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στη φιλομαχη





Abstract

Over the last decades the electricity industry has experienced a remarkable reformation

mainly for two reasons. The �rst reason is the market deregulation. This term describes the

shift from vertically integrated monopolies to competitive markets. The latter give access

to other players who can invest in generation and transmission facilities, thus increasing

the competition. The second reason is the strong penetration of renewable energy resources

(RES), whose the inherently intermittent generation has changed the operational framework

and introduced new tools to handle both power production and demand response.

Considering RES, their �nancially subsidized generation and the prioritized dispatch

(merit-order) have resulted in reduced conventional (thermal) production volumes and sup-

pressed electricity prices. Following this, a question arises about the sustainability of the

existing thermal units. In addition, a second question arises about the attainability of future

investments not only for the conventional units but also for the RES generation facilities

as the continuous growth of the latter leads to further suppressed electricity prices. Within

the above framework, this thesis investigates the strategic reaction of a power producer to

exercise market power by means of capacity withholding and transmission-related strategies

to o�set expected pro�t losses. Initially, considering a producer with conventional genera-

tion portfolio, we develop a stochastic bi-level complementarity model to derive optimal o�er

strategies for the aforementioned producer in a jointly cleared energy and reserve pool-based

market settled through an hourly auction process. The upper level of the model represents

the maximization of the strategic producer's expected pro�ts while the lower level repre-
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sents the market clearing mechanism optimizing the security-constrained expected cost of

the system conducted by the independent system operator. The mechanism is modeled

though a two-stage stochastic programming where the �rst stage clears the day-ahead DA)

market, and the second stage presents the system operation in RT though a set of plausi-

ble wind power production realizations. Then, we extend the proposed bi-level model for

an incumbent power producer who possesses a conventional and wind generation portfolio.

Both bi-level models are recast into mathematical programming with equilibrium constraints

(MPEC) models which are then reformulated into equivalent mixed integer linear program-

ming (MILP) models solvable by commercial solvers like CPLEX/GAMS in global optimality.

These transformations occur using the Karush-Kuhn-Tucker (KKT) �rst order optimality

conditions, the strong duality theory and disjunctive constraints. The proposed algorithms:

• provide optimal o�ering (energy/price) strategies for a power producer participating

in a jointly cleared energy and balancing pool market where other conventional and

wind power producers are concerned as competitors.

• derive robust DA and balancing market prices which are created endogenously as dual

variables of the energy balance constrains.

• identify producer's arbitrage opportunities between DA and RT markets.

• o�er a novel framework that determines the impact of the strategic producer's behavior

on the local marginal prices (LMPs) under stochastic production.

• provide a systematic analysis of behavior adjustments of the aforementioned producer

depending on wind production uncertainty , network congestions, and di�erent levels

of wind power penetration.

Finally, we investigate the interaction between strategic power producers participating in

the pool market. Thus, based on the extended bi-level model of each producer, we propose a

new MPEC model with primal-dual formulation. The joint solution of all producers' MPEC

models construct an equilibrium programming with equilibrium constraints (EPEC) model.
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This is then, lying on di�erent objective functions, linearized into an MILP model and solved

using a single-iteration diagonalization process. The proposed algorithm addresses several

network cases and provides a range of meaningful market equilibria in an ex-post analysis

of the received MILP results taking into consideration wind production uncertainty and

transmission lines congestions.
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Περίληψη

Σήμερα η κλιματική αλλαγή είναι χωρίς αμφιβολία ένα από τα μεγαλύτερα περιβαλλοντικά

προβλήματα. Αντιμέτωποι με τα καταστρεπτικά αποτελέσματα των ανθρώπινων δραστηριοτήτων

στο κλίμα, τα κέντρα αποφάσεων καλούνται να υιοθετήσουν ενδελεχή μέτρα όσον αφορά στην

αειφορία του περιβάλλοντος. Τα συστήματα παραγωγής ηλεκτρικής ενέργειας παίζουν σημαντι-

κό ρόλο στην επίτευξη των περιβαλλοντικών στόχων καθώς είναι υπεύθυνα για το μεγαλύτερο

ποσοστό εκπομπών αερίων του θερμοκηπίου. Με αυτό το σκεπτικό η Ευρωπαϊκή ΄Ενωση έχει

ευθυγραμμίσει τις ενεργειακές της πολιτικές έτσι ώστε το 2050 η παραγόμενη ηλεκτρική ενέρ-

γεια που σχετίζεται με εκπομπές άνθρακα να έχει μειωθεί κατά 80% σε σχέση με το 1990.

Αυτές οι πολιτικές υποστηρίζονται σημαντικά από μέτρα που επιτρέπουν την ισχυρή διείσδυση

ανανεώσιμων πηγών ενέργειας (ΑΠΕ) σε ποσοστό 75% της ακαθάριστης τελικής ενεργειακής

κατανάλωσης.

Παραδοσιακά οι κανόνες της αγοράς ενέργειας λειτουργούσαν με σκοπό τον έλεγχο των

εκπομπών άνθρακα. Επιπροσθέτως τα συστήματα παραγωγής ηλεκτρικής ενέργειας ακολουθο-

ύν τις διακυμάνσεις της ζήτησης. Παρόλα αυτά το λειτουργικό πλαίσιο αλλάζει σαν αποτέλεσμα

των συμφυών μη ελεγχόμενων διακυμάνσεων της παραγωγής ηλεκτρικής ενέργειας από μο-

νάδες ΑΠΕ. Η προαναφερθείσα φύση των ΑΠΕ σε συνδυασμό με την έλλειψη τεχνολογίας

αποθήκευσης της ηλεκτρικής ενέργειας οδηγεί τις συμβατικές μονάδες παραγωγής να λειτουρ-

γούν διακοπτόμενα για να αντιμετωπίσουν τις συχνές ανισορροπίες στο δικτύου μεταφοράς.

΄Ετσι αυξάνεται η ανάγκη για πιο ευέλικτες αλλά ακριβές εφεδρείες ενέργειας (reserves) ώστε

να διασφαλισθεί η αξιοπιστία του συστήματος. Η ανωτέρω κατάσταση επηρεάζει την απο-
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δοτικότητα και το λειτουργικό κόστος αρνητικά. Επιπλέον η μειούμενη ωριαία λειτουργία και

συνεπώς ο όγκος παραγωγής σε συνδυασμό με τις συμπιεσμένες τιμές ηλεκτρικής ενέργειας

εγείρουν ερωτήματα όχι μόνο για τη βιωσιμότητα των υπαρχόντων μονάδων αλλά και για το

εφικτό των μελλοντικών επενδύσεων. Επιπροσθέτως το κατάλληλο μείγμα ευέλικτης χωρητι-

κότητας που έχει σκοπό να εξομαλύνει την συνεχώς αυξανόμενη μεταβλητότητα της παροχής

ηλεκτρικής ενέργειας εμποδίζεται από ανωμαλίες της αγοράς. Οι τελευταίες σχετίζονται με

παραγωγούς που έχουν εξασφαλισμένη προτεραιότητα στη τροφοδοσία του δικτύου ( prior-

ity feed-in) λαμβάνοντας επωφελής επιδοτήσεις και άλλους μη επιδοτούμενους παραγωγούς οι

οποίοι είναι αποδέκτες τιμών εκκαθαρισμένης αγοράς για την κάλυψη πάγιων δαπανών.

Γενικά η απαιτούμενη ευελιξία έχει μακροχρόνιο αντίκτυπο σε όλο το φάσμα του ηλεκτρικού

συστήματος από τη προ-ημερήσια και ημερήσια λειτουργία της αγοράς ηλεκτρικής ενέργειας

μέχρι τη μελλοντική παραγωγική ικανότητα. Η υποχρέωση εξισορρόπησης της διαλείπουσας

παροχής ηλεκτρικής ενέργειας έχει δημιουργήσει την ανάγκη για νέο σχεδιασμό που θα επιλύει

τα προβλήματα ενσωμάτωσης μονάδων παραγωγής στο δίκτυο καθώς επίσης και την ανάγκη

για ένα νέο πλαίσιο για την εξισορρόπηση του πολιτικού τριλήμματος μιας αποτελεσματικής και

ανταγωνιστικής αγοράς ενέργειας σε ένα ασφαλές σύστημα μεταφοράς με χαμηλές εκπομπές

άνθρακα.

Αναφορικά με την ισχυρή διείσδυση των ΑΠΕ η οποία υποστηρίζεται από ένα γενναιόδωρο

μηχανισμό επιδοτούμενης παραγωγής και προτεραιότητας στον εφοδιασμό, ο ρόλος της συμβα-

τικής παραγωγής ενέργειας φθίνει. Παρόλα αυτά λόγω της μεταβλητότητας της παραγωγής, της

συμφόρησης του δικτύου καθώς και των διακυμάνσεων της ηλεκτρικής ισχύος που τροφοδοτε-

ίται στο σύστημα, οι λειτουργοί της αγοράς αναγκάζονται να συναλλάσσονται σε πραγματικό

χρόνο ώστε να διορθώνονται οι ανισορροπίες του συστήματος. Οι συναλλαγές αυτές βασίζονται

στην ικανότητα των θερμοηλεκτρικών μονάδων να παράγουν ενέργεια κατά απαίτηση. Παρά την

αναγνώριση από τις αγορές του σημαντικού ρόλου των θερμοηλεκτρικών μονάδων οι τελευτα-

ίες αντιμετωπίζουν μια άνιση μεταχείριση και πρέπει να υιοθετήσουν συγκεκριμένη στρατηγική

συμπεριφορά ώστε να διασφαλίσουν την ανταγωνιστικότητα τους.
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Μέσα στο παραπάνω πλαίσιο η παρούσα εργασία μελετά τη στρατηγική συμπεριφορά και

την αντίδραση μιας εταιρίας παραγωγής ηλεκτρικής ενέργειας με δεσπόζουσα θέση στην αγο-

ρά. Η εταιρία συμμετέχει μαζί με άλλους παραγωγούς συμβατικής και αιολικής ενέργειας σε

χρηματιστήριο ενέργειας όπου ο ανεξάρτητος διαχειριστής του συστήματος ή ο διαχειριστής

της αγοράς (σε πολλές χώρες η οντότητα είναι η ίδια) εκκαθαρίζει από κοινού τη προ ημερήσια

(day-ahead) αγορά και την αγορά εξισορρόπησης (balancing or real-time). Η εταιρία εξασκεί

την θέση ισχύος της μέσω στρατηγικών συγκράτησης παραγωγής (physical withholding) και

αύξησης τιμών προσφορών (�nancial withholding) καθώς και με στρατηγικές που σχετίζονται

με τη μεταφορά ενέργειας (transmission-related strategies) με σκοπό την αποφυγή απώλειας

κέρδους. ΄Ετσι με βάση τις υποθέσεις του οικονομικού μοντέλου του Stackelberg και λαμβάνο-

ντας υπόψιν μια εταιρία συμβατικής (θερμικής) παραγωγής ηλεκτρικής ενέργειας, αναπτύσσουμε

αρχικά ένα στοχαστικό διεπίπεδο μοντέλο συμπληρωματικότητας (stochastic bi-level compli-

mentarity model) το οποίο ανταποκρίνεται στα κίνητρα του πρωτοπόρου (εταιρία παραγωγής)

και του ουραγού (ανεξάρτητος διαχειριστής συστήματος) που συμμετέχουν στο παίγνιο βελτι-

στοποίησης των προσδοκιών τους.

Το άνω επίπεδο του μοντέλου μεγιστοποιεί τα προσδοκώμενα κέρδη της εταιρίας ενώ το κάτω

επίπεδο του μοντέλου ελαχιστοποιεί το κόστος του συστήματος προσδιορίζοντας τις αποδεκτές

ποσότητες έγχυσης και απορρόφησης ενέργειας καθώς και την ενιαίες τιμές εκκαθάρισης των

αγορών. Η εκκαθάριση των αγορών γίνεται μέσω δύο σταδίων στοχαστικού προγραμματισμού.

Το πρώτο στάδιο εκκαθαρίζει την προ ημερήσια αγορά καθορίζοντας την προγραμματισμένη

παραγωγή θερμικών και ΑΠΕ καθώς και την τιμή της αγοράς η οποία λαμβάνεται ως δυική

μεταβλητή σχετιζόμενη με τον περιορισμό ισοζυγίου ισχύος. Το δεύτερο στάδιο εκκαθαρίζει

την αγορά εξισορρόπησης λαμβάνοντας υπόψιν την αβεβαιότητα της αιολικής παραγωγής μέσω

πιθανών σεναρίων παραγωγής και καθορίζει εφεδρείες για την ισορροπία του συστήματος και

προσδοκώμενες τιμές εκκαθάρισης της αγοράς που και αυτές λαμβάνονται ως δυικές μεταβλη-

τές του περιορισμού ισοζυγίου ισχύος σε πραγματικό χρόνο. Κατόπιν, το διεπίπεδο μοντέλο

επεκτείνεται για μια εταιρία με δεσπόζουσα θέση στην αγορά που διαχειρίζεται θερμικό και
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αιολικό ενεργειακό χαρτοφυλάκιο. Και τα δύο μοντέλα μετασχηματίζονται σε μαθηματικού

προγραμματισμού με περιορισμούς ισορροπίας (mathematical programming with equilibrium

constraints, MPEC) μοντέλα αντικαθιστώντας το κάτω μέρος των διεπίπεδων μοντέλων με τη

χρήση των Karush-Kuhn-Tucker (KKT) συνθηκών βελτιστοποίησης. Κατόπιν διατυπώνουμε

τις KKT συνθήκες συμπληρωματικότητας (complementarity constraints) με τη χρήση διαζευ-

κτικών περιορισμών (disjunctive constraints) ανασχεδιάζοντας τα MPEC μοντέλα σε μοντέλα

μεικτού ακέραιου γραμμικού προγραμματισμού (Mixed Integer Linear Programme, MILP) τα

οποία είναι ελέγξιμα από εμπορικούς λύτες όπως ο CPLEX/GAMS και επιλύσιμα σε παγκόσμιο

βέλτιστο. Οι φυσικές ροές της ηλεκτρικής ενέργειας μοντελοποιούνται με τη βοήθεια συνεχούς

ρεύματος υπό γραμμική προσέγγιση με σκοπό να συμπεριλάβουμε τον αντίκτυπο των επιδράσε-

ων του δικτύου στις αποφάσεις του παίγνιου. Η επίλυση των μοντέλων μας δίνει τη δυνατότητα

να:

• προσδιορίσουμε τις στρατηγικές προσφορών ενός παραγωγού ηλεκτρικής ενέργειας που

συμμετέχει μαζί με άλλους συμβατικούς και αιολικής ενέργειας παραγωγούς σε ένα χρη-

ματιστήριο ενέργειας.

• λάβουμε οριακές τιμές συστήματος για την προ ημερήσια αγορά και την αγορά εξισορ-

ρόπησης σαν δυικές μεταβλητές των περιορισμών ισοζυγίου ισχύος.

• εξετάσουμε τη δυνατότητα arbitrage μεταξύ προ-ημερήσιας και ημερήσιας αγοράς με βάση

τον πιο κερδοφόρο συνδυασμό ζεύγους προσφορών ποσότητας και τιμής.

• καθορίσουμε την επίδραση των στρατηγικών προσφορών σε συνθήκες αβεβαιότητας ορια-

κών τιμών ζώνης και να εκτιμήσουμε τις οικονομικές επιπτώσεις στους συμμετέχοντες.

• αναλύσουμε συστηματικά τις συμπεριφορικές προσαρμογές του συγκεκριμένου παραγω-

γού ως προς την αβεβαιότητα της αιολικής παραγωγής, των διαφορετικών επιπέδων δι-

ύσδησης της καθώς και ως προς τους τεχνικούς περιορισμούς μονάδων παραγωγής και

συστήματος μεταφοράς.

Στη συνέχεια για να μελετήσουμε την αλληλεπίδραση μεταξύ παραγωγών με στρατηγική

συμπεριφορά χρησιμοποιούμε το εκτεταμένο διεπίπεδο μοντέλο και το μετασχηματίζουμε σε
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MPEC μοντέλο με τη μορφή κύριου-δυικού σχηματισμού για κάθε παραγωγό. Η κοινή επίλυση

όλων των MPEC συνιστά ένα μοντέλο προγραμματισμού ισορροπίας με περιορισμούς ισορ-

ροπίας (equilibrium programming with equilibrium constraints, EPEC). Στη συνέχεια και

εφαρμόζοντας διαφορετικές αντικειμενικές συναρτήσεις για να προσδιορίσουμε το εύρος των

πιθανών ισορροπιών της αγοράς γραμμικοποιούμε το μοντέλο και επαληθεύουμε τις έγκυρες

λύσεις του με τη χρήση μεθόδου σύγκλισης μιας επανάληψης. Το μοντέλο επιλύει διάφορα

συστήματα εξετάζοντας:

• τις Nash ισορροπίες υπό έντονο, χαλαρό (σύμπραξη) και μονοπωλιακό ανταγωνισμό.

• τον καθορισμό τιμών εκκαθάρισης της αγοράς λαμβάνοντας υπόψιν την αβεβαιότητα της

αιολικής παραγωγής.

• την επίδραση α) της αυξανόμενης διύσδησης της αιολικής ενέργειας, β) της μεταβλητότητα

της καθώς και γ) της συμφόρηση των γραμμών μεταφοράς ενέργειας στα προσδοκώμενα

κέρδη των παραγωγών.
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Chapter 1

Introduction

1.1 Motivation and objectives

Nowadays, climate change is beyond any doubt one of the biggest environmental prob-

lems. Confronting the detrimental results of human activities on the climate, policy makers

are prompted to adopt thoroughgoing measures concerning environmental sustainability.

Electric generation systems are playing a signi�cant role in encountering environmental ob-

jectives as they account for the bulk of the greenhouse emissions. Under this canopy, the

EU has aligned its energy policies so that by 2050 the energy related to carbon emissions

will have been reduced by 80% compared to 1990. These policies are highly supported by

measures allowing for a strong penetration of high renewable energy sources (RES) reaching

a level of 75% in gross �nal energy consumption (European Commission's communication

for Energy, 2011).

Traditional energy market rules operated on the basis of facilitating carbon-intensive

controllable capacity. Additionally, power system operations followed demand variations.

However, as a result of the inherent uncontrollable �uctuations of the RES generation the

operational frame is changing (Eurelectric, 2011). The aforementioned nature of RES, to-

gether with the lack of storage technology, increases the need for more responsive and ex-

pensive reserves to secure the network reliability, thus causing the conventional (thermal)
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electric power generators to operate intermittently to deal with the frequent imbalances.

This a�ects their e�ciency and operational cost in a negative way. Furthermore, the de-

creased hourly operations and the resulting production volumes combined with the depressed

electricity prices raise the question not only of the viability of the existing units but also of

the feasibility of future investments. In addition, the appropriate mix of �exible capacity

to accommodate the soaring amounts of variable supplies is prevented by anomalies in the

energy market. The latter concern non-dispatchable generators being guaranteed priority

feed-in (merit-order) while receiving pro�table subsidies for producing electricity and other

non-subsidized generators being price takers for �x cost recovery (Baker et al., 2010).

In general, the demanded �exibility has a long-term impact on the whole spectrum of

the electric system from the day-ahead (DA) and real-time (RT) market operation to the

future capacity (MIT, 2011). The obligation to o�set the emerged intermittency has created

the need for a new design which must resolve the integration challenges as well as the need

for a new agenda in order to balance the policy trilemma of an e�cient competitive energy

market with a secure transmission system under an e�ecting low-carbon electricity supply.

Concerning the strong penetration of RES supported by a generous mechanism of subsi-

dized production and priority dispatch, the role of conventional energy production is dimin-

ishing. Nevertheless, due to the variability of the generation, the congestions of the network,

and the �uctuations of the electric power fed in the system the market operators are enforced

to trade in RT to correct the imbalances which depend on the ability of thermal plants to

supply energy under demand. Despite the market acknowledgement of the important role

of the thermal plants as capacity providers, the latter are faced with unequal treatment and

have to adopt speci�c strategic behaviour to ensure competitiveness.

Within the above context and considering the conventional energy production, we study

the strategic behaviour and reaction of an incumbent conventional power producer and ex-

amine its incentives to exert market power and ensure its dominant position in order to

avoid energy pro�t losses. For the sake of this thesis, RES refer to wind power producers.
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Thus, based on the assumptions of the sequential Stackelberg single-leader single-follower

game (Stackelberg, 1934), we initially develop a stochastic bi-level complementarity model.

The upper-level problem maximizes conventional producer's (leader) expected pro�ts, and

the lower-level problem facilitates the economic dispatch conducted by independent system

operator (ISO) (follower) considering wind production uncertainty. Assuming the continuity

and di�erentiability of the lower-level problem, the latter is substituted by its �rst order

Karush-Kuhn-Tucker (KKT) reforming the bi-level model into a single-level mathematical

programming with equilibrium constraints (MPEC). Then we formulate the KKT comple-

mentarity conditions as disjunctive constraints (Fortuny-Amat and McCarl 1981) recasting

the MPEC into a mixed integer linear programming (MILP), which is tractable by commer-

cial solvers and can be solved to global optimality (Floudas, 1995). In order to include the

impact of network e�ects on the game decisions, the energy physical �ows will be modeled

by means of direct current (DC) linear approximation (Kirschen and Strbac, 2004; Zavala

et al., 2017).

The primary objective of this thesis is to:

• Encourage research on the market implications of strategic behaviour in low-carbon

electricity systems.

• Examine the implications of market power in coordinated auctions for energy and

reserves (Birge and Louveaux, 2011).

• Investigate dynamics of arbitrage between the DA and RT stage based on the most

pro�table combination of quantity and price o�ers.

• Determine the impact of strategic o�ering under uncertainty on locational marginal

prices and assess the economic consequences on industry-wide participants (Pritchard

et al., 2010).

Moreover, considering the paradox faced by RES as their continuous growing penetration

in generation industry suppresses further the market prices, the same questions also arise for
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the WPPs. Therefore, concerning the incentives of a WPP to mitigate its expected pro�t

losses, we extend the previous model for an incumbent producer who possesses a thermal

and wind generation portfolio. Using a similar process, the new bi-level model is reformed

�rst into an MPEC and then into an equivalent MILP. In addition, the objective of the new

model is to:

• Investigate the e�ect of WWPs' strategic behaviour on network constrained market

prices.

• Identify further arbitrage opportunities given that now the producer exercising market

power by means of capacity withholding can change the mixture of both thermal and

wind productions to its bene�t.

Finally, this research analyzes the market under the assumption that more than one

producer exercises market power. To do so, the bi-level model of each producer is recast

into an MPEC with primal-dual formulation. The joint solution of all MPECs constitutes

a multi-leader single-follower equilibrium programming with equilibrium constraints model

(EPEC). The objective of this work is to:

• Study the interaction between producers with conventional and wind generation port-

folios in a two-settlement electricity market.

• Derive meaningful market equilibria in an ex-post analysis using a single-iteration

diagonalization method.

• De�ne the range of market equilibria by applying di�erent objective functions consid-

ering competitive, less competitive, and monopoly markets.

• Investigate the impact of wind power increment and wind power volatility on market

equilibria.

This thesis also proposes a new approach to linearize the nonlinear objective functions

of MPEC models avoiding the use of any binary expansion method, thereby, reducing the

computational burden and rendering solvable more sophisticated networks.
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1.2 Thesis overview

This thesis is organized as follows:

Chapter 1 introduces motivation, objectives and solution approaches to cope with

the problems raised in this thesis. It also provides an overview of power system and

electricity markets. It analyzes the concepts of merit-order e�ect and market power,

and it o�ers a literature review of the state-of-the-art research in energy market equi-

libria considering the strategic o�ering problem. Finally, it provides the mathematical

background of bi-level models deriving the optimality conditions of the MPEC and

EPEC models proposed in this thesis.

Chapter 2 describes a network constrained electricity pool which co-optimizes the DA

and RT markets. It provides the mathematical model of the market clearing process

considering wind production uncertainty through a two-stage stochastic programming,

the main assumptions, and the pricing scheme. At the beginning, the Chapter also

includes a section with the nomenclature associated to the market clearing algorithm

as well as the MPEC and EPEC models proposed in Chapters 3, 4, and 5.

Chapter 3 addresses the strategic o�ering problem of a conventional producer in

a pool market with large scale wind power production. Based on the single-leader

single-follower Stackelberg game, a stochastic bi-level model is introduced to derive

optimal o�ers (price/quantity) for this producer (leader). The upper level maximizes

the expected pro�t of the strategic producer, and the lower level clears the market

under economic dispatch conducted by the ISO (follower). The bi-level model is recast

into an MPEC and then into an MILP with the use of the KKT conditions, the strong

duality theory, and disjunctive constraints. Two di�erent networks (6-bus and RTS

systems) are used to show the applicability of the proposed model.

Chapter 4 provides an extension of the previous model. In this case, the generation

portfolio of the strategic producer also includes wind power. Following a similar process
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the bi-level model is initially reformed into an MPEC and then it is reduced into an

equivalent MILP. The proposed algorithm is applied to the same networks analyzing

further arbitrage opportunities for the strategic producer.

Chapter 5 examines market equilibria when more than one producer act strategically.

Based on the multi-leader single follower game, an MPEC with primal-dual formation

is introduced to model the strategic behavior of each producer. The joint solution

of all producers' MPECs forms an EPEC model. The EPEC is recast into an MILP

considering di�erent degrees of competition. The applicability of the proposed model

is illustrated by two case studies with 2-bus and 6-bus systems.

