is reduced to an LP model, so it can be solved 

very fast.  

Conclusively, the proposed solution strategy consists of two steps. In the first step, 

small subproblems are generated, first through a divide-and-conquer approach that 

creates MILP-subproblems for each hub, and then by an aggregation technique that 

reduces the number of involved entities, by grouping the vaccination centres into 

clusters. At this point the reduced MILP-subproblems are solved to provide optimal 

solutions for the clusters. In the second step of the algorithm, the binary decisions are 

fixed, and an LP-model is now solved for all vaccination centres. Sequentially, the MILP-

subproblems for each hub are solved and finally the optimal plan for the entirety of the 

supply chain is created.  

5.3.3 MILP-based replanning algorithm 

Often citizens do not come to the planned appointment or reschedule their 

appointment at the last minute. This is a known issue in COVID-19 VSCs that must be 

considered, otherwise these variations between the planned and the actual vaccinations, 

may result to suboptimal or even infeasible solutions. Possible consequences could be the 

spoilage of numerous doses, the failure of achieving the vaccination targets, the violation 

of inventory limitations or the miscalculation of the needs in healthcare personnel. For  
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Figure 5.4: Decomposition approach 

 

that purpose, a reactive approach can be employed, utilizing the aforementioned MILP-

based solution strategy in the context of a rolling horizon algorithm, in order to ensure 

that the supply chain is properly replanned. 

The introduction of four new subsets 𝑇𝑝, 𝑇𝑟 , 𝑇𝑓 and 𝑇𝑐  is required for the 

implementation of the algorithm. 𝑇𝑝 defines the prediction horizon, which includes all 

time periods considered by the optimization model at each iteration. In this study a bi -

weekly prediction horizon is considered (|𝑇𝑝| = 14). Fully reoptimizing the plan will 

provide the best possible solutions in terms of the underlying economic objective; 

however, it may require a significant number of changes, leading to nervousness, that 

could not be implemented in practice. Therefore, the prediction horizon subset is further 

divided into two subsets 𝑇𝑟  and 𝑇𝑓. The first corresponds to the initial part of the 

prediction horizon, in which the decisions related to the binary variables (𝑌𝑖,𝑗,𝑡) and the 

daily number of vaccines used (𝑉𝑈𝑣𝑐,𝑣,𝑡) remain fixed and equal to the previous solution. 

The second horizon is more flexible since the previous solution for the variables related 
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to the connections between locations of the supply chain and the vaccines used is applied 

as a lower bound. This ensures that the scheduled appointments will not be rescheduled, 

however more appointments or additional connections are possible to improve the 

quality of the plan. The length of these horizons can be freely chosen by the decision-

makers based on their specific goals. In this study, equally length horizons are used 

(|𝑇𝑟| = |𝑇𝑟| = 7), which achieves a good trade-off between nervousness and solution 

quality. The rest of the variables, e.g., inventory profiles, transferred quantities etc., are 

fully relaxed throughout the prediction horizon. Finally, 𝑇𝑐 corresponds to the control 

horizon, that includes all time periods, for which the optimized decisions are applied. 

Usually, the control horizon is set to a minimal of one time period, which allows the re-

optimization of the plan after every time period (|𝑇𝑐| = 1). The initial state of the supply 

chain in a given prediction horizon 𝑇𝑝,ℎ equals to the final state of the previous control 

horizon𝑇𝑐,ℎ−1. At the end of each time period the model receives the new information 

regarding the actual vaccination appointments and the new inventory levels at the 

vaccination centres. 

Let us assume an illustrative example with the following horizon lengths, |𝑇𝑝| =

14, |𝑇𝑟| = |𝑇𝑟| = 7, and |𝑇𝑐 | = 1 with initial time periods {𝑡1,… , 𝑡14}, {𝑡1, … , 𝑡7}, 

{𝑡8, … , 𝑡14}  and {𝑡1} accordingly. Initially the solution strategy computes the optimal plan 

for 𝑇𝑝 = {𝑡1, … , 𝑡14}. At this point the size of fleet is decided, which is the only decision 

variable that remains fixed. This decision remains fixed, since rental contracts are at least 

monthly, thus it would not be possible to change the fleet size intraweek. The plan will be 

implemented only for time period 𝑡1. The information for the actual vaccinations done 

and the true levels of inventory in the vaccination centres becomes available at the end 

of the time period. The subsets are updated so that, 𝑇𝑝 = {𝑡2,… , 𝑡15},  𝑇𝑟 = {𝑡2, … , 𝑡8}, 𝑇𝑓 =

{𝑡9 ,… , 𝑡15} and 𝑇𝑐 = {𝑡2}. Using the new information and the previous solution, the 

proposed optimization-based solution strategy is employed. In particular, for time 

periods {𝑡2, … , 𝑡8} all binaries and the decisions related to the scheduled appointments 

remain fixed, while for rest of the time periods {𝑡9 ,… , 𝑡15} the previous solution is used 

as a lower bound. This procedure continues iteratively until the finalization of the 

vaccination program. So, in the employed rolling horizon algorithm the prediction 

horizon is moving forward in steps of |𝑇𝑐 | time periods. Figure 5.5 illustrates the defined 

horizons for four consecutive iterations of the rolling horizon algorithm. 
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The implementation of this algorithm incorporates uncertainties of the COVID-19 

supply chain related to the differences between the planned and the actual appointments 

in the modelling approach. Thus, the decision-makers can deal with such uncertainties 

and constantly improve the extracted plans using the current state of the supply chain. 

Decisions related to transferred quantities, employed healthcare personnel and 

inventories can be promptly adjusted to include any new information, ensuring the 

success of the vaccination program, while minimizing the total operational costs.  

 

Figure 5.5: Replanning via a rolling horizon approach 

5.4 Results 

In this section the developed optimization-based framework is tested. First, an 

illustrative example is used to test in detail the efficiency of the proposed MILP-model. 

Then, a large-scale problem that simulates the Greek COVID-19 VSC is studied, and near-

optimal planning decisions are generated by employing the proposed MILP-based 

solution strategy. Finally, the applicability of the replanning algorithm is illustrated even 

for extreme disturbances in the vaccination plan. All models and solution algorithms 

were developed using the GAMS 30.1 interface and all instances were solved in an Intel 

Core i7 @3.4Gz with 16GB RAM using the commercial solver CPLEX (Brooke et al. 1998). 

Tr: Rigid prediction
horizon

Tf: Flexible prediction 
horizon
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5.4.1 Illustrative example 

Let us assume a COVID-19 supply chain consisting of one hub and five vaccination 

centres. Two vaccines (P and M) are available, supplied by two manufacturing plants. 

Each plant is exclusively producing and supplying to the hubs only one vaccine type. A 

14-days horizon is considered, and all related data e.g. storage capacities, vaccination 

goals, distances etc. are provided in Appendix C (Table C.1 – Table C.6). The Pfizer-type 

vaccine can be stored for up to 5 days in the vaccination centres, while perishability 

constraints are not enforced on the Moderna-type vaccine, whose shelf-life in 

refrigerated conditions (30 days) greatly exceeds the planning horizon. The daily ratio of 

stored vaccines is set to 0.25% for the hubs and 1% for the vaccination centres. It is 

assumed that the Pfizer-type vaccines included in the initial inventory (𝛼𝑣𝑐,𝑣 ) of the 

vaccination centres have just been transferred.  

The developed MILP model is employed to minimize the total cost for the 

distribution of the vaccines and the scheduling of the vaccination program in the 

vaccination centres. For the examined problem instance, the model consists of 1623 

variables, 363 of them binary, and 1595 equations. Within 30 CPU seconds, an optimal 

solution with a minimum cost of 22059 RMUs1 is generated. The most significant costs 

are associated with the operation of the storage technologies, especially the freezers and 

deep freezers in the hubs. In particular, 59.8% of the total costs originate from storing the 

vaccines in the hubs and 19.1% are due to storage costs in the refrigerators of the 

vaccination centres. Thus, inventory costs comprise the 78.9% of the total cost, 

emphasizing the importance of generating decisions that optimize the inventory profiles 

of the supply chain. Regarding the rest of the cost terms, the ones related to the 

transportation of the vaccines, specifically the fuel costs, the drivers’ wages, and the 

rental cost for the trucks, cover 3.8%, 9.3% and 6.1% of the total cost accordingly. Only 

26 doses are lost translating to 1.8% of the total costs. Notice that no additional 

healthcare personnel are used, therefore the associated cost term is zero. Table 5.1 

reports the number of vaccine vials stored in the hub and the vaccination centres 

throughout the considered horizon (𝑆𝑖,𝑣,𝑡). Further detailed results on the vials 

transferred (𝑋𝑖,𝑗,𝑣,𝑡), the vials opened (𝑉𝑈𝑖,𝑣,𝑡
𝐼 ), the doses used (𝐷𝑈𝑖,𝑣,𝑡), the daily 

 
1 Relative Monetary Units 
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appointments (𝐷𝐴𝑖,𝑡), the solution statistics and the cost distribution are found in Tables 

5.2 – 5.6. 

Table 5.1: Stored vials in the hub and in the vaccination centres (S i,j,t) 

  t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 

H P 3 3    975 21 21 3 2 977 240 240 240 

H M  735      1234 269 242 242 242 242 242 

C1 P 5 2 1    332 184 42 7 4 289 289 289 

C1 M 177 89 254 166 77 6 6 3 333 264 175 87 87 87 

C2 P 98 2 2 1 1 1 276 138 7 2 1 213 213 213 

C2 M 105 80 244 161 79    320 238 155 74 74 74 

C3 P 88  1    176 87 3   138 138 138 

C3 M 51 50 157 103 50    207 154 100 47 47 47 

C4 P 56 12 9 5 4  95 50 9 5 1 68 68 68 

C4 M 23 22 72 47 20    99 73 48 23 23 23 

C5 P 15      67 46 26 12  31 31 31 

C5 M 56 53 40 27 15 3 3 3 2 25 20 8 8 8 

 

Table 5.2: Vials opened (𝑉𝑈𝑖,𝑣,𝑡
𝐼 ) 

  t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 

C1 P 88 3 1 1    148 148 35 1  148  

C1 M 36 86 88 88 89 71    68 88 88   

C2 P 81 96 1 1    136 136 5 1 1 136  

C2 M 33 24 81 81 81 79    79 81 81   

C3 P 53 88  1    88 88 3 0  88  

C3 M 21  51 52 52 50    51 52 53   

C4 P 24 44 4 4 1 4  44 44 4 4 3 44  

C4 M 12  24 24 26 20    24 24 25   

C5 P 10 15      20 20 15 12  20  

C5 M 6 3 12 12 12 12    3 4 12   
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Table 5.3: Doses used (DUi,v,t) 

  t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 

C1 P 528 18 6 6    888 888 208 6  886  

C1 M 360 860 880 880 888 710    680 880 880   

C2 P 486 576 6 6    816 816 26 6 6 816  

C2 M 330 240 810 810 810 790    790 810 810   

C3 P 318 528  6    528 528 18 0  528  

C3 M 210  510 520 520 500    510 520 528   

C4 P 144 264 24 24 4 24  264 264 24 24 14 264  

C4 M 120  240 240 260 200    240 240 250   

C5 P 60 90      120 120 90 72  120  

C5 M 60 30 120 120 120 120    30 40 120   

 

Table 5.4: Daily appointments (DAi,t) 

 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 

C1 888 878 886 886 888 710  888 888 888 886 880 886  

C2 816 816 816 816 810 810  816 816 816 816 816 816  

C3 528 528 510 526 520 520  528 528 528 528 528 528  

C4 264 264 264 264 264 264  264 264 264 264 264 264  

C5 120 120 120 120 120 120  120 120 120 120 120 120  

 

Table 5.5: Solution statistics 

CPU (s) Variables Binary Variables Equations 
Solution 

(RMU) 
Gap 

30 1623 363 1505 220059 <5% 
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Table 5.6: Cost distribution 

Storage cost 

in hubs 
Storage cost 

in clinics 
Fuel cost Drivers cost 

Cost of 

wasted doses 
Cost of 

trucks 

13194 4213 836 2058 408 1350 

5.4.2 Large-scale case study: The Greek COVID-19 VSC 

In order to evaluate the developed MILP-based framework for realistically-sized 

COVID-19 supply chains, the problem of the panhellenic vaccination program is 

simulated. At the time of writing this paper, the Greek state is using five hubs in total. Due 

to security reasons the exact locations of these hubs are unknown. However, it is known 

that two are in the region of Attica, near Athens, one is in the region of Thessaloniki, one 

in the region of Karditsa and one in Crete. Based on this knowledge the locations of the 

hubs are approximately chosen. The hospitals and health centres of Greece as provided 

by the Hellenic Ministry of Health are used as vaccination centres. Except for Crete, which 

has its own hub, Greek islands are not taken into account in the study. As a result, a total 

of 351 vaccination centres, each consisting of multiple vaccination lines, are considered. 

Four vaccine types are available (P, M, A, J) each one produced and supplied exclusively 

by a single manufacturing plant. Conclusively, the supply chain consists of four 

manufacturing plants, five hubs and 351 vaccination centres. To create the required data, 

the population data of Greece from the Population and Housing Census conducted by the 

Hellenic Statistical Authority are used (Hellenic Statistical Authority 2011). The 

population is divided based on the regional unity and the vaccination centres are 

allocated to their respective regional unit. Four types of vaccination centres, more 

specifically hospitals, large, medium, and small health centres, that differentiate on the 

daily vaccination capacity, are considered. A relevant vaccination capacity between them 

is assumed. Each hospital, large and medium health centre has the capacity of 8, 4 and 2 

small health centres accordingly. Based on this information, the total vaccination demand 

for each centre has been calculated. To generate the vaccination targets for the 

considered horizon of 14 days, it is assumed that the vaccination program for the entirety 

of the population must be realized within 6 months. So, the total demand for each 

vaccination centre is divided by 12 to get the bi-weekly vaccination targets. The straight-

line distances between the hubs and the vaccination centres are calculated from google 
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maps. They are then approximately converted to real distances (using roads) by 

multiplying them with 1.417, as proposed in Boscoe et al. (2012). According to this 

contribution, if errors up to 10 percent or 10 kilometres are accepted, then the 

approximation above is accurate for 96% of the cases. To ensure the feasibility of the 

problem, the initial inventory in the hubs and the vaccination centres is enough to satisfy 

at least the vaccination demand of the first two time periods. Otherwise, the required lead 

time would make it impossible to supply the necessary vaccines to the centres on time. It 

is assumed that Pfizer vaccines in the initial inventory arrived the day prior to the start 

of the considered horizon. Vaccine inventories in the manufacturing plants are not 

considered as they are irrelevant for the problem under consideration. 