Chapter 6 provides a synopsis including the relevant conclusions drawn from the

research throughout this thesis, the main contributions of the research, and consider-

ations for future work.

Appendix A o�ers the linearization processes of the objective functions of the MPEC

and EPEC models. It also presents the substitution of the EPEC's KKT complemen-

tarity constraints with the equivalent linear disjunctive constraints.

Appendix B depicts the correlation between demand energy blocks and bidding prices

for a 24-hour period (Chapters 3 and 4).

Appendix C provides data for the one-area (24-bus) RTS system of IEEE and the

conventional power generating units, as well as for the location and distribution of the

demand.

1.3 Electricity power system

The previous two decades have seen a gradual reformation of the electricity sector in

various countries. There has been market liberalization of the electricity markets because

of the privatization of the big state-owned companies, or more frequently, due to the de-

regulation of privately owned controlled utilities by developing organizations that encourage
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rules to ensure that these electricity markets function appropriately. In many cases organi-

zations have been developed, for example Regulatory Commissions, and these may or may

not have anti-trust jurisdiction. However, there is extended jurisdiction of organizations that

are nearly always extant such as the the Federal Energy Regulatory Commission (FERC,

2020). The restructuring process is being carried out by several countries, who take signif-

icant lessons from other countries that have already carried out liberalization of their own

markets (Joskow, 2008). Consequently, new and normally sophisticated economic theories

are used to develop complex regulatory models.

The commodity of electricity typically involves four key activities, which are generation,

transmission, distribution and commercialization (Bhattacharya, 2001; Zhang, 2010; Sheblé,

2012; Ilic, 2013). In traditional power systems, these activities are typically controlled

by a single vertically integrated company that is generally state-owned. This means that

a centralized body makes decisions that decreases overall operating expenses, adheres to

the technical limitations and makes certain that there is adequate reliability. This is how

mathematical programming approaches and instruments have been instrumental in carrying

out these rules.

The deregulation process of the electricity market is being carried out since the early

part of the 1980s, where there is an evident inclination towards dissolution and separation

of the various activities to encourage competition. This development has been based on the

search for (Bhattacharya, 2001) :

• Low electricity prices based on real generation cost rather than tari� set.

• E�cient capacity expansion.

• Operation and planning cost minimization.

• High quality services based on reliable power systems.

• Increasing competition by allowing new entries in the market.

• Supporting transparency in all market transactions.
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A decentralized approach should be used when considering the planning and functioning

of power systems in this new setting for energy trading. For instance, each power generating

�rm determines the amount of energy to be generated on its own and how to maintain its

production units. There is a lack of centralization of the investment on capacity extension;

therefore, �rm takes the decisions in accordance with its aim of maximizing pro�ts from

the investments since it usually does not have speci�ed duties pertinent to suitability of

the system. Therefore, the decisions being taken in the planning and operation of power

systems are driven by economic objectives. The fundamental theories on microeconomic

evaluation need to be considered to comprehend the behaviour exhibited by the participants.

In this �eld, a vital part has been played by the game theory market equilibrium models in

in�uencing the market for power systems.

1.3.1 Power system participants

There are di�erent agents that take part in the electricity market, including consumers,

producers, market operator, retailers and the system operator. A brief description follows:

• Producers: The role of producers is to generate electricity to cover the demand and

also to look after the investment, functionality and maintenance of their generation

capacities.

• Consumers: Consumers refer to those who buy energy, typically from the retailers.

Large-scale consumers are permitted by a few regulatory frameworks to directly pur-

chase energy from the market or the producers.

• Retailers: The trading of energy between producers and consumers is carried out by

the retailers. They do not have ownership of generating units; hence, they buy energy

from the electricity market and then sell it to consumers.

• Market Operator: It is the responsibility of the market operator to perform economic

regulation of the power system as part of the supply generation o�ers and the demand
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o�ers obtained. It ensures that the market laws are implemented and that the mar-

ket clearing process depends on increasing social welfare and decreasing generation

expenses.

• Independent System Operator: It looks after the technical management of the system.

The key aim of the independent system operator (ISO) is to ensure that a dependable

RT energy supply is provided. This can be attained when the ISO synchronizes the

generation, consumption and transmission of electricity. In many power systems, like

PJM and ISO-New England, ISO embodies market operator, therefore, it is the re-

sponsibility of the ISO to perform the economic as well as the technical management

of the market.

There are a few more signi�cant parties involved in the power system; however, they do

not have a direct involvement in the wholesale energy market. These include:

• Transmission companies: these companies carry out the development, maintenance

and operation of the transmission lines under their ownership. In most power systems

A single transmission company has ownership of majority of the transmission grid.

• Distribution companies: Most of the energy is obtained by the distribution companies

from the transmission grid and then is provided to consumers situated in distinct

geographical areas.

• Market regulator: This is an independent body that supervises the electricity market

and makes sure that the market is operating properly, i.e. it ensures that the market

is e�cient, transparent and competitive.

1.3.2 Electricity markets

The market systems that are used most commonly across the world for energy trading

are presented below. They typically back distinct time trading �oors that are appropriate

for maintaining the balance between demand and supply.
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• Forward market: In this market, energy trading involves delivery being made in the

future, which may in a week, a month or even one year in advance. Transactions in

this market may be carried out with a physical supply of energy, a �nancial agreement

or just by price di�erentials against the DA market.

• Bilateral contracts: Purchase contracts (known as physical bilateral contracts) can be

established between agents instead of establishing contracts in organized markets. The

ISO should be informed about the energy related to this kind of contracts so that it

considers they while distributing electricity.

• Day-ahead market: This market is of a short-term nature, in which energy trading is

carried out for each of the 24 hours of the following day on an hourly or a 30-minute

basis. The ideal reference price of electricity is the price of this market, and it is used to

perform settlement of the futures market and other aspects pertaining to the sector's

regulation. One day before energy is delivered, the production of energy is determined

in this market with economic criteria based on the viability of the established energy

program to cover the demand.

• Ancillary services: It is imperative for power systems to ensure that the production

levels of the generating units are according to the demand at any given point in time.

This can be accomplished by means of ancillary services that are classi�ed into primary,

secondary and tertiary control, in addition to imbalance management. It needs to be

considered that with the exception of primary control, the others are o�ered at market

rates by means of auctions, where just the producers that are capable of meeting the

load variation are permitted.

1.3.3 Energy transmission

The electricity system can become more reliable with the transmission of electricity, while

encouraging the use of technologies to produce electricity at lower costs.
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In majority of the power systems, electricity distribution is a natural monopoly that is

usually regulated by a monopolist in every political jurisdiction (though this is not always

true, such as in the United States). This means that the network functions as a single unit.

This aspect is particularly signi�cant in the prevailing context of majority of the electricity

markets which have seen the unbundling of production activities and sale of electricity. Here,

the meeting point for buying and selling of energy is the transmission of electrical energy,

which is very critical to make sure that these power systems are in a good condition. In

addition, since it is an essential facility, it is vital to control access. The characteristics of

the transmission network can be categorized into four points when viewed from an economic

perspective:

i) There are very little operational expenses of the network (nearly 3% every year) in

comparison to investment expenses.

ii) Transmission cost shows economy of scale.

iii) The comparative economy of the transmission network varies according to the geo-

graphic expansion of the country and the distribution of generation and consumption.

iv) The operation of the power system should be carried out as a whole also engaging the

transmission network.

1.4 Market price and merit-order e�ect

In electricity exchanges, which have the form of an auction, the market clearing price is

de�ned at the point where demand and supply curves intersect. Thus, considering demand,

it is the lowest accepted bid to buy energy, and considering power generating units supply, it

is the most expensive marginal cost accepted in the auction which actually de�ne the price

in the market for all generating units involved.

The term merit-order de�nes the sequence in which generating units are scheduled to

produce power by seeking the economic optimization of energy supply. Separating the �x
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cost associated to power generating technology, the merit-order prioritizes power units, which

continuously produce electricity at the lowest marginal cost, and subsequently adds units in

an ascending marginal cost order. This price clearing mechanism is called uniform pricing

since all the units are compensated at the same price for their feed-in production, in contrast

to the pay-as-bid mechanism where the units are paid at di�erent prices in a continuous

trading.

demand
supply curve

renewable conventional

P ∗c

Pc

Energy

Figure 1.1: Merit-order e�ect

However, the uninterrupted increasing share of RES in energy markets has in�uenced the

electricity market prices, since the feed-in of production with low or even zero cost causes a

rightward shift of the supply curve. As shown in Figure 1.1 the shift removes the intersection

point between supply and demand curve at lower level, reducing the market clearing price

(Pc − P ∗c ) and cutting out higher cost conventional generation. This phenomenon is called

merit-order e�ect (Sensfuÿ et al., 2008).

1.5 Market power in electricity markets

The prime target of electricity market liberalization is to give incentives for power pro-

ducers to minimize their cost, to encourage innovation, and to keep the market prices down
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through competition, thereby, providing �nal consumers with high quality services and low-

price electricity. However, the hypothesis that liberalization will naturally derive competitive

conditions and results is not always guaranteed. The price orientation, the speci�c features

of the industry, and the physical characteristics of the electric energy make the market vul-

nerable to market power exertion. First, as the large-scale energy storage is not available,

and RT production is needed to cover demand, a shortage of supply can be caused due

to technical limitations faced by generating units to provide short-run reserve deployments

(Borenstein, 2000). Second, the physical laws, which govern the power �ow, render the

scheduled operation complicated and set any network stability failure �nancially problem-

atic (Green, 2008). Third, the frequently concentrated structure of power generating �rms,

the inelastic to price demand, and the scarce nature of electricity as product which stems

from the objective limitation of supply give the incentives to incumbent �rms to raise their

pro�ts by suppressing competition and increasing market prices.

In the literature of economic theory, the term market power is de�ned as "the ability to

pro�tably alter prices from competitive levels" (Stoft, 2002; Twomey et al. 2006; Krugman

and Wells; 2009; Mankiw, 2016). A similar de�nition is also given by the United States

Department of Justice according to which market power is "the ability of a supplier to

pro�tably raise prices above competitive levels and maintain those prices for a signi�cant

time period". Each word of these de�nitions is important and wisely chosen. The word

"ability" makes it possible for the regulator to distinguish the di�erence between "exercising"

and "having" market power as the latter is not automatically unlawful. However, Stoft

(2002) claims that the only rational reaction of a �rm having market power is to exercise

it. This distinction has meaning when we examine the market power under an ex-post

(exercising) or ex-ante (having) analysis. The word "pro�tably" de�nes that market power

exertion should be pro�table; therefore, an action of production curtailment or unit shut-

down can be characterized as market power exertion only under pro�tability requirements.

The expression "maintain prices above" excludes the case where an incumbent �rm set the
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prices lower than competitive prices to prevent new entrances in the market (predatory

pricing). Even if McGee (1980) and Easterbrook (1981) show that a predator's threat is not

credible considering long time period as the incurred losses are higher compared to those

of coexisting with a rival, a successful predatory pricing policy would set the prices higher

in the post-predation period to o�set the incurred losses in predatory period. In addition,

Hansen and Percebois (2012) identify that a dominant �rm has certain incentives to make

room for new entrants taking bene�ts from short-term increased prices and attracting less

attention from regulatory authorities. This is why the de�nition of market power indirectly

refers to market prices increase. Finally, the phrase "above competitive levels" is the most

important for the de�nition of market power even if it can be controversial as there are cases

which could result in higher market prices. This can happen, for example, when demand

exceeds supply and the will for consumption is o�ered higher than that of supply or in a

case where high demand permits costlier units to operate covering their �xed costs. In these

cases, market power is not exercised as the market balance is based on system marginal cost

even if the prices are high. This is why, a �rm is said to exercise market power when it only

increases market price above system marginal cost.

1.6 Capacity withholding strategies

Considering electricity markets , the literature recognizes two types of market power:

vertical and horizontal. Vertical market power refers to �rms which are involved in more

than one activity in downstream line e.g. generation and transmission. In this case the �rm,

using its dominant position in one activity, takes the comparative advantage and increases

its overall revenues. Horizontal market power refers to �rms which exercise market power at

one stage of the production process and in�uence outcomes and prices at another stage. In

our case, as we only study generation and energy-only markets, we concentrate on horizontal

market power. The instruments used by a power producer to exercise market power concern

mainly capacity withholdings. The term withholding is used to describe strategies and has
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two components physical or quantity withholding and �nancial or economic withholding.

The former considers the case where the producer exercises market power by withholding

production. As shown in Figure 1.2, production curtailment (in red) shifts the competitive

demand

competitive supply curve

certailment

Pc

P ∗

Energy

Figure 1.2: Physical withholding strategy

demand
competitive supply curve

increased o�er

marginal energy block

Pc

P ∗

Energy

Figure 1.3: Financial withholding strategy

supply curve to the left setting the market price at higher level. In case of �nancial with-

holding, the strategic producer leads to the same result using increased o�ers. As presented

in Figure 1.3 the marginal energy block (in red), which de�nes the market price, is bid
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higher shifting the competitive supply curve upwards. Analyzing the markets, we can see

the capacity withholding results, but it is di�cult to distinguish which strategy the producer

follows. Finally, in a network-constrained market, a third instrument for a producer with a

well-diversi�ed generation portfolio is to exercise market power through the manipulation of

the production mixture. Thus, based on line transmission related limits the producer can

create monopoly pockets raising the LMPs and increasing its pro�ts.

There are two main social consequences of market power exertion. First, the transfer of

wealth from consumers to producers which equals to price distortion (P ∗−P ) multiplied by

the total energy production. Second, the increased pro�ts do not concern only the producer

who exercises market power but all the producers as everyone is paid at the same price. In

fact, in many cases market power exertion is less pro�table for the one exerting it considering

the exercise cost.

1.7 Literature review

This Chapter provides literature review under the canopy of energy economics with a

particular consideration on strategic behavior of market participants. Game theory o�ers

the appropriate mathematical framework to model the interaction between economically

involved entities each of which anticipates the maximization of its own pay-o�.

1.7.1 Oligopoly competition and market equilibria

The mathematical model for determining the equilibrium in an n-person game was pre-

sented by John F. Nash in 1950, which was known as the Nash equilibrium (Nash, 1950).

Several publications have been put forward for forming new theories of equilibrium, new

algorithms to solve them and new applications in nearly all knowledge domains. A new �eld

of knowledge has been established by the Game Theory. The strategic behaviour of the

individual players is expressed by the Game theory, in which the decision of each players is
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based on the decision made by other players (Fudenberg and Tirole, 1991). The new ques-

tions that have emerged following the deregulation process in power systems are answered

by applying the game theory. A required goal for both the participants and regulators of the

market is looking for potential market equilibrium. It is required by participants because

it demonstrates the strategies of the competitors to the participants, while it is required by

market regulators as it allows market power supervision and corrective measures. Knowledge

about equilibrium serves as a signi�cant tool that power producers can use to execute their

strategies. Since power systems are of an oligopolistic nature, perfect competition is not

exhibited and equilibrium models are needed to evaluate the market outcomes and the be-

haviour of participants. Oligopolistic competition suggests that the outcomes of the market

can be in�uenced by the market participants. When decisions are made at the same time

by participants (one-shot game), it is possible to classify the market equilibrium as follows:

• Cournot equilibrium. This is one of the main methods used by researchers to

analyze the market and the behaviour of the participants (Cabral, 2006). In this form

of equilibrium, the output quantities are simultaneously selected by the participants

and the market price is de�ned at the point that total produced quantity equals to

demand. Two Cournot models are developed by Hobbs (2001) as mixed complementary

problems, consisting of a DC network representation. The �rst one is put forward for

bilateral agreements, while the other one pertains to a pool-based market. Another

model identical to previous one is put forward by Contreras at al. (2004). However,

the equilibrium is sought using a relaxation algorithm on the basis of the Nikaido-Isoda

function, rather than the KKT conditions employed by Hobbs.

• Bertrand equilibrium. This equilibrium is based on the interdependency of price

decisions between competitors where prices are used as strategic variables, rather than

quantities. In the absence of any capacity or transmission limitations and the presence

of a unique good, the model leads to perfect competition (David and Wen, 2001). This

model cannot be extensively applied to electricity markets and does not have many
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uses. For instance, a linear model was formulated by Hobbs (1986) for identifying

the equilibrium of the electricity market on the basis of price competition. In another

study conducted by Lee and Baldick (2003), the �ndings of the Bertrand equilibrium

are contrasted with other equilibria. Here, the Nash equilibrium is developed for a

three-player game in mixed strategies for Cournot and Bertrand games.

• Supply function equilibrium (SFE). In this equilibrium model the participants

put forward their o�ers in price as well as in quantity. Every participant needs to

determine their entire supply curve for various prices and quantities. The proposed

model derives particularly good results; however, it is di�cult to employ in extensive

power systems. The results of SFE are identical to the Cournot equilibrium when the

system is at peak demand where production nearly achieves the maximum generation

capacity of the system and close to the Bertrand equilibrium at o�-peak demands and

when the generation capacity is considerably larger than the demand (Smeers, 1997).

There has been extensive use of linear (Weber and Overbye, 1999; Baldick et al., 2004;

Liu et al., 2004), piece-wise (Baldick and Hogan, 2001) and step-wise supply function

(Barroso et al., 2006a; Pozo and Contreras, 2011) models for determining equilibria in

electricity markets.

It should be noted that the participants increase their pro�ts individually by making the

assumption that the competitors do not modify their outputs in response to the rivals' deci-

sions. If this is not the case, then every participant makes speculations about the reactions

of the other competitors by using their views or anticipations regarding the response of their

rivals to modi�cation in their output. The equilibrium approaches given above are often

combined with the term conjectural variation (CV) equilibrium (Garcia et al., 2002). In

work of Song et al. (2003), CV in Cournot decisions is used for the optimal o�ering problem

of power producers in the DA market. Conjectured SFE is used by Day et al. (2002), where

supply functions are selected by the producers to determine the way competitors will modify

their sales following price variations. When decisions are made by the participants at various
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stages (sequential game), the market equilibrium may be categorized as follows:

• Stackelberg equilibrium. The prime Stackelberg equilibrium refers to a single-

leader single-follower game, in which a participant, referred to as the leader, makes

the decision before other market participants, who are referred to as the followers.

The leader is able to maximize their pro�ts, anticipating the response of follower, who

act optimally to the decision of leader. Thus, in this hierarchical game, the leader's

decisions are in�uenced by those of the follower, and vice versa. Therefore, the leader

bene�ts from being the �rst one to take a decision. Considering power systems, the

Stackelberg game is employed to model: the strategic o�ering problem, the generation

capacity investment problem, and the assessment of the vulnerability of power systems

following calculated attacks (Arroyo, 2010).

• Multi-leader multi-follower game. In this game of multiple players there is an

hierarchy between two groups of players. One group acts as leader deciding �rst and

the other group acts as follower responding to leaders' decision similarly to Stackelberg

model. However, each player at the same hierarchical group maximizes their payo�

in a non-cooperative game considering the optimal strategies of the rest players of

the group. These games are known as Stackelberg-Nash games (De Wolf and Smeers,

1997; Xu, 2005) since they involve a Nash equilibrium problem within each group and

a Stackelberg equilibrium problem between the hierarchical groups.

In general, Stackelberg equilibrium and Nash-Stackelberg equilibrium problems can be

modeled as bi-level optimization problems. When there is a single leader the problem can be

stated as a mathematical programming with equilibrium constraints optimization problem

(Dempe, 2003; Facchinei and Pang, 2007). In case there are multiple leaders the problem

can be stated as an equilibrium problem with equilibrium constraints optimization problem

(Ralph and Smeers, 2006; Hu and Ralph, 2007; Zhang, 2010).
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1.7.2 MPEC modeling in energy markets

Mathematical problems with equilibrium constraints (MPEC) are hierarchically related

optimization problems essential to the formulation of today's energy markets as they can

treat both prime (generation) and dual (price) variables and incorporate diverse technical

and economic market characteristics such as transmission capacity limits or power market

exertion (Gabriel et al. 2012). Particularities in electricity markets such as transmission

constraints, generation capacity, and demand allocation as well as transmission pricing and

bilateral contracts may lead to imperfect competition allowing production �rms to exert

their dominant position to in�uence the market prices above their marginal cost. Hobbs

et al. (2000) developed an MPEC to examine the behaviour of several incumbent energy

producers in an oligopolistic market on a general linearized DC network where power �ows,

and participant's o�ers are constrained by the system operator (SO). The model calculates

market price equilibria using the supply function conjectural variation regarding the o�ering

strategies for each producer. Consequently, a two-level optimization problem is formed

in which the upper-level problem derives the strategic behaviour of the leader producer

calculating the optimal supply curve, and the lower level simulates the algorithm performed

by the SO to optimize the energy dispatch and clear the market price. Despite the fact that

no algorithm can guarantee optimal solutions to a problem which is inherently non-convex,

the advanced interior point algorithm used to solve the problem ensures e�cient results.

Day et al. (2002) introduced conjectured supply function (CSF) models. In these

models based on Stackelberg hypothesis, a generation �rm participates in a competition

through an a�ne supply function anticipating its rivals' adjusted sales in response to market

price changes. Subsequently, a mixed complementarity problem to derive Nash equilibria is

adopted using �rst order Karush-Kuhn-Tucker (KKT) optimality conditions under the as-

sumption of convexity. The CSF approach is more �exible than the Cournot, and it can be

applied successfully to large networks while SFE cannot. The CSF can also be extended to

ancillary service markets where the demand is characterized by zero elasticity. The proposed
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model by Bautista et al. (2006) is an extension of the work done by Day et al. (2002),

and it concerns a joint energy and reserve market. Additionally, with the CSF competition

the model introduces the conjectured reserve price responses to �nd equilibrium within a

spectrum of strategies allowing the identi�cation of the parameters of the opportunity cost

between generation and reserves as well as the identi�cation of the manipulation e�ect on

the reserve prices. The complementarity model is applied in a multi-period market for a

six-node system using a linearized DC approximation, but it does not consider commitment

decisions such as start-up and shut-down to avoid non-convexities.

Haghighat et al. (2007) are ambivalent about the CSF method considering the di�-

culties in construction of CSF due to the lack of marginal cost data. Therefore, to model

the strategic behaviour of power producers which participate in a joint energy end reserve

oligopolistic market, they introduced a parameterized SFE model. In their research, the

developed method employs a two-degree of freedom parameterization which involves the

manipulation of both the slope and the intercept of the supply functions as shown in Baldick

(2002). The engaged bi-level optimization problem results in Nash equilibrium strategies

under the pay-as-bid pricing and marginal pricing mechanisms.

Pereira et al. (2005) proposed a binary expansion (BE) approach to solve the strategic

o�ering problem in short-term electricity markets. The BE scheme eliminates the nonlin-

earities approximating the continuous decision variables by a set of discrete values, and the

nonlinear problem is recast into a mixed integer linear programming (MILP) problem solvable

by commercial solvers. Additionally, the BE approach can be applied to joint price/quantity

o�ers, network constraints, �nancial instruments, uncertainties under a diversity of price and

quantity scenarios, and unit commitment.

Based on the BE approach mentioned above Bakirtzis et al. (2007) suggested a bi-level

optimization problem to attain the optimal o�ering strategies of electricity producers in

a spot market with a stepwise o�ers format. The MPEC is transformed into an MILP.

Furthermore, the results of a ten-unit system produced by MILP are compared with those
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derived by nonlinear programming (NLP) solvers. The comparison shows the supremacy of

the MILP even if it is a time-consuming formation as the NLP fails to deliver the optimal

global solution in several cases. However, the model is restricted to energy-only markets and

small networks avoiding multi-period decisions and network constraints.

Ruiz and Conejo (2009) proposed a 24-hourly transmission constrained MPEC to derive

the optimal o�ering strategies of a power producer with a dominant position in a pool-based

electricity market. The uncertainty of the generating o�ers and of the demand side bids is

considered, and the local marginal prices (LMPs) are generated endogenously. The MPEC

is reformed to an MILP obliterating the nonlinearities using the KKT optimality conditions

and the strong duality theory. The mathematical formulation is applied in networks of

diverse intricacy, and the network congestions are used as one more strategic mechanism for

further growth of the strategic producer's pro�t.

Barroso et al. (2006a) formulated a Nash Equilibria (NE) in strategic o�ering algorithm

for short-term electricity markets using a BE approach. In contrast, Gabriel and Leuthold

(2010) transformed the strategic player MPEC to an MILP including network transmission

constraints. They replaced the KKT optimality conditions with disjunctive constraints and

linearized the bilinear terms price-generation with the use of a discrete set of valid generation

levels in connection with indicator binary variables that equal to one, when the generation

level is true, and to zero in all other cases. The method is applied in both a three-node

network and a �fteen-node system representative of the Western European grid under several

scenarios. The results show that even if the computational time increases with the increase

of the number of the discrete variables as the available production of the strategic producer

expands, the prospects of using the suggested mathematical approach for large-scale models

is promising.
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1.7.3 Modeling wind power integration

Considering the signi�cant penetration of wind power production in energy systems,

Hatziargyriou and Zervos (2001) indicated the need for assessing the e�ect of market liber-

alization process on distributed energy resources. Under the full scope of unit commitment

schedule in operational planning, Bou�ard et al. (2005) proposed a stochastic security con-

strained, multi-period electricity market clearing algorithm with unit commitment taking

into account inter-temporal decisions, network capacity limits, involuntary load shedding,

and likely contingencies. Pinson et al. (2007) propose a generic methodology to derive

optimal strategies for a wind energy producer in pool markets. The model takes into consid-

eration a probabilistic forecast production assuming that the wind power producer does not

exercise any production control strategy. To facilitate the wind energy production Morales

et al. (2009) extended the two-stage stochastic program proposed by Bou�ard et al. to

derive the required reserve levels considering both the wind spillage and load shedding costs.

Dent et al. (2011) propose a model to optimize strategies for an averse volume risk wind

power producer in forward markets. The model is based on the RT wind power capacity

availability and the expected RT prices which correlate with forward prices and wind power

units out-turns. Papavasiliou et al. (2011) presented a two-stage stochastic unit commitment

model quantifying reserve requirement and operational cost under uncertain production in a

non-sequential market clearing and system operation approach. On the contrary, Morales et

al. (2012) provided a marginal pricing scheme of both DA and balancing market through a

two-stage stochastic programming model where scheduled generation and reserve deployment

are represented sequentially.

In previous work, wind power producers (WPs) are considered as price takers. Baringo

and Conejo (2013) introduced a stochastic MPEC formulation to derive the optimal bidding

strategy of a WP who exerts its dominant position participating as price maker in the DA

market and as price taker in the balancing market. On the other hand, Zugno et al. (2013)

developed an MPEC approach to optimize the expected revenues of a WP who participates
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as price taker in the DA market and as price maker in the RT market.

1.7.4 EPEC modeling in energy markets

EPEC models are extension to MPEC models wher more than one player act as leader

in the upper-level problem. In previous years, several works examined market equilibria

under uncertainty. Klemperer and Meyer (1989) study oligopoly competition with demand

uncertainty where each �rm selects its own supply function relating optimal quantities to

best o�ers. De Wolf and Smeers (1997) propose a two-stage single-leader Stackelberg-Nash-

Cournot model. In the �rst stage the leader chooses its production taking into consideration

the follower's reaction, and in the second stage the follower reacts according to Cournot

assumption. Pang and Fukushima (2005) present a multi-leader follower game formulated as

a quasi-variational inequality model solved by an iterative penalty method. Hu and Ralph

(2007) develop a bi-level non-cooperative recast into an EPEC for restructured short-term

electricity markets with nodal marginal prices. The model introduces Nash stationary points

based on the stationary theory of MPECs to establish su�cient conditions for pure strategy

Nash equilibria. Sauma end Oren (2007) propose a three period model. In third period an

energy market is modeled for transmission and generation. In second period the competitors

optimize the expected value of new investments in generation capacity. In �rst period a

network planner is called to decide which transmission line to build or upgrade anticipating

the reaction of the lower problems the joint solution of which constitutes an EPEC model.

Daxhelet and Smeers (2007) illustrate an EPEC model where power generators from dif-

ferent countries act as leaders (Stackelberg leaders) seeking to maximize their countries net

pro�ts. The regulator of each country is represented by equilibrium constraints in response

to electricity market operation (the market acts as Stackelberg follower). In the meantime,

each regulator assumes that the others do not alter their decision (Nash equilibrium between

regulators)

Anderson and Hu (2008) extend the model of Klemperer and Meyer using an asymmetric
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supply function with capacity constraints. They show that not only do equilibrium solutions

appear in order, but that in many cases there is only one solution. Yao et al. (2008)

propose a two-period Nash-Cournot equilibrium model in two-settlement (forward and spot)

electricity markets considering �ow constraints and demand uncertainty and market power.

In this case the Nash equilibrium is formulated as an EPEC in which each �rm solves its

own MPEC. The EPEC equilibrium solution is based on a reiterative application of all �rms'

MPECs. DeMiguel and Hu (2009) extend the previous model to a multi-leader Stackelberg

model where then the �nding of equilibrium is based on the sample average approximation

method. Ley�er and Munson (2010) propose a multi-leader common-follower game where

they examine a synthesis of non-linear optimizations and complementarity formulation of

EPECs.

Ruiz et al (2012) based on an hierarchical structure propose an EPEC using a primal-dual

formulation of the MPEC's strong stationary conditions. However, the stationary points of

the EPEC solution could be equilibrium points, saddle points, or local optimizers; therefore,

an ex-post analysis is needed for the selection of meaningful equilibria. Regarding wind

power penetration in energy markets, the literature until recently considers wind power

producers as price takers. Furthermore, in oligopoly conditions Kazempour and Zareipour

(2014) develop an EPEC model to examine the impact of high wind power penetration on

DA and RT market equilibria considering equilibria in a single bus and only under producers'

expected pro�t maximization. In addition, Dai and Qiao (2017) advance an EPEC model

to derive equilibria in short-term markets with strategic and non-strategic wind and conven-

tional power producers. The model takes into account wind power production and demand

uncertainty, and its solution is approached by a diagonalization algorithm.

1.8 Mathematical framework of bi-level problems

Bi-level optimization problems are problems with an hierarchical structure where an

upper-level (leader's) problem with the general form (1.1) - (1.3) is constrained by a lower-

25



Chapter 1 Introduction

level (follower's) problem (1.4) - (1.6). On account of this, an optimal solution of the upper-

level problem should satisfy the upper-level constraints and belong to the feasible region of

the lower-level problem.The general form of a bi-level optimization problem is given below:

Upper-level problem

minimize
ΞU

fU(xU , xL, λ, µ) (1.1)

subjected to hU(xU , xL, λ, µ) = 0 (1.2)

gU(xU , xL, λ, µ) ≤ 0 (1.3)

Lower-level problem

minimize
xL

fL(xU , xL) (1.4)

subjected to hL(xU , xL) = 0 : λ (1.5)

gL(xU , xL) ≤ 0 : µ (1.6)

The two optimization problems have their own objective functions and constraints which

are characterized by the superscripts U and L respectively. Correspondingly, there are also

two classes of decision variable vectors xU and xL and since the lower-level problem constrains

the upper-level problem, the prime variable vector xL and the dual variable vectors λ and µ

of the former are included in the variable vector set of the latter as well. Thus, the prime

variable set of the upper-level problem (1.1) - (1.3) is ΞU = {xU , xL, λ, µ}.

The lower-level optimization problems proposed in this thesis are parametric optimization

problems solved with respect to lower-level decision variable vectors since the upper-level

decision vectors are received as parameters; therefore, they can be characterized as linear,

continuous and thus convex. Based on that, the lower-level problem can be replaced by its

own �rst order optimality conditions. The latter can be formulated through two substitute

approaches.
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1) Karush-Kuhn-Tucker (KKT) conditions. In this case, the lower-level problem

is replaced by a set of equality constraints derived from the partial derivatives of the

corresponding Lagrangian function with respect to each prime variable and a set of

complementarity conditions, which express the orthogonality relationship between the

inequality constraints of the lower-level problem and the associated dual variables.

2) Primal-dual formulation. In this approach the lower-level problem is substituted

with a set of prime and dual constraints which are equivalent to KKT equality con-

straints, and with the strong duality equality which is equivalent with the KKT com-

plementarity constraints.

The following sections provide the reformulation of the bi-level model into an equivalent

MPEC based on both approaches.

1.8.1 MPEC formulation with KKT conditions

Replacing the lower-level problem (1.4) - (1.6 ) with its KKT conditions the bi-level model

(1.1) - (1.6) is recast into a single-level MPEC model as follows:

minimize
ΞU

fU(xU , xL, λ, µ) (1.7)

subjected to hU(xU , xL, λ, µ) = 0 (1.8)

gU(xU , xL, λ, µ) ≤ 0 (1.9)

5xLf
U(xU , xL) + λT 5xL h

L(xU , xL)

+ µT 5xL h
L(xU , xL) = 0 (1.10)

hL(xU , xL) = 0 (1.11)

0 ≤ −gL(xU , xL) ⊥ µ ≥ 0 (1.12)

λ : free (1.13)

Where the equality (1.10) is derived by di�erentiating the corresponding Lagrangian

function of lower-level problem with respect to prime variable xL. Equality (1.11) is iden-
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tical to equality (1.5). Constraint (1.12) expresses the complementarity slackness, and it is

equivalent to the following constraints

gL(xU , xL) ≤ 0, µ ≥ 0, gL(xU , xL)µT = 0 (1.14)

Finally, the condition (1.13) states that the dual variable associated with the equality (1.5)

is free.

1.8.2 MPEC with primal-dual formulation

Since the lower-level problem (1.4) - (1.6) is considered linear, it can be rewritten with a

linear form as follows, while the dual variable vectors are indicated in a colon alongside with

the relevant constraints:

Primal lower-level problem

minimize
xL

c(xU)TxL (1.15)

subjected to A(xU)xL = b(xU) : λ (1.16)

B(xU)xL ≤ d(xU) : µ (1.17)

xL ≥ 0 : ζ (1.18)

Where the c(xU) is the cost vector, A(xU) and B(xU) are the constraint matrices and

b(xU) and d(xU) are the right hand-side vectors. Additionally, λ and µ are the dual variable

vectors of the constraints (1.16) and (1.17) similar to those of the bi-level models constraints

(1.5) and (1.6). Finally, the dual variable vector ζ corresponds to the non-negativity of the

lower-level prime variable vector xL.

The Lagrangian dual problem of the prime problem (1.15) - (1.18) is presented below:

Dual lower-level problem

maximize
λ,µ,ζ

b(xU)Tλ+ d(xU)Tµ (1.19)
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subjected to A(xU)Tλ+B(xU)Tµ+ ζ = c(xU) (1.20)

µ ≥ 0, ζ ≥ 0 (1.21)

λ : free (1.22)

The optimality conditions which are associated with the lower level problem (1.15) -

(1.18) and derive from the primal-dual formulation, are given below:

A(xU)xL = b(xU) (1.23)

B(xU)xL ≤ d(xU) (1.24)

A(xU)Tλ+B(xU)Tµ+ ζ = c(xU) (1.25)

c(xU)TxL = b(xU)Tλ+ d(xU)Tµ (1.26)

xL ≥ 0, µ ≥ 0, ζ ≥ 0 (1.27)

λ : free (1.28)

Where the constraints A(xU)xL = b(xU), B(xU)xL ≤ d(xU) and xL ≥ 0 are included in

the primal problem (1.15) - (1.18). The constraints A(xU)Tλ + B(xU)Tµ + ζ = c(xU), λ :

free, µ ≥ 0 and ζ ≥ 0 are included in the dual problem (1.19) - (1.22). Finally, the strong

duality constraint c(xU)TxL = b(xU)Tλ+ d(xU)Tµ enforces equality between primal optimal

objective function (1.15) and dual optimal objective function (1.19).

The resulted MPEC model with primal-dual formulation equivalent to bi-level model

(1.1) - (1.6) is presented as follows:

minimize
ΞU

fU(xU , xL, λ, µ) (1.29)

subjected to hU(xU , xL, λ, µ) = 0 : αU (1.30)

gU(xU , xL, λ, µ) ≤ 0 : βU (1.31)

A(xU)xL = b(xU) : γPC (1.32)
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B(xU)xL ≤ d(xU) : δPC (1.33)

A(xU)Tλ+B(xU)Tµ+ ζ = c(xU) : εDC (1.34)

c(xU)TxL = b(xU)Tλ+ d(xU)Tµ : φSD (1.35)

xL ≥ 0 : ξx (1.36)

µ ≥ 0 : ξµ (1.37)

ζ ≥ 0 : ξζ (1.38)

It should be noted that variable vector λ is free and the MPEC's dual variable vectors are

shown in a column by the side of the constraints since they are used for the characterization

of EPEC.

1.8.3 EPEC formulation

The joint solution of a set of interrelated MPECs constitutes an EPEC. To de�ne the

EPEC solution, the optimality conditions of all MPECs are jointly considered. It is essential

to observe that the prime-dual formulation of the MPECs gives the mathematical advantage

of avoiding the use of non-convex complementarity conditions, which are di�cult to manage.

However, since the MPECs are generally non-linear, in order to derive their optimality

conditions associated with the EPEC it is better to use their KKT optimality conditions

rather than a new primal-dual formulation.

Constructing the Lagrangian function L of the MPEC (1.29) - (1.38) KKT optimality

conditions are derived as follows:

∂L/∂xU = 5xUf
U(xU , xL, λ, µ)

+ αU
T 5xU h

U(xU , xL, λ, µ)

+ βU
T 5xU g

U(xU , xL, λ, µ)

+ γPC
T 5xU [A(xU)xL − b(xU)]

− δPC
T 5xU [B(xU)xL − d(xU)]

30



Chapter 1 Introduction

+ εDC
T 5xU [A(xU)Tλ+B(xU)Tµ− c(xU)]

+ φSD
T 5xU [c(xU)TxL − b(xU)Tλ− d(xU)Tµ] = 0 (1.39)

∂L/∂xL = 5xLf
U(xU , xL, λ, µ)

+ αU
T 5xL h

U(xU , xL, λ, µ)

+ βU
T 5xL g

U(xU , xL, λ, µ)

+ γPC
T
A(xU)− δPCT

B(xU) + φSD
T
c(xU)T − γx (1.40)

∂L/∂λ = 5λf
U(xU , xL, λ, µ)

+ αU
T 5λ h

U(xU , xL, λ, µ)

+ βU
T 5λ g

U(xU , xL, λ, µ)

+ εDC
T
A(xU)T − φSDT

b(xU)T = 0 (1.41)

∂L/∂µ = 5µf
U(xU , xL, λ, µ)

+ αU
T 5µ h

U(xU , xL, λ, µ)

+ βU
T 5µ g

U(xU , xL, λ, µ)

+ εDC
T
B(xU)T − φSDT

d(xU)T − ξµ = 0 (1.42)

∂L/∂ζ = εDC
T − ξζ = 0 (1.43)

KKT equality constraints (1.39) - (1.43) are derived by di�erentiating the Lagrangian

function with respect to the variable vectors xU , xL, λ, µ and ζ.

hU(xU , xL, λ, µ) = 0 (1.44)

A(xU)xL = b(xU) (1.45)

A(xU)Tλ+B(xU)Tµ+ ζ = c(xU) (1.46)

c(xU)TxL = b(xU)Tλ+ d(xU)Tµ (1.47)

Primal KKT equality constraints (1.44) - (1.47) are also included in the MPEC.

0 ≤ −gU(xU , xL, λ, µ) ⊥ βU ≥ 0 (1.48)
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0 ≤ −[B(xU)xL − d(xU)] ⊥ δPC ≥ 0 (1.49)

0 ≤ xL ⊥ ξx ≥ 0 (1.50)

0 ≤ µ ⊥ ξµ ≥ 0 (1.51)

0 ≤ ζ ⊥ ξζ ≥ 0 (1.52)

Constraints (1.48) - (1.52) are the KKT complementarity constraints related to MPEC's

inequalities.

αU : free (1.53)

γPC : free (1.54)

εDC : free (1.55)

φSD : free (1.56)

Conditions (1.53) - (1.54) state that dual variable vectors related to MPEC's equalities

are free.

The optimality conditions of the EPEC stem from the joint consideration of all the

MPECs' optimality conditions. The solution to the latter provides the solution of the EPEC.
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Pool-based market

2.1 Day-ahead and balancing market

For the development of the bi-level complementarity models proposed in Chapters 3, 4

and 5 we consider short-term trading �oor through an electricity pool-based market. The

electricity pool involves two markets: the DA and the balancing or RT market. The DA

market , which usually takes place 24-hours before the energy delivery, is necessary for con-

ventional generation units like coal and nuclear plants to schedule their production e�ciently

and reliably and avoid technical limitations on their operation �exibility. In this stage, power

producers submit their o�ers (a series of energy blocks - selling price pairs), and consumers

and retailers submit their bids (a series of energy blocks - buying price pairs) in an hourly

auction. Using an optimization algorithm, either ISO or MO clears the market under secu-

rity constrained economic dispatch de�ning scheduled production and DA market clearing

prices. With the term economic dispatch, we mean the optimal output of power generation

units to meet demand at the lowest cost. The RT market constitutes a mechanism to cope

with energy imbalances due to high penetration and uncertain production of RES. Thus, the

market allows conventional producers to adjust their DA scheduled production by providing

upward or downward reserves to cover unexpected shortage or surplus of renewable power

production at RT. The RT market is cleared by the ISO in a similar way de�ning reserve
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deployments and RT market clearing prices.

Considering reserve requirements, they can be scheduled by means of di�erent heuristic

methods which are based on historical data of the contingencies or the intermittent pro-

duction as well as on the capacity of the largest generating unit connected to the network.

Other approaches introduce an elastic reserve demand according to which the reserve needs

are computed based on the reserve prices (Wang et al., 2003; Arroyo and Galiana, 2005;

Huang et al., 2006). However, there are also approaches that schedule reserve requirements

based on probabilistic methods. These methods optimize the social welfare taking into ac-

count the expected load not served (ELNS) (Galiana, 2005; Wang et al., 2006; Aminifar et

al., 2009; Amjady et al., 2009) The ELNS is a stochastic security metric directly related to

reserves, and it is added to the objective function of ISO. It depicts the weighted average

energy value in the form of lost load and accounts for the probability of contingencies and

damages caused to the system (Conejo et al. 2010).

Two methods are proposed for the trading of reserves in electricity markets. The �rst

one refers to a sequential reserve procurement through a series of auctions taking place

as soon as the energy dispatch has been scheduled in DA market. The idea behind this

mechanism is that the reserve capacity which has not been accepted in one auction can be

o�ered in the next; therefore, the successfully accepted reserve capacity in one auction is

not consider in the following ones. The second method co-optimizes energy dispatch and

reserve capacity, and it is based on an algorithm that captures the strong coupling between

scheduled energy and reserve capacity supplies. Compared to sequential optimization, the

jointly cleared energy and reserve markets derive more e�cient dispatch under an economic

perspective, but the auction process is complicated seeing that the power producers should

state their units' technical constraints (Gonzales et al., 2014).
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2.2 Nomenclature

This section provides the nomenclature which is used in the mathematical formulation of

the market clearing mechanism presented in section 2.3, as well as, in the proposed models

of Chapter 3, 4 and 5.

Indices and sets:

n,m indices for system buses

s index for strategic producers

i index of conventional generating units

j index of wind generating units

d index of demands

b index of energy blocks o�ered by unit i

f index of energy blocks o�ered by unit j

k index of load blocks bid by demand d

ω index of wind generation scenarios

IS set of indices of units i owned by the strategic producer

IO set of indices of units i owned by non-strategic producers

ISn set of indices of units i owned by the strategic producer

and located at bus n

IOn set of indices of units i owned by non-strategic producers

and located at bus n

In set of indices of units i located at bus n (In = ISn ∪ IOn )

JS set of indices of units j owned by the strategic producer

JO set of indices of units j owned by non-strategic producers

JSn set of indices of units j owned by the strategic producer

and located at bus n
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JOn set of indices of units j owned by non-strategic producers

and located at bus n

Jn set of indices of unit j located at bus n (Jn = JSn ∪ JOn )

Dn set of indices of demands d located at bus n

Θn set of buses m connected with bus n

Parameters:

cib cost o�er of energy block b of unit i [e/MWh]

cjf cost o�er of energy block f of unit j [e/MWh]

udk utility cost of load block k of demand d [e/MWh]

PMAX
ib upper limit of energy block b of unit i [MWh]

WMAX
jf upper limit of energy block f of unit j [MWh]

LMAX
dk upper limit of load block k of demand d [MWh]

cupi cost o�er of upward reserve of unit i [e/MWh]

cdowni cost o�er of downward reserve of unit i [e/MWh]

RESUPi upward reserve capacity of unit i [MW]

RESDOWN
i downward reserve capacity of unit i [MW]

WRT
jω scenario dependent generation of unit j [MWh]

cRTj cost o�er of generating unit j in RT market [e/MWh]

V OLLd value of lost load d [e/MWh]

TMAX
nm transmission capacity of circuit line n−m

Bnm susceptance of line n−m

πω occurrence probability of scenario ω

MpP constant associated to generation and demand

MpC constant associated to power �ow

MpV constant associated to voltage angle
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M vP constant associated to generation and demand limits

M vC constant associated to power �ow bounds

M vV constant associated to voltage angle bounds

Np constant associated to o�er prices

N v constant associated to o�er prices limits

Decision variables:

PDA
ib energy produced by block b of unit i in DA market [MWh]

ODA
ib o�er of energy block b of unit i ∈ IS in DA market [e/MWh]

WDA
jf energy produced by block f of unit j in DA market [MWh]

ODA
jf o�er of energy block f of unit j ∈ JS in DA market [e/MWh]

LDAdk energy consumed by load k of demand d in DA market [MWh]

rupiω upward reserve deployment of unit i under scenario ω [MWh]

rdowniω downward reserve deployment of unit i under scenario ω [MWh]

Oup
i o�er of upward reserve of unit i ∈ IS in RT market [e/MWh]

Odown
i o�er of downward reserve of unit i ∈ IS in RT market [e/MWh]

ORT
j o�er of energy shortage/surplus of unit j in RT market [e/MWh]

W sp
jω energy spillage of unit j under scenario ω [MWh]

Lshdω load shedding of demand d under scenario ω [MWh]

δOn voltage angle at bus n in DA stage

δnω voltage angle at bus n in RT stage under scenario ω

Dual variables of lower-level problem:

λDAn energy balance at bus n in DA stage

λRTnω energy balance at bus n under scenario ω in RT stage
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αminib lower energy production of block b of unit i

αmaxib upper energy production of block b of unit i

βminjf lower energy production of block f of unit j

βmaxjf upper energy production of block f of unit j

γmindk lower energy consumption of block k of demand d

γmaxdk upper energy consumption of block k of demand d

εminiω lower positive reserve output of unit i under scenario ω

εmaxiω upper positive reserve output of unit i under scenario ω

θminiω lower negative reserve output of unit i under scenario ω

θmaxiω upper negative reserve output of unit i under scenario ω

µminiω lower power output of unit i under scenario ω

µmaxiω upper power output of unit i under scenario ω

κminjω lower spillage of unit j under scenario ω

κmaxjω upper spillage of unit j under scenario ω

νmindω lower load shedding of demand d under scenario ω

νmaxdω upper load shedding of demand d under scenario ω

ξminnm transmission capacity of line m− n in DA stage

ξmaxnm transmission capacity of line n−m in DA stage

ξminnmω transmission capacity of line m− n under scenario ω in RT stage

ξmaxnmω transmission capacity of line n−m under scenario ω in RT stage

ρminn lower limit of the voltage angle δon at bus n in DA stage

ρmaxn upper limit of the voltage angle δon at bus n in DA stage

ρminnω lower limit of the voltage angle δnω at bus n under scenario ω

ρmaxnω upper limit of the voltage angle δnω at bus n under scenario ω

φo(n1) voltage angle at bus n1 in DA stage

φ(n1)ω voltage angle at bus n1 under scenario ω in RT stage
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Dual variables of MPEC problem:

ô psib associated to o�er of energy block b of unit i ∈ IS in DA market

ô wsjf associated to o�er of energy block f of unit j ∈ JS in DA market

ô upsi associated to o�er of upward reserve of unit i ∈ IS in RT market

ô downsi associated to o�er of downward reserve of unit i ∈ IS in RT market

ô rtsj associated to o�er of shortage/surplus of unit j ∈ JS in RT market

λ̂DAsn energy balance at bus n in DA stage

λ̂RTsnω energy balance at bus n under scenario ω in RT stage

α̂minsib lower energy production of block b of unit i ∈ IS

α̂maxsib upper energy production of block b of unit i ∈ IS

β̂minsjf lower energy production of block f of unit j ∈ JS

β̂maxsjf upper energy production of block f of unit j ∈ JS

γ̂minsdk lower energy consumption of block k of demand d

γ̂maxsdk upper energy consumption of block k of demand d

ε̂minsiω lower positive reserve output of unit i ∈ IS under scenario ω

ε̂maxsiω upper positive reserve output of unit i ∈ IS under scenario ω

θ̂minsiω lower negative reserve output of unit i ∈ IS under scenario ω

θ̂maxsiω upper negative reserve output of unit i ∈ IS under scenario ω

µ̂minsiω lower power output of unit i ∈ IS under scenario ω

µ̂maxsiω upper power output of unit i ∈ IS under scenario ω

κ̂minsjω lower spillage of unit j ∈ JS under scenario ω

κ̂maxsjω upper spillage of unit j ∈ JS under scenario ω

ν̂minsdω lower load shedding of demand d under scenario ω

ν̂maxsdω upper load shedding of demand d under scenario ω

ξ̂minsnm transmission capacity of line m− n in DA stage

ξ̂maxsnm transmission capacity of line n−m in DA stage
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ξ̂maxsnmω transmission capacity of line n−m under scenario ω in RT stage

ρ̂minsn lower limit of the voltage angle δon at bus n in DA stage

ρ̂maxsn upper limit of the voltage angle δon at bus n in DA stage

ρ̂minsnω lower limit of the voltage angle δnω at bus n under scenario ω

ρ̂maxsnω upper limit of the voltage angle δnω at bus n under scenario ω

φ̂os(n1) voltage angle at bus n1 in DA stage

φ̂s(n1)ω voltage angle at bus n1 under scenario ω in RT stage

λ̂DTS associated to primal - dual equality

ψ̂ p
sib associated to partial derivative of the Lagrangian function

with respect to prime variables PDA
ib

ψ̂ w
sjf associated to partial derivative of the Lagrangian function

with respect to prime variables WDA
jf

ψ̂ l
sdk associated to partial derivative of the Lagrangian function

with respect to prime variables LDAdk

ψ̂ up
siω associated to partial derivative of the Lagrangian function

with respect to prime variables rupiω

ψ̂ down
siω associated to partial derivative of the Lagrangian function

with respect to prime variables rdowniω

ψ̂ sp
sjω associated to partial derivative of the Lagrangian function

with respect to prime variables W sp
jω

ψ̂ sh
sdω associated to partial derivative of the Lagrangian function

with respect to prime variables W sp
jω

ψ̂ o
sn associated to partial derivative of the Lagrangian function

with respect to prime variables δon

ψ̂snω associated to partial derivative of the Lagrangian function

with respect to prime variables δnω
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αminsib associated to lower energy production of block b of unit i ∈ IS

αmaxsib associated to upper energy production of block b of unit i ∈ IS

β
min

sjf associated to lower energy production of block f of unit j ∈ JS

β
max

sjf associated to upper energy production of block f of unit j ∈ JS

γminsdk associated to lower energy consumption of block k of demand d

γmaxsdk associated to upper energy consumption of block k of demand d

εminsiω associated to lower positive reserve output of unit i ∈ IS under ω

εmaxsiω associated to upper positive reserve output of unit i ∈ IS under ω

θ
min

siω associated to lower negative reserve output of unit i ∈ IS under ω

θ
max

siω associated to upper negative reserve output of unit i ∈ IS under ω

µminsiω associated to lower power output of unit i ∈ IS under ω

µmaxsiω associated to upper power output of unit i ∈ IS under ω

κminsjω associated to lower spillage of unit j ∈ JS under ω

κmaxsjω associated to upper spillage of unit j ∈ JS under ω

νminsdω associated to lower load shedding of demand d under ω

νmaxsdω associated to upper load shedding of demand d under ω

ξ
min

snm associated to transmission capacity of line m− n in DA stage

ξ
max

snm associated to transmission capacity of line n−m in DA stage

ξ
max

snmω associated to transmission capacity of line n−m under ω in RT stage

ρminsn associated to lower limit of the voltage angle δon at bus n in DA stage

ρmaxsn associated to upper limit of the voltage angle δon at bus n in DA stage

ρminsnω associated to lower limit of the voltage angle at bus n under ω

ρmaxsnω associated to upper limit of the voltage angle δnω at bus n under ω

binary variables:

z binary variables {0, 1} associated to disjunctive constraints
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2.3 A jointly cleared energy and reserve pool market

A jointly cleared energy end reserve pool can be set �nancially through a single auction

process and can be described as a single-settlement scheme since the energy traded in both

DA and RT and the related clearing prices are simultaneously de�ned in one round. For-

mulating the clearing process, the integration of wind power producers in the market leads

inevitably in a two-stage stochastic programming. The �rst stage clears the DA market

and derives anticipated dispatch (scheduled production) and DA clearing prices, which are

received as dual variables of the energy balance constraint at DA stage. The second stage

clears the RT market through the realization of a set of plausible wind power production

scenarios and derives RT dispatch (reserve deployments) and RT clearing prices, which are

received as dual variables of the energy balance constraint at RT stage. In addition, as the

model is network-constrained, both DA and RT clearing prices are LMPs. Even though each

country has its own regulatory framework, the main principles of the model are common

and based on the so called standard model (Pereira et al. 2005). The model incorporates

wind energy generation in the standard model and has similarities to those employed by

the ISO-New England (Zheng and Litvinov, 2006) and Pennsylvania-New Jersey-Maryland

(PJM) (Ott, 2003) markets.