The above problem is solved by employing the proposed MILP-based solution 

strategy. Each vaccination centre is allocated to a single hub based on the geographical 

criteria. For the first aggregation step of the solution algorithm, the 351 vaccination 

centres are grouped into 54 clusters based on their regional unit. Detailed data of the 

considered problem instance e.g., maximum vaccine supply, distance matrix, hub to 

vaccination centres connectivity and vaccination centres to clusters allocation, are 

provided in Tables C7 - C12 of Appendix C. To generate near-optimal solutions for the 

entirety of the supply chain, five individual subproblems, one for each hub are solved. 

First the clusters are considered, and aggregate solutions are proposed and then the 

detailed solutions for all vaccination centres of the subproblems are created. The solver 

terminates either when the computational time limit of one hour (3600 seconds) is 

exceeded, or when an optimality gap of 5% is achieved. Table 5.7 portrays the solution 

statistics for all iterations of the individual subproblems. It is  shown that the 

computational time limit is reached for the more complicated cases (H1, H2 and H3) in 

the first step of the solution strategy. However, the optimality gaps achieved are very 

close to the desired target. It must be noticed that for these cases relatively good 

optimality gaps (15%-20%) were achieved in very low CPU times, of around 15 minutes, 

displaying the model’s capability of quickly proposing good solutions for complex 

problems. On the contrary, subproblems H4 and H5 are promptly solved to optimality. 

The time required for the second step is very low in comparison. Even the most difficult 

subproblem (H1) is resolved within three minutes. This is expected, since all binary 

variables are fixed, reducing the problem into a simple LP. Comparing the problem sizes 

of the first and second step it is observed that the aggregated approach significantly 
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reduces the number of variables and equations, making the consideration of large and 

complex problem instances feasible. The computational time required in total is close to 

3.5 hours, however the utilization of parallel computing techniques reduces it to around 

1 hour. 

Table 5.7: Solution statistics for the Greek case study 

 First step (Aggregate solution) 

 CPU Variables 
Binary 

Variables 
Equations Solution Gap 

H1 3600 18993 986 12269 283808 7% 

H2 3600 15073 986 10309 189815 8% 

H3 3600 13421 738 8845 171274 8% 

H4 25 13323 614 8477 384564 <5% 

H5 1365 4846 304 3441 65194 <5% 

 Second step (Detailed solution) 

 CPU Variables 
Binary 

Variables 
Equations Solution Gap 

H1 158 47391 5088 41731 291435 <1% 

H2 71 32446 3408 28431 192462 <1% 

H3 25 32425 3456 28587 176151 <1% 

H4 13 35190 3792 31135 387297 <1% 

H5 1.6 10718 1104 9575 66164 <1% 

 

Figure 5.6 displays the distribution of the various cost terms for the case study of 

Greece. Similar conclusions to the ones for the illustrative example can be drown. Storage 

costs in the hubs and the vaccination centres are the most significant terms, comprising 

together the 78% of the total costs. Next come the transportation costs, more specifically 

the wage of the drivers (9%), the cost of renting the trucks (8.4%) and the cost of fuel 

(3.8%). Finally, very few doses are lost (0.7%), while extra healthcare workers are rarely 

required (0.3%). The precise cost distribution for each of the five subproblems solved are 

provided in Table 5.8.  
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Figure 5.6: Cost distribution for the Greek COVID-19 VSC 

 

Table 5.8: Detailed cost distribution for each hub of the Greek COVID-19 VSC 

 
Storage 

Hubs 
Storage 

Centres 
Fuel Drivers 

Wasted 

Doses 
Healthcare 

Personnel 
Fleet 

Rental 
Total 

H1 109571 110123 11722 28855 1791 753 28620 291435 

H2 59040 77979 10461 25751 1321 359 17550 192461 

H3 40694 75248 11041 27179 2169 381 19440 176152 

H4 199633 144638 5781 14231 1272 412 21330 387297 

H5 25382 26486 2144 5278 379 285 6210 66164 

Total 434320 434474 41149 101294 6932 2190 93150 1113509 

 

Figure 5.7 illustrates the inventory profiles in each of the hubs and aggregated for 

all vaccination centres. It is noticed that the stored amounts are sustained relatively low 

to reduce as much as possible the storage costs. This is especially evident for the Pfizer 

and Moderna-type vaccines, which consistently do not remain in storage, rather they are 

used as fast as possible. This is expected since the mRNA vaccines are stored using special 

technologies that impose high operational costs. The stored amounts are increased in the 

end of the horizon to satisfy safety stock requirements. Low quantities of Pfizer-type 

vaccine are observed in the inventory profiles of the vaccination centres which ensure 

that the vaccines are not spoiled due to perishability issues. Moreover, the inventories of 

the vaccination centres at the end of Saturdays (time periods 6 and 13) are practically 

zero since it is assumed that no vaccinations are done on Sundays.  

Storage Hubs

Storage vaccination

centres

Fuel Drivers 

Wasted Doses

Healthcare 

Personnel
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Figure 5.7: Inventory profiles in hubs and vaccination centres 

 

In the study so far, it was assumed that the fleet size is unbounded. Therefore, a 

sensitivity analysis is done to show the effects that the size of the homogeneous fleet size 

has on the solution quality. Five scenarios with varying upper bound of fleet size are 

solved for all subproblems. The maximum number of rented trucks is defined as a 

percentage of the total connections between each hub and the vaccination centres. For 

the five scenarios studied, this percentage is set to 100%, 90%, 80%, 70% and 60%. For 

example, if a problem consists of 100 vaccination centres, then the maximum number of 

rented trucks will be 100, 90, 80, 70 and 60 in the different scenarios. Figure 5.8 displays 

the results of this analysis. The y-axis portrays the relevant difference a solution has to 
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the optimal one. For example, if a hub with a specific fleet availability has a y-value of 1.1, 

then the total cost is 10% higher than the lowest found. As expected, the best solution is 

always provided, when the fleet size is unbounded. A clear correlation is observed in all 

subproblems. Lowering the maximum allowed fleet size has a negative effect on the 

solution, meaning that the cost of the supply chain increases. However, the effect is 

significant (>5%) only for extreme cases, where the fleet size is strongly bounded (60% 

of possible connections).  

 

 

Figure 5.8: Sensitivity analysis on fleet size 

5.4.3 Replanning the COVID-19 VSC 

In this subsection the problem of replanning the COVID-19 supply chain in cases 

of disturbances due to citizens not arriving to scheduled appointments is studied. The 

MILP-based replanning technique is implemented to deal with such unexpected 

alteration in a reactive manner.  

The case study used replicates the subproblem of hub H1 from the Greek 

nationwide problem presented in the previous section. First, the model is solved for the 

initial 14-day horizon. At the end of the first period, the decision makers gather the 

following information. All scheduled appointments were completed in only 26 
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vaccination centres. In 15 of them 5% of the appointments were not realized, while 10% 

and 15% of the citizens did not arrive in the appointments in 44 and 21 vaccination 

centres accordingly. Similar alterations between planned and actual appointments 

occurred in the next two periods. In the second period, the percentage of unrealized 

appointments was 2% in 45, 8% in 11 and 12% in 30 centres, while on the third period 

these were 4% in 30, 10% in 40 and 25% in 6 vaccination centres. Those disturbances 

call for the immediate replanning of the supply chain since the actual inventory profiles 

are significantly different to the planned ones. Therefore, when the new information 

becomes available, the proposed solution strategy is employed to reactively replan the 

supply chain. The cost distribution after every iteration of the solution algorithm is shown 

in Table 5.8. It is shown that the costs remain low, despite the significant disturbances. 

Interestingly, very few doses are wasted, while storage costs are not increased, showing 

the flexibility of the proposed solutions in case of unexpected disturbances, as well as the 

efficiency of the reactive strategy.  

Table 5.9: Cost distribution for every iteration of the rolling horizon algorithm 

Iter 
Storage 

Hubs 
Storage 

Centres 
Fuel Drivers 

Wasted 

Doses 
Healthcare 

Personnel 
Fleet 

Rental 
Total 

1 27202 47520 7548 18580 846 954 21330 123981 

2 22703 44329 6280 15457 1337 1080 21330 112517 

3 24401 37839 5442 13395 803 1018 21330 104228 

4 24202 37367 5676 13971 791 1022 21330 104359 

 

An interesting observation can be made regarding the wasted doses, the large 

majority of which are Astrazeneca-type vaccines. Very few Pfizer-type and Johnson & 

Johnson-type vaccines are spoiled, while nearly no Moderna-type vaccines are wasted. 

The model correctly prioritizes the use of the costly mRNA vaccines, although very few 

Pfizer-type vaccines are lost due to their limited shelf-life and the least expensive 

alternative (Astrazeneca-type vaccines) is chosen to be wasted. Detailed information on 

the wasted doses per iteration are given in Table 5.10. 
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Table 5.10: Number of wasted doses with disturbances in the vaccination plan 

Iter 
Wasted doses 

P M A J 

1 2 0 228 49 

2 39 1 454 5 

3 3 0 431 0 

4 7 0 378 4 

5.5 Conclusions 

In this chapter, the optimal planning of the COVID-19 VSC is considered. Specific 

problem characteristics, such as special cold storage requirements, extremely limited 

shelf-life of some vaccine types in refrigerated conditions and the unprecedented time 

pressure for the realization of the vaccination program, differentiates it from other 

supply chain problems. To the best of our knowledge, this is the first work to address the 

planning problem of the COVID-19 vaccine distribution chain in an integrated manner. 

Furthermore several extensions have been made  by integrating various decisions related 

to optimally planning the daily vaccination program in every vaccination centre. A novel 

MILP model is developed to tackle this integrated problem. The efficiency of the proposed 

model is first illustrated in a small example. Optimal decisions leading to the 

minimization of total cost are generated in very low CPU times. Furthermore, a 

decomposition strategy is developed to extend the applicability of the model on 

realistically sized problems. A simulated instance of the Greek COVID-19 VSC is used to 

illustrate the capabilities of the proposed framework. Decisions on the transferred 

vaccine quantities, inventory profiles, transportation, and staff requirements, as well as, 

daily vaccination plans, for a nationwide problem, are optimally taken in low CPU times. 

Finally, a reactive approach that utilizes a rolling horizon algorithm is proposed to handle 

uncertainties related to unexpected disturbances in the daily vaccination plan of the 

vaccination centres.  
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Nomenclature 

Indices 

,i j  Locations (manufacturing plants-hubs-vaccination centres) 

v  Vaccine  

c  Cold storage technology 

t  Time periods 

w weeks 

 

Sets 

i
f  

Manufacturing plants 

i
h  

Hubs 

i
vc  

Vaccination centres 

i
cl  Clusters 

FV  Vaccine v produced in manufacturing plant f 

IJ  Connectivity between the locations of the supply chain 

HVC  Connectivity between hubs h and vaccination centres vc 

CV  Cold storage technology c necessary for long term storage of vaccine v 

v
SL  

Subset of vaccines that have a shelf-life smaller than the considered horizon 

 

Parameters 

,
 max

h v  
Maximum supply of vaccine v to hub h (vials) 

,


i v  Initial stored amount of vaccine v in location i (vials) 


i  Ratio of vaccine v wasted in location i 

,


h c  
Storage capacity of technology c in hub h (vials) 
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
vc

 Storage capacity in vaccination centre vc (vials) 

,


i v
 Safety stock of vials v in location i 

,
min

i j
 Minimum flow allowed between a locations i and j 

,
max

i j
 Maximum flow allowed between a locations i and j 


v

 Doses per vial of v 


v

 Shelf-life of v in refrigeration (days). Only relevant for vaccines with a 

shelf-life smaller than the considered horizon. 


vc

 Vaccination goal for each vc 

  Number of vaccinations done daily by a vaccination line (Two health 

workers) 

max

vc
 Maximum number of healthcare workers in vaccination centre 

b

vc
 Base number of healthcare workers in vaccination centre  


c

 Operating cost of cold storage technology c (€ per daily storage of a single 

vial) 

  Average fuel consumption of truck transporting vaccines (litres per 100 

km) 

  Fuel price (€ per litre) 

,


i j
 Distance between location i and j (km) 

  Average speed of vehicles transferring the vaccines 

  Cost of employing a driver (€/hour) 


v

 Cost of vaccine v (€/dose) 

  Cost for utilizing extra healthcare workers (daily) 

  Cost of renting a truck (Two weeks) 

 

Variables  

, , ,i j v t
X  Amount of vaccine v transferred from location i to j in period t (vials) 
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, ,i v t
S  Amount of vaccine v stored in location i in period t (vials) 

, ,f v t
P  Amount of vaccine v supplied by manufacturing plant f in t (vials) 

, ,i v t
LS  Wasted vials of vaccine v in location i in time period t 

, ,vc v t
VU  Vials of vaccine v used in vc in period t 

, , , 'vc v t t
L  Amount of vaccine v (vials) transferred in vc in t and used in t’ 

, ,vc v t
WD  Wasted doses of vaccine v in vaccination centre vc in period t 

, ,vc v t
DU  Doses of vaccine v used in vc in period t 

,vc t
DA  Vaccination appointments in location i in time period t 

, ,i v t
VA  Appointments using vaccine v in location i in time period t 

,i t
WE  Vials of vaccine v wasted due to expiration in location i in time period t 

I

i
WE  Vials of initially stored vaccine wasted due to expiration in location i in 

time period t 

,i t
HW  Number of health care workers required in location in location i in time 

period t 

,i t
AH  Additional health workers (more than base) required in location i in time 

period t 

NT  Number of trucks required for transportation 

, ,vc slv t
SU  Vials of initially stored vaccine slv used in vc in period t 

, ,vc v t

IVU  
Integer number of vials of vaccine v used in period t 

, ,i j t
Y  Equals 1 if vaccines are transferred between locations i and j in period t 

 



 

Chapter 6 

Conclusions and Future Research 

6.1 Conclusions 

The objective of this thesis has been to develop optimization-based techniques to 

address the production planning and scheduling problem of complex industrial processes 

and the short-term planning of the COVID-19 VSC. Various instances of a mixed-integer 

linear programming (MILP) modelling framework have been developed in combination 

with novel heuristic methods and solution strategies for large-scale industrial problems. 