2.3.1 Assumptions and considerations

The following are the primal assumptions in relation to pool market formulation:

1) Despite the fact that alternating current (AC) models are more realistic they are also

much more complicated, as they include non-linear constraints; therefore, a linearized

DC approximation is used to model the process as it provides satisfactory results with

lower computational cost (Cheung et al. 1999).
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2) Network losses and reactive power are neglected as it is common practice in market

clearing procedures (Morales et al., 2012).

3) It is regarded that future contracts are already settled in the market, de�ning the �nal

capacity of the generating units.

4) To avoid nonconvexity issues and accommodate mathematical derivations zero mini-

mum power productions and linear operation costs are considered for conventional and

wind power units.

5) Linear step-wise o�ering curves are explicitly modeled for producers and consumers

respectively at DA market.

6) The model takes into consideration only the wind generation uncertainty, which is

realized through a set of plausible wind power generation scenarios.

7) Wind generation spillage conducted by ISO is deemed cost free.

8) Due to the fact that there are no additional intrinsic costs for the producers associated

with supplying reserve capacity, energy-only market settlement is applied (Papavasiliou

et al., 2011). This way, the market compensates only power that is actually produced.

9) To further align the algorithm with energy-only markets and prevent multiple solutions

of the market clearing process a premium is applied on cost o�ers in balancing markets.

Economically speaking, this implies that cupi > max{cib} and cdowni < min{cib}.

2.3.2 Pool market clearing algorithm

Considering energy-only market settlement, the market clearing process does not incor-

porate any reserve requirement constraint. To that end, a two-stage stochastic programming

with recourse is employed (Birge and Louveaux, 2011). The scheduled energy productions

are calculated as here and now or �rst stage decision variables by explicitly formulating the

RT operation as second stage with recourse, where the wait and see decision variables of re-

serve deployments take their values after the probabilistic realization of the wind generation

uncertainty (Morales et al., 2013).

43



Chapter 2 Pool-based market

Regarding competitive markets where all the participants act as price takers o�ering at

their marginal cost, the two-stage stochastic programming is modeled though the following

network-constrained linear optimization problem.

minimize
Ξ

∑
ib

ODA
ib PDA

ib +
∑
iω

πωO
up
i r

up
iω −

∑
iω

πωO
down
i rdowniω

+
∑
jf

cDAjf W
DA
jf +

∑
jω

πωc
RT
j

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
−
∑
dk

udkL
DA
dk +

∑
dω

πωV OLLdL
sh
dω (2.1)

subjected to −
∑

(i∈In)b

PDA
ib −

∑
(j∈Jn)f

WDA
jf

+
∑

(d∈Dn)k

LDAdk +
∑
m∈Θn

Bnm

(
δon − δom

)
= 0 :

[
λDAn

]
, ∀n (2.2)

−
∑
i∈In

rupiω +
∑
i∈In

rdowniω −
∑
d∈Dn

Lshdω

−
(∑
j∈Jn

WRT
jω −

∑
(j∈Jn)f

WDA
jf −

∑
j∈Ψj

n

W sp
jω

)
+
∑
m∈Θn

Bnm

(
δnω − δon + δom − δmω

)
= 0 :

[
λRTnω

]
, ∀n,∀ω (2.3)

0 ≤ PDA
ib ≤ PMAX

ib :
[
αminib , αmaxib

]
∀i, ∀b (2.4)

0 ≤ WDA
jf ≤ WMAX

jf :
[
βminjf , βmaxjf

]
∀j,∀f (2.5)

0 ≤ LDAdk ≤ LMAX
dk :

[
γmindk , γmaxdk

]
∀d,∀k (2.6)

0 ≤ rupiω ≤ RESUPi :
[
εminiω , εmaxiω

]
∀i, ∀ω (2.7)

0 ≤ rdowniω ≤ RESDOWN
i :

[
θminiω , θmaxiω

]
∀i,∀ω (2.8)∑

b

PDA
ib + rupiω ≤

∑
b

PMAX
ib :

[
µmaxiω

]
∀i,∀ω (2.9)

rdowniω −
∑
b

PDA
ib ≤ 0 :

[
µminiω

]
∀i, ∀ω (2.10)

0 ≤ W sp
jω ≤ WRT

jω :
[
κminjω , κmaxjω

]
∀j,∀ω (2.11)
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0 ≤ Lshdω ≤
∑
k

LDAdk :
[
νmindω , νmaxdω

]
∀d,∀ω (2.12)

−TMAX
nm ≤ Bnm

(
δon − δom

)
≤ TMAX

nm :
[
ξminnm , ξmaxnm

]
∀n,∀m ∈ Θn (2.13)

−TMAX
nm ≤ Bnm

(
δnω − δmω

)
≤ TMAX

nm :
[
ξminnmω, ξ

max
nmω

]
∀n,∀m ∈ Θn,∀ω (2.14)

−π ≤ δon ≤ π :
[
ρminn , ρmaxn

]
∀n (2.15)

−π ≤ δnω ≤ π :
[
ρminnω , ρ

max
nω

]
∀n,∀ω (2.16)

δon1 = 0 :
[
φon
]

n = n1 (slack bus) (2.17)

δ(n1)ω = 0 :
[
φnω
]

n = n1,∀ω (2.18)

Where Ξ = {PDA
ib ,WDA

jf , LDAdk , r
up
iω , r

down
iω ,W sp

jω , L
sh
dω, δ

o
n, δnω} is the set of all ISO's decision

variables. The objective function (2.1) clears the DA and RT market maximizing the total

social welfare or reversely minimizing the total expected cost of the system operation which

consists of the following: a) the scheduled thermal and wind production cost at the DA mar-

ket, and b) the cost or savings of the scenario dependent positive or negative regulation, the

wind surplus or shortfall power production, and �nally the cost of load shedding in RT oper-

ation. Constraint (2.2) correlates with the here and now decision variables PDA
ib ,WDA

jf , LDAdk

and δon, and it applies the energy balance at each bus enforcing transmission capacity limits

at DA market (�rst stage). Hence, the total energy injected into bus n minus the energy

consumed in it should be equal to energy �owing away from the bus. The term Bnm

(
δon−δom

)
expresses the power �owing through the transmission line n−m which connects the sending

bus n to the receiving bus m. The dual variable λDAn shown in brackets beside the con-

straint expresses the DA market clearing price. Constraint (2.3) correlates with the wait and

see decision variables rupiω , r
down
iω ,W sp

jω , L
sh
dω and δnω, and it o�sets the imbalances caused by

the scenario dependent stochastic wind production in RT (second stage) arranging reserve

deployment, wind power spillage and load curtailment. The dual variable λRTnω of the con-

straint represents the RT market clearing price. Constraints (2.4) and (2.5) de�ne the upper

and lower limits of the o�ered energy blocks in DA market for both conventional and wind

generating units. Constraint (2.6) de�nes the relevant limits of the demand energy blocks.
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Constraints (2.7) and (2.8) de�ne the bounds of the upward and downward reserves o�ered

by each conventional unit i. Constraints (2.9) and (2.10) capture the strong coupling be-

tween scheduled production and deployed reserves ensuring that energy production of unit i

is over zero (downward reserve cannot exceed scheduled energy) and under maximum capac-

ity (scheduled energy and upward reserve cannot exceed unit's capacity). Constraints (2.11)

and (2.12) specify that the wind spillage cannot outdo the real wind energy production, and

the load shedding cannot surpass the actual energy consumption. Constraints (2.13) and

(2.14) apply transmission capacity limits to network lines. Constraints (2.15) and (2.16)

enforce the voltage angle range of each bus. Finally, constraints (2.17) and (2.18) de�ne the

bus n1 as a slack bus at DA and balancing stage respectively.

2.3.3 Pool market pricing scheme

The pricing scheme resulting from the market clearing process prices the energy transaction

as follows:

• Each conventional unit i and wind farm j located at node n is paid for its scheduled

energy block production PDA
ib and WDA

jf respectively in the DA market at a marginal price

λDAn . The price λDAn is received as a dual variable associated with the DA energy balance

constraint.

• Each demand d located at node n is charged for its scheduled energy block consumption

LDAdk in the DA market at a marginal price λDAn .

• Each conventional unit i located at bus n is paid for its overproduction (upward reserve)

rupiω in the balancing market at a marginal price
λRTnω
πω

under scenario ω. The value λRTnω is

received as dual variable associated with the RT energy balance constraint.

• Each conventional unit i located at bus n is charged for its power withdrawal (downward

reserve) rdowniω in the balancing market at a marginal price
λRTnω
πω

under scenario ω.

• Each wind farm j located at bus n is paid/charged for its surplus/shortfall production

(WRT
jω −

∑
f

WDA
jf −W

sp
jω) in the balancing market at a marginal price

λRTnω
πω

under scenario ω.
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• Each demand d located at bus n is paid for its involuntary curtailed load Lshdω in

balancing market at a marginal price (value of lost load) V OLLd.
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Chapter 3

Optimal o�ering strategies for a

conventional generation portfolio

In this Chapter, based on the single-leader single-follower Stackelberg game, a stochastic

bi-level model is proposed to provide optimal o�ering strategies for a conventional producer

(leader) participating in a pool with high penetration of wind power production. The upper-

level problem maximizes the expected pro�ts of the strategic producer while the lower-level

problem represents the market clearing process conducted by the ISO (follower). The bi-level

problem is recast into an MPEC which is then reformulated into an equivalent MILP. These

transformations occur using the KKT optimality conditions, the strong duality theory, and

disjunctive constraints. The suggested model provides optimal o�ering strategies based on

the endogenous formation of LMPs considering network constraints and di�erent wind power

penetration levels.

3.1 Introduction

In recent years the electricity generation industry has experienced a remarkable pen-

etration of renewable energy resources (Hatziargyriou and Zervos, 2001). However, the

inherently uncontrollable �uctuations of renewable generation have resulted in the change

49



Chapter 3 Conventional generation optimal o�erings

of operational framework, the development of new tools to handle the stochastic nature of

non-dispatchable (wind power) production, and the redesign of market clearing algorithms

(Conejo et al., 2011; Pierre et al., 2011; Dowling et al., 2017)

The aforementioned nature of renewable resources increases the need for more responsive

and expensive reserves to secure the network reliability, thus causing the conventional (ther-

mal) electric power generators to operate intermittently to deal with the frequent imbalances

(Heuberger et al., 2017). This a�ects their e�ciency and operational cost negatively. Con-

cerning the strong penetration of renewable sources supported by a generous mechanism of

subsidized production and priority dispatch, the role of conventional energy production is

diminishing. Nevertheless, due to the variability of the generation, the congestions of the

network, and the �uctuations of the electric power fed in the system, the ISOs are enforced

to trade in RT to correct the imbalances which depend on the ability of a thermal plant to

supply energy under demand (Koltsaklis et al., 2014; Koltsaklis et al., 2015).

Although the market recognises the critical role of the thermal plants as capacity providers

(Guo et al., 2017), the latter are faced with unequal treatment and have to adopt speci�c

strategic behaviour to ensure competitiveness. Within the above context, and considering

the conventional energy production, this thesis investigates the strategic reaction of an in-

cumbent �rm and examines its incentives to exert market power and ensure its dominant

position to avoid energy pro�t losses.

Based on the cost optimization linear programming of the clearing market mechanism

presented in Chapter 2, this Chapter proposes a bi-level complementarity model within

an optimization-based methodological framework to derive optimal o�ering strategies in an

environment of imperfect competition. The constructed MPEC, contrary to the relative for-

mulations proposed by Baringo and Conejo (2013) and Kazempour and Zareipour (2014),

considers a strategic conventional producer participating in a pool market together with

other conventional and wind power producers. Furthermore, the model derives not only the

DA optimal o�ers at DA, but also the RT optimal o�ers for positive and negative regula-
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tions. Finally, the proposed algorithm, compared to the model introduced by Kazempour

and Zareipour (2014), incorporates transmission network constraints expanding the compu-

tational e�ort of the model and giving the strategic producer the ability to use the network

congestions to his advantage.

In the above context, the contributions of this Chapter are �vefold:

i) to provide a novel bi-level complementarity model as well as a methodological frame-

work to determine the optimal o�ering strategies of a conventional power producer

participating in a jointly cleared energy and balancing pool where other conventional

and wind power producers are concerned as competitors.

ii) to e�ciently recast the MPEC into a mixed integer linear programming problem based

on a systematic methodology for its linearization through the use of disjunctive con-

straints and solvable to global optimality by commercial solvers.

iii) to derive robust DA and balancing market prices, through a formal methodology, as

dual variables of the energy balance constraints.

iv) to provide a new modelling framework and a methodology in order to systematically

analyze behaviour adjustments of the strategic producer depending on wind production

uncertainty.

v) to o�er a novel framework that determines the impact of the strategic producer's

behaviour on the LMPs under stochastic production.

3.2 Bi-level model

3.2.1 Problem statement

This Chapter analyses the optimal o�ering strategies of a conventional (thermal) power

producer which participates with other conventional as well as wind power producers in a

jointly cleared energy and balancing auction under network constraints. It is considered
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that this producer has dominant position in the market since they own a signi�cant number

of generation units and can thus in�uence the market prices. A bi-level complementarity

model is developed based on single-leader single-follower Stackelberg hypothesis. The strate-

gic producer, called leader, chooses its output �rst and the ISO, called follower, make its

best choice. Thus using backward induction and based on the assumption of rational and

responsive behaviour the leader �rm maximizes its pro�t realizing the follower's subsequent

output choice (Dutta, 1999). Figure 3.1 illustrates the game structure.

Figure 3.1: Single-leader single-follower game

According to proposed bi-level model, the upper-level problem determines expected pro�t

maximization of the considered strategic producer which depend on clearing LMPs of DA and

RT market obtained at the lower level problem. On the other hand, the lower-level problem

represents the clearing price process ensuing the least cost of energy dispatch conducted

by the SO. Thus, the lower-level problem is formulated in a linearized DC network as two-

stage stochastic programming. The �rst stage facilitates the DA market and results in the

optimal anticipated dispatch (DA scheduled energy production), and the LMPs received as

dual variables (Morales et al., 2013). The second stage represents the balancing market

under the realization of all the plausible wind production scenarios and derives RT dispatch
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(reserve deployments) and RT prices (Morales et al., 2012). Subsequently, assuming the

continuity and convexity of the lower problem, the bi-level problem is reduced to an MPEC

through �rst-order KKT optimality conditions. Using the Fortuny-Amat and McCarl (1981)

linearization process and the strong duality theorem, the MPEC is reformed in an MILP

solvable by commercial solvers such as GAMS/CPLEX (Rosenthal, 2018).

3.2.2 Bi-level model formulation

Given that a conventional strategic producer participates in a jointly-cleared energy and

balancing market with high penetration of wind production, a bi-level stochastic optimization

model is formulated to derive its optimal o�ers as follows:

Upper-level problem

maximize
ΞS ∪ ΞO

∑
(i∈ISn )b

λDAn PDA
ib −

∑
(i∈IS)b

cibP
DA
ib +

∑
(i∈ISn )ω

λRTnω r
up
iω

−
∑

(i∈IS)ω

πωc
up
i r

up
iω −

∑
(i∈ISn )ω

λRTnω r
down
iω +

∑
(i∈IS)ω

πωc
down
i rdowniω (3.1)

Lower-level problem

minimize
Ξ

∑
(i∈IS)b

ODA
ib PDA

ib +
∑

(i∈IS)ω

πωO
up
i r

up
iω −

∑
(i∈IS)ω

πωO
down
i rdowniω

+
∑

(i∈IO)b

cibP
DA
ib +

∑
(i∈IO)ω

πωc
up
i r

up
iω −

∑
(i∈IO)ω

πωc
down
i rdowniω

+
∑

(j∈JO)f

cDAjf W
DA
jf +

∑
(j∈JO)ω

πωc
RT
j

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
−
∑
dk

udkL
DA
dk +

∑
dω

πωV OLLdL
sh
dω (3.2)

subjected to (2.3) − (2.18) (3.3)
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The objective function of upper-level problem (3.1) optimizes the expected pro�t of

the strategic producer, and it is de�ned by the revenues from the DA and RT markets

minus the actual incurred cost. The set ΞS = {PDA
(i∈IS)b, r

up
(i∈IS)ω

, rdown(i∈IS)ω} contains the

strategic producer's decision variables considering production energy blocks and the ΞO =

{ODA
(i∈IS)b, O

up
(i∈IS)

, Odown
(i∈IS)} contains the strategic producer's decision variables considering

o�ering prices which are explicitly associated with the lower-level problem. The objec-

tive function is non-linear since the revenues depend on the DA market clearing prices

λDAn and RT market clearing prices
λRTnω
πω

. The market prices are created endogenously

and received as dual variables from the energy balance constraints of the lower-level prob-

lem. It should be noted that the third and the �fth terms of (3.1) are derived from∑
(i∈ISn )ω

πω
λRTnω
πω

rupiω and
∑

(i∈ISn )ω

πω
λRTnω
πω

rdowniω respectively. The objective function of the lower-

level problem (3.2) optimizes the expected cost of the power system operation conducted by

ISO. It consists of the scheduled production cost and the scenario dependent reserve deploy-

ment, wind surplus/shortfall generation, and shedding load cost in RT operation. The set

Ξ = {PDA
ib ,WDA

jf , LDAdk , r
up
iω , r

down
iω ,W sp

jω , L
sh
dω, δ

o
n, δnω} includes all ISO's decision variables. The

objective function (3.2) is also non-linear since it is directly depended on strategic producer's

decision variables ODA
(i∈IS)b, O

up
(i∈IS)

, and Odown
(i∈IS). Finally constraint (3.3) refers to all technical

constraints (2.3) − (2.18) associated to network and generating units as illustrated in section

2.3.2.

3.2.3 MPEC formulation

Considering that the continuity and the di�erentiability requirements are satis�ed by the

lower nonlinear constrained optimization problem, the auxiliary Lagrangian function can be

introduced to recast the initial problem into an unconstrained one. In this case, the La-

grange multipliers have the same meaning with the dual variables in linear programming

(LP) (Floudas, 1995). In addition, the decisions variables ODA
(i∈IS)b, O

up
(i∈IS)

, and Odown
(i∈IS) are

received as parameters from the ISO in the objective function (3.2), and thus the lower
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problem is de�ned as linear and therefore convex (Gabriel, 2012). In the above context the

lower problem can be substituted for its KKT optimality conditions transforming the bi-level

problem (3.1) − (3.3) into a single-level non-linear MPEC as follows:

maximize
Ξ ∪ ΞO ∪ ΞD

(3.1) (3.4)

subjected to KKT equality constraints

ODA
ib − λDAn + αmaxib − αminib +

∑
ω

µmaxiω −
∑
ω

µminiω = 0 ∀i ∈ ISn , ∀b (3.5)

cib − λDAn + αmaxib − αminib +
∑
ω

µmaxiω −
∑
ω

µminiω = 0 ∀i ∈ IOn ,∀b (3.6)

cDAjf − cRTj − λDAn +
∑
ω

λRTnω + βmaxjf − βminjf = 0 ∀j ∈ JOn ,∀f (3.7)

−udk + λDAn + γmaxdk − γmindk −
∑
ω

νmaxdω = 0 ∀d ∈ Dn,∀k (3.8)

πωO
up
i − λRTnω + εmaxiω − εminiω + µmaxiω = 0 ∀i ∈ ISn ,∀ω (3.9)

πωc
up
i − λRTnω + εmaxiω − εminiω + µmaxiω = 0 ∀i ∈ IOn , ∀ω (3.10)

−πωOdown
i + λRTnω + θmaxiω − θminiω + µminiω = 0 ∀i ∈ ISn , ∀ω (3.11)

−πωcdowni + λRTnω + θmaxiω − θminiω + µminiω = 0 ∀i ∈ IOn ,∀ω (3.12)

−πωcRTj + λRTnω + κmaxjω − κminjω = 0 ∀j ∈ JOn ,∀ω (3.13)

πωV OLLd − λRTnω + νmaxdω − νmindω = 0 ∀d ∈ Dn, ∀ω (3.14)

∑
m∈Θn

Bnm

(
λDAn −λDAm

)
+

∑
(m∈Θn)ω

Bnm

(
−λRTnω +λRTmω

)
+
∑
m∈Θn

Bnm

(
ξmaxnm −ξmaxmn

)
−
∑
m∈Θn

Bnm

(
ξminnm − ξminmn

)
+ ρmaxn − ρminn + φo(n1) = 0 ∀n (3.15)

∑
m∈Θn

Bnm

(
λRTnω − λRTmω

)
+
∑
m∈Θn

Bnm

(
ξmaxnmω − ξmaxmnω

)
−
∑
m∈Θn

Bnm

(
ξminnmω − ξminmnω

)
+ ρmaxnω − ρminnω + φ(n1)ω = 0 ∀n,∀ω (3.16)

−
∑

(i∈In)b

PDA
ib −

∑
(j∈Jn)f

WDA
jf +

∑
(d∈Dn)k

LDAdk +
∑
m∈Θn

Bnm

(
δon − δom

)
= 0 ∀n (3.17)
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−
∑
i∈In

rupiω +
∑
i∈In

rdowniω −
(∑
j∈Jn

WRT
jω −

∑
(j∈Jn)f

WDA
jf −

∑
j∈Jn

W sp
jω

)
−
∑
d∈Dn

Lshdω +
∑
m∈Θn

Bnm

(
δnω − δon + δom − δmω

)
= 0 ∀n,∀ω (3.18)

δo(n1) = 0 n = n1 (slack bus) (3.19)

δ(n1)ω = 0 n = n1,∀ω (3.20)

subjected to KKT complementarity constraints

0 ≤ PDA
ib ⊥αminib ≥ 0 ∀i, ∀b (3.21)

0 ≤ PMAX
ib − PDA

ib ⊥αmaxib ≥ 0 ∀i, ∀b (3.22)

0 ≤ WDA
jf ⊥βminjf ≥ 0 ∀j,∀f (3.23)

0 ≤ WMAX
jf −WDA

jf ⊥βmaxjf ≥ 0 ∀j,∀f (3.24)

0 ≤ LDAdk ⊥γmindk ≥ 0 ∀d,∀k (3.25)

0 ≤ LMAX
dk − LDAdk ⊥γmaxdk ≥ 0 ∀d,∀k (3.26)

0 ≤ rupiω⊥εminiω ≥ 0 ∀i,∀ω (3.27)

0 ≤ RESUPi − rupiω⊥εmaxiω ≥ 0 ∀i, ∀ω (3.28)

0 ≤ rdowniω ⊥θminiω ≥ 0 ∀i, ∀ω (3.29)

0 ≤ RESDOWN
i − rdowniω ⊥θmaxiω ≥ 0 ∀i, ∀ω (3.30)

0 ≤
∑
b

PMAX
ib −

∑
b

PDA
ib − r

up
iω⊥µmaxiω ≥ 0 ∀i, ∀ω (3.31)

0 ≤
∑
b

PDA
ib − rdowniω ⊥µminiω ≥ 0 ∀i, ∀ω (3.32)

0 ≤ W sp
jω⊥κminjω ≥ 0 ∀j,∀ω (3.33)

0 ≤ WRT
jω −W

sp
jω⊥κmaxjω ≥ 0 ∀j,∀ω (3.34)

0 ≤ Lshdω⊥νmindω ≥ 0 ∀d,∀ω (3.35)

0 ≤
∑
k

LDAdk − Lshdω⊥νmaxdω ≥ 0 ∀d,∀ω (3.36)

0 ≤ Bnm

(
δon − δom

)
+ TMAX

nm ⊥ξminnm ≥ 0 ∀n,∀m ∈ Θm (3.37)

0 ≤ TMAX
nm −Bnm

(
δon − δom

)
⊥ξmaxnm ≥ 0 ∀n,∀m ∈ Θm (3.38)
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0 ≤ Bnm

(
δnω − δmω

)
+ TMAX

nm ⊥ξminnmω ≥ 0 ∀n,∀m ∈ Θm∀ω (3.39)

0 ≤ TMAX
nm −Bnm

(
δnω − δmω

)
⊥ξmaxnmω ≥ 0 ∀n,∀m ∈ Θm∀ω (3.40)

0 ≤ δon + π⊥ρminn ≥ 0 ∀n (3.41)

0 ≤ π − δon⊥ρmaxn ≥ 0 ∀n (3.42)

0 ≤ δnω + π⊥ρminnω ≥ 0 ∀n,∀ω (3.43)

0 ≤ π − δnω⊥ρmaxnω ≥ 0 ∀n,∀ω (3.44)

Where ΞD = {λDAn , λRTnω , α
max
ib , αminib , βmaxjf , βminjf , γmaxdk , γmindk , εmaxiω , εminiω , θmaxiω , θminiω , µmaxiω ,

µminiω , κmaxjω , κminjω , νmaxdω , νmindω , ξmaxnm , ξminnm , ξmaxnmω, ξ
min
nmω, ρ

max
n , ρminn , ρmaxnω , ρminnω , φ

o
(n1), φ(n1)ω} is the

set of all dual variables. The objective function (3.4) of the MPEC is the objective function

of strategic producer (3.1). KKT equalities (3.5) − (3.16) are constructed by the derivation

of the Lagrangian function with respect to prime variables PDA
ib , WDA

jf , LDAdk , rupiω , r
down
iω , W sp

jω ,

Lshdω, δ
o
n and δnω.KKT equalities (3.17) − (3.20) are the equality constraints of the lower level

problem (2.2), (2.3), (2.17) and (2.18).