Applying the research output of this thesis in real-life problems is expected to have a 

significant economic and environmental impact.  

Chapter 2 studied the optimal production scheduling problem of industrial 

facilities comprising of both batch and continuous processes. Several literature 

contributions have already proposed solution methods to address this known problem, 

since this is a common plant layout in many industrial sectors. However, their focus was 

on the solution of small to medium problems of specific complexity. The combinatorial 

complexity of this problem is such that the generation of optimized schedules for large-

scale problems is extremely difficult. Therefore, two alternative methods have been 

proposed, which can effectively address even the most challenging problems often met in 

industrial applications. The specific industrial case includes two continuous processes 

with a sterilization process in between. Both approaches consist of two subsequent steps. 

First a batching algorithm translates the incoming orders into production batches that 

need to be scheduled and then a novel MILP-based decomposition method is used to solve 

the optimal production scheduling problem. In the first approach, an MILP model based 

on the general precedence framework is developed to minimize the production 

makespan. A cyclic allocation heuristic has been introduced to decrease the problem’s 

combinatorial complexity. To further accelerate the solution method, we incorporated 

the model within a bi-level decomposition algorithm that optimizes the schedules for one 

time period and a subset of orders in each iteration. In the second approach a novel 
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aggregation method is introduced that incorporates a set of feasibility constraints for the 

sterilization stage. This reduces the production into a two-stage continuous process thus 

enhancing its efficiency. Based on this rationale two MILP modes, one for makespan 

minimization and one for changeover minimization were developed. A new order-based 

decomposition algorithm is proposed that is characterized by increased flexibility, thus 

providing near-optimal solutions. We have shown that both solution strategies can 

successfully address the problem at hand. 

Chapter 3 is a direct continuation of the previous chapter and places particular 

emphasis on the successful implementation of the developed mathematical frameworks 

in a production scheduling problem of a real-life food industry. The overall scheduling 

problem is characterized by a significant combinatorial complexity, since more than 100 

products must be processed within the scheduling horizon. Real operational and demand 

data have been used as extracted by the MES and the ERP system for several historical 

production weeks. Both approaches were able of providing near-optimal solutions in 

relatively low computational times. It was shown that the developed solution methods 

have distinct strengths. Approach A addresses problem instances where the facility needs 

to shut down at the end of each day, while it generates detailed schedules for all 

processing stages. In contrast, approach B which can also address the changeover 

minimization objective, is computationally superior to approach A, however, it does not 

provide detailed scheduling decisions for every processing stage. A comparative study 

between the proposed optimized schedules and the ones generated manually by the 

production engineers, illustrates the superiority of the developed mathematical 

frameworks. Improvements of approximately 10% to 15% are reported in the production 

makespan and the total changeover time, depending on the overarching goal of the model 

used. The proposed optimization framework can be easily extended to address similar 

large-scale scheduling problems. Moreover, the extraction of validated results for 

industrial cases that directly use real-life data, make the proposed strategies suitable for 

the development of computer-aided scheduling tool, that will facilitate the production 

engineers into taking better and fast decisions.  

Chapter 4 is considered with the integrated production planning and scheduling 

problem of breweries. The special characteristics of the beer production process, mainly 

the long lead times due to the required fermentation process, does not allow for the direct 
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application of the methods presented in Chapter 2. To efficiently address the underlying 

problem, the main production bottlenecks, were solely modelled, namely the 

fermentation process and the filling process, without loss of significant accuracy. 

Consequently, the production procedure is reduced into a two-stage production, 

consisting of a batch and a continuous process. A novel MILP model based on the 

immediate precedence framework was developed. A mixed discrete-continuous time 

representation is employed, in which the discrete time grid is used to monitor inventories 

and backlogs, while in the continuous time representation all necessary scheduling 

decisions, e.g. allocation, timing and sequencing, are considered. To allow the 

examination of longer time horizons, two subsets of time periods were considered. In the 

first, detailed scheduling and planning decisions are taken, while in the second only 

planning decisions are extracted. It was showed that the developed model provides 

superior schedules compared to the only other relevant optimization method found in 

the open literature. In order to extend the applicability of the method in large-scale 

problems, which better simulate the industrial reality, the proposed model was 

incorporated into a novel decomposition algorithm. This consists of a constructive and 

an improvement step. In the first step an initial good solution is promptly generated by 

spatially decomposing the studied problem, which is iteratively enhanced in the latter 

step. Improving the initial solution is done by a set of fix-and-optimize heuristics, which 

first relax a subset of the considered variables through spatial and/or temporal 

decomposition and then reoptimize it. Multiple case studies were used to illustrate the 

efficiency and applicability of the proposed methods towards high quality solutions in 

low CPU times. A real-life case study inspired by a Greek brewery was additional used for 

the application of the optimization frameworks. 

Finally, in chapter 5 the scope of this thesis was extended by considering the 

emerging topic related to the planning of the COVID-19 VSC. This is one of the first 

contributions in the open literature to study the problem of simultaneously providing 

optimal short-term planning decisions for the VSC (e.g. inventory levels, vaccine flows 

etc.) and decisions related to the optimal vaccination plans of the citizens in the 

vaccination centres. An MILP model was developed to model this integrated problem. All 

special characteristics related to the COVID-19 VSC, such as the requirements of special 

cold storage technologies, the limited shelf-life of mRNA vaccines in refrigerated 

conditions and the extreme time pressure for the realization of mass vaccination 
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programs, are taken into account. The proposed model generates optimal decisions on 

the inventory levels, flows, vaccine orders, the required fleet size and the needs on 

healthcare personnel so that the total cost of the supply chain is minimized. The economic 

objective includes the storage costs, the cost of transportation (fuel and drivers’ wages), 

the cost for additional healthcare workers and the cost of wasted doses. A small example 

problem first illustrates the efficiency of the model by generating fast optimal solutions 

and underlines its inability of handling complex, real-life nation-wide vaccination 

programs. Therefore, an efficient solution strategy was proposed. According to this, first 

a number of subproblems are systematically created according to a divide-and-conquer 

approach and then an aggregation technique clusters the vaccination centres, to reduce 

the associated binary decisions. Finally, a set of LP subproblems are solved to take 

detailed decisions for all supply chain nodes involved. The above strategy is successfully 

tested in a large case study that simulates the Greek COVID-19 VSC. In relatively short 

CPU solutions times near-optimal solutions are derived for the entire VSC. A 

comprehensive computational analysis illustrated that the dominant cost factor is related 

with the cost for vaccines’ storage. Finally, a rolling-horizon algorithm was proposed to 

consider disturbances in the vaccination schedule originating mainly from citizens 

cancelling or not arriving on scheduled appointments. Several tests have shown that even 

in extreme situations, very few valuable doses are wasted by solving the integrated 

vaccine supply chain distribution planning problem. 

6.2 Main contributions of this work 

In summary, the main contributions of this thesis have been: 

• Two novel mathematical programming frameworks have been developed for the 

optimal production scheduling of mixed batch and continuous processes. 

Approach A introduces a new set of allocation heuristic constraints, while 

approach B proposes an aggregation technique based on novel feasibility 

constraints for the batch stage. As a result, the developed models are characterized 

by increased efficiency. Both makespan and changeover minimization have been 

explored. 
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• Efficient solution strategies, which comprise of a pre-processing algorithm, the 

proposed MILP models for optimal production scheduling in mixed batch and 

continuous processes and a decomposition algorithm, have been developed, to 

address large-scale case studies. A bi-level temporal/order-based decomposition 

is applied in approach A, while a novel, flexible order-based decomposition 

technique is proposed in approach B. The computational analysis underlined the 

efficiency and applicability of the developed solution strategies. 

• Application of the developed mathematical frameworks in a real-life industrial 

problem. Significant benefits due to the integrated optimization of several 

production stages have been revealed. Rather than undergoing the laborious task 

of manually generating sub-optimal schedules, the developed solution algorithms 

can assist production engineers and managers towards fast generation of 

improved schedules. Several instances of a real-life food industrial case study have 

been introduced in the open literature.  

• A mixed-integer programming model for the integrated optimal production 

planning and scheduling of breweries have been developed. It has been shown 

that the proposed method is superior to the alternatives found in the open 

literature. Furthermore, a novel two-step decomposition algorithm have been 

developed to consider large-scale problems. 

• The introduction of efficient solution methods for large-scale problems and their 

successful implementation in real-life problems are important steps into closing 

the existing gap between scientific knowledge and industrial reality. 

• The optimal short-term planning problem of the COVID-19 VSC has been 

introduced in the open literature. The first mathematical model to address this 

problem have been developed, while a two-step solution strategy has been 

proposed for the consideration of nation-wide problems. Optimal operational 

decisions of the VSC that minimize an economic objective are generated in low 

CPU solutions times. The developed mathematical framework can facilitate 

nation-wide VSCs and ensure the success of large vaccination programs. 
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6.3 Recommendations for future directions  

A range of issues requiring further investigation have been revealed in the course of this 

work. In particular, 

• The methods proposed in Chapter 2 are limited by the fact that the sterilization 

chambers must be identical. The consideration of a more general sterilization 

stage whose equipment have different characteristics will further extend the 

applicability of these mathematical frameworks. 

• The main drawback of the aggregated approach presented in Chapter 2 is the 

generation of decisions solely for the continuous stages. Therefore, a step that 

creates feasible detailed decisions for the sterilization stage could be added. 

• In many breweries buffers are used between the liquid preparation and the liquid 

bottling stages, as intermediate storage for the ready liquid. Extending the 

developed mathematical framework so that these buffers can be efficiently 

modelled is expected to further improve the plant’s productivity.  

• The main focus of this thesis have been the offline scheduling of complex 

optimization problems. Since production scheduling is highly dynamic, the 

incorporation of real-time uncertainties in the developed models is critical for 

their application in real-life situations. A computationally efficient method is the 

introduction of a reactive scheduling approach that employs a rolling-horizon 

algorithm.  

• A computer-aided tool which uses as core the proposed mathematical frameworks 

can be developed to tackle industrial scheduling problems in real time. Possible 

issues are expected to be ensued and their resolution will rectify the benefits 

reaped from the developed optimization methods. 

• Room for improvement exists regarding the solution strategy developed for the 

COVID-19 VSC. More sophisticated clustering techniques, e.g. k-means algorithm, 

will enhance the effectiveness of aggregating the vaccination centres into clusters. 

Furthermore, an additional step can be added to reoptimize the solution 

generated by the divide-and-conquer approach. After generating the initial 

solutions, critical binaries can be relaxed and reoptimized. These binaries 

represent connections between nodes for clusters that are between multiple hubs. 

This will add flexibility to the method allowing for higher quality solutions. 
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Further improvements are expected by integrating tactical and more detailed 

operational decisions, such as, vehicle routing decisions. 

• Finally, the mathematical frameworks developed in chapters 4 and 5 can be 

applied to real-life problems of breweries and COVID-19 VSC accordingly. 
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Appendix Α 
 

Data for Illustrative Example (Chapter 2) 

 

Table A.1: Demand used for Approach A 

 P1 P2 P3 P4 P5 P6 P7 

Monday 211377 1550   123984 112089 252 
Tuesday   14061    6578 

Wednesday        

Thursday        

Friday  5310  105912    

 P8 P9 P10 P11 P12 P13 P14 

Monday 42525  37617 445565    

Tuesday    296097    

Wednesday        

Thursday  32912   61989 90078  

Friday       372420 
 P15 P16 P17 P18 P19 P20 P21 

Monday 46079 555  267366   32528 
Tuesday     51042   

Wednesday     32508 57078  

Thursday   21020 248655    

Friday  2961      

 P22 P23 P24 P25    

Monday        

Tuesday   3428 575486    

Wednesday 38174 5544  285674    

Thursday    488981    

Friday        

 

Table A.2: Demand used for Approach B 

Product 
Demand 
(items) 

Due date 
(hr) 

Product 
Demand 
(items) 

Due date 
(hr) 

P1 211377 24 P14 372420 24 

P2 6860 120 P15 46079 120 

P3 14061 48 P16 3516 120 
P4 105912 120 P17 21020 96 

P5 123984 24 P18 516021 120 
P6 112089 120 P19 83550 120 

P7 6830 120 P20 57078 72 
P8 42525 24 P21 32528 24 
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P9 32912 96 P22 38174 72 

P10 37617 24 P23 5544 72 
P11 741662 120 P24 3428 48 

P12 61989 96 P25 1350141 120 
P13 90078 96    

  

Table A.3: Processing rate in the continuous lines (items/hr) 

 P1 P2 P3 P4 P5 P6 P7 P8  

S1_L1 45128 0 0 45128 45128 0 41026 45128  

S1_L2 45128 45128 30800 45128 45128 41026 0 45128  

S3_L1 0 41026 28000 50400 0 0 40320 0  

S3_L2 50400 0 28000 0 50400 40320 0 42000  

 P9 P10 P11 P12 P13 P14 P15 P16  

S1_L1 45128 0 45128 0 45128 45128 45128 0  

S1_L2 45128 45128 45128 45128 45128 0 45128 41026  

S3_L1 0 0 50400 50400 40320 42000 42000 0  

S3_L2 42000 40320 50400 0 0 42000 0 50400  

 P17 P18 P19 P20 P21 P22 P23 P24 P25 

S1_L1 41026 41026 45128 45128 41026 41026 0 45128 45128 

S1_L2 0 0 45128 45128 41026 0 45128 0 0 

S3_L1 50400 50400 50400 0 0 50400 50400 50400 50400 

S3_L2 0 42000 0 42000 42000 42000 0 50400 50400 

 

Table A.4: Data related to the sterilization processing stage 

 
Product 

Sterilization 
time (min) 

Sterilizer 
capacity (items) 

Cart capacity 
(items) 

P1 102 29484 3276 

P2 98 29484 3276 

P3 215 2673 297 

P4 168 13770 1530 

P5 98 29484 3276 

P6 124 22500 2500 

P7 124 13770 1530 

P8 168 6804 756 

P9 98 29484 3276 

P10 98 29484 3276 

P11 127 13770 1530 

P12 98 29484 3276 

P13 98 29484 3276 

P14 161 6804 756 

P15 120 15390 1710 

P16 122 29484 3276 
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P17 98 29484 3276 

P18 98 29484 3276 

P19 107 29250 3250 

P20 162 13770 1530 

P21 98 29484 3276 

P22 98 29484 3276 

P23 98 29484 3276 

P24 98 29484 3276 

P25 98 29484 3276 



 