3.2.4 MPEC linearization

The non-linear KKT complementarity conditions (3.21) - (3.44), of the general form:

0 ≤ g(x)⊥µ ≥ 0 (3.45)

can be replaced by the following equivalent linear disjunctive formulation (Fortuny-Amat

and McCarl, 1981):

0 ≤ g(x), 0 ≤ µ, g(x) ≤Mpz, µ ≤M v(1− z) (3.46)

where z ∈ {0, 1} is binary variable and Mp and M v are parameters related to prime and

dual variables respectively. The selection of parameters' values is of paramount importance

because a choice of large values could induce the solver (CPLEX) to run into numerical

issues rendering the model intractable while a choice of small values could cut out optimal

solutions. A heuristic method for the calculation of the parameters is given in Chapter 6

(Computational issues).
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Subsequently, the remaining non-linear terms λDAn PDA
ib , λRTnω r

up
iω and λRTnω r

down
iω in objec-

tive function (3.4) can be removed using some of the KKT equalities and complementarity

conditions as stated in Appendix A.1. The new objection function (A.1.18) derived from

the process mentioned above is still non-linear, and the non-linear terms ODA
ib PDA

ib , Oup
i r

up
iω

and Odown
i rdowniω are eliminated by applying the strong duality theorem to the lower-level

optimization problem as shown in equality (A.1.19). Thus, the non-linear objective function

(A.1.18) is transformed into linear (A.1.21), and the MPEC model is recast into the following

equivalent MILP formulation:

maximize
Ξ ∪ ΞO ∪ ΞD

−
∑

(i∈IS)b

cibP
DA
ib −

∑
(i∈IS)ω

πωc
up
i r

up
iω +

∑
(i∈IS)ω

πωc
down
i rdowniω

−
∑

(i∈IO)b

cibP
DA
ib −

∑
(i∈IO)ω

πωc
up
i r

up
iω +

∑
(i∈IO)ω

πωc
down
i rdowniω

−
∑

(j∈JO)f

cDAjf W
DA
jf −

∑
(j∈JO)ω

πωc
RT
j

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
+
∑
dk

udkL
DA
dk −

∑
dω

πωV OLLdL
sh
dω

−
∑

(j∈JO
n )ω

λRTnωW
RT
jω −

∑
(i∈IO)b

αmaxib PMAX
ib −

∑
(j∈JO)f

βmaxjf WMAX
jf

−
∑
dk

γmaxdk LMAX
dk −

∑
(i∈IO)ω

εmaxiω RESUPi −
∑

(i∈IO)ω

θmaxiω RESDOWN
i

−
∑

(i∈IO)ω

(
µmaxiω

∑
b

PMAX
ib

)
−

∑
(j∈JO)ω

κmaxjω WRT
jω

−
∑

n(m∈Θn)

TMAX
nm

(
ξminnm + ξmaxnm

)
−

∑
n(m∈Θn)ω

TMAX
nm

(
ξminnmω + ξmaxnmω

)
−
∑
n

π
(
ρminn + ρmaxn

)
−
∑
nω

π
(
ρminnω + ρmaxnω

)
(3.47)

subjected to (3.5) − (3.20) (3.48)

0 ≤ PDA
ib ≤MpP z1

ib ∀i,∀b (3.49)

0 ≤ αminib ≤M vP (1− z1
ib) ∀i,∀b (3.50)
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0 ≤ PMAX
ib − PDA

ib ≤MpP z2
ib ∀i, ∀b (3.51)

0 ≤ αmaxib ≤M vP (1− z2
ib) ∀i, ∀b (3.52)

0 ≤ WDA
jf ≤MpP z3

jf ∀j,∀f (3.53)

0 ≤ βminjf ≤M vP (1− z3
jf ) ∀j,∀f (3.54)

0 ≤ WMAX
jf −WDA

jf ≤MpP z4
jf ∀j,∀f (3.55)

0 ≤ βmaxjf ≤M vP (1− z4
jf ) ∀j,∀f (3.56)

0 ≤ LDAdk ≤MpP z5
dk ∀d,∀k (3.57)

0 ≤ γmindk ≤M vP (1− z5
dk) ∀d,∀k (3.58)

0 ≤ LMAX
dk − LDAdk ≤MpP z6

dk ∀d,∀k (3.59)

0 ≤ γmaxdk ≤M vP (1− z6
dk) ∀d,∀k (3.60)

0 ≤ rupiω ≤MpP z7
iω ∀i, ∀ω (3.61)

0 ≤ εminiω ≤M vP (1− z7
iω) ∀i, ∀ω (3.62)

0 ≤ RESUPi − rupiω ≤MpP z8
iω ∀i,∀ω (3.63)

0 ≤ εmaxiω ≤M vP (1− z8
iω) ∀i, ∀ω (3.64)

0 ≤ rdowniω ≤MpP z9
iω ∀i, ∀ω (3.65)

0 ≤ θminiω ≤M vP (1− z9
iω) ∀i, ∀ω (3.66)

0 ≤ RESDOWN
i − rdowniω ≤MpP z10

iω ∀i,∀ω (3.67)

0 ≤ θmaxiω ≤M vP (1− z10
iω) ∀i, ∀ω (3.68)

0 ≤
∑
b

PMAX
ib −

∑
b

PDA
ib − r

up
iω ≤MpP z11

iω ∀i,∀ω (3.69)

0 ≤ µmaxiω ≤M vP (1− z11
iω) ∀i,∀ω (3.70)

0 ≤
∑
b

PDA
ib − rdowniω ≤MpP z12

iω ∀i, ∀ω (3.71)

0 ≤ µminiω ≤M vP (1− z12
iω) ∀i, ∀ω (3.72)

0 ≤ W sp
jω ≤MpP z13

jω ∀j,∀ω (3.73)

0 ≤ κminjω ≤M vP (1− z13
jω) ∀j,∀ω (3.74)

0 ≤ WRT
jω −W

sp
jω ≤MpP z14

jω ∀j,∀ω (3.75)

0 ≤ κmaxjω ≤M vP (1− z14
jω) ∀j,∀ω (3.76)
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0 ≤ Lshdω ≤MpP z15
dω ∀d,∀ω (3.77)

0 ≤ νmindω ≤M vP (1− z15
dω) ∀d,∀ω (3.78)

0 ≤
∑
k

LDAdk − Lshdω ≤MpP z16
dω ∀d,∀ω (3.79)

0 ≤ νmaxdω ≤M vP (1− z16
dω) ∀d,∀ω (3.80)

0 ≤ Bnm

(
δon − δom

)
+ TMAX

nm ≤MpCz17
nm ∀n,∀m ∈ Θm (3.81)

0 ≤ ξminnm ≤M vC(1− z17
nm) ∀n,∀m ∈ Θm (3.82)

0 ≤ TMAX
nm −Bnm

(
δon − δom

)
≤MpCz18

nm ∀n,∀m ∈ Θm (3.83)

0 ≤ ξmaxnm ≤M vC(1− z18
nm) ∀n,∀m ∈ Θm (3.84)

0 ≤ Bnm

(
δnω−δmω

)
+TMAX

nm ≤MpCz19
nmω ∀n,∀m ∈ Θm,∀ω (3.85)

0 ≤ ξminnmω ≤M vC(1− z19
nmω) ∀n,∀m ∈ Θm,∀ω (3.86)

0 ≤ TMAX
nm −Bnm

(
δnω−δmω

)
≤MpCz20

nmω ∀n,∀m ∈ Θm,∀ω (3.87)

0 ≤ ξmaxnmω ≤M vC(1− z20
nmω) ∀n,∀m ∈ Θm,∀ω (3.88)

0 ≤ δon + π ≤MpV z21
n ∀n (3.89)

0 ≤ ρminn ≤M vV (1− z21
n ) ∀n (3.90)

0 ≤ π − δon ≤MpV z22
n ∀n (3.91)

0 ≤ ρmaxn ≤M vV (1− z22
n ) ∀n (3.92)

0 ≤ δnω + π ≤MpV z23
nω ∀n,∀ω (3.93)

0 ≤ ρminnω ≤M vV (1− z23
nω) ∀n,∀ω (3.94)

0 ≤ π − δnω ≤MpV z24
nω ∀n,∀ω (3.95)

0 ≤ ρmaxnω ≤M vV (1− z24
nω) ∀n,∀ω (3.96)

3.3 O�er building process

The aforementioned MILP model delivers optimal o�ers ODA
ib for the dispatched energy

blocks PDA
ib , as well as optimal o�ers Oup

i and Odown
i for upward resupiω and downward resdowniω

reserves respectively. The ODA
ib for a unit i settled at a bus n always coincides with the

clearing market price λDAn of this bus at DA. Similarly, the Oup
i and Odown

i of the units i;
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which are accepted by the SO to provide balancing regulations, coincide with the clearing

prices λRTnω at RT. However, o�ering all energy blocks at the obtained LMPs results in �at

o�er curves which lead to multiple solutions and degeneracy (Ruiz and Conejo, 2009).

In order to receive increasing o�er curves, this Chapter follows an o�er building process

similar to the one proposed by Ruiz and Conejo (2009). According to this process the

accepted (�lled) energy blocks are o�ered at their marginal cost except those (marginal

blocks) that actually set the clearing price and are o�ered at the equivalent λDAn (LMPs):

1) If the energy block is fully accepted PDA
ib = PMAX

ib , then this block is o�ered at its

marginal cost Of,DA
ib = cib to guarantee its acceptance.

2) If the energy block is partially accepted 0 < PDA
ib < PMAX

ib then this block is o�ered

at a price Of,DA
ib = λDAn − ε where ε could be a small number e.g. 10−3.

3) If the energy block is not accepted PDA
ib = 0 and its marginal cost is lower than the

clearing price cib < λDAn , then it is o�ered at Of,DA
ib = λDAn ensuring its rejection.

4) If the energy block is not accepted PDA
ib = 0, and its marginal cost is higher than the

clearing price, then it is o�ered at Of,DA
ib = cib ensuring that it remains non-accepted.

Additionally, for upward reserve a similar process is followed:

5) If the full capacity of upward reserve is accepted resupiω = RESupi , then it is o�ered at

its marginal cost Of,up
i = cupi .

6) If the accepted upward reserve is less than the maximum capacity 0 < resupiω < RESupi ,

then it is o�ered at a price Of,up
i = λRTnω − ε.

7) If the strategic unit does not provide any upward reserve resupiω = 0 and cupi < λRTnω ,

then it o�ers positive regulation at a price of Of,up
i = λRTnω .

8) If the strategic unit does not provide any upward reserve resupiω = 0 and cupi > λRTnω ,

then it o�ers positive regulation at a price of Of,up
i = cupi .

Finally, for downward reserve the below o�ering process is followed:
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9) If the full capacity of downward reserve is accepted resdowniω = RESdowni , then it is

o�ered at its marginal cost Of,down
i = cdowni .

10) If the accepted reserve is less than the maximum capacity 0 < resdowniω < RESdowni ,

then it is o�ered at a price Of,down
i = λRTnω + ε.

11) If the strategic unit does not provide any downward reserve resdowniω = 0 and cdowni <

λRTnω , then it o�ers negative regulation at a price of Of,down
i = cdowni .

12) If the strategic unit does not provide any downward reserve resdowniω = 0 and cdowni >

λRTnω , then it o�ers negative regulation at a price of Of,down
i = λRTnω .

It can be seen that the o�ering process for downward reserve works in an opposite way

compared with the process for upward reserve. This is because the SO seeks low clearing

prices for upward reserve to reduce the system cost and high clearing prices for downward

reserve to increase its savings.

3.4 6-bus system case

3.4.1 System data

The proposed clearing market formulation is applied in a six-node system sketched in Fig-

ure 3.2. The conventional generating units i1, i2, i3 and i4 belong to the strategic producer

and the i5, i6, i7 and i8 belong to non-strategic producers. Technical data are provided

in Table 3.1. Each column makes reference to a speci�c conventional generation unit. The

second row indicates the location of each unit. The third row accommodates the power

capacity of each unit. The following eight rows refer to a maximum size of four power blocks

o�ered by each unit and to their respective marginal costs. The eleventh and the twelfth

rows provide the upward and downward reserve limits of each unit, and the last two rows

contain the marginal cost of the respective reserve deployments. It can be noticed that units

i1, i3, i6 and i7 are cheap but slightly �exible, units i4 and i8 are cheap and relatively
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�exible, and units i2 and i5 are expensive but very �exible.

Figure 3.2: 6-bus system

Two wind farms j1 and j2, located at bus n2 and n5, have installed capacity of 100 MW

and 70 MW, and their scheduled power production WDA
jf is o�ered in one block with zero

marginal cost. Wind farms' uncertain power production is realized through three scenar-

ios, ω1 (high production) with 100 MWh and 70 MWh, ω2 (medium production) with 50

MWh and 35 MWh, and ω3 (low production) with 20 MWh and 15 MWh while occurrence

probability of each scenario is 0.2, 0.5 and 0.3 respectively.

A total demand of 1 GWh is allocated and distributed according to Table 3.2. Addi-

tionally, Table B.1 (Appendix B) gives information about demand bids (energy blocks and

their utility marginal costs) for each period of time. Thus, each column correlates the �ve
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Table 3.1: Data for conventional generating units

units i1 i2 i3 i4 i5 i6 i7 i8

location n1 n2 n3 n6 n1 n2 n3 n5

P [MW ] 155 100 155 197 350 197 197 155

PMAX
i,b1 [MWh] 54.25 25 54.25 68.95 140 68.95 68.95 54.25

PMAX
i,b2 [MWh] 38.75 25 38.75 49.25 97.50 49.25 49.25 38.75

PMAX
i,b3 [MWh] 31 20 31 39.4 52.50 39.4 39.4 31

PMAX
i,b4 [MWh] 31 20 31 39.4 70 39.4 39.4 31

ci,b1 [e/MWh] 9.92 18.60 9.92 10.08 19.20 10.08 10.08 9.92

ci,b2 [e/MWh] 10.25 20.03 10.25 10.66 20.32 10.66 10.66 10.25

ci,b3 [e/MWh] 10.68 21.67 10.68 11.09 21.22 11.09 11.09 10.68

ci,b4 [e/MWh] 11.26 22.72 11.26 11.72 22.13 11.72 11.72 11.26

RESUPi [MW ] 20 100 20 40 120 10 20 30

RESDOWN
i [MW ] 20 100 20 40 120 10 20 30

cupi [e/MWh] 12.40 23.22 12.40 12.23 23.63 12.23 12.23 12.40

cdowni [e/MWh] 9.28 8.96 9.28 9.57 8.92 9.57 9.57 9.28

Table 3.2: Location and distribution of demand

demand d1 d2 d3 d4

bus n3 n4 n5 n6

factor [%] 19 27 27 27

load blocks with a time period from 1 to 24 and each row links the bidding prices with the

relative load blocks while the value of the involuntary load reduction is 200 e/MWh for all

demands. Finally, all the connecting lines have a transmission capacity of 500 MW with

susceptance equal to 9.412 per unit.
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3.4.2 Uncongested network solution

Based on the above information the proposed MILP model is applied to the system

and solved using GAMS/CPLEX. When the strategic producer o�ers at marginal cost, the
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Figure 3.3: Day-ahead clearing prices in uncongested network
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Figure 3.4: Real time clearing prices in uncongested network

DA clearing price is constant throughout the 24 period time at a level of 11.260 e/MWh.

However, when the strategic producer exerts its market power the DA clearing price is raised,
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while �uctuating between 16.130 and 19.200 e/MWh as shown in Figure 3.3. Similarly, the

RT clearing prices are raised too. More speci�cally, in high wind scenario ω1 realization the

RT price increases from 9.280 to 9.570 e/MWh, in medium wind scenario ω2 the RT clearing

price leaves the level of 11.470 e/MWh and moves in a range between 14.254 and 20.394

e/MWh, and in low wind scenario ω3 the price rockets from 12.230 to 23.630 e/MWh as

presented in Figure 3.4. In both cases, the prices are the same in all buses at each time

period. This is due to the fact that there is enough line capacity, which facilitates the energy

transaction at the DA stage and the reserve deployment at the RT stage while keeping the

system uncongested in all wind production scenarios.

Table 3.3: Cleared market energy production [MWh] of strategic units and wind farms and
price [e/MWh] outcomes under marginal cost o�ers in uncongested network at time t12

units
∑
b

PDA
ib rupiω rdowniω bus λDAn

λRTnω
πω

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

i1 132.2 . . . 15 . .
i2 . . . . . . . ∀n 11.260 9.280 11.470 12.230
i3 155.0 . . . . . .
i4 157.6 . . 15 40 . .

WDA
j1 = 85, WDA

j2 = 0 W sp
jω = 0, Lshdω = 0

Looking in more detail at time period t12 from the perspective of strategic producer and

under marginal cost o�ering the scheduled energy production of strategic units i is 444.8

MWh and is paid at a price of 11.260 e/MWh as shown in Table 3.3. In this case the strategic

producer's total expected pro�ts are 388 e. When the producer acts as price maker curtails

the scheduled production in all units at the level of 375 MWh making space for an increase in

wind energy production from 85 MWh to 115 MWh as depicted in Table 3.4. However, even

if the total scheduled is reduced , it is now paid at the price of 19.200 e/MWh. Furthermore,
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Table 3.4: Cleared market energy production [MWh] of strategic units and wind farms and
price [e/MWh] outcomes under strategic o�ers in uncongested network at time t12

units
∑
b

PDA
ib rupiω rdowniω bus λDAn

λRTnω
πω

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

i1 123.8 . . . . . .
i2 . . . . . . . ∀n 19.200 9.570 20.394 23.630
i3 124.0 . . . . . .
i4 118.2 . . 35 25 . .

WDA
j1 = 45, WDA

j2 = 70 W sp
jω = 0, Lshdω = 0

Table 3.5: Expected pro�ts [e] of strategic producer in uncongested network

marginal cost o�er strategic o�er
i pro�t per scenario expected pro�t pro�t per scenario expected pro�t

ω1 ω2 ω3 ω1 ω2 ω3
i1 3,346 3,115 3,115 3,161 21,284 22,651 23,696 22,691
i2 0 0 0 0 0 0 0 0
i3 3,116 3,116 3,116 3,116 21,363 22,707 24,208 22,889
i4 3,591 2,823 3,067 3,049 21,935 21,986 21,986 21,976

9,326 67,556

Table 3.6: Total scheduled and reserve production [MWh] of strategic units

scheduled upward reserve downward reserve
ω1 ω2 ω3 ω1 ω2 ω3

marginal cost o�er 10,675.2 . . 360.2 1,320.0 . .
strategic o�er 8,700.0 . 8.8 848.8 636.0 . .
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considering the reserves, the strategic producer based on the probabilistic expectations of

wind power production at real time recognizes an arbitrage opportunity. It can be seen that

in the low wind scenario ω3, where the energy shortage is now bigger, the upward reserve

supply increases (unit i4 provides 35 instead of 15 MWh), and it is paid almost at double

price. On the other hand, in the high wind scenario ω1, although the producer is charged

at a higher price, the downward reserve supply is lower (25 MWh instead of 55 MWh). As

a result, the total expected pro�ts of strategic units i rocket at 3,405 e. The producer's

revenues are determined by the uncertain reserve deployments, which in turn are inherently

depended on the stochastic nature of wind production. Nevertheless, the market settlement

formulated by ISO optimization problem guarantees cost recovery in expectation of every

generation unit (Morales et al., 2012). The proposed model results in an increase in the

total expected pro�t of the strategic producer as shown in Table 3.5 even if the strategic

producer's power supply in the system is lower as shown in Table 3.6.

3.4.3 Building up o�er curves

Table 3.7 and Table 3.8 present market clearing prices and strategic units' energy and

reserve outcomes for the time period t20. Taking as an example the unit i3, it can be seen

that the energy blocks b1, b2 are fully dispatched, b3 is partially dispatched while b4 is not

dispatched. Building up the o�er curve, and according to section 3.2.5, the �rst two blocks

are o�ered at their marginal cost 9.92, and 10.25 e/MWh respectively, the third one is of-

fered at price 19.200 − ε e/MWh and the last one at a price 19.200 e/MWh. Concerning

the reserves, the strategic unit does not provide upward reserve at the balancing stage in the

high and medium wind scenarios but gives 10 MWh in the low wind scenario. The upward

reserve is o�ered at a price of 23.630−ε e/MWh, which is higher than the RT clearing prices

of scenarios ω1 and ω2, in which cases the o�er is rejected, and lower than the RT clearing

prices of the scenario ω3, in which case it is accepted. On the other hand, the strategic

unit i3 does not provide any downward reserve; therefore negative regulation is o�ered at its
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Table 3.7: Clearing market prices [e/MWh] under strategic behaviour in uncongested net-
work at time t20

bus λDAn
λRTnω
πω

ω1 ω2 ω3

∀n 19.200 9.570 20.394 23.630

Table 3.8: Cleared market energy [MWh], Reserve [MWh] and o�er [e/MWh] outcomes in
uncongested network at time t20

units PDA
i,b1 ODA

i,b1 PDA
i,b2 ODA

i,b2 PDA
i,b3 ODA

i,b3 PDA
i,b4 ODA

i,b4 rupi,ω Oup
i rdowni,ω Odown

i

ω1 ω2 ω3 ω1 ω2 ω3

i1 54.25 [19.200] 38.75 [19.200] 31.00 [19.200] . [19.200] . . . [23.630] . . . [9.280]

i2 . [19.200] . [19.200] . [19.200] . [19.200] . . . [23.630] . . . [8.960]

i3 54.25 [19.200] 38.75 [19.200] 30.80 [19.200] . [19.200] . . 10 [23.630] . . . [9.280]

i4 68.95 [19.200] 49.25 [19.200] . [19.200] . [19.200] . . 40 [23.630] 25 . . [9.570]

Table 3.9: O�er [e/MWh] building for strategic unit i3 in uncongested network at time t20

block ci1,b PDA
i1,b λDAn1 Ofilled,DA

i1,b ω cupi1 resupi1,ω
λRTn1,ω

πω
Ofilled,up
i1 cdowni1 resdowni1,ω

λRTn1,ω

πω
Ofilled,down
i1

b1 9.92 54.25 19.20 9.92 ω1 12.40 . 9.57 23.630−ε 9.28 . 9.57 9.28
b2 10.25 38.75 19.20 10.25 ω2 12.40 . 20.394 23.630−ε 9.28 . 20.394 9.28
b3 10.68 30.80 19.20 19.20−ε ω3 12.40 10 23.63 23.630−ε 9.28 . 23.63 9.28
b4 11.26 . 19.20 19.20

marginal cost 9,28 e/MWh, a price that guarantees the rejection as it is lower than the
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Table 3.10: O�er [e/MWh] building for strategic unit i4 in uncongested network at t12

block ci4,b PDA
i4,b λDAn6 Ofilled,DA

i4,b ω cupi4 resupi4,ω
λRTn6,ω

πω
Ofilled,up
i4 cdowni4 resdowni4,ω

λRTn6,ω

πω
Ofilled,down
i4

b1 10.08 68.95 19.20 10.08 ω1 12.23 . 9.57 23.63 9.57 25 9.57 9.57
b2 10.66 49.05 19.20 19.20−ε ω2 12.23 . 14.75 23.63 9.57 . 14.75 9.57
b3 11.09 . 19.20 19.20 ω3 12.23 40 23.63 23.63 9.57 . 23.63 9.57
b4 11.72 . 19.20 19.20

RT clearing price of all scenarios. The o�er building process for unit i3 is illustrated in

Table 3.9. Similarly, considering strategic unit i4, the �rst and the second blocks are fully

dispatched and are o�ered at their marginal costs 10.08 and 10.66e/MWh respectively, the

third and fourth blocks are non-dispatched; consequently, they are o�ered at a price of

19.200 e/MWh. Additionally, the strategic unit provides its maximum capacity of upward

reserve in low wind scenario; therefore, it can o�er positive regulation at a price of 23.630

e/MWh, thus it guarantees that the o�er is rejected in high and medium wind scenarios

and accepted in low wind scenario. Finally, under high wind scenario the unit provides 25

MWh of downward reserve at its marginal cost 9.57 e/MWh. The o�er coincides with the

RT clearing price of the relative scenario guaranteeing the reserve acceptance, and it is lower

than the RT clearing prices of medium and low wind scenarios ensuring the reserve rejection.

Table 3.10 presents the building o�er process for unit i4.

3.4.4 Congested network solution

In uncongested network case the maximum power �ow through line 3 − 6 is 227 MW.

If the line capacity is reduced at the level of 240 MW, slightly above the maximum �ow,

the results remain the same when the strategic producer acts as price taker. However, the

proposed MILP formulation shows that the strategic producer can make o�ers in such a way

that the system becomes congested resulting in di�erent LMPs of DA and RT clearing prices
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Figure 3.5: Day-ahead clearing prices in congested line n3− n6
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Figure 3.6: Real-time clearing prices [e/MWh] in congested line n3− n6

at speci�c time periods as illustrated in Figure 3.5 and Figure 3.6 respectively. It can be

seen that bus n6 exhibits the highest price giving the strategic producer the opportunity to

increase the pro�t of unit i4. Table 3.11 provides the total expected pro�ts of the strategic

producer, which are slightly higher compared to those of uncongested network. Considering

the strategic producer's attitude towards line 3− 6 the line is classi�ed as congestable. The
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characteristic of this line is that its capacity is not su�ciently large, and the strategic pro-

ducer make o�ers in order to congest it increasing its pro�ts.

Table 3.11: Expected pro�ts [e] of strategic producer in congested line 3− 6

uncongested network congested line 3− 6
i pro�t per scenario expected pro�t pro�t per scenario expected pro�t

ω1 ω2 ω3 ω1 ω2 ω3
i1 21,284 22,651 23,696 22,691 21,028 22,534 23,873 22,635
i2 0 0 0 0 0 0 0 0
i3 21,363 22,707 24,208 22,889 21,644 21,668 23,283 22,498
i4 21,935 21,986 21,986 21,976 22,118 22,872 23,784 22,997

67,556 68,130

Table 3.12: Scheduled production [MWh] of strategic units and expected pro�ts [e] in con-
gested line 4− 6

scheduled production total production expected pro�t
i1 i2 i3 i4 [MWh] [e]

uncongested network 2,728 0 2,725 2,816 8,269 67,556
congested line 4− 6 3,038 0 3,068 2,133 8,239 67,200

Additionally, in the uncongested case the maximum power �ow through line 4 − 6 is

24 MW. If the capacity of the line is reduced to 20 MW, slightly below the maximum

�ow, the network becomes congested under cost o�er optimization, resulting in di�erent

LMPs and pro�t losses for the strategic producer. However, applying the proposed MILP

formulation, the strategic producer chooses o�ers to modify each unit's production making

the line uncongested. As a result, the total scheduled production, as well as the total pro�t,

remains almost the same compared to the uncongested case as shown in Table 3.12. From

the strategic producer's point of view the line 4− 6 is classi�ed as noncongestable (Ruiz and
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Conejo, 2009), and the strategic producer changes the mixture of units' production in an

attempt to keep the line uncongested and the pro�t high.

3.4.5 Wind power production increment

In this case, the level of wind power penetration increases from 10% to 14.16% of the

total installed capacity. More speci�cally, the power production of the wind farms j1 and

j2 is 150 MW and 100 MW respectively in high wind scenario ω1, 75 MW and 50 MW

in medium wind scenario ω2, and 30 MW and 20 MW in low wind scenario ω3. It can be

seen in Figure 3.7 that the expected pro�ts of units i1 and i2 are reduced in all wind scenarios.

unit i1 unit i2 unit i3 unit i4
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Figure 3.7: Expected pro�ts [e] of strategic units under di�erent level of wind power pene-
tration

Considering unit i4 the expected pro�ts decrease in high wind scenario ω1; however,

the expected pro�ts increase in medium and low wind scenarios as the unit becomes more

involved in reserve supply. Nevertheless, even if the total expected pro�ts of unit i4 rise, the

total expected pro�ts of strategic producer decrease from 67,556 e to 59,589 e, as illustrated

in Table 3.13, indicating that wind power production can be used as a tool for market power

mitigation.
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Table 3.13: Expected pro�t of strategic units [e]

wind power penetration i1 i2 i3 i4 Total expected pro�t
10.08% 22,691 0 22,889 21,976 67,556
14.16% 17,358 0 18,957 23,274 59,589

3.5 Reliability test system (RTS) case

3.5.1 RTS data

To test the applicability of the proposed model in a more sophisticated system the MILP

is applied on the IEEE one-area (24-bus system) Reliability Test System (RTS) described in

Reliability system task force (1999). The system contains 32 conventional units i and 3 wind

units j. Conventional units i1 to i8 belong to strategic producer while i9 to i32 together

with wind units j belong to non-strategic producers. The distribution of the generating units

in the grid is shown in Figure C.1 (Appendix C). Technical data for the conventional units

are provided in Table C.3. The three wind power units j1, j2 and j3 have installed capacity

200 MW, 150 MW and 150 MW respectively accounting for the 12.82% of the 3.9 GW total

installed capacity. The wind farms' uncertain power production is actualized through three

scenarios, ω1 (high) with 200 MWh, 150 MWh and 150 MWh, ω2 (medium) with 100 MWh,

75 MWh and 75 MWh, and ω3 (low) with 50 MWh, 30 MWh and 30 MWh. The occurrence

probability of each scenario is 0.2, 0.5 and 0.3 respectively. In addition, a total demand

of 2.85 GWh are considered. The demand follows the utility cost depicted on Table B.1

(Appendix B) and is shared among 17 buses through �ve energy blocks k as indicated in

Table C.4.
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3.5.2 RTS solution

When the strategic producer acts as price taker the DA market clearing price is 15.079

e/MWh throughout the 24-hour period. Nevertheless, when the producer o�ers strategically,
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Figure 3.8: Day-ahead clearing prices in RTS case
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Figure 3.9: Real-time clearing prices in RTS case
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Table 3.14: Scheduled production [MWh] of strategic units in RTS case

i1 i2 i3 i4 i5 i6 i7 i8 total
cost o�er 1,377.6 1,459.2 1,104.0 0.0 4,728.0 3,720.0 9,600.0 3,720.0 25,708.8
strategic o�er 903.6 796.6 865.6 0.0 4,467.2 3,458.0 9,600.0 3,413.4 23,504.4

Table 3.15: Expected pro�t [e] of strategic producer in RTS case

i1 i2 i3 i4 i5 i6 i7 i8 total
cost o�er 5,192 5,057 5,644 0 20,473 17,322 92,309 17,322 163,319
strategic o�er 5,454 4,553 5,285 0 33,439 26,785 120,737 26,383 222,636

the DA market clearing price increases and oscillates between 16.130 e/MWh and 20.320

e/MWh as shown in Figure 3.7. Similarly, there is an increase for RT market clearing

prices in all wind production scenarios as shown in Figure 3.8. Considering energy dispatch

and pro�ts, as expected, exercising market power results in curtailed scheduled production

and increased expected pro�ts compared to these received under marginal cost o�ering as

illustrated in Table 3.14 and Table 3.15 respectively.

3.6 Computational issues

The �nal MILP (3.47) − (3.96) is solved using CPLEX 24.1.3 under GAMS on an Intel

Core i7 at 2.7 GHz and 16 GB RAM. The computational (central processing unit, CPU)

time depends on the sophisticated representation of the network-constrained model. This

representation is associated with the number of complementarity constraints which double

the number of the introduced binary variables at the MILP formulation rendering the prob-

lem computationally intractable. However, it is important to note that during the MPEC

formulations and the construction of the auxiliary Lagrangian function, the here and now

variables PDA
ib , WDA

jf , LDAdk and δon of the �rst stage of the stochastic programming are also
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treated as variables and not as parameters in the second stage. Proceeding in this way, all

the non-linear terms of the objective functions are eliminated. If this is not the case, the lin-

earization processes cannot eliminate the non-linear terms Oup
i r

up
iω , O

down
i rdowniω , ORT

j

∑
f

WDA
jf

and ORT
j W sp

jω . At this point, the use of a binary expansion method (Barroso et al., 2006a)

will install a considerably large number of binary variables in the �nal MILP for the dis-

cretization of the WDA
jf , rupiω , r

down
iω and W sp

jω ; thereby rendering more sophisticated network

cases like RTS unsolvable.
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Figure 3.10: CPU time

Figure 3.10 presents the computational time required for solving both cases, 6-bus system

and RTS, under realization of di�erent wind scenario numbers. Furthermore, the compu-

tational e�ciency is highly connected with the size of the linearization constants M. The

selection of these values is of paramount importance because a choice of large value could

induce the CPLEX to run into numerical issues while a choice of small value could restrain

the feasible region of the problem cutting out optimal solutions. It can be noticed that the

constants MpP , MpC and MpV are associated with power generation and demand, power
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�ow, and voltage angle variables respectively, and their values can be de�ned based on the

physical characteristics (upper bounds) of these variables (Gabriel and Leuthold, 2010). Fi-

nally, the calculation of the value of the constantsM vP ,M vC andM vV , which are associated

with the dual variables, is more complicated and the heuristic process proposed by Ruiz and

Conejo (2009) is followed:

i) Solve the linear programming (2.1)−(2.18) where all the producers o�er at marginal

cost.

ii) Receive the shadow price of each resource constraint, and thus a value associated with

the dual variable of the this constraint.

iii) Calculate the relevant constant M as M = (shadow price + 1) × 100.

3.7 Conclusions

In this Chapter, based on the single-leader single-follower Stackelberg hypothesis, a mixed

integer linear programming model is developed to derive optimal o�er strategies for a con-

ventional power producer participating in a jointly cleared energy and reserve market under

high penetration of wind power production. The model concerns energy-only markets. Co-

optimizing energy dispatch and reserve deployments through a two-stage stochastic program-

ming, it gives insight information on market clearing prices and the way they are con�gured

when the strategic producer exercises its dominant position in the market. Based on these

prices, the strategic producer build up optimal o�ering curves to maximize its expected

pro�ts. Furthermore the model provides information about how line capacities and network

congestions can be used for the bene�t of the strategic producer. The following Chapter

will introduce an expanded version of the proposed algorithm where the strategic producer's

generation portfolio also includes wind power production.
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Chapter 4

Optimal o�ering strategies for a

conventional and wind generation

portfolio

This Chapter addresses the optimal o�ering problem of a conventional and wind gener-

ation portfolio in a pool market. The proposed stochastic bi-level model is an extension of

the one proposed in the previous Chapter as the producer can now exercise market power

with wind generation as well. The model is recast into an MPEC and subsequently into a

tractable MILP. Two cases show the e�ectiveness of the proposed algorithm.

4.1 Introduction

The share of wind power generation in electricity industry is increasing rapidly world-

wide. Considering the high penetration of wind power resources, their �nancially subsidized

generation and the prioritized dispatch (merit order) have resulted in reduced conventional

production volumes and suppressed electricity prices. Following this, a question arises about

the sustainability of the existing thermal units. In addition, a second question arises about

the attainability of future investments not only for the conventional units but also for the
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wind power facilities as the continuous growth of the latter leads to further suppressed elec-

tricity prices. Within the above framework, this study extends the model in Chapter 3 and

looks into the strategic reaction of a power producer whose generation portfolio consists of

thermal and wind power production. Having a signi�cant number of thermal and wind power

generation units, the aforementioned producer exercises market power with both types of

units by means of capacity withholding and transmission-related strategies to o�set expected

pro�t losses.

Having this in mind, this Chapter investigates the optimum scheduled generation and

o�ering strategies for an electricity producer participating in a pool-based market. As op-

posed to the relative formulations presented in works of Ruiz and Conejo (2009), Baringo

and Conejo (2013), Zungo et al. (2013) and Delikaraoglou et al. (2015) the developed MPEC

takes into consideration a strategic producer with thermal and wind generation portfolio. In

comparison to work of Kazempour and Zareipour (2014) the algorithm derives optimal o�ers

for upward and downward reserves separately. In addition, it includes transmission network

limitations thus extending the computational e�ort of the model and providing the strategic

producer with the ability to exploit network congestions for its own gain. Furthermore, in

relation to Kazempour and Zareipour (2014) and Dai and Qiao (2017) the proposed MPEC

is linearized without using binary expansion methods which increase the number of variables.

Thereby, the �nal MILP renders more sophisticated network cases solvable.

On the basis of the aforementioned framework, this study makes the following contribu-

tions:

i) it develops a bi-level complementarity model to ascertain optimal capacity withholding

strategies for a conventional and wind generation portfolio of an incumbent producer

who participates in a jointly cleared energy and reserve pool-based market.

ii) it e�ciently reformulates the bi-level model into an MPEC and then into an equiva-

lent MILP model solvable to global optimality utilizing KKT conditions, disjunctive

constraints, and the strong duality theorem with parallel avoidance of any BE method.
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iii) it derives optimal thermal and wind scheduled production for the DA market consid-

ering wind generation uncertainty.

iv) it constructs best o�ering curves based on the formulated DA and balancing clearing

prices which are received as dual variables from the energy balance constraints.

v) it analyzes and discusses the e�ects of wind uncertainty, network congestions, and

di�erent levels of wind power penetration on the behaviour of the strategic producer

within a wide range of case studies.

4.2 Bi-level model

Problem statement

The proposed bi-level complementarity model based on the Stackelberg hypothesis of

the single-leader single-follower game (Dutta, 1999) derives optimal capacity withholding

strategies for a producer with thermal and wind generation portfolio. The assumption is

made that this strategic producer holds a dominant position in the market as it possesses

a large amount of energy generating facilities and can therefore impact the prices (price

maker). The producer competes with other non-strategic conventional as well as wind energy

producers (price takers) in a jointly cleared energy and balancing pool-based market. In the

market producers submit their production o�ers, and consumers and retailers submit their

consumption bids in a network-constrained auction. The market is cleared by the ISO one

day in advance and on an hourly basis providing LMPs and energy quantities which are

bought and sold (Gomez-Exposito et al., 2018). The upper-level of the model establishes

the expected pro�t optimization of the strategic producer (leader), which depend on the DA

and RT clearing market prices acquired endogenously in the lower-level problem. Conversely,

the lower-level problem is representative of the market clearing procedure conducted by the

ISO (follower). The aim of the ISO is to determine the dispatch amount of production and

consumption maximizing the social welfare, the di�erence between the total consumption
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utility bids and the total production cost o�ers, or equivalently to minimize the total social

cost (economic dispatch). The lower-level of the model is constructed in the form of a

linearized DC network as two-stage stochastic programming (Kirschen and Strbac, 2004;

Zavala et al., 2017). The �rst stage enables the DA market and leads to optimization

of the expected dispatch (scheduled generation) while the DA market clearing prices are

taken as dual variables (Morales et al., 2013). The second stage is representative of the

balancing market in which the stochastic nature of wind generation is considered through

the realization of all the plausible wind power production scenarios. The clearing of the

balancing market results in balancing dispatch (reserve deployments) and RT market prices

(Morales et al., 2012). Following this and presuming the continuity and convexity of the

lower problem, it is possible to reduce the bi-level model to an MPEC model via Karush-

Kuhn-Tucker �rst order optimality conditions. Finally, by utilizing disjunctive constraints

(Fortuny-Amat and McCarl, 1981) as well as the strong duality theorem, the MPEC can be

recast into an equivalent MILP model.

4.2.1 Bi-level model formulation

The following bi-level model is developed to derive optimal o�ering strategies for a con-

ventional and wind power producer participating in a jointly cleared energy and balancing

pool.

Upper-level problem

maximize
ΞS
w ∪ ΞO

w

∑
(i∈ISn )b

λDAn PDA
ib −

∑
(i∈IS)b

cibP
DA
ib +

∑
(j∈JS

n )f

λDAn WDA
jf

+
∑

(i∈ISn )ω

λRTnω r
up
iω −

∑
(i∈IS)ω

πωc
up
i r

up
iω

−
∑

(i∈ISn )ω

λRTnω r
down
iω +

∑
(i∈IS)ω

πωc
down
i rdowniω

+
∑

(j∈JS
n )ω

λRTnω

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
(4.1)
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Lower-level problem

minimize
Ξ

∑
(i∈IS),b

ODA
ib PDA

ib +
∑

(i∈IS),ω

πωO
up
i r

up
iω −

∑
(i∈IS),ω

πωO
down
i rdowniω

+
∑

(j∈JS),f

ODA
jf W

DA
jf +

∑
(j∈JS),ω

πωO
RT
j

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
+
∑

(i∈IO),b

cibP
DA
ib +

∑
(i∈IO),ω

πωc
up
i r

up
iω −

∑
(i∈IO),ω

πωc
down
i rdowniω

+
∑

(j∈JO),f

cjfW
DA
jf +

∑
(j∈JO),ω

πωc
RT
j

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
−
∑
d,k

udkL
DA
dk +

∑
d,ω

πωV OLLdL
sh
dω (4.2)

subjected to (2.3) − (2.18) (4.3)

The objective function (4.1) maximizes the expected pro�ts of the strategic producer

which are determined by the revenues of its thermal and wind generating units from the

DA market, the revenues (gain or losses) from the supply of upward or downward reserve

deployments and the wind power surplus or shortfall generation in balancing market minus

the actual incurred cost. We should note that the fourth, the sixth and the seventh terms

of (4.1) are derived from
∑

(i∈ISn ),ω

πω
λRTnω
πω

rupiω ,
∑

(i∈ISn ),ω

πω
λRTnω
πω

rdowniω and
∑

(j∈JS
n ),ω

πω
λRTnω
πω

(
WRT
jω −∑

f

WDA
jf −W

sp
jω

)
respectively. ΞS

w = {PDA
(i∈IS)b,W

DA
(j∈JS)f , r

up
(i∈IS)ω

, rdown(i∈IS)ω,W
sp
(j∈JS)ω

} and ΞO
w =

{ODA
(i∈IS)b, O

up
(i∈IS)

, Odown
(i∈IS), O

DA
(j∈JS)f , O

RT
(j∈JS)} are the sets of all strategic producer's decision

variables. Compared to objective function (3.1) and the sets ΞS and ΞO the new objective

function (4.1) and the sets ΞS
w and ΞO

w contain decision variables associated with wind pro-

duction and o�ering as the strategic producer now exercises market power with wind units as

well. The objective function (4.2) clears the DA and RT markets maximizing the total social

welfare. Actually, the ISO seeks to minimize the total expected cost of the system operation

which consists of the following: a) the scheduled thermal and wind production cost at the DA

market, and b) the cost or savings of the scenario dependent positive or negative regulation,
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the wind surplus or shortfall power production, and �nally the cost of wind power spillage

and load shedding in real time operation. Ξ = {PDA
ib ,WDA

jf , LDAdk , r
up
iω , r

down
iω ,W sp

jω , L
sh
dω, δ

o
n, δnω}

is the set of all ISO's decision variables. Finally, the constraint (4.3) refers to technical con-

straints (2.3) − (2.18) which consider the market clearing process as presented in section

2.3.2.

4.2.2 MPEC formulation

Making the same assumptions with the MPEC formulation in section 3.2.3 that the lower

non-linear constrained minimization problem is continuous and di�erential, the Lagrangian

function can be used to transform the lower problem into an unconstrained one. Addition-

ally, the prime variables ODA
ib , ODA

jf , Oup
iω , O

down
iω and ORT

j are encountered as parameters by

the ISO in the objective function (4.2) of the lower problem rendering the latter linear and

consequently convex. Within the above framework, the lower problem can be replaced by

its KKT �rst order optimality conditions recasting the bi-level problem (4.1) � (4.3) into a

single continuous non-linear MPEC as follows:

maximize
Ξ ∪ ΞO

w ∪ ΞD
(4.1) (4.4)

subjected to KKT equality constraints

ODA
ib − λDAn + αmaxib − αminib +

∑
ω

µmaxiω −
∑
ω

µminiω = 0 ∀i ∈ ISn , ∀b (4.5)

cib − λDAn + αmaxib − αminib +
∑
ω

µmaxiω −
∑
ω

µminiω = 0 ∀i ∈ IOn ,∀b (4.6)

ODA
jf −ORT

j − λDAn +
∑
ω

λRTnω + βmaxjf − βminjf = 0 ∀j ∈ JSn ,∀f (4.7)

cDAjf − cRTj − λDAn +
∑
ω

λRTnω + βmaxjf − βminjf = 0 ∀j ∈ JOn ,∀f (4.8)

−udk + λDAn + γmaxdk − γmindk −
∑
ω

νmaxdω = 0 ∀d ∈ Dn,∀k (4.9)

πωO
up
i − λRTnω + εmaxiω − εminiω + µmaxiω = 0 ∀i ∈ ISn ,∀ω (4.10)
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πωc
up
i − λRTnω + εmaxiω − εminiω + µmaxiω = 0 ∀i ∈ IOn ,∀ω (4.11)

−πωOdown
i + λRTnω + θmaxiω − θminiω + µminiω = 0 ∀i ∈ ISn ,∀ω (4.12)

−πωcdowni + λRTnω + θmaxiω − θminiω + µminiω = 0 ∀i ∈ IOn ,∀ω (4.13)

−πωORT
j + λRTnω + κmaxjω − κminjω = 0 ∀j ∈ JSn ,∀ω (4.14)

−πωcRTj + λRTnω + κmaxjω − κminjω = 0 ∀j ∈ JOn , ∀ω (4.15)

πωvLOLd − λRTnω + νmaxdω − νmindω = 0 ∀d ∈ Dn,∀ω (4.16)

∑
m∈Θn

Bnm

(
λDAn −λDAm

)
+

∑
(m∈Θn)ω

Bnm

(
−λRTnω +λRTmω

)
+
∑
m∈Θn

Bnm

(
ξmaxnm −ξmaxmn

)
−
∑
m∈Θn

Bnm

(
ξminnm − ξminmn

)
+ ρmaxn − ρminn + φo(n1) = 0 ∀n (4.17)

∑
m∈Θn

Bnm

(
λRTnω − λRTmω

)
+
∑
m∈Θn

Bnm

(
ξmaxnmω − ξmaxmnω

)
−
∑
m∈Θn

Bnm

(
ξminnmω − ξminmnω

)
+ ρmaxnω − ρminnω + φ(n1)ω = 0 ∀n,∀ω (4.18)

−
∑

(i∈In)b

PDA
ib −

∑
(j∈Jn)f

WDA
jf +

∑
(d∈Dn)k

LDAdk +
∑
m∈Θn

Bnm

(
δon − δom

)
= 0 ∀n (4.19)

−
∑
i∈In

rupiω +
∑
i∈In

rdowniω −
(∑
j∈Jn

WRT
jω −

∑
(j∈Jn)f

WDA
jf −

∑
j∈Jn

W sp
jω

)
−
∑
d∈Dn

Lshdω +
∑
m∈Θn

Bnm

(
δnω − δon + δom − δmω

)
= 0 ∀n,∀ω (4.20)

δo(n1) = 0 n = n1 (slack bus) (4.21)

δ(n1)ω = 0 n = n1,∀ω (4.22)

subjected to KKT complementarity constraints

0 ≤ PDA
ib ⊥αminib ≥ 0 ∀i, ∀b (4.23)

0 ≤ PMAX
ib − PDA

ib ⊥αmaxib ≥ 0 ∀i, ∀b (4.24)

0 ≤ WDA
jf ⊥βminjf ≥ 0 ∀j,∀f (4.25)

0 ≤ WMAX
jf −WDA

jf ⊥βmaxjf ≥ 0 ∀j,∀f (4.26)
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0 ≤ LDAdk ⊥γmindk ≥ 0 ∀d,∀k (4.27)

0 ≤ LMAX
dk − LDAdk ⊥γmaxdk ≥ 0 ∀d,∀k (4.28)

0 ≤ rupiω⊥εminiω ≥ 0 ∀i,∀ω (4.29)

0 ≤ RESUPi − rupiω⊥εmaxiω ≥ 0 ∀i, ∀ω (4.30)

0 ≤ rdowniω ⊥θminiω ≥ 0 ∀i, ∀ω (4.31)

0 ≤ RESDOWN
i − rdowniω ⊥θmaxiω ≥ 0 ∀i, ∀ω (4.32)

0 ≤
∑
b

PMAX
ib −

∑
b

PDA
ib − r

up
iω⊥µmaxiω ≥ 0 ∀i, ∀ω (4.33)

0 ≤
∑
b

PDA
ib − rdowniω ⊥µminiω ≥ 0 ∀i, ∀ω (4.34)

0 ≤ W sp
jω⊥κminjω ≥ 0 ∀j,∀ω (4.35)

0 ≤ WRT
jω −W

sp
jω⊥κmaxjω ≥ 0 ∀j,∀ω (4.36)

0 ≤ Lshdω⊥νmindω ≥ 0 ∀d,∀ω (4.37)

0 ≤
∑
k

LDAdk − Lshdω⊥νmaxdω ≥ 0 ∀d,∀ω (4.38)

0 ≤ Bnm

(
δon − δom

)
+ TMAX

nm ⊥ξminnm ≥ 0 ∀n,∀m ∈ Θm (4.39)

0 ≤ TMAX
nm −Bnm

(
δon − δom

)
⊥ξmaxnm ≥ 0 ∀n,∀m ∈ Θm (4.40)

0 ≤ Bnm

(
δnω − δmω

)
+ TMAX

nm ⊥ξminnmω ≥ 0 ∀n,∀m ∈ Θm∀ω (4.41)

0 ≤ TMAX
nm −Bnm

(
δnω − δmω

)
⊥ξmaxnmω ≥ 0 ∀n,∀m ∈ Θm∀ω (4.42)

0 ≤ δon + π⊥ρminn ≥ 0 ∀n (4.43)

0 ≤ π − δon⊥ρmaxn ≥ 0 ∀n (4.44)

0 ≤ δnω + π⊥ρminnω ≥ 0 ∀n,∀ω (4.45)

0 ≤ π − δnω⊥ρmaxnω ≥ 0 ∀n,∀ω (4.46)

Where ΞD = {λDAn , λRTnω , α
max
ib , αminib , βmaxjf , βminjf , γmaxdk , γmindk , εmaxiω , εminiω , θmaxiω , θminiω , µmaxiω ,

µminiω , κmaxjω , κminjω , νmaxdω , νmindω , ξmaxnm , ξminnm , ξmaxnmω, ξ
min
nmω, ρ

max
n , ρminn , ρmaxnω , ρminnω , φ

o
(n1), φ(n1)ω} is the

set of all dual variables. The objective function (4.4) of the MPEC is identical to that

of the bi-level problem (4.1). The KKT equalities (4.5) - (4.18) are constructed by the

derivation of the Lagrangian function with respect to prime variables PDA
ib , WDA

jf , LDAdk , rupiω ,
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rdowniω , W sp
jω , L

sh
dω, δ

o
n and δnω. The KKT equalities (4.19) - (4.22) are taken by the derivation

of Lagrangian function with respect to dual variables λDAn , λRTnω , φ
o
(n1) and φ(n1)ω.