Appendix Β 

Data for the Food Process Industry (Chapter 3) 

 

Case Study I. – Aggregated Approach 

Table B.1: Demand (𝜁𝑝) – Case study I 

Product 
Demand 

(cans) 
Product 

Demand 
(cans) 

Product 
Demand 

(cans) 

P1 796068 P35 68850 P69 29484 

P2 501228 P36 67500 P70 29484 

P3 427500 P37 61560 P71 29484 

P4 412776 P38 61560 P72 29484 

P5 383292 P39 58968 P73 29484 

P6 270000 P40 58968 P74 29484 

P7 247860 P41 58968 P75 29484 

P8 235872 P42 58968 P76 29484 

P9 206388 P43 58968 P77 29484 

P10 205200 P44 58968 P78 29484 

P11 195750 P45 58968 P79 29484 

P12 194076 P46 58968 P80 29484 

P13 188100 P47 58968 P81 29484 

P14 151650 P48 58968 P82 29484 

P15 151650 P49 58968 P83 29484 

P16 147420 P50 58968 P84 29484 

P17 147420 P51 51300 P85 29484 

P18 147420 P52 48519 P86 29250 

P19 147420 P53 45000 P87 27540 

P20 117936 P54 41310 P88 16173 

P21 117936 P55 32346 P89 16173 

P22 113211 P56 30330 P90 15390 

P23 104220 P57 30330 P91 13770 

P24 104220 P58 30330 P92 13770 
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P25 90990 P59 30330 P93 13770 

P26 90000 P60 30330 P94 13608 

P27 88452 P61 29484 P95 8019 

P28 88452 P62 29484 P96 6804 

P29 88452 P63 29484 P97 5130 

P30 88452 P64 29484 P98 2673 

P31 88452 P65 29484 P99 2673 

P32 85806 P66 29484 P100 2673 

P33 82620 P67 29484 P101 1674 

P34 69498 P68 29484 P102 1197 

 

Table B.2: Products p each unit j can process for the filling and sealing stage – Case 
study I 

 FS_1 FS_2 FS_3 FS_4 FS_5 FS_6 FS_7 FS_8 

P1 1 1 1      

P2 1 1 1      

P3     1    

P4 1 1 1      

P5 1 1 1      

P6     1    

P7        1 

P8 1 1 1      

P9 1 1 1      

P10       1  

P11     1    

P12     1    

P13       1  

P14 1 1 1      

P15 1 1 1      

P16    1     

P17 1 1 1      

P18 1 1 1      

P19 1 1 1      
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P20 1 1 1      

P21    1     

P22        1 

P23       1  

P24       1  

P25    1     

P26     1    

P27 1 1 1      

P28 1 1 1      

P29    1     

P30 1 1 1      

P31 1 1 1      

P32      1   

P33        1 

P34      1   

P35        1 

P36     1    

P37        1 

P38     1    

P39 1 1 1      

P40 1 1 1      

P41 1 1 1      

P42 1 1 1      

P43    1     

P44 1 1 1      

P45    1     

P46    1     

P47    1     

P48 1 1 1      

P49 1 1 1      

P50 1 1 1      

P51     1    

P52        1 
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P53     1    

P54      1   

P55        1 

P56    1     

P57    1     

P58    1     

P59    1     

P60    1     

P61    1     

P62 1 1 1      

P63 1 1 1      

P64 1 1 1      

P65 1 1 1      

P66 1 1 1      

P67 1 1 1      

P68 1 1 1      

P69    1     

P70    1     

P71 1 1 1      

P72 1 1 1      

P73 1 1 1      

P74 1 1 1      

P75 1 1 1      

P76 1 1 1      

P77 1 1 1      

P78 1 1 1      

P79 1 1 1      

P80 1 1 1      

P81 1 1 1      

P82 1 1 1      

P83 1 1 1      

P84 1 1 1      

P85 1 1 1      
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P86 1 1 1      

P87        1 

P88     1    

P89     1   1 

P90       1  

P91     1    

P92      1   

P93     1   1 

P94      1   

P95      1   

P96      1   

P97      1   

P98      1   

P99      1   

P100      1   

P101      1   

P102      1   

 

Table B.3: Products p each unit j can process in the packing stage – Case study I 

 P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8 P_9 P_10 

P1        1  1 

P2        1  1 

P3  1 1 1       

P4 1     1  1 1 1 

P5 1          

P6  1 1       1 

P7  1 1 1      1 

P8        1  1 

P9 1          

P10     1      

P11  1 1 1       

P12  1 1       1 
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P13     1      

P14 1     1  1 1 1 

P15 1     1  1 1 1 

P16 1     1    1 

P17        1  1 

P18        1  1 

P19 1     1   1 1 

P20  1  1      1 

P21 1     1  1 1 1 

P22  1 1 1      1 

P23    1      1 

P24  1  1      1 

P25 1     1   1 1 

P26  1 1 1       

P27      1    1 

P28        1  1 

P29 1     1  1 1 1 

P30 1     1   1 1 

P31 1     1  1 1 1 

P32    1   1   1 

P33  1 1 1       

P34       1    

P35  1 1 1       

P36  1 1        

P37  1 1 1      1 

P38  1 1 1      1 

P39 1          

P40        1  1 

P41        1  1 

P42      1    1 

P43 1     1  1 1 1 

P44 1       1 1  

P45 1     1  1 1 1 
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P46 1     1  1 1 1 

P47 1     1  1 1 1 

P48 1     1   1 1 

P49 1     1  1 1 1 

P50 1     1  1 1 1 

P51  1 1 1      1 

P52  1 1 1       

P53  1 1 1      1 

P54    1   1   1 

P55     1      

P56         1  

P57      1    1 

P58 1     1   1 1 

P59 1     1  1 1 1 

P60 1     1  1 1 1 

P61        1  1 

P62     1      

P63 1          

P64        1  1 

P65        1  1 

P66        1  1 

P67        1  1 

P68        1  1 

P69 1     1  1 1 1 

P70 1     1  1 1 1 

P71 1     1   1 1 

P72 1     1   1 1 

P73 1     1  1 1 1 

P74 1     1  1 1 1 

P75 1     1  1 1 1 

P76 1     1  1 1 1 

P77 1     1  1 1 1 

P78 1     1  1 1 1 
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P79 1     1  1 1 1 

P80 1     1  1 1 1 

P81 1     1  1 1 1 

P82 1     1  1 1 1 

P83 1     1  1 1 1 

P84 1     1  1 1 1 

P85 1     1  1 1 1 

P86 1     1  1 1 1 

P87  1 1 1       

P88  1 1 1       

P89  1 1 1       

P90  1  1      1 

P91     1      

P92    1   1   1 

P93  1 1 1       

P94    1   1   1 

P95       1    

P96    1   1   1 

P97       1    

P98       1    

P99       1    

P100       1    

P101       1    

P102       1    

 

Table B.4: Processing rate (cans/hour) of product p in unit j in the filling and sealing 
stage – Case study I 

 FS_1 FS_2 FS_3 FS_4 FS_5 FS_6 FS_7 FS_8 

P1 24586 22324 23361      

P2 25434 23094 24167      

P3     16824    

P4 27977 25403 26583      

P5 27977 25403 26583      
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P6     16824    

P7        14688 

P8 27977 25403 26583      

P9 24586 22324 23361      

P10       11569  

P11     16824    

P12     16824    

P13       11569  

P14 27977 25403 26583      

P15 27977 25403 26583      

P16    18574     

P17 24586 22324 23361      

P18 27977 25403 26583      

P19 27977 25403 26583      

P20 27977 25403 26583      

P21    18574     

P22        17626 

P23       11569  

P24       11569  

P25    23217     

P26     16824    

P27 27977 25403 26583      

P28 27977 25403 26583      

P29    20895     

P30 27977 25403 26583      

P31 27977 25403 26583      

P32      7078   

P33        14688 

P34      3539   

P35        14688 

P36     16824    

P37        17626 

P38     16824    



Appendix Β                                                                Data for Food Process Industry (Chapter 3) 

197 
 

P39 24586 22324 23361      

P40 27977 25403 26583      

P41 27977 25403 26583      

P42 27977 25403 26583      

P43    19502     

P44 27977 25403 26583      

P45    20895     

P46    20895     

P47    20895     

P48 27977 25403 26583      

P49 27977 25403 26583      

P50 27977 25403 26583      

P51     15939    

P52        17626 

P53     16824    

P54      7078   

P55        17626 

P56    23217     

P57    18574     

P58    18574     

P59    18574     

P60    18574     

P61    20895     

P62 27977 25403 26583      

P63 27977 25403 26583      

P64 24586 22324 23361      

P65 27977 25403 26583      

P66 24586 22324 23361      

P67 24586 22324 23361      

P68 27977 25403 26583      

P69    18574     

P70    19502     

P71 27977 25403 26583      
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P72 27977 25403 26583      

P73 27977 25403 26583      

P74 27977 25403 26583      

P75 27977 25403 26583      

P76 27977 25403 26583      

P77 27977 25403 26583      

P78 27977 25403 26583      

P79 27977 25403 26583      

P80 27977 25403 26583      

P81 25434 25403 26583      

P82 27977 25403 26583      

P83 27977 25403 26583      

P84 27977 25403 26583      

P85 27977 25403 26583      

P86 27977 25403 26583      

P87        17626 

P88     16824    

P89     18595   15422 

P90       11569  

P91     16824    

P92      7078   

P93     17710   14688 

P94      7078   

P95      3539   

P96      7078   

P97      1769   

P98      3539   

P99      3539   

P100      3539   

P101      1769   

P102      1769   
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Table B.5: Processing rate (cans/hour) of product p in unit j in the packing stage – Case 
study I 

 P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8 P_9 P_10 

P1        46476  30947 

P2        46476  30947 

P3  12684 13552 13557       

P4 22964     24862  31371 19296 20632 

P5 22964          

P6  16021 17119       14786 

P7  16021 17119 17124      14786 

P8        46476  30947 

P9 22964          

P10     7693      

P11  16021 17119 17124       

P12  12684 13552       16505 

P13     7693      

P14 22964     24862  31371 19296 20632 

P15 22964     24862  31371 19296 20632 

P16 19137     20718    20632 

P17        46476  30947 

P18        46476  30947 

P19 19137     20718   19296 20632 

P20  20027  21406      20632 

P21 22964     24862  31371 19296 20632 

P22  16021 17119 17124      17193 

P23    13557      16505 

P24  16021  13557      14786 

P25 19137     20718   19296 20632 

P26  16021 17119 17124       

P27      27348    20632 

P28        46476  30947 

P29 22964     24862  31371 19296 20632 

P30 18372     24862   15437 16505 

P31 22964     24862  31371 19296 20632 

P32    9989   7335   8597 

P33  16021 17119 17124       
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P34       1956    

P35  16021 17119 17124       

P36  16021 17119        

P37  16021 17119 17124      17193 

P38  16021 17119 17124      17193 

P39 22964          

P40        46476  30947 

P41        46476  30947 

P42      27348    20632 

P43 22964     24862  31371 19296 20632 

P44 15310       31371 14472  

P45 22964     24862  31371 19296 20632 

P46 22964     24862  31371 19296 20632 

P47 22964     24862  31371 19296 20632 

P48 22964     24862   19296 20632 

P49 22964     24862  31371 19296 20632 

P50 22964     24862  31371 19296 20632 

P51  16021 17119 17124      24070 

P52  12684 13552 13557       

P53  16021 17119 17124      14786 

P54    9989   7335   8597 

P55     10551      

P56         19296  

P57      27348    20632 

P58 18372     19889   15437 16505 

P59 22964     24862  31371 19296 20632 

P60 22964     24862  31371 19296 20632 

P61        46476  30947 

P62     10991      

P63 22964          

P64        46476  30947 

P65        46476  30947 

P66        46476  30947 

P67        46476  30947 

P68        46476  30947 

P69 22964     24862  31371 19296 20632 
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P70 22964     24862  31371 19296 20632 

P71 18372     19889   15437 16505 

P72 22964     24862   19296 20632 

P73 22964     24862  31371 19296 20632 

P74 22964     24862  31371 19296 20632 

P75 22964     24862  31371 19296 20632 

P76 22964     24862  31371 19296 20632 

P77 22964     24862  31371 19296 20632 

P78 22964     24862  31371 19296 20632 

P79 22964     24862  31371 19296 20632 

P80 22964     24862  31371 19296 20632 

P81 22964     24862  31371 19296 20632 

P82 22964     24862  31371 19296 20632 

P83 22964     24862  31371 19296 20632 

P84 22964     24862  31371 19296 20632 

P85 22964     24862  31371 19296 20632 

P86 22964     24862  31371 19296 20632 

P87  16021 17119 17124       

P88  12684 13552 13557       

P89  12684 13552 13557       

P90  3338  7421      14328 

P91     7913      

P92    8562   7335   8597 

P93  16021 17119 17124       

P94    9989   7335   8597 

P95       2347    

P96    9989   7335   8597 

P97       1956    

P98       2347    

P99       2934    

P100       2347    

P101       1956    

P102       1956    
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Table B.6: Number of sterilizers used by each product – Case study I 

Product κP Product κP Product κP 

P1 1 P35 2 P69 2 

P2 1 P36 1 P70 2 

P3 1 P37 2 P71 1 

P4 1 P38 2 P72 1 

P5 1 P39 1 P73 1 

P6 1 P40 1 P74 1 

P7 2 P41 1 P75 1 

P8 1 P42 1 P76 1 

P9 1 P43 2 P77 1 

P10 1 P44 1 P78 1 

P11 2 P45 2 P79 1 

P12 1 P46 2 P80 1 

P13 1 P47 2 P81 1 

P14 1 P48 1 P82 1 

P15 1 P49 1 P83 1 

P16 1 P50 1 P84 1 

P17 1 P51 2 P85 1 

P18 1 P52 1 P86 1 

P19 1 P53 1 P87 2 

P20 1 P54 2 P88 1 

P21 2 P55 1 P89 1 

P22 2 P56 1 P90 1 

P23 2 P57 2 P91 1 

P24 2 P58 2 P92 2 

P25 1 P59 2 P93 2 

P26 1 P60 2 P94 3 

P27 1 P61 2 P95 2 

P28 1 P62 1 P96 3 

P29 2 P63 1 P97 1 

P30 1 P64 1 P98 2 

P31 1 P65 1 P99 2 

P32 3 P66 1 P100 2 
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P33 2 P67 1 P101 3 

P34 2 P68 1 P102 4 

 

Table B.7: Required sterilization time for product p – Case study I 

Product Batch time 
(min) 

Product Batch time 
(min) 

Product 
Batch time  

(min) 

P1 82 P35 106 P69 82 

P2 85 P36 85 P70 82 

P3 85 P37 100 P71 82 

P4 82 P38 98 P72 82 

P5 82 P39 82 P73 82 

P6 85 P40 82 P74 82 

P7 103 P41 82 P75 102 

P8 82 P42 82 P76 82 

P9 82 P43 82 P77 82 

P10 115 P44 82 P78 82 

P11 120 P45 82 P79 82 

P12 85 P46 82 P80 82 

P13 115 P47 82 P81 82 

P14 85 P48 82 P82 82 

P15 85 P49 82 P83 102 

P16 102 P50 82 P84 82 

P17 82 P51 94 P85 82 

P18 82 P52 85 P86 82 

P19 82 P53 85 P87 106 

P20 82 P54 135 P88 85 

P21 82 P55 85 P89 98 

P22 85 P56 85 P90 120 

P23 85 P57 82 P91 106 

P24 120 P58 85 P92 135 

P25 85 P59 82 P93 106 

P26 85 P60 82 P94 140 

P27 82 P61 82 P95 179 
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P28 82 P62 82 P96 140 

P29 82 P63 82 P97 85 

P30 102 P64 82 P98 179 

P31 82 P65 82 P99 179 

P32 135 P66 82 P100 179 

P33 106 P67 82 P101 286 

P34 179 P68 82 P102 271 

 

Table B.8: Cart capacity for product p – Case study I 

Product 
Capacity 

(cans) 
Product 

Capacity 
(cans) 

Product 
Capacity 

(cans) 
P1 3276 P35 1530 P69 3276 

P2 3276 P36 2500 P70 3276 

P3 2500 P37 1710 P71 3276 

P4 3276 P38 1710 P72 3276 

P5 3276 P39 3276 P73 3276 

P6 2500 P40 3276 P74 3276 

P7 1530 P41 3276 P75 3276 

P8 3276 P42 3276 P76 3276 

P9 3276 P43 3276 P77 3276 

P10 1900 P44 3276 P78 3276 

P11 1450 P45 3276 P79 3276 

P12 1797 P46 3276 P80 3276 

P13 1900 P47 3276 P81 3276 

P14 3370 P48 3276 P82 3276 

P15 3370 P49 3276 P83 3276 

P16 3276 P50 3276 P84 3276 

P17 3276 P51 1900 P85 3276 

P18 3276 P52 1797 P86 3250 

P19 3276 P53 2500 P87 1530 

P20 3276 P54 1530 P88 1797 

P21 3276 P55 1797 P89 1797 

P22 1797 P56 3370 P90 1710 
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P23 1930 P57 3370 P91 1530 

P24 1930 P58 3370 P92 1530 

P25 3370 P59 3370 P93 1530 

P26 2500 P60 3370 P94 756 

P27 3276 P61 3276 P95 297 

P28 3276 P62 3276 P96 756 

P29 3276 P63 3276 P97 190 

P30 3276 P64 3276 P98 297 

P31 3276 P65 3276 P99 297 

P32 681 P66 3276 P100 297 

P33 1530 P67 3276 P101 186 

P34 297 P68 3276 P102 133 

 

Table B.9: Demand – Case study II 

Product 
Demand 

(cans) 
Due (hr) Product 

Demand 

(cans) 
Due (hr) 

P1 762120 148 P64 40000 148 

P2 762120 148 P65 40000 148 

P3 762120 148 P66 40000 148 

P4 750000 148 P67 40000 148 

P5 528780 148 P68 40000 148 

P6 500000 148 P69 35000 148 

P7 500000 24 P70 35000 148 

P8 460000 148 P71 30000 148 

P9 457920 148 P72 30000 148 

P10 457920 148 P73 30000 148 

P11 300000 148 P74 30000 148 

P12 279936 148 P75 30000 148 

P13 250000 148 P76 30000 148 

P14 200000 148 P77 30000 148 

P15 200000 148 P78 30000 24 

P16 200000 148 P79 30000 148 

P17 150000 148 P80 30000 148 

P18 150000 148 P81 30000 148 

P19 150000 148 P82 30000 148 

P20 130000 148 P83 30000 148 

P21 120000 148 P84 30000 148 

P22 120000 148 P85 30000 148 
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P23 115000 24 P86 30000 148 

P24 107136 148 P87 30000 148 

P25 101088 148 P88 26000 148 

P26 100000 148 P89 25000 148 

P27 100000 148 P90 25000 24 

P28 100000 148 P91 22000 148 

P29 100000 148 P92 20000 148 

P30 100000 148 P93 20000 148 

P31 100000 148 P94 20000 148 

P32 100000 148 P95 20000 148 

P33 100000 148 P96 20000 148 

P34 100000 148 P97 20000 24 

P35 93312 148 P98 20000 148 

P36 93312 148 P99 20000 148 

P37 90000 148 P100 20000 148 

P38 90000 148 P101 15000 148 

P39 87696 24 P102 15000 148 

P40 86000 148 P103 15000 148 

P41 80000 148 P104 15000 148 

P42 80000 148 P105 15000 148 

P43 70000 148 P106 15000 148 

P44 70000 148 P107 15000 24 

P45 60000 148 P108 15000 148 

P46 60000 148 P109 13000 148 

P47 60000 148 P110 10000 148 

P48 60000 148 P111 10000 148 

P49 60000 148 P112 10000 148 

P50 60000 148 P113 10000 24 

P51 60000 148 P114 10000 148 

P52 60000 96 P115 10000 148 

P53 60000 148 P116 8000 148 

P54 60000 148 P117 6000 148 

P55 60000 148 P118 6000 148 

P56 50000 148 P119 5000 148 

P57 50000 148 P120 5000 148 

P58 50000 148 P121 5000 148 

P59 50000 148 P122 5000 148 

P60 50000 148 P123 3500 148 

P61 50000 148 P124 3000 148 

P62 50000 148 P125 3000 148 

P63 43200 148 P126 2000 148 
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Table B.10: Products p each unit j can process for the filling and sealing stage– Case 
study II 

 FS_1 FS_2 FS_3 FS_4 FS_5 FS_6 FS_7 FS_8 

P1 1 1 1      

P2 1 1 1      

P3 1 1 1      

P4 1 1 1      

P5     1    

P6 1 1 1      

P7 1 1 1      

P8    1     

P9        1 

P10        1 

P11     1    

P12        1 

P13 1 1 1 1     

P14 1 1 1      

P15       1  

P16 1 1 1      

P17       1  

P18        1 

P19    1     

P20     1    

P21 1 1 1 1     

P22 1 1 1      

P23 1 1 1      

P24     1    

P25     1    

P26 1 1 1      

P27     1   1 

P28 1 1 1      

P29       1  

P30        1 

P31 1 1 1      

P32 1 1 1      

P33 1 1 1      

P34       1  

P35     1    

P36        1 

P37 1 1 1 1     

P38       1  

P39     1    
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P40    1     

P41    1     

P42 1 1 1      

P43 1 1 1      

P44 1 1 1      

P45     1    

P46        1 

P47 1 1 1      

P48        1 

P49    1     

P50 1 1 1      

P51 1 1 1      

P52    1     

P53    1     

P54 1 1 1 1     

P55       1  

P56 1 1 1      

P57     1   1 

P58    1     

P59 1 1 1      

P60 1 1 1      

P61    1     

P62      1   

P63      1   

P64 1 1 1      

P65 1 1 1      

P66     1   1 

P67    1     

P68    1     

P69 1 1 1      

P70 1 1 1 1     

P71 1 1 1 1     

P72 1 1 1      

P73 1 1 1      

P74     1   1 

P75    1     

P76 1 1 1      

P77        1 

P78 1 1 1      

P79    1     

P80    1     

P81 1 1 1      

P82 1 1 1      
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P83    1     

P84      1   

P85        1 

P86 1 1 1      

P87       1  

P88 1 1 1      

P89 1 1 1      

P90 1 1 1      

P91    1     

P92        1 

P93     1   1 

P94     1    

P95    1     

P96 1 1 1      

P97      1   

P98       1  

P99      1   

P100      1   

P101    1     

P102 1 1 1      

P103 1 1 1      

P104     1    

P105        1 

P106     1    

P107 1 1 1      

P108        1 

P109      1   

P110     1    

P111        1 

P112        1 

P113      1   

P114      1   

P115      1   

P116      1   

P117      1   

P118      1   

P119      1   

P120     1    

P121      1   

P122      1   

P123      1   

P124      1   

P125      1   
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P126      1   

 

Table B.11: Products p each unit j can process for the packing stage– Case study II 

 P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8 P_9 P_10 

P1 1     1  1 1 1 

P2 1     1  1 1 1 

P3 1     1  1 1 1 

P4      1    1 

P5     1      

P6 1          

P7        1  1 

P8 1     1  1 1 1 

P9  1 1        

P10  1 1        

P11     1      

P12  1 1        

P13 1     1   1 1 

P14  1  1      1 

P15         1  

P16        1  1 

P17  1 1 1      1 

P18  1 1 1      1 

P19        1  1 

P20  1 1        

P21 1     1  1 1 1 

P22        1  1 

P23  1  1      1 

P24     1      

P25  1 1 1      1 

P26 1          

P27     1      

P28      1    1 

P29  1 1        

P30  1 1 1      1 

P31 1     1  1 1 1 

P32        1  1 

P33        1  1 

P34    1   1   1 

P35     1      

P36  1 1 1       

P37        1  1 

P38    1   1   1 
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P39     1      

P40 1     1    1 

P41 1     1  1 1 1 

P42 1     1  1 1 1 

P43 1     1  1 1 1 

P44 1     1  1 1 1 

P45     1      

P46  1 1       1 

P47 1     1   1 1 

P48  1 1 1      1 

P49 1     1  1 1 1 

P50 1     1  1 1 1 

P51 1     1  1 1 1 

P52          1 

P53        1  1 

P54        1  1 

P55    1   1   1 

P56 1       1 1  

P57  1 1 1      1 

P58 1     1  1 1 1 

P59 1     1  1 1 1 

P60        1  1 

P61        1  1 

P62    1   1   1 

P63    1   1    

P64 1          

P65  1  1      1 

P66  1 1 1      1 

P67 1     1  1 1 1 

P68    1      1 

P69 1     1  1 1 1 

P70         1 1 

P71 1          

P72     1      

P73 1        1  

P74  1 1 1       

P75 1     1   1  

P76 1     1  1   

P77  1 1 1      1 

P78 1     1  1 1 1 

P79 1     1  1 1 1 

P80 1     1  1 1 1 

P81 1     1  1 1 1 
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P82 1     1  1 1 1 

P83 1     1  1 1 1 

P84       1    

P85         1  

P86        1 1  

P87    1      1 

P88 1     1  1 1 1 

P89 1     1    1 

P90         1  

P91 1     1   1 1 

P92     1      

P93  1 1 1       

P94  1 1 1      1 

P95 1     1   1 1 

P96 1     1  1 1 1 

P97       1    

P98    1   1   1 

P99    1   1   1 

P100    1   1   1 

P101      1     

P102 1     1  1   

P103 1     1    1 

P104  1 1 1      1 

P105  1 1 1      1 

P106  1 1 1      1 

P107         1  

P108         1  

P109    1   1    

P110  1  1      1 

P111  1 1 1      1 

P112  1 1 1      1 

P113       1    

P114       1    

P115    1   1   1 

P116    1   1    

P117    1   1    

P118    1   1   1 

P119     1      

P120  1        1 

P121       1    

P122       1   1 

P123    1   1   1 

P124       1    
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P125    1   1   1 

P126       1    

 

Table B.12: Processing rate (cans/hour) of product p in unit j in the filling and sealing 
stage - Case study II 

  FS_1 FS_2 FS_3 FS_4 FS_5 FS_6 FS_7 FS_8 

P1 27978 25404 26584      

P2 27978 25404 26584      

P3 27978 25404 26584      

P4 27978 25404 26584      

P5     16825    

P6 24587 22325 23362      

P7 25434 23094 24167      

P8    18574     

P9        17626 

P10        17626 

P11     16825    

P12        17626 

P13 27978 25404 26584 23217     

P14 27978 25404 26584      

P15       7713  

P16 27978 25404 26584      

P17       11569  

P18 27978 25404 26584      

P19    20896     

P20     16825    

P21 27978 25404 26584 23217     

P22 27978 25404 26584      

P23 27978 25404 26584      

P24     16825    

P25     16825    

P26 27978 25404 26584      

P27     16825   14688 

P28 27978 25404 26584      

P29       11569  

P30        17626 

P31 27978 25404 26584      

P32 24587 22325 23362      

P33 27978 25404 26584      

P34       7713  

P35     16825    

P36        17626 
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P37 27978 25404 26584 23217     

P38       7713  

P39     16825    

P40    18574     

P41    20896     

P42 27978 25404 26584      

P43 27978 25404 26584      

P44        14688 

P45     16825    

P46        14688 

P47 27978 25404 26584      

P48        17626 

P49    19503     

P50 27978 25404 26584      

P51 27978 25404 26584      

P52    20896     

P53    19503     

P54 27978 25404 26584 23217     

P55       8484  

P56 27978 25404 26584      

P57     16825   14688 

P58    20896     

P59 25434 25404 26584      

P60 24587 22325 23362      

P61    20896     

P62      7078   

P63      7078   

P64 27978 25404 26584      

P65 27978 25404 26584      

P66     16825   14688 

P67    20896     

P68    18574     

P69 27978 25404 26584      

P70 27978 25404 26584 23217     

P71 27978 25404 26584 25539     

P72 27978 25404 26584      

P73 27978 25404 26584      

P74     16825   14688 

P75    23217     

P76 27978 25404 26584      

P77        13954 

P78 27978 25404 26584      

P79    20896     
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P80    18574     

P81 27978 25404 26584      

P82 27978 25404 26584      

P83    20896     

P84      3539   

P85        17626 

P86 27978 25404 26584      

P87       7713  

P88 27978 25404 26584      

P89 27978 25404 26584      

P90 27978 25404 26584      

P91    20896     

P92        17626 

P93     18596   17626 

P94     16825    

P95    18574     

P96 27978 25404 26584      

P97      7078   

P98       7713  

P99      7078   

P100      7078   

P101    20896     

P102 27978 25404 26584      

P103 27978 25404 26584      

P104     18596    

P105        17626 

P106     18596    

P107 27978 25404 26584      

P108        17626 

P109      7078   

P110     18596    

P111        17626 

P112        17626 

P113      7078   

P114      7078   

P115      7078   

P116      3539   

P117      3539   

P118      7078   

P119      7078   

P120     16825    

P121      3539   

P122      3539   
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P123      3539   