4.2.3 MPEC linearization

The non-linear complementarity constraints (4.23) − (4.46) are substituted with equivalent

linear disjunctive constraints following the same process used in section 3.2.4. The remaining

non-linear terms λDAn PDA
ib , λDAn WDA

jf , λRTnω r
up
iω , λ

RT
nω r

down
iω , λRTnωW

DA
jf and λRTnωW

sp
jω in MPEC ob-

jective function of the strategic producer (4.4) can be eliminated with the use of some KKT

equality and complementarity conditions as illustrated in Appendix A.2. However, the re-

ceived objective function (A.2.28) is still non-linear due to the non-linear terms ODA
ib PDA

ib ,

ODA
jf W

DA
jf , Oup

i r
up
iω , O

down
i rdowniω , ORT

j WDA
jf and ORT

j W sp
jω . Now by applying the strong duality

theorem to the lower-level problem the last non-linear terms are withdrawn and the objective

function (A.2.28) is recast into a linear one (A.2.31). Hence, the non-linear MPEC model

(4.4) - (4.46) is converted into an equivalent MILP formulation as follows:

maximize
Ξ ∪ ΞO ∪ ΞD

−
∑

(i∈IS)b

cibP
DA
ib −

∑
(i∈IS)ω

πωc
up
i r

up
iω +

∑
(i∈IS)ω

πωc
down
i rdowniω

−
∑

(i∈IO)b

cibP
DA
ib −

∑
(i∈IO)ω

πωc
up
i r

up
iω +

∑
(i∈IO)ω

πωc
down
i rdowniω

−
∑

(j∈JS)ω

πωO
RT
j WRT

jω −
∑

(j∈JO)f

cjfW
DA
jf −

∑
(j∈JO)ω

πωc
RT
j WRT

jω

+
∑

(j∈JO)f

cRTj WDA
jf +

∑
(j∈JO)ω

πωc
RT
j W sp

jω +
∑
dk

udkL
DA
dk

−
∑
dω

πωV OLLdL
sh
dω −

∑
(j∈JO

n )ω

λRTnωW
RT
jω −

∑
(i∈IO)b

αmaxib PMAX
ib

−
∑

(j∈JO)f

βmaxjf WMAX
jf −

∑
(i∈IO)ω

εmaxiω RESUPi −
∑

(i∈IO)ω

θmaxiω RESDOWN
i

−
∑

(i∈IO)ω

µmaxiω

(∑
b

PMAX
ib

)
−
∑
dk

γmaxdk LMAX
dk −

∑
(j∈JO),ω

κmaxjω WRT
jω

−
∑

n(m∈Θn)

TMAX
nm

(
ξminnm + ξmaxnm

)
−

∑
n(m∈Θn),ω

TMAX
nm

(
ξminnmω + ξmaxnmω

)

87



Chapter 4 Conventional and wind generation optimal o�erings

−
∑
n

π
(
ρminn + ρmaxn

)
−
∑
nω

π
(
ρminnω + ρmaxnω

)
(4.47)

subjected to (4.5) − (4.22) (4.48)

0 ≤ PDA
ib ≤MpP z1

ib ∀i, ∀b (4.49)

0 ≤ αminib ≤M vP (1− z1
ib) ∀i,∀b (4.50)

0 ≤ PMAX
ib − PDA

ib ≤MpP z2
ib ∀i, ∀b (4.51)

0 ≤ αmaxib ≤M vP (1− z2
ib) ∀i, ∀b (4.52)

0 ≤ WDA
jf ≤MpP z3

jf ∀j,∀f (4.53)

0 ≤ βminjf ≤M vP (1− z3
jf ) ∀j,∀f (4.54)

0 ≤ WMAX
jf −WDA

jf ≤MpP z4
jf ∀j,∀f (4.55)

0 ≤ βmaxjf ≤M vP (1− z4
jf ) ∀j,∀f (4.56)

0 ≤ LDAdk ≤MpP z5
dk ∀d,∀k (4.57)

0 ≤ γmindk ≤M vP (1− z5
dk) ∀d,∀k (4.58)

0 ≤ LMAX
dk − LDAdk ≤MpP z6

dk ∀d,∀k (4.59)

0 ≤ γmaxdk ≤M vP (1− z6
dk) ∀d,∀k (4.60)

0 ≤ rupiω ≤MpP z7
iω ∀i, ∀ω (4.61)

0 ≤ εminiω ≤M vP (1− z7
iω) ∀i, ∀ω (4.62)

0 ≤ RESUPi − rupiω ≤MpP z8
iω ∀i,∀ω (4.63)

0 ≤ εmaxiω ≤M vP (1− z8
iω) ∀i, ∀ω (3.64)

0 ≤ rdowniω ≤MpP z9
iω ∀i, ∀ω (4.65)

0 ≤ θminiω ≤M vP (1− z9
iω) ∀i, ∀ω (4.66)

0 ≤ RESDOWN
i − rdowniω ≤MpP z10

iω ∀i,∀ω (4.67)

0 ≤ θmaxiω ≤M vP (1− z10
iω) ∀i, ∀ω (4.68)

0 ≤
∑
b

PMAX
ib −

∑
b

PDA
ib − r

up
iω ≤MpP z11

iω ∀i,∀ω (4.69)

0 ≤ µmaxiω ≤M vP (1− z11
iω) ∀i,∀ω (4.70)

0 ≤
∑
b

PDA
ib − rdowniω ≤MpP z12

iω ∀i, ∀ω (4.71)
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0 ≤ µminiω ≤M vP (1− z12
iω) ∀i, ∀ω (4.72)

0 ≤ W sp
jω ≤MpP z13

jω ∀j,∀ω (4.73)

0 ≤ κminjω ≤M vP (1− z13
jω) ∀j,∀ω (4.74)

0 ≤ WRT
jω −W

sp
jω ≤MpP z14

jω ∀j,∀ω (4.75)

0 ≤ κmaxjω ≤M vP (1− z14
jω) ∀j,∀ω (4.76)

0 ≤ Lshdω ≤MpP z15
dω ∀d,∀ω (4.77)

0 ≤ νmindω ≤M vP (1− z15
dω) ∀d,∀ω (4.78)

0 ≤
∑
k

LDAdk − Lshdω ≤MpP z16
dω ∀d,∀ω (4.79)

0 ≤ νmaxdω ≤M vP (1− z16
dω) ∀d,∀ω (4.80)

0 ≤ Bnm

(
δon − δom

)
+ TMAX

nm ≤MpCz17
nm ∀n,∀m ∈ Θm (4.81)

0 ≤ ξminnm ≤M vC(1− z17
nm) ∀n,∀m ∈ Θm (4.82)

0 ≤ TMAX
nm −Bnm

(
δon − δom

)
≤MpCz18

nm ∀n,∀m ∈ Θm (4.83)

0 ≤ ξmaxnm ≤M vC(1− z18
nm) ∀n,∀m ∈ Θm (4.84)

0 ≤ Bnm

(
δnω−δmω

)
+TMAX

nm ≤MpCz19
nmω ∀n,∀m ∈ Θm,∀ω (4.85)

0 ≤ ξminnmω ≤M vC(1− z19
nmω) ∀n,∀m ∈ Θm,∀ω (4.86)

0 ≤ TMAX
nm −Bnm

(
δnω−δmω

)
≤MpCz20

nmω ∀n,∀m ∈ Θm,∀ω (4.87)

0 ≤ ξmaxnmω ≤M vC(1− z20
nmω) ∀n,∀m ∈ Θm,∀ω (4.88)

0 ≤ δon + π ≤MpV z21
n ∀n (4.89)

0 ≤ ρminn ≤M vV (1− z21
n ) ∀n (4.90)

0 ≤ π − δon ≤MpV z22
n ∀n (4.91)

0 ≤ ρmaxn ≤M vV (1− z22
n ) ∀n (4.92)

0 ≤ δnω + π ≤MpV z23
nω ∀n,∀ω (4.93)

0 ≤ ρminnω ≤M vV (1− z23
nω) ∀n,∀ω (4.94)

0 ≤ π − δnω ≤MpV z24
nω ∀n,∀ω (4.95)

0 ≤ ρmaxnω ≤M vV (1− z24
nω) ∀n,∀ω (4.96)
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4.3 6-bus system case

4.3.1 System data

The proposed algorithm is applied to the six-bus system introduced in Figure 3.2 (section

3.4.1). However, the strategic producer apart from the conventional units i1 to i4 now also

possesses the wind unit j1. The technical data for the conventional units are similar to those

provided in Table 3.1 (section 3.3). The scheduled production of wind units is o�ered through

three energy blocks and the uncertainty of wind power production is realized through three

scenarios: high production ω1, medium production ω2, and low production ω3, with oc-

currence probability 0.2, 0.5 and 0.3 respectively. Allocation, o�ered energy blocks WMAX
jf ,

cost o�ers cj/c
RT
j , and scenario productions WRT

jω of wind units are provided in Table 4.1.

Table 4.1: Location capacity [MW] o�ered energy blocks [MWh] production scenarios [MWh]
and cost o�ers [e/MWh] of wind generating units

wind units j location capacity WMAX
j,f1 WMAX

j,f2 WMAX
j,f3 WRT

j,ω1 WRT
j,ω2 WRT

j,ω3

j1 n2 100 40 30 30 100 50 30

j2 n5 70 30 20 20 70 35 20

cost cjf | cRTj 0 0 0 0 0 0

Moreover, the same total demand of 1 GWh is allocated and distributed as shown in Table

3.2 (section 3.4.1) while the correlation between marginal utility cost (bids) and demand

energy blocks for the 24-hour period is presented in Table B.1 (Appendix B). Finally, the

value of the lost load V OLLd is de�ned at 200 e/MWh for all demands d and all the circuit

lines have transmission capacity TMAX
nm and susceptance Bnm equal to 500 MW and 9.412

per unit respectively.
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4.3.2 Uncongested network solution

On the basis of the above information three cases are examined using GAMS/CPLEX.

In the �rst case, the strategic producer acts as price taker making cost o�ers. In the sec-

ond case, the producer acts strategically only with the conventional units i. In the last

case, the producer o�ers also strategically and with the wind generation unit j1. Un-

der cost o�er optimization the DA clearing price is unwavering throughout the 24-hours

at the �oor of 11.260 e/MWh. Nevertheless, when the strategic producer exercises market
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Figure 4.1: DA market prices in uncongested network

power, the DA market prices are moved away from the cost o�er competitive equilibrium

while �uctuating almost identically between 16.130 and 19.200 e/MWh in both the second

and the third case as shown in Figure 4.1. Similarly, the expected RT market prices are

elevated too as depicted in Figure 4.2 and 4.3. Especially in third case and under low wind

scenario ω3, the strategic producer, taking advantage of the anticipated higher volatility of

the system, increases the RT price at the level of 37 e/MWh. In all cases, the market clearing

prices are equal in all buses at each time period. This results from the fact that the system

remains uncongested under all wind scenarios as the network line capacity can facilitate the
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Figure 4.2: RT market prices under only i strategic o�ering in uncongested network
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Figure 4.3: RT market prices under i and j strategic o�ering in uncongested network

energy transaction between buses in both DA and balancing stage. Looking more closely

at time period t12, from the perspective of the strategic producer and under perfect com-

petition, the scheduled energy production of conventional units i and wind generation unit

j1 is 444.8 and 15 MWh respectively. Both productions are dispatched at a price of 11.260
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Table 4.2: Energy [MWh] and price [e/MWh] outcomes under cost o�ering of units i and
j1 in uncongested network at period t12

units
∑
b

PDA
ib rupiω rdowniω bus λDAn

λRTnω
πω

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

i1 132.2 . . . 15.0 . .
i2 . . . . . . .
i3 155.0 . . . . . .
i4 157.6 . . 15.0 40.0 . . ∀n 11.260 9.280 11.470 12.230∑

f

WDA
jf wind shortfall wind surplus

ω1 ω2 ω3 ω1 ω2 ω3

j1 15.0 . . . 85.0 35.0 15.0

Table 4.3: Energy [MWh] and price [e/MWh] outcomes under strategic o�ering of units i
only in uncongested network at period t12

units
∑
b

PDA
ib rupiω rdowniω bus λDAn

λRTnω
πω

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

i1 123.8 . . . . . .
i2 . . . . . . .
i3 124.0 . . . . . .
i4 118.2 . . 35.0 25.0 . . ∀n 19.200 9.570 20.394 23.630∑

f

WDA
jf wind shortfall wind surplus

ω1 ω2 ω3 ω1 ω2 ω3

j1 45.0 . . 15.0 55.0 5.0 .

e/MWh as shown in Table 4.2. The relevant expected pro�ts are 388 and 582 e respec-

tively. In the second case, the strategic producer curtails the scheduled production in all

conventional units i at the level of 375 MWh making space for a probable increase of j1 wind

unit's scheduled production from 15 to 45 MWh as depicted in Table 4.3. However, even
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if the total scheduled production is reduced, it is now paid at the price of 19.200 e/MWh.

Considering the reserves, it can be seen that in the low wind scenario ω3, where the energy

shortage is now bigger, the upward reserve supply increases (unit i4 provides 35 instead of 15

MWh), and it is paid almost at double price. On the other hand, in the high wind scenario

ω1, although the producer is charged at a higher price, the downward reserve supply is lower.

As a result, the total expected pro�ts of strategic units i and j1 rocket at 3,405 and 914

e respectively. It should be noticed, that the results of scheduled energy and reserves of

conventional units as well as the results of DA and RT market clearing prices in Table 4.3 are

identical with those in Table 3.4 of section 3.4.2 since in both cases the strategic producer

exercises market power only with the conventional units.

Table 4.4: Energy [MWh] and price [e/MWh] outcomes under strategic o�ering of units i
and j1 in uncongested network at period t12

units
∑
b

PDA
ib rupiω rdowniω bus λDAn

λRTnω
πω

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

i1 108.8 . . 10.0 . . .
i2 . . . . . . .
i3 124.0 . . . . . .
i4 118.2 . 10.0 40.0 40.0 . . ∀n 19.200 9.570 12.230 37.237∑

f

WDA
jf wind shortfall wind surplus

ω1 ω2 ω3 ω1 ω2 ω3

j1 60.0 . 10.0 30.0 40.0 . .

Finally, when the wind unit j1 also o�ers strategically, the strategic producer recognizes

a further arbitrage opportunity. As a result, the producer increases the scheduled produc-

tion of wind unit j1 at 60 MWh by curtailing the dispatched energy of conventional units

i even more as shown in Table 4.4. Compared to the previous case, even though the total
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Table 4.5: Total scheduled and reserve production [MWh] of strategic producer

scheduled scheduled upward reserve downward reserve
[i] [j] ω1 ω2 ω3 ω1 ω2 ω3

marginal cost o�er 10675.2 360.0 . . 360.0 1320.0 . .
strategic o�er [only i] 8700.0 1088.8 . 8.8 848.8 636.0 . .
strategic o�er [i and j] 8324.0 1440.0 . 100.0 1200.0 960.0 . .

i1 i2 i3 i4 total i j1 total ij

0

20,000

40,000

60,000

80,000

1 · 105

cost o�ering i strategic o�ering ij strategic o�ering

Figure 4.4: Expected pro�t [e] of strategic producer's generation units

expected pro�t of j1 is lessened to 832 e, the strategic producer raises the total expected

pro�ts as the increased wind energy shortfalls in medium ω2 and low ω3 wind scenarios are

now covered by the o�ered upward reserves of units i1 and i4 at a higher price. Hence, the

positive regulation of 50 MWh, which is paid at the price of 37.237 e/MWh in low wind

scenario, increases the total expected pro�ts of conventional production from 3,405 to 3,541

e overcoming the reduced expected pro�ts of wind production. It should be noted that

the market pricing scheme formulated by the lower level problem is revenue adequate in
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expectation; therefore, it guarantees the recovery of the expected cost of each conventional

or stochastic generation unit. Thus, even if the wind unit j1 su�ers from incurred losses

−10×12.230=−122.30 and −30×37.237=−1117.11 e at balancing stage in medium ω2 and

low ω3 wind scenarios respectively, the expected pro�t of the wind unit is equal to 832.23

e. The above �ndings apply throughout the 24-hour period; therefore, even though the

dispatched production of the conventional units i is reduced as depicted in Table 4.5, the

total expected pro�ts grow remarkably when the producer o�ers strategically as can be seen

in Figure 4.4.

4.3.3 Building strategic o�ering curves

The proposed algorithm provides optimal o�ers ODA
ib and ODA

jf for the dispatched con-

ventional and wind energy blocks respectively in DA market. These optimal o�ers for a

generation unit settled at bus n always coincide with the DA market clearing price λDAn of

this bus. Nevertheless, as mentioned in section 3.2.5, o�ering all energy blocks at the re-

ceived market price introduces �at curves which lead to "multiple solutions and degeneracy"

(Ruiz and Conejo, 2009). With the objective to receive upward stepwise o�ering curves this

thesis follows a process similar to that presented in section 3.2.5. Table 4.6 and Table 4.7

show the DA and RT market prices as well as the energy dispatch and reserve deployment

outcomes at period t12. Taking conventional unit i1 as an example, it can be observed that

energy blocks b1 and b2 are fully dispatched, block b3 is partially dispatched while block

b4 is not dispatched at all. Building up the o�er curve of unit i1 at DA, energy blocks

b1 and b2 are o�ered at their marginal cost, which is 9.92 and 10.25 e/MWh respectively.

Block b3 is o�ered at a price slightly below the market price 19.200−ε e/MWh. Actually,

this block b3 o�er is one of the strategic producer's o�ers that de�nes the DA market price

higher (�nancial withholding) than the price originating from cost o�er creating a mark-up

of 19.200−11.260=7.940 e/MWh. Finally, block b4 is o�ered at a price 19.200 e/MWh or
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Table 4.6: Market prices [e/MWh] under strategic o�ering in uncongested network at t20

bus λDAn
λRTnω
πω

ω1 ω2 ω3

∀n 19.200 9.570 12.230 37.237

Table 4.7: Energy [MWh] and o�er [e/MWh] outcomes under strategic o�ering in uncon-
gested network at period t12

units PDA
i,b1 ODA

i,b1 PDA
i,b2 ODA

i,b2 PDA
i,b3 ODA

i,b3 PDA
i,b4 ODA

i,b4 rupi,ω Oup
i rdowni,ω Odown

i

ω1 ω2 ω3 ω1 ω2 ω3

i1 54.25 [19.200] 38.75 [19.200] 15.80 [19.200] . [19.200] . . 10 [37.237] . . . [9.280]

i2 . [19.200] . [19.200] . [19.200] . [19.200] . . . [37.237] . . . [8.960]

i3 54.25 [19.200] 38.75 [19.200] 31.00 [19.200] . [19.200] . . . [37.237] . . . [0.000]

i4 68.95 [19.200] 49.25 [19.200] . [19.200] . [19.200] . 10 40 [12.230] 40 . . [9.570]

WDA
j,f1 ODA

j,f1 WDA
j,f2 ODA

j,f2 WDA
j,f3 ODA

j,f3 wind shortfall wind surplus ORT
j

ω1 ω2 ω3 ω1 ω2 ω3

j1 40 [19.200] 20 [19.200] . [19.200] . 10 30 40 . . [0.000]

Table 4.8: Strategic o�ers [e/MWh] for unit i1 in uncongested network at time t12

block ci1,b PDA
i1,b λDAn1 Ofilled,DA

i1,b ω cupi1 resupi1,ω
λRTn1,ω

πω
Ofilled,up
i1 cdowni1 resdowni1,ω

λRTn1,ω

πω
Ofilled,down
i1

b1 9.92 54.25 19.20 9.92 ω1 12.40 . 9.57 37.24−ε 9.28 . 9.57 9.28
b2 10.25 38.75 19.20 10.25 ω2 12.40 . 12.23 37.24−ε 9.28 . 12.23 9.28
b3 10.68 15.80 19.20 19.20−ε ω3 12.40 10 37.24 37.24−ε 9.28 . 37.24 9.28
b4 11.26 . 19.20 19.20

higher. This way, the strategic producer ensures the block's rejection. In point of fact, this

o�er has the same outcome as physical withholding (production curtailment). Considering
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the redispatch, unit i1 does not supply any positive regulation at balancing stage under

high ω1 and medium ω2 wind scenarios, but it provides 10 MWh of positive regulation in

low ω3 wind scenario. In this case, the upward reserves are o�ered at a price of 37.237−ε

e/MWh which renders them not accepted by the market operator for scenarios ω1 and ω2

as the o�er is higher than the relevant RT clearing prices of these scenarios and accepted in

scenario ω3 as now the o�er is lower than the RT clearing price. Additionally, unit i1 does

not supply any downward reserves; therefore, the reserves are o�ered at their marginal cost

9.28 e/MWh, which guarantees their rejection as the o�er is beneath the RT clearing prices

of all wind production scenarios. The o�er building process of unit i1 is presented in Table

4.8.