P124      3539   

P125      7078   

P126      3539   

 

Table B.13: Processing rate (cans/hour) of product p in unit j in the packing stage – Case 
study II 

 P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8 P_9 P_10 

P1 22965     24862  31372 19296 20632 

P2 22965     24862  31372 19296 20632 

P3 22965     24862  31372 19296 20632 

P4      27348    20632 

P5     10551      

P6 22965          

P7        46476  30948 

P8 22965     24862  31372 19296 20632 

P9  16022 17119        

P10  16022 17119        

P11     10551      

P12  16022 17119        

P13 19137     20718   19296 20632 

P14  20027  21406      20632 

P15         15437  

P16        46476  30948 

P17  16022 17119 17125      17193 

P18 22965     24862  31372 19296 20632 

P19        46476  30948 

P20  12684 13553        

P21 22965     24862  31372 19296 20632 

P22        46476  30948 

P23  20027  21406      20632 

P24     10551      

P25  12684 13553 13557      16506 

P26 22965          

P27     7210      

P28      27348    20632 

P29  12684 13553        

P30  16022 17119 17125      16506 

P31 22965     24862  31372 19296 20632 

P32        46476  30948 

P33        46476  30948 

P34    8563   7335   8597 

P35     10551      

P36  16022 17119 17125       

P37        46476  30948 
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P38    9990   7335   8597 

P39     8793      

P40 19137     20718    20632 

P41 22965     24862  31372 19296 20632 

P42 22965     24862  31372 19296 20632 

P43 22965     24862  31372 19296 20632 

P44  16022 17119 17125      14786 

P45     6595      

P46  16022 17119       14786 

P47 18372     19890   15437 16506 

P48  16022 17119 17125      17193 

P49 22965     24862  31372 19296 20632 

P50 22965     24862  31372 19296 20632 

P51 22965     24862  31372 19296 20632 

P52          30948 

P53        46476  30948 

P54        46476  30948 

P55    9990   7335   8597 

P56 15310       31372 14472  

P57  16022 17119 17125      14786 

P58 22965     24862  31372 19296 20632 

P59 22965     24862  31372 19296 20632 

P60        46476  30948 

P61        46476  30948 

P62    4282   2934   8597 

P63    4710   4303    

P64 22965          

P65  16689  17838      29229 

P66  16022 17119 17125      14786 

P67 22965     24862  31372 19296 20632 

P68    21406      20632 

P69 22965     24862  31372 19296 20632 

P70         4342 30948 

P71 22965          

P72     10991      

P73 7655        9648  

P74  16022 17119 17125       

P75 22965     24862   19296  

P76 22965     24862  31372   

P77  9346 9986 7421      14328 

P78 22965     24862  31372 19296 20632 

P79 22965     24862  31372 19296 20632 

P80 22965     24862  31372 19296 20632 

P81 22965     24862  31372 19296 20632 

P82 22965     24862  31372 19296 20632 

P83 22965     24862  31372 19296 20632 
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P84       1956    

P85         8040  

P86        31372 19296  

P87    13557      24071 

P88 22965     24862  31372 19296 20632 

P89 19137     20718    20632 

P90         19296  

P91 22965     24862   19296 20632 

P92     6595      

P93  12684 13553 13557       

P94  16022 17119 17125      17193 

P95 18372     19890   15437 16506 

P96 22965     24862  31372 19296 20632 

P97       7335    

P98    4710   4303   4539 

P99    9990   7335   8597 

P100    9990   7335   8597 

P101      27348     

P102 22965     24862  31372   

P103 19137     20718    20632 

P104  12684 13553 13557      13205 

P105  16022 17119 17125      17193 

P106  12684 13553 13557      13205 

P107         19296  

P108         8040  

P109    9990   7335    

P110  3338  7421      14328 

P111  8345 13553 8563      17193 

P112  16022 17119 17125      14786 

P113       7335    

P114       7335    

P115    9990   7335   8597 

P116    4282   2934    

P117    4282   2348    

P118    9990   7335   8597 

P119     5276      

P120  3338        14328 

P121       1630    

P122       3912   4952 

P123    4282   3912   4952 

P124       3912    

P125    9990   7335   8597 

P126       1956    
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Table B.14: Number of sterilizers used by each product p – Case study II 

Product κP Product κP Product κP 

P1 2 P43 2 P85 2 

P2 2 P44 2 P86 1 

P3 2 P45 2 P87 2 

P4 2 P46 2 P88 1 

P5 2 P47 2 P89 1 

P6 2 P48 2 P90 1 

P7 3 P49 2 P91 1 

P8 2 P50 2 P92 2 

P9 2 P51 2 P93 2 

P10 2 P52 2 P94 2 

P11 2 P53 3 P95 1 

P12 1 P54 3 P96 1 

P13 2 P55 5 P97 3 

P14 2 P56 2 P98 2 

P15 3 P57 3 P99 2 

P16 3 P58 2 P100 4 

P17 3 P59 2 P101 1 

P18 3 P60 2 P102 1 

P19 3 P61 2 P103 1 

P20 2 P62 5 P104 1 

P21 2 P63 1 P105 1 

P22 3 P64 2 P106 1 

P23 2 P65 2 P107 1 

P24 2 P66 2 P108 1 

P25 2 P67 2 P109 1 

P26 2 P68 2 P110 1 

P27 2 P69 2 P111 1 

P28 2 P70 2 P112 1 

P29 2 P71 1 P113 1 

P30 2 P72 2 P114 2 

P31 2 P73 2 P115 2 

P32 3 P74 2 P116 3 

P33 3 P75 1 P117 3 

P34 2 P76 1 P118 1 

P35 2 P77 2 P119 1 

P36 2 P78 2 P120 1 

P37 3 P79 2 P121 2 

P38 2 P80 2 P122 2 

P39 1 P81 2 P123 2 

P40 2 P82 2 P124 1 
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P41 2 P83 2 P125 1 

P42 2 P84 4 P126 1 

 

Table B.15: Required sterilization time for product p – Case study II 

Product 
Batch time 

(min)  
Product 

Batch time 

(min) 
Product 

Batch time 

(min) 

P1 82 P43 85 P85 100 

P2 82 P44 82 P86 85 

P3 82 P45 98 P87 120 

P4 82 P46 100 P88 82 

P5 98 P47 82 P89 82 

P6 82 P48 98 P90 82 

P7 85 P49 82 P91 82 

P8 82 P50 82 P92 98 

P9 103 P51 105 P93 98 

P10 103 P52 82 P94 98 

P11 98 P53 82 P95 85 

P12 82 P54 82 P96 82 

P13 82 P55 221 P97 135 

P14 82 P56 82 P98 221 

P15 120 P57 103 P99 135 

P16 82 P58 85 P100 135 

P17 120 P59 82 P101 82 

P18 103 P60 82 P102 82 

P19 82 P61 82 P103 82 

P20 98 P62 168 P104 100 

P21 82 P63 135 P105 100 

P22 82 P64 82 P106 100 

P23 82 P65 82 P107 82 

P24 98 P66 103 P108 100 

P25 98 P67 82 P109 140 

P26 85 P68 102 P110 100 

P27 120 P69 102 P111 113 

P28 82 P70 82 P112 100 

P29 120 P71 82 P113 140 

P30 100 P72 89 P114 135 

P31 85 P73 82 P115 146 

P32 82 P74 106 P116 179 

P33 85 P75 85 P117 180 

P34 140 P76 105 P118 140 

P35 120 P77 120 P119 134 

P36 106 P78 82 P120 100 
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P37 82 P79 82 P121 168 

P38 160 P80 82 P122 179 

P39 82 P81 82 P123 213 

P40 102 P82 82 P124 179 

P41 82 P83 82 P125 146 

P42 85 P84 179 P126 180 

 

Table B.16: Cart capacity for product p – Case study II 

Product 
Capacity 

(cans) 
Product 

Capacity 

(cans) 
Product 

Capacity 

(cans) 

P1 372 P43 3276 P85 3276 

P2 372 P44 1530 P86 1797 

P3 372 P45 1797 P87 2500 

P4 3276 P46 3276 P88 3276 

P5 1797 P47 3276 P89 3276 

P6 756 P48 3370 P90 1797 

P7 3276 P49 3276 P91 1530 

P8 3276 P50 1530 P92 3370 

P9 3370 P51 297 P93 3276 

P10 3370 P52 3276 P94 3250 

P11 2500 P53 3276 P95 3370 

P12 1797 P54 3276 P96 3250 

P13 1710 P55 3276 P97 2500 

P14 3276 P56 3276 P98 3276 

P15 2500 P57 3276 P99 1710 

P16 3276 P58 756 P100 1710 

P17 3276 P59 3276 P101 3370 

P18 2500 P60 3276 P102 3276 

P19 3276 P61 756 P103 1530 

P20 1797 P62 1797 P104 3276 

P21 3276 P63 3276 P105 1710 

P22 1710 P64 3370 P106 3276 

P23 3276 P65 756 P107 1530 

P24 3370 P66 3276 P108 3276 

P25 1797 P67 3276 P109 297 

P26 1930 P68 1530 P110 756 

P27 297 P69 1530 P111 1797 

P28 3276 P70 1797 P112 1710 

P29 1530 P71 3370 P113 681 

P30 756 P72 1530 P114 3276 

P31 3370 P73 1530 P115 372 

P32 3276 P74 3276 P116 3276 
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P33 372 P75 3276 P117 297 

P34 1530 P76 3370 P118 1530 

P35 3370 P77 1530 P119 3276 

P36 1797 P78 3276 P120 1530 

P37 3276 P79 3276 P121 3276 

P38 1930 P80 1710 P122 1530 

P39 320 P81 3276 P123 3276 

P40 756 P82 1797 P124 3370 

P41 433 P83 1514 P125 3276 

P42 3276 P84 3276 P126 1797 
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Table C.1: Illustrative example – Vaccination centre’s data 

Vaccination 

centre 

Vaccination 

goal (
vc

) 

Maximum 

number of 

healthcare 

workers (max

vc
) 

Base number 

of healthcare 

workers (b

vc
) 

Maximum 

storage 

(
vc

) 

Initial 

storage 

(
,


vc v

) 

P M 

C1 10452 54 37 528 88 88 

C2 9780 51 34 492 82 82 

C3 6300 33 22 324 54 54 

C4 3168 17 11 168 28 28 

C5 1440 8 5 72 12 12 

 

Table C.2: Illustrative Example – Hub’s data 

Hub 
Initial Storage (

,


h v
) Maximum storage (

,


h c
) 

P M Freezer (M) Deep freezer (P) 

H 260 260 1300 1300 

 

Table C.3: Illustrative example – Vaccines’ data 

Vaccine 
Maximum 

supply (
,

 max

h v
) 

Minimum flow 

from hub to 

centres (
,

min

f h
) 

Doses 

per vial 

(
v

) 

Cost 
v

 

(RMU) 

Shelf-life 
v

 

(days) 

P 3000 975 6 12 5 

M 2000 100 10 18 - 
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Table C.4: Illustrative example – Distance matrix 

Distance 
,


h vc

 (km) 

 C1 C2 C3 C4 C5 

H 114 15 193 96 45 

 

Table C.5: Illustrative example - Cost data A 

Healthcare 

personnel cost 

(RMU†/day) 

Truck rental 

cost (RMU) 

Storage technology cost (RMU/day/via) 

Refrigerator Freezer Deep freezer 

120 270 0.5 1.5 3 

 

Table C.6: Illustrative example - Cost data B 

Fuel consumption 

(lt/100km) 

Fuel price 

(RMU/lt) 

Average truck 

speed (km/h) 

Driver’s wage 

(RMU/hour) 

10 1.3 50 8 

 

 

 

 

 
† Relative Monetary Units 



 

Table C.7: Greek Case study – Connectivity between hubs and vaccination centres 

Hub VC Hub VC Hub VC Hub VC Hub VC Hub VC Hub VC 

H1 C082 H1 C148 H1 C198 H2 C269 H3 C249 H4 C002 H4 C052 

H1 C083 H1 C149 H1 C199 H2 C270 H3 C250 H4 C003 H4 C053 

H1 C084 H1 C150 H1 C200 H2 C271 H3 C251 H4 C004 H4 C054 

H1 C085 H1 C151 H1 C201 H2 C272 H3 C252 H4 C005 H4 C055 

H1 C086 H1 C152 H1 C202 H2 C273 H3 C256 H4 C006 H4 C056 

H1 C087 H1 C153 H1 C203 H2 C279 H3 C257 H4 C007 H4 C057 

H1 C088 H1 C154 H2 C091 H2 C280 H3 C258 H4 C008 H4 C059 

H1 C089 H1 C155 H2 C092 H2 C281 H3 C260 H4 C009 H4 C061 

H1 C090 H1 C156 H2 C093 H2 C282 H3 C261 H4 C010 H4 C062 

H1 C096 H1 C157 H2 C094 H2 C283 H3 C262 H4 C011 H4 C063 

H1 C097 H1 C158 H2 C095 H2 C284 H3 C263 H4 C012 H4 C064 

H1 C098 H1 C159 H2 C118 H2 C285 H3 C264 H4 C013 H4 C065 

H1 C099 H1 C160 H2 C119 H2 C286 H3 C265 H4 C014 H4 C066 

H1 C100 H1 C161 H2 C120 H2 C287 H3 C266 H4 C015 H4 C067 

H1 C101 H1 C162 H2 C121 H2 C288 H3 C267 H4 C016 H4 C068 

H1 C102 H1 C163 H2 C122 H2 C289 H3 C274 H4 C017 H4 C069 

H1 C103 H1 C164 H2 C134 H2 C290 H3 C275 H4 C018 H4 C070 

H1 C104 H1 C165 H2 C135 H2 C291 H3 C276 H4 C019 H4 C071 

H1 C105 H1 C166 H2 C136 H2 C292 H3 C277 H4 C020 H4 C072 

H1 C106 H1 C167 H2 C137 H2 C293 H3 C278 H4 C021 H4 C073 

H1 C107 H1 C168 H2 C138 H2 C294 H3 C299 H4 C022 H4 C074 

H1 C108 H1 C169 H2 C139 H2 C295 H3 C300 H4 C023 H4 C075 

H1 C109 H1 C170 H2 C204 H2 C296 H3 C301 H4 C024 H4 C076 

H1 C110 H1 C171 H2 C205 H2 C297 H3 C302 H4 C025 H4 C077 

H1 C111 H1 C172 H2 C206 H2 C298 H3 C303 H4 C026 H4 C078 
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H1 C112 H1 C173 H2 C207 H2 C328 H3 C304 H4 C027 H4 C079 

H1 C113 H1 C174 H2 C208 H2 C329 H3 C305 H4 C028 H4 C080 

H1 C114 H1 C175 H2 C214 H3 C060 H3 C306 H4 C029 H4 C081 

H1 C115 H1 C176 H2 C217 H3 C209 H3 C307 H4 C030 H5 C330 

H1 C116 H1 C177 H2 C218 H3 C210 H3 C308 H4 C031 H5 C331 

H1 C117 H1 C178 H2 C219 H3 C211 H3 C309 H4 C032 H5 C332 

H1 C123 H1 C179 H2 C220 H3 C212 H3 C310 H4 C033 H5 C333 

H1 C124 H1 C180 H2 C221 H3 C213 H3 C311 H4 C034 H5 C334 

H1 C125 H1 C181 H2 C222 H3 C215 H3 C312 H4 C035 H5 C335 

H1 C126 H1 C182 H2 C223 H3 C216 H3 C313 H4 C036 H5 C336 

H1 C127 H1 C183 H2 C224 H3 C234 H3 C314 H4 C037 H5 C337 

H1 C128 H1 C184 H2 C225 H3 C235 H3 C315 H4 C038 H5 C338 

H1 C129 H1 C185 H2 C226 H3 C236 H3 C316 H4 C039 H5 C339 

H1 C130 H1 C186 H2 C227 H3 C237 H3 C317 H4 C040 H5 C340 

H1 C131 H1 C187 H2 C228 H3 C238 H3 C318 H4 C041 H5 C341 

H1 C132 H1 C188 H2 C229 H3 C239 H3 C319 H4 C042 H5 C342 

H1 C133 H1 C189 H2 C230 H3 C240 H3 C320 H4 C043 H5 C343 

H1 C140 H1 C190 H2 C231 H3 C241 H3 C321 H4 C044 H5 C344 

H1 C141 H1 C191 H2 C232 H3 C242 H3 C322 H4 C045 H5 C345 

H1 C142 H1 C192 H2 C233 H3 C243 H3 C323 H4 C046 H5 C346 

H1 C143 H1 C193 H2 C253 H3 C244 H3 C324 H4 C047 H5 C347 

H1 C144 H1 C194 H2 C254 H3 C245 H3 C325 H4 C048 H5 C348 

H1 C145 H1 C195 H2 C255 H3 C246 H3 C326 H4 C049 H5 C349 

H1 C146 H1 C196 H2 C259 H3 C247 H3 C327 H4 C050 H5 C350 

H1 C147 H1 C197 H2 C268 H3 C248 H4 C001 H4 C051 H5 C351 
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Table C.8: Greek Case study - Distribution of vaccination centres into clusters 

VC Cluster VC Cluster VC Cluster VC Cluster VC Cluster VC Cluster VC Cluster 
C001 CLU25b C051 CLU02 C102 CLU20a C152 CLU42 C202 CLU13 C252 CLU14 C302 CLU28 
C002 CLU25b C052 CLU25a C103 CLU20a C153 CLU13 C203 CLU13 C253 CLU30 C303 CLU28 
C003 CLU25b C053 CLU11 C104 CLU20b C154 CLU13 C204 CLU23 C254 CLU15 C304 CLU28 
C004 CLU25b C054 CLU37 C105 CLU20b C155 CLU20d C205 CLU30 C255 CLU15 C305 CLU06 
C005 CLU25a C055 CLU37 C106 CLU20b C156 CLU20d C206 CLU30 C256 CLU48 C306 CLU28 
C006 CLU25b C056 CLU35 C107 CLU20c C157 CLU20d C207 CLU33 C257 CLU48 C307 CLU06 
C007 CLU25b C057 CLU37 C108 CLU20c C158 CLU20d C208 CLU45 C258 CLU48 C308 CLU06 
C008 CLU25a C059 CLU02 C109 CLU20d C159 CLU49 C209 CLU07 C259 CLU32 C309 CLU16 
C009 CLU25a C060 CLU03 C110 CLU20d C160 CLU26 C210 CLU07 C260 CLU04 C310 CLU06 
C010 CLU08 C061 CLU11 C111 CLU20a C161 CLU43 C211 CLU14 C261 CLU28 C311 CLU16 
C011 CLU25a C062 CLU11 C112 CLU20d C162 CLU43 C212 CLU14 C262 CLU29 C312 CLU16 
C012 CLU08 C063 CLU12 C113 CLU17 C163 CLU43 C213 CLU14 C263 CLU03 C313 CLU16 
C013 CLU08 C064 CLU25c C114 CLU17 C164 CLU43 C214 CLU15 C264 CLU03 C314 CLU16 
C014 CLU02 C065 CLU11 C115 CLU38 C165 CLU43 C215 CLU48 C265 CLU34 C315 CLU04 
C015 CLU25a C066 CLU12 C116 CLU38 C166 CLU43 C216 CLU46 C266 CLU29 C316 CLU04 
C016 CLU25b C067 CLU37 C117 CLU39 C167 CLU43 C217 CLU23 C267 CLU34 C317 CLU34 
C017 CLU25b C068 CLU12 C118 CLU27 C168 CLU49 C218 CLU23 C268 CLU05 C318 CLU34 
C018 CLU25a C069 CLU12 C119 CLU27 C169 CLU49 C219 CLU23 C269 CLU40 C319 CLU34 
C019 CLU25a C070 CLU11 C120 CLU09 C170 CLU49 C220 CLU23 C270 CLU21 C320 CLU34 
C020 CLU25c C071 CLU37 C121 CLU24 C171 CLU49 C221 CLU30 C271 CLU19 C321 CLU34 
C021 CLU08 C072 CLU11 C122 CLU47 C172 CLU49 C222 CLU30 C272 CLU01 C322 CLU29 
C022 CLU12 C073 CLU12 C123 CLU20d C173 CLU10 C223 CLU30 C273 CLU01 C323 CLU29 
C023 CLU08 C074 CLU37 C124 CLU20c C174 CLU43 C224 CLU30 C274 CLU06 C324 CLU29 
C024 CLU25c C075 CLU35 C125 CLU20a C175 CLU26 C225 CLU30 C275 CLU06 C325 CLU29 
C025 CLU08 C076 CLU37 C126 CLU20a C176 CLU13 C226 CLU33 C276 CLU16 C326 CLU04 
C026 CLU02 C077 CLU37 C127 CLU38 C177 CLU10 C227 CLU33 C277 CLU06 C327 CLU04 
C027 CLU25c C078 CLU11 C128 CLU38 C178 CLU10 C228 CLU33 C278 CLU16 C328 CLU21 
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C028 CLU25c C079 CLU12 C129 CLU38 C179 CLU22 C229 CLU33 C279 CLU21 C329 CLU21 
C029 CLU25c C080 CLU12 C130 CLU17 C180 CLU36 C230 CLU33 C280 CLU21 C330 CLU18 
C030 CLU35 C081 CLU37 C131 CLU17 C181 CLU36 C231 CLU45 C281 CLU21 C331 CLU18 
C031 CLU35 C082 CLU20a C132 CLU39 C182 CLU42 C232 CLU45 C282 CLU19 C332 CLU41 
C032 CLU25c C083 CLU20c C133 CLU39 C183 CLU36 C233 CLU45 C283 CLU19 C333 CLU50 
C033 CLU25c C084 CLU20b C134 CLU47 C184 CLU42 C234 CLU46 C284 CLU21 C334 CLU31 
C034 CLU35 C085 CLU20b C135 CLU24 C185 CLU13 C235 CLU46 C285 CLU05 C335 CLU31 
C035 CLU02 C086 CLU39 C136 CLU09 C186 CLU22 C236 CLU46 C286 CLU19 C336 CLU31 
C036 CLU02 C087 CLU17 C137 CLU27 C187 CLU13 C237 CLU46 C287 CLU40 C337 CLU31 
C037 CLU25c C088 CLU17 C138 CLU27 C188 CLU49 C238 CLU46 C288 CLU40 C338 CLU31 
C038 CLU02 C089 CLU38 C139 CLU27 C189 CLU10 C239 CLU46 C289 CLU40 C339 CLU18 
C039 CLU02 C090 CLU38 C140 CLU20b C190 CLU20c C240 CLU46 C290 CLU05 C340 CLU18 
C040 CLU02 C091 CLU27 C141 CLU20c C191 CLU20a C241 CLU07 C291 CLU01 C341 CLU18 
C041 CLU08 C092 CLU27 C142 CLU20d C192 CLU20d C242 CLU07 C292 CLU01 C342 CLU18 
C042 CLU02 C093 CLU24 C143 CLU20c C193 CLU20c C243 CLU07 C293 CLU01 C343 CLU18 
C043 CLU25a C094 CLU09 C144 CLU20c C194 CLU20b C244 CLU07 C294 CLU01 C344 CLU18 
C044 CLU25b C095 CLU47 C145 CLU49 C195 CLU20d C245 CLU07 C295 CLU01 C345 CLU18 
C045 CLU25c C096 CLU20b C146 CLU26 C196 CLU20c C246 CLU07 C296 CLU01 C346 CLU41 
C046 CLU25b C097 CLU20b C147 CLU26 C197 CLU22 C247 CLU14 C297 CLU01 C347 CLU41 
C047 CLU25a C098 CLU20b C148 CLU22 C198 CLU26 C248 CLU14 C298 CLU01 C348 CLU41 
C048 CLU02 C099 CLU20a C149 CLU43 C199 CLU42 C249 CLU14 C299 CLU03 C349 CLU41 
C049 CLU02 C100 CLU20a C150 CLU10 C200 CLU36 C250 CLU14 C300 CLU03 C350 CLU50 
C050 CLU08 C101 CLU20a C151 CLU36 C201 CLU43 C251 CLU14 C301 CLU28 C351 CLU50 

            C352 CLU50 
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Table C.9: Greek case study - Vaccinations centre's data 

VC 
vc

 max

vc
 b

vc
 VC 

vc
 max

vc
 b

vc
 VC 

vc
 max

vc
 b

vc
 VC 

vc
 max

vc
 b

vc
 

C001 6300 33 22 C090 6204 32 22 C178 972 5 4 C266 4716 25 17 

C002 6300 33 22 C091 6672 35 24 C179 1344 7 5 C267 7956 41 28 

C003 6300 33 22 C092 6672 35 24 C180 1044 5 4 C268 7176 37 25 

C004 6300 33 22 C093 4776 25 17 C181 1044 5 4 C269 5424 28 19 

C005 6300 33 22 C094 3072 16 11 C182 1200 6 5 C270 8328 43 29 

C006 6300 33 22 C095 4716 25 17 C183 1044 5 4 C271 4128 22 15 

C007 6300 33 22 C096 3168 17 11 C184 1200 6 5 C272 8880 46 31 

C008 6300 33 22 C097 3168 17 11 C185 1596 8 6 C273 8880 46 31 

C009 6300 33 22 C098 3168 17 11 C186 1344 7 5 C274 10452 54 37 

C010 13356 70 47 C099 3168 17 11 C187 816 4 3 C275 10452 54 37 

C011 6300 33 22 C100 3168 17 11 C188 924 5 4 C276 7848 41 28 

C012 13356 70 47 C101 3168 17 11 C189 1944 10 7 C277 10452 54 37 

C013 6696 35 24 C102 3168 17 11 C190 3168 17 11 C278 7848 41 28 

C014 7380 38 26 C103 3168 17 11 C191 3168 17 11 C279 8328 43 29 

C015 3144 16 11 C104 3168 17 11 C192 3168 17 11 C280 1044 5 4 

C016 3144 16 11 C105 3168 17 11 C193 3168 17 11 C281 1044 5 4 

C017 6300 33 22 C106 3168 17 11 C194 3168 17 11 C282 516 3 2 

C018 6300 33 22 C107 3168 17 11 C195 3168 17 11 C283 516 3 2 

C019 6300 33 22 C108 3168 17 11 C196 3168 17 11 C284 1044 5 4 

C020 6300 33 22 C109 3168 17 11 C197 2676 14 10 C285 900 5 4 

C021 13356 70 47 C110 3168 17 11 C198 1044 5 4 C286 516 3 2 

C022 13980 73 49 C111 3168 17 11 C199 2376 12 9 C287 672 4 3 

C023 13356 70 47 C112 3168 17 11 C200 2076 11 8 C288 672 4 3 

C024 3144 16 11 C113 1620 8 6 C201 2592 14 9 C289 672 4 3 
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C025 6696 35 24 C114 1620 8 6 C202 1596 8 6 C290 900 5 4 

C026 7380 38 26 C115 1548 8 6 C203 1596 8 6 C291 1116 6 4 

C027 3144 16 11 C116 1548 8 6 C204 9144 48 32 C292 1116 6 4 

C028 3144 16 11 C117 2676 14 10 C205 13080 68 46 C293 1116 6 4 

C029 3144 16 11 C118 1668 9 6 C206 13080 68 46 C294 1116 6 4 

C030 11556 60 41 C119 1668 9 6 C207 8100 42 29 C295 1116 6 4 

C031 11556 60 41 C120 768 4 3 C208 12384 65 43 C296 1116 6 4 

C032 3144 16 11 C121 1200 6 5 C209 1692 9 6 C297 1116 6 4 

C033 3144 16 11 C122 1188 6 5 C210 6768 35 24 C298 1116 6 4 

C034 11556 60 41 C123 1572 8 6 C211 2196 11 8 C299 672 4 3 

C035 3696 19 13 C124 792 4 3 C212 8724 45 31 C300 672 4 3 

C036 3696 19 13 C125 792 4 3 C213 8724 45 31 C301 1440 8 5 

C037 1572 8 6 C126 1572 8 6 C214 1092 6 4 C302 1440 8 5 

C038 3696 19 13 C127 792 4 3 C215 1800 9 7 C303 1440 8 5 

C039 3696 19 13 C128 792 4 3 C216 4128 22 15 C304 1440 8 5 

C040 3696 19 13 C129 792 4 3 C217 2292 12 8 C305 1320 7 5 

C041 3348 17 12 C130 816 4 3 C218 1140 6 4 C306 1440 8 5 

C042 3696 19 13 C131 816 4 3 C219 1140 6 4 C307 2616 14 10 

C043 3144 16 11 C132 1344 7 5 C220 1140 6 4 C308 2616 14 10 

C044 3144 16 11 C133 1344 7 5 C221 1644 9 6 C309 996 5 4 

C045 3144 16 11 C134 588 3 3 C222 1644 9 6 C310 1320 7 5 

C046 3144 16 11 C135 600 3 3 C223 1644 9 6 C311 996 5 4 

C047 3144 16 11 C136 396 2 2 C224 1644 9 6 C312 996 5 4 

C048 3696 19 13 C137 840 4 3 C225 1644 9 6 C313 996 5 4 

C049 3696 19 13 C138 840 4 3 C226 2040 11 8 C314 996 5 4 

C050 6696 35 24 C139 840 4 3 C227 2040 11 8 C315 948 5 4 

C051 14784 77 52 C140 6300 33 22 C228 2040 11 8 C316 948 5 4 
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C052 6300 33 22 C141 6300 33 22 C229 8100 42 29 C317 996 5 4 

C053 6024 31 21 C142 6300 33 22 C230 2040 11 8 C318 996 5 4 

C054 9780 51 34 C143 6300 33 22 C231 1548 8 6 C319 996 5 4 

C055 9780 51 34 C144 6300 33 22 C232 1548 8 6 C320 996 5 4 

C056 23112 120 81 C145 7344 38 26 C233 1548 8 6 C321 996 5 4 

C057 9780 51 34 C146 4176 22 15 C234 2064 11 8 C322 588 3 3 

C059 3696 19 13 C147 4176 22 15 C235 2064 11 8 C323 588 3 3 

C060 672 4 3 C148 10728 56 38 C236 2064 11 8 C324 588 3 3 

C061 1500 8 6 C149 10332 54 36 C237 2064 11 8 C325 588 3 3 

C062 3000 16 11 C150 7800 41 28 C238 4128 22 15 C326 948 5 4 

C063 6996 36 25 C151 8280 43 29 C239 2064 11 8 C327 948 5 4 

C064 1572 8 6 C152 9528 50 34 C240 2064 11 8 C328 1044 5 4 

C065 1500 8 6 C153 6396 33 23 C241 864 5 3 C329 1044 5 4 

C066 6996 36 25 C154 6396 33 23 C242 864 5 3 C330 13176 69 46 

C067 4896 26 17 C155 792 4 3 C243 1692 9 6 C331 13176 69 46 

C068 6996 36 25 C156 1572 8 6 C244 1692 9 6 C332 6924 36 25 

C069 6996 36 25 C157 792 4 3 C245 864 5 3 C333 14328 75 50 

C070 3000 16 11 C158 792 4 3 C246 864 5 3 C334 1944 10 7 

C071 4896 26 17 C159 924 5 4 C247 1092 6 4 C335 1944 10 7 

C072 1500 8 6 C160 540 3 2 C248 1092 6 4 C336 1944 10 7 

C073 6996 36 25 C161 1296 7 5 C249 1092 6 4 C337 1944 10 7 

C074 4896 26 17 C162 1296 7 5 C250 2196 11 8 C338 1944 10 7 

C075 11556 60 41 C163 1296 7 5 C251 1092 6 4 C339 1644 9 6 

C076 4896 26 17 C164 1296 7 5 C252 1092 6 4 C340 1644 9 6 

C077 4896 26 17 C165 1296 7 5 C253 1644 9 6 C341 1644 9 6 

C078 3000 16 11 C166 1296 7 5 C254 564 3 2 C342 1644 9 6 

C079 6996 36 25 C167 1296 7 5 C255 1092 6 4 C343 1644 9 6 
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C080 6996 36 25 C168 924 5 4 C256 1800 9 7 C344 1644 9 6 

C081 4896 26 17 C169 924 5 4 C257 900 5 4 C345 1644 9 6 

C082 6300 33 22 C170 924 5 4 C258 900 5 4 C346 888 5 4 

C083 6300 33 22 C171 924 5 4 C259 3096 16 11 C347 888 5 4 

C084 6300 33 22 C172 924 5 4 C260 7620 40 27 C348 888 5 4 

C085 6300 33 22 C173 972 5 4 C261 11496 60 40 C349 888 5 4 

C086 10656 56 37 C174 1296 7 5 C262 4716 25 17 C350 1800 9 7 

C087 6468 34 23 C175 540 3 2 C263 5304 28 19 C351 1800 9 7 

C088 6468 34 23 C176 816 4 3 C264 5304 28 19 C352 1800 9 7 

C089 6204 32 22 C177 972 5 4 C265 7956 41 28     
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Table C.10: Greek case study - Vaccine's data 

Vaccine 
Minimum flow from 

hub to centres (
,

min

f h
) 

Doses per 

vial (
v

) 

Cost 
v

 

(RMU) 

Shelf-life 
v

 

(days) 

P 975 6 12 5 

M 100 10 18 - 

A 240 10 1.78 - 

J 480 5 8.5 - 

 

Table C.11: Greek case study – Maximum vaccine supply 

,
 max

h v
 P A J M 

H1 14720 13342 17664 3382 

H2 10917 9895 13101 2508 

H3 15386 13945 18463 3535 

H4 20575 18649 24690 4728 

H5 3675 3331 4410 844 

 

 



  

Table C.12: Greek Case study - Distance matrix 

Hub VC ,


h v
 Hub VC ,


h v

 Hub VC ,


h v
 Hub VC ,


h v

 Hub VC ,


h v
 

H1 C082 11.757 H1 C168 58.926 H2 C229 66.732 H3 C263 78.607 H4 C032 43.404 

H1 C083 12.529 H1 C169 82.174 H2 C230 92.092 H3 C264 70.71 H4 C033 26.644 

H1 C084 11.52 H1 C170 69.933 H2 C231 38.039 H3 C265 135.561 H4 C034 10.919 

H1 C085 11.498 H1 C171 54.407 H2 C232 33.64 H3 C266 163.674 H4 C035 30.194 

H1 C086 43.022 H1 C172 131 H2 C233 16.876 H3 C267 144.603 H4 C036 10.164 

H1 C087 40.489 H1 C173 104.362 H2 C253 28.302 H3 C274 118.489 H4 C037 22.019 

H1 C088 53.186 H1 C174 74.097 H2 C254 99.752 H3 C275 99.569 H4 C038 22.304 

H1 C089 43.799 H1 C175 31.059 H2 C255 73.035 H3 C276 182.963 H4 C039 11.518 

H1 C090 22.858 H1 C176 290.544 H2 C259 192.197 H3 C277 109.35 H4 C040 13.177 

H1 C096 11.789 H1 C177 128.625 H2 C268 140.429 H3 C278 164.253 H4 C041 24.406 

H1 C097 11.582 H1 C178 119.61 H2 C269 158.33 H3 C299 95.636 H4 C042 22.171 

H1 C098 10.778 H1 C179 125.057 H2 C270 100.538 H3 C300 74.898 H4 C043 14.016 

H1 C099 10.505 H1 C180 149.501 H2 C271 144.637 H3 C301 64.139 H4 C044 16.496 

H1 C100 8.582 H1 C181 139.931 H2 C272 121.83 H3 C302 42.558 H4 C045 17.61 

H1 C101 9.247 H1 C182 147.348 H2 C273 141.094 H3 C303 58.894 H4 C046 16.584 

H1 C102 9.359 H1 C183 135.962 H2 C279 102.421 H3 C304 67.411 H4 C047 12.27 

H1 C103 2.52 H1 C184 164.634 H2 C280 75.83 H3 C305 116.321 H4 C048 13.665 

H1 C104 10.951 H1 C185 256.601 H2 C281 137.973 H3 C306 101.541 H4 C049 6.452 

H1 C105 11.257 H1 C186 100.026 H2 C282 141.81 H3 C307 122.963 H4 C050 11.508 

H1 C106 11.433 H1 C187 229.466 H2 C283 126.31 H3 C308 139.923 H4 C051 28.069 

H1 C107 14.521 H1 C188 41.086 H2 C284 123.678 H3 C309 168.057 H4 C052 9.424 

H1 C108 12.849 H1 C189 96.802 H2 C285 81.57 H3 C310 84.936 H4 C053 6.665 

H1 C109 17.702 H1 C190 13.319 H2 C286 154.627 H3 C311 174.536 H4 C054 16.682 

H1 C110 15.923 H1 C191 10.744 H2 C287 145.731 H3 C312 147.238 H4 C055 20.452 
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H1 C111 10 H1 C192 21.684 H2 C288 141.055 H3 C313 154.256 H4 C056 21.093 

H1 C112 22.184 H1 C193 13.405 H2 C289 132.368 H3 C314 137.135 H4 C057 20.778 

H1 C113 40.714 H1 C194 10.744 H2 C290 89.497 H3 C315 109.615 H4 C059 31.531 

H1 C114 52.857 H1 C195 21.606 H2 C291 124.039 H3 C316 118.065 H4 C061 5.099 

H1 C115 44.762 H1 C196 12.902 H2 C292 171.395 H3 C317 153.285 H4 C062 17.318 

H1 C116 23.684 H1 C197 100.385 H2 C293 193.263 H3 C318 161.924 H4 C063 117.671 

H1 C117 39.194 H1 C198 27.859 H2 C294 163.836 H3 C319 137.676 H4 C064 40 

H1 C123 18.702 H1 C199 158.81 H2 C295 114.04 H3 C320 162.44 H4 C065 17.318 

H1 C124 15.718 H1 C200 133.868 H2 C296 127.197 H3 C321 168.134 H4 C066 7.817 

H1 C125 6.337 H1 C201 58.057 H2 C297 148.247 H3 C322 151.227 H4 C067 12.222 

H1 C126 5.799 H1 C202 246.553 H2 C298 173.201 H3 C323 161.697 H4 C068 10.781 

H1 C127 52.505 H1 C203 192.949 H2 C328 123.601 H3 C324 150.556 H4 C069 14.968 

H1 C128 38.539 H2 C091 105.918 H2 C329 143.683 H3 C325 194.231 H4 C070 2.716 

H1 C129 58.726 H2 C092 124.499 H3 C060 92.015 H3 C326 119.993 H4 C071 11.874 

H1 C130 38.224 H2 C093 120.708 H3 C209 88.192 H3 C327 105.936 H4 C072 5.054 

H1 C131 30 H2 C094 79.234 H3 C210 54.637 H4 C001 17.305 H4 C073 13.2 

H1 C132 72.7 H2 C095 154.152 H3 C211 50.903 H4 C002 16.656 H4 C074 283.231 

H1 C133 21.88 H2 C118 105.482 H3 C212 99.887 H4 C003 16.635 H4 C075 18.283 

H1 C140 12.177 H2 C119 121.922 H3 C213 125.45 H4 C004 16.673 H4 C076 11.718 

H1 C141 12.642 H2 C120 79.234 H3 C215 99.029 H4 C005 15.737 H4 C077 271.898 

H1 C142 21.726 H2 C121 119.073 H3 C216 51.911 H4 C006 17.162 H4 C078 11.757 

H1 C143 13.153 H2 C122 154.145 H3 C234 78.388 H4 C007 16.811 H4 C079 12.279 

H1 C144 12.252 H2 C134 134.853 H3 C235 84.981 H4 C008 15.809 H4 C080 15.517 

H1 C145 53.8 H2 C135 123.678 H3 C236 93.876 H4 C009 13.433 H4 C081 9.243 

H1 C146 35.472 H2 C136 69.287 H3 C237 30.286 H4 C010 14.282 H5 C330 7.635 

H1 C147 28.701 H2 C137 120 H3 C238 54.271 H4 C011 15.406 H5 C331 3.657 

H1 C148 98.649 H2 C138 94.317 H3 C239 46.242 H4 C012 12.867 H5 C332 52.818 
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H1 C149 61.83 H2 C139 109.251 H3 C240 63.94 H4 C013 15.856 H5 C333 87.257 

H1 C150 96.661 H2 C204 9.02 H3 C241 49.118 H4 C014 16.695 H5 C334 38.022 

H1 C151 133.526 H2 C205 28.878 H3 C242 101.28 H4 C015 15.774 H5 C335 56.571 

H1 C152 159.653 H2 C206 31.206 H3 C243 36.606 H4 C016 15.838 H5 C336 79.237 

H1 C153 192.949 H2 C207 65.714 H3 C244 88.27 H4 C017 16.763 H5 C337 30.568 

H1 C154 246.553 H2 C208 22.473 H3 C245 40.918 H4 C018 12.893 H5 C338 30.568 

H1 C155 34.417 H2 C214 73.977 H3 C246 36.873 H4 C019 13.724 H5 C339 20.323 

H1 C156 25.973 H2 C217 7.814 H3 C247 75.906 H4 C020 21.841 H5 C340 17.078 

H1 C157 53.945 H2 C218 26.267 H3 C248 95.451 H4 C021 22.215 H5 C341 25.304 

H1 C158 37.267 H2 C219 6.783 H3 C249 83.326 H4 C022 13.973 H5 C342 32.171 

H1 C159 36.382 H2 C220 7.607 H3 C250 49.592 H4 C023 27.637 H5 C343 22.621 

H1 C160 40.474 H2 C221 53.877 H3 C251 57.647 H4 C024 22.727 H5 C344 31.379 

H1 C161 96.345 H2 C222 54.934 H3 C252 103.202 H4 C025 21.165 H5 C345 32.8 

H1 C162 88.762 H2 C223 51.061 H3 C256 98.722 H4 C026 23.388 H5 C346 24.107 

H1 C163 60.957 H2 C224 37.818 H3 C257 105.676 H4 C027 21.247 H5 C347 56.545 

H1 C164 81.302 H2 C225 27.704 H3 C258 108.601 H4 C028 38.874 H5 C348 66.464 

H1 C165 64.017 H2 C226 55.882 H3 C260 91.349 H4 C029 23.198 H5 C349 41.77 

H1 C166 80.952 H2 C227 66.773 H3 C261 42.294 H4 C030 16.409 H5 C350 70.936 

H1 C167 46.801 H2 C228 63.53 H3 C262 123.72 H4 C031 24.314 H5 C351 108.823 
            H5 C352 120 



  

 