Table 4.9: Strategic o�ers [e/MWh] for unit j1 in uncongested network at time period t20

block cj1,f WDA
j1,f λDAn2 Ofilled,DA

j1,f ω cRTj1 wind shortfall wind surplus
λRTn6,ω

πω
Ofilled,RT
j1

b1 0 40 19.20 0.00 ω1 0 40 . 9.57 0.00
b2 0 20 19.20 19.20−ε ω2 0 . 10 12.23 0.00
b3 0 . 19.20 19.20 ω3 0 . 30 37.24 0.00

Along the same line, concerning strategic wind unit j1 at DA, the �rst energy block is

fully accepted and is o�ered at its marginal cost, which is 0 e/MWh. Block f2 is partially

accepted and is o�ered at a price 19.200−ε e/MWh, end the last block is not accepted;

hence it is o�ered at price 19.200 e/MWh. Finally at balancing stage, surplus or shortfall

of wind production are o�ered at zero price. Table 4.9 illustrates the building o�er process

of wind unit j1.
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4.3.4 Congested line 3 − 6

When the network is uncongested, the maximum power �ow from bus n3 to bus n6 is

207.98 MW. In case the line capacity is dropped at the level of 240 MW, relatively above

themaximum �ow, the received results under cost o�er remain similar to those of the uncon-

gested system as expected. Nevertheless, applying the proposed MILP the strategic producer
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Figure 4.5: DA prices with line 3− 6 capacity limited to 240 MW
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Figure 4.6: RT prices [e/MWh] with line 3− 6 capacity limited to 240 MW
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Table 4.10: Energy [MWh] and price [e/MWh] outcomes under strategic o�ering with line
3− 6 capacity limited to 240 MW at period t12

units
∑
b

PDA
ib rupiω rdowniω bus λDAn

λRTnω
πω

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

i1 124.0 . . 16.5 . . . n1 19.200 9.570 12.400 36.953
i2 . . . . . . . n2 19.479 9.570 12.400 37.884
i3 124.0 . 15.0 20.0 . . . n3 18.921 9.570 12.400 36.022
i4 103.0 . . 13.5 40.0 . . n6 20.876 9.570 12.400 42.540∑

f

WDA
jf wind shortfall wind surplus

ω1 ω2 ω3 ω1 ω2 ω3

j1 60.0 . 10.0 30.0 40.0 . . n2 19.479 9.570 12.400 37.884

Table 4.11: Scheduled production [MWh] and expected pro�ts [e] of strategic producer with
line 3− 6 capacity limited to 240 MW

scheduled production [MWh] total scheduled expected pro�t
i1 i2 i3 i4 j1 [MWh] [e]

Line 3-6 550 MW 2,817.6 0.0 2,669.6 2,836.8 1440.0 9,764.0 91,950
Line 3-6 240 MW 2,893.6 0.0 2,700.0 2,730.4 1440.0 9,764.0 92,759

Table 4.12: Scheduled production [MWh] and expected pro�ts [e] of strategic producer with
line 3− 6 capacity limited to 240 MW and relocation of wind unit j1 to bus n6

j1 scheduled production [MWh] total scheduled expected pro�t
location i1 i2 i3 i4 j1 [MWh] [e]
n2 2,893.6 0.0 2,700.0 2,730.4 1,440.0 9,764.0 92,759
n6 2,954.3 0.0 2,777.0 2,592.7 1,440.0 9,764.0 92,725
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can change the mixture of the conventional units production rendering the system congested

and yielding di�erent DA and RT LMP's at particular time periods as can be observed in

Figure 4.5 and Figure 4.6. Taking a closer look in period t12 as shown in Table 4.10 and

comparing to that in the uncongested case (Table 4.4) the strategic producer maintains the

scheduled production of unit i3 and wind unit j1 at 120 and 60 MWh respectively; however,

now the dispatched production of unit i1 is raised from 103.8 to 120 MWh with a simul-

taneous decrease in scheduled production of unit i4 from 118.2 to 103 MWh. Considering

the expected pro�ts, the unit i4 occurs losses due to its reduced production; however, bus

n6 exhibits the highest price mitigating the unit's losses. On the other hand, the increased

production of unit i1, and therefore its increased revenues, not only cover the losses but

also raise slightly the total expected pro�ts of strategic producer compared to those of the

uncongested case as depicted in Table 4.11. It should be noticed that the total scheduled

production remains the same in both cases. In the previous case, if the wind unit j1 is

relocated to bus n6, the con�guration of DA and balancing prices remain identical as the

strategic producer, following the same policy, rearranges again the mixture of the conven-

tional units' production congesting the system at the same time periods. In Table 4.12 it

can be seen that the energy dispatch of unit i4 is reduced further, keeping the scheduled

energy of stable companion wind unit j1 at the same volume. Synchronously, the producer

additionally increases the dispatch of units i1 and i3 maintaining the scheduled production

and pro�tability at the prior levels.

Table 4.13: Scheduled production [MWh] and expected pro�ts [e] of strategic producer with
line 3− 6 limited to 120 MW and relocation of wind unit j1 to bus n6

j1 scheduled production [MWh] total scheduled expected pro�t
location i1 i2 i3 i4 j1 [MWh] [e]
n2 1,844.6 0.0 0.0 3,782.4 1,665.6 7,292.6 81,263
n6 2,670.9 0.0 0.0 3,768.0 1,440.0 7,878.9 87,108
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Figure 4.7: DA prices with line 3− 6 capacity limited to 120 MW
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Figure 4.8: RT prices [e/MWh] with line 3− 6 capacity limited to 120 MW

If the line capacity is reduced to 120 MW, the system becomes congested resulting in

di�erent LMP's at DA and balancing market throughout the 24-hour period as depicted in

Figure 4.7 and Figure 4.8. The situation now is detrimental compared to the previous case

since the congestion leads to decreased production volumes in the left part of the network;
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hence the shut-down of unit i3. However, the removal of wind unit j1 to bus n6, at the right

part of the network, where the demand prevails, would be more bene�cial for the strategic

producer. As shown in Table 4.13, the relocation of j1 gives unit i1 the chance to increase

its production and wind unit j1 the opportunity to sell energy at a higher price growing the

total expected pro�t.

4.3.5 Congested line 4 − 6

When the network is uncongested, the power �ow from bus n6 to n4 is 22.453 MW.

If the line capacity is limited to 20 MW, just below the maximum �ow, and under opti-

mal cost o�er, the network is rendered congested and results in di�erent LMP's which are

proved unpro�table for the strategic producer. Nonetheless, the producer, based on the pro-

posed MILP formulation, can change its o�ering strategy modifying the units' production in

such a way as to render the system uncongested. Examining the time period t12 as shown

in Table 4.14 and comparing it to the initial uncongested case (Table 4.4), the strategic

Table 4.14: Energy [MWh] and price [e/MWh] outcomes under strategic o�ering with line
4− 6 capacity limited to 20 MW at period t12

units
∑
b

PDA
ib rupiω rdowniω bus λDAn

λRTnω
πω

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

i1 135.0 . . 20.0 . . .
i2 . . . . . . .
i3 134.7 . 15.0 20.0 . . .
i4 81.3 . . . 40.0 . . ∀n 19.200 9.570 12.400 36.953∑

f

WDA
jf wind shortfall wind surplus

ω1 ω2 ω3 ω1 ω2 ω3

j1 60.0 . 10.0 30.0 40.0 . .
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Table 4.15: Scheduled production [MWh] and expected pro�ts [e] of strategic producer with
line 4− 6 capacity limited to 20 MW

scheduled production [MWh] total scheduled expected pro�t
i1 i2 i3 i4 j1 [MWh] [e]

Line 4-6 550 MW 2,817.6 0.0 2,669.6 2,836.8 1,440.0 9,764.0 91,950
Line 4-6 20 MW 3,185.0 0.0 3,178.7 1,945.3 1,430.0 9,739.0 91,809

producer increases the dispatched energy and the upward reserve supply from units i1 and i3

while keeping the production of wind unit j1 stable. On the other hand, the producer lowers

the scheduled production and discontinues the o�ered upward reserve supply from unit i4;

thereby reducing the power �ow from bus n6 to n4 at the level of 16.667 MW. Now, the

system becomes uncongested, and all buses have the same prices at each time period similar

to those in Figure 4.1 and Figure 4.3 for DA and balancing market respectively. Hence, as

illustrated in Table 4.15, rearranging the energy dispatch of conventional units proceeding

with a small reduction of the total scheduled production, the strategic producer manages to

prevent pro�t losses.

4.3.6 Wind generation increment

Two cases of wind power increment are examined. In the �rst case, the wind power

penetration increases proportionally for both wind units j from 10.08% to 18.42% of the

total installed capacity. In particular, the energy provided by wind generation units j1 and

j2 is 200 MWh and 100 MWh in high wind scenario ω1, 100 MWh and 50 MWh in medium

wind scenario ω2, and 60 MWh and 40 MWh respectively in low wind scenario ω3.

Considering the time period t12 in Table 4.16, the strategic unit j1 increases its DA

scheduled production at the expense of the strategic conventional units' dispatch. How-

ever, the units i covering the wind production shortfall in low wind scenario ω3 give, as

expected, more upward reserves at a higher price mitigating their losses. In the second case,
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Table 4.16: Energy [MWh] and price [e/MWh] outcomes under strategic o�ering with
18.42% wind power penetration at period t12

units
∑
b

PDA
ib rupiω rdowniω bus λDAn

λRTnω
πω

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

i1 93.0 . . 10.0 10 . .
i2 . . . . . . .
i3 93.0 . . 20.0 . . .
i4 95.0 . . 40.0 40.0 . . ∀n 19.200 6.700 12.400 38.867∑

f

WDA
jf wind shortfall wind surplus

ω1 ω2 ω3 ω1 ω2 ω3

j1 90.0 . . 30.0 110.0 10.0 .

Table 4.17: Energy [MWh] and price [e/MWh] outcomes under strategic o�ering with
24.93% wind power penetration at period t12

units
∑
b

PDA
ib rupiω rdowniω bus λDAn

λRTnω
πω

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

i1 77.80 . . 20.0 20.0 . .
i2 . . . 20.0 . . .
i3 54.25 . . 20.0 20.0 . .
i4 68.95 . . 40.0 40.0 . . ∀n 19.200 0.000 12.400 43.333∑

f

WDA
jf wind shortfall [W sp

jω ] wind surplus [W sp
jω ]

ω1 ω2 ω3 ω1 ω2 ω3

j1 110.0 . . 20.0 190.0 [50.0] 40.0 .

the penetration of wind power increases similarly to the �rst case at the level of 24.93% of the

total installed capacity. As shown in Table 4.17, the strategic units i reduce their scheduled

production further giving space for more wind generation dispatch. Yet, due to the higher

wind generation volatility the expensive unit i2 is now involved in the provision of 20 MWh
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i1 i2 i3 i4 total i j1 total ij
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Figure 4.9: Scheduled production [MWh] under di�erent levels of wind power penetration
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Figure 4.10: Expected pro�t [e] under di�erent levels of wind power penetration

upward reserve raising the RT market clearing price in scenario ω3 at a level of 43.333

e/MWh. The high volatility also can cause wind power spillage as a result of insu�cient

system reserves. More precisely, in high wind scenario ω1 the o�ered negative regulation
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of the system cannot cover the wind production surplus of 190 MWh, which may lead the

strategic wind unit j1 to spill 50 MWh of its production. Nevertheless, as illustrated in

Figure 4.9 and Figure 4.10 the strategic producer following the installed capacity increment

of wind generation and o�ering strategically raises the total expected pro�ts even though

the conventional units show losses due to their declined scheduled production.

4.4 Reliability test system (RTS) case

4.4.1 RTS data

The proposed algorithm is applied to a new case based on the IEEE one-area RTS pre-

sented in Figure C.2 (Appendix C). Now, the system includes four wind generating units j

of which j1 belongs to strategic producer. Thus, not only the conventional units i1 − i8

but also the wind unit j1 can be used by strategic producer for exercising market power.

Table 4.18: Capacity [MW] energy blocks [MWh] production scenarios [MWh] and cost o�ers
[e/MWh] of wind power units j

wind power units j capacity WMAX
jf1 WMAX

jf2 WMAX
jf3 WRT

jω1 WRT
jω2 WRT

jω3

j1 (strategic) 200 100 60 40 200 100 50

j2 (non-strategic) 200 100 60 40 200 100 50

j3, j4 (non-strategic) 150 80 50 20 150 75 30

cost cjf | cRTj 0 0 0 0 0 0

The total wind power capacity is 700 MW representing the 17.07 % of the total 4.1 GW

installed capacity. The uncertainty of wind production is realized through three scenarios

ω1, ω2 and ω3 with occurrence probability 0.2, 0.5 and 0.3 respectively. Information for

total capacity, o�ered energy blocks, real time production scenarios, and their relevant costs
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is presented in Table 4.18. Information for conventional units' technical data is given in

Table C.3. Additionally, a total demand of �ve energy blocks 2.35, 0.1, 0.1, 0.1 and 0.1

GWh respectively is distributed among 17 buses as depicted in Table C.4. Each demand

block follows the utility cost shaped in Table B.1(Appendix B).

4.4.2 RTS results

Applying the proposed MILP, the clearing prices in both DA and balancing markets are

raised compared to those under marginal cost o�er. Figure 4.11 and Figure 4.12 show the

market price formation for DA and RT market respectively throughout the 24-hour period.

Considering scheduled production and pro�ts, when the strategic producer exerts market

power, it reduces the dispatch energy of the conventional units i making room for more

scheduled wind generation. However; the total scheduled production of units i and j1 is

lower as presented in Table 4.19. On the other hand, the total pro�ts, as expected, show a

truly remarkable growth as can be seen in Table 4.20.
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Figure 4.11: Day-ahead market clearing prices in RTS case
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Figure 4.12: Balancing market clearing prices in RTS case

Table 4.19: Scheduled production [MWh] of strategic units in the one area RTS case

i1 i2 i3 i4 i5 i6 i7 i8 total i j1 total ij
cost o�er 1,104.0 984.0 1,104.0 0.0 4,152.0 3,720.0 9,600.0 3,720.0 24,384.0 3,000.0 27,384.0
strategic o�er 782.0 784.4 683.0 0.0 3,690.2 3,041.4 9,257.2 3,068.4 21,306.6 4,147.2 25,453.8

Table 4.20: Expected pro�t [e] of strategic producer in the one area RTS case

i1 i2 i3 i4 i5 i6 i7 i8 total i j1 total ij
cost o�er 3,169 3,169 3,169 0 15,162 13,043 80,894 12,976 131,581 30,434 162,016
strategic o�er 5,487 5,498 4,541 0 29,720 27,381 118,657 27,024 218,307 39,225 257,533

4.5 Computational issues

The proposed MILP (4.47) − (4.96) has been solved on an Intel Core i7 at 2.7 GHz and 16

GB RAM using CPLEX 12.5.1/GAMS 24.1.3. Similarly to the algorithm presented in Chap-

ter 3, the computational time increases with the number of the wind generation scenarios and

the complexity of the network. However, the existence of the decision variablesWDA
jf andW sp

jω
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Figure 4.13: CPU time [sec] for MPEC models under di�erent number of wind scenarios

in the objective function (4.1) of the strategic producer introduces new KKT equality con-

straints in the MPEC. In addition to the above, the existence of the non-linear terms

λDAn WDA
jf , λRTnωW

DA
jf and λRTnωW

sp
jω in the same objective function and ODA

jf W
DA
jf , ORT

j WDA
jf

and ORT
j W sp

jω in the objective function (4.2) of the ISO increases the mathematical burden

of linearization process, thereby increasing further the computational time shown in Fig-

ure 4.13. Finally, the process for the calculation of the constants M associated with the

disjunctive constraints of the proposed MILP is similar to the process presented in section

3.6.

4.6 Conclusions

In this Chapter an MPEC model is proposed to derive optimal o�ering strategies for a

conventional and wind generation portfolio of a producer who participates in a pool-based

electricity market. The model considering energy-only markets optimizes jointly energy

dispatch and balancing regulation through a two-stage stochastic programming and generates

endogenously local marginal prices as dual variables of the energy balance constraints at day-
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ahead and balancing stage. The model is also based on stepwise supply and demand function

curves and takes into account only wind power production uncertainty. The application of

the proposed algorithm on two di�erent networks results in higher pro�ts for the strategic

producer identifying the optimal o�er prices for both dispatch and reserve procurements.

It also gives information about how by changing the blend of the conventional production

the producer can use line capacities and system congestions for its bene�t, thus maintaining

or even increasing the expected pro�ts. Finally, the model provides details about the way

the producer can take advantage of a probable increment in wind power installed capacity

rearranging the mixture of scheduled production and raising the expected pro�ts even in

case of wind power production spillage.

Based on the proposed MPEC, the following Chapter will introduce an EPEC to model

the interaction between more than one strategic producer (multi-leader single-follower game)

and identify market equilibria under line congestions and di�erent levels of wind power

penetration.
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Nash equilibria in pool market

This Chapter investigates the interaction between power producers with conventional

and wind generation portfolios participating in a network-constrained pool-based market.

A stochastic bi-level problem is introduced to model the strategic behavior of each sin-

gle producer. The upper-level problem maximizes the producers' expected pro�ts and the

lower-level problem optimizes the jointly cleared energy and balancing market under eco-

nomic dispatch. Market participants' o�ers are modeled using linear stepwise curves, and

the stochastic wind power generation is realized through a set of plausible wind scenarios.

The bi-level problem is recast into an MPEC with primal-dual formulation using the KKT

optimality conditions and the strong duality theorem. The joint solution of all strategic pro-

ducers' MPECs constitutes an equilibrium program with equilibrium constraints (EPEC).

The EPEC is reduced into an equivalent MILP by using disjunctive constraints. Di�erent

objective functions are applied to the �nal MILP to de�ne the range of market equilibria, and

a single-iterate diagonalization process is used to justify those equilibria that are meaningful.

The proposed model is applied in 2-bus and 6-bus systems.
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5.1 Introduction

Sections 3 and 4 present MPEC models for solving single-leader single-follower Stackelberg

games when a strategic producer (leader) maximizes its expected pro�ts anticipating the

market clearing by the ISO (follower), who receives exogenously the producer's decisions as

�xed even if in fact it could a�ect the leader's decision. However, considering that there

are more than one producer who act strategically and recognizing the gaming incentives of

these market dominant producers to avoid expected pro�t losses an EPEC is introduced to

model a multi-leader single-follower game. According to the model, strategic producers with

conventional and wind generation portfolios compete with each other trying to maximize

their expected pro�ts while at the same time seeking any equilibrium among them. Thus,

the EPEC formulation concerns the �nding of meaningful equilibria in a pool-based market

among strategic producers' MPECs which have a common lower level problem. Speci�cally

each MPEC embeds the optimization problem of the ISO which is expressed through its

primal-dual conditions.

Contrary to the relative algorithms introduced by Ruiz et al. (2012), the proposed EPEC

takes into account wind generation considering a jointly cleared energy and balancing market.

In relation to Baringo and Conejo (2013) and Zugno et al. (2013) the wind power producers

behave strategically in both DA and RT markets. Regarding Kazempour and Zareipour

(2014), the model incorporates multi-bus networks giving the ability to analyze market

equilibria under transmission line congestions. Additionally, with the use of stepwise o�ering

functions in DA market the model puts a price premium on upward and downward reserves

to further align the algorithm with energy-only markets. Compared to Dai and Qiao (2017),

the model incorporates wind power spillage, improving economic and technical speci�cations

of the market clearing mechanism. It also uses a single-iteration diagionalization method

to identify market equilibria simplifying the computational process. Finally, in relation to

Kazempour and Zareipour (2014) and Dai and Qiao (2017), the algorithm applies several

objective functions to EPEC de�ning the range of market equilibria. In addition, in the
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case of the non-linear objective function of producers' total expected pro�ts maximization,

the linearization is achieved without using any binary-expansion method, thereby further

decreasing the computational burden.

The contribution of this Chapter is �vefold:

i) Development of a stochastic MPEC with primal-dual formulation to model the behavior

of each strategic producer participating in a co-optimized energy and balancing pool

market.

ii) Construction of an EPEC based on the joint solution of all strategic producers' MPECs

to �nd market equilibria taking into account several types of market competition.

iii) E�cient recast of the EPEC without approximations into an equivalent MILP solvable

by commercial solvers.

iv) Consideration of both conventional and wind power generation which is o�ered by

strategic producers through linear stepwise curves.

v) Analysis of the impact of large scale of wind integration on market equilibria consid-

ering transmission line congestions, and di�erent levels of wind power penetration and

volatility.

5.2 EPEC model

5.2.1 Problem statement

This Chapter investigates the interaction between power producers with conventional and

wind power generation portfolios participating in a jointly cleared energy and balancing

electricity pool market. To analyze market equilibria, we initially introduce a single-leader

single-follower bi-level complementarity model to represent the strategic behaviour of each

producer. The upper-level problem maximizes the expected pro�ts of the producer (leader),

which depend on the DA and RT market clearing prices received at the lower-level problem.
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The lower-level problem represents the market clearing process ensuing the system economic

dispatch (minimum cost of energy dispatch) conducted by independent system operator

(ISO) (follower). The market clearing process facilitates an hourly auction where producers

and consumers submit their o�ers in form of energy blocks/prices and it is formulated as two-

stage stochastic programming co-optimizing energy dispatch and reserve deployments. The

�rst stage accommodates the clearing process of DA market and derives optimal scheduled

energy and DA market prices obtained as dual variables. The second stage facilitates the

clearing process of RT market, which is conducted through the probabilistic realization of all

wind power generation dependent scenarios and derives expected reserve deployments and

RT prices (Morales et al., 2012). Subsequently, considering the di�erentiability and convexity

of the lower-level problem, the bi-level model is recast into a single-level MPEC with primal-

dual formulation by replacing the lower level problem with its Karush-Kuhn-Tacker (KKT)

equality conditions and the associated strong duality equality. The simultaneous formulation

Figure 5.1: Multi-leader single-follower game

of all strategic producers' MPEC constitutes a multi-leader (producers) single-follower (ISO)

game and constructs an EPEC model by substituting all the MPEC models with their KKT

optimality conditions. Figure 5.1 illustrate the structure of the game. Finally, the resulted
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EPEC is linearized by replacing its KKT complementarity constraints with linear disjunctive

ones (Fortuny-Amat and McCarl, 1981), thereby reducing further the EPEC in an equivalent

MILP solvable by commercial solvers like CPLEX in GAMS.

5.2.2 Bi-level model

To determine the optimal o�ering strategies for each single producer the following bi-level

complementarity problem is proposed:

Upper-level problem

minimize
ΞS ∪ ΞO

−
∑

(i∈ISn )b

λDAn PDA
ib +

∑
(i∈IS)b

cibP
DA
ib −

∑
(j∈JS

n )f

λDAn WDA
jf

−
∑

(i∈ISn )ω

λRTnω r
up
iω +

∑
(i∈IS)ω

πωc
up
i r

up
iω

+
∑

(i∈ISn )ω

λRTnω r
down
iω −

∑
(i∈IS)ω

πωc
down
i rdowniω

−
∑

(j∈JS
n )ω

λRTnω

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
(5.1)

subjected to 0 ≤ ODA
i(b1) ∀i ∈ IS (5.2)

ODA
i(b−1) ≤ ODA

ib ∀i ∈ IS,∀b > b1 (5.3)

0 ≤ ODA
j(f1) ∀j ∈ JS (5.4)

ODA
j(f−1) ≤ ODA

jf ∀j ∈ JS,∀f > f1 (5.5)

0 ≤ Oup
i ∀i ∈ IS (5.6)

0 ≤ Odown
i ∀i ∈ IS (5.7)

0 ≤ ORT
j ∀j ∈ JS (5.8)
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Lower-level problem

minimize
Ξ

∑
ib

ODA
ib PDA

ib +
∑
iω

πωO
up
i r

up
iω −

∑
iω

πωO
down
i rdowniω

+
∑
jf

ODA
jf W

DA
jf +

∑
jω

πωO
RT
j

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
−
∑
dk

udkL
DA
dk +

∑
dω

πωV OLLdL
sh
dω (5.9)

subjected to (2.3) − (2.18) (5.10)

The objective function (5.1) minimizes the negative expected pro�ts of each strategic pro-

ducer which are determined by the revenues of the conventional and wind generating units in

DA market, the revenues (gain or losses) from the upward or downward reserve deployments,

and the wind power surplus or shortfall generation in RT market minus the actual incurred

cost. The purpose of the negative formulation of the expected pro�ts' maximization is to

render the objective function compatible with the mathematical transformations that will

follow. ΞS = {PDA
(i∈IS)b,W

DA
(j∈JS)f , r

up
(i∈IS)ω

, rdown(i∈IS)ω,W
sp
(j∈JS)ω

} and ΞO = {ODA
(i∈IS)b, O

up
(i∈IS)

,

Odown
(i∈IS), O

DA
(j∈JS)f , O

RT
(j∈JS)} are the sets of all prime variables of the upper level problem. It

should also be noted that the 4-th, the 6-th and the 7-th term of (1) are derived from∑
(i∈ISn )ω

πω
λRTnω
πω

rupiω ,
∑

(i∈ISn )ω

πω
λRTnω
πω

rdowniω and
∑

(j∈JS
n )ω

πω
λRTnω
πω

(
WRT
jω −

∑
f

WDA
jf − W sp

jω

)
respec-

tively. The constraints (5.2)−(5.5) enforce the acceptable o�ering decisions for the conven-

tional and wind energy blocks as well as the non-decreasing o�ering curves in DAmarket. The

constraints (5.6)−(5.8) enforce the price decisions for the upward/downward reserves and

the wind power o�ered in RT market. The objective function (5.9) of the lower-level problem

clears the DA and RT markets minimizing the total expected cost of the system operation

which consists of: a) the scheduled conventional and wind production cost at the DA market,

and b) the cost or savings of the scenario dependent upward and downward reserves, the wind

surplus or shortfall generation, and �nally the cost of wind power spillage and load shedding
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in real time operation, minus c) the utility of the demand. Alternatively, the ISO seeks to

maximize the total social welfare. Ξ = {PDA
ib ,WDA

jf , LDAdk , r
up
iω , r

down
iω ,W sp

jω , L
sh
dω, δ

o
n, δnω} is the

set of all ISO's decision variables. Finally constraint (5.10) considers all the constraints of

the market clearing precess (2.3) − (2.18) as presented in section 2.4.

5.2.3 MPEC formulation with primal-dual constraints

Considering the continuity and di�erentiability of the non-linear constrained lower-level prob-

lem, the auxiliary Lagrangian function can be used to convert the problem into an uncon-

strained one. Additionally, the decision variables ODA
ib , ODA

jf , Oup
iω , O

down
iω and ORT

j of each

producer are received as parameters by the ISO, rendering the objective function (9) of the

lower-level problem linear and therefore convex. Within the above context the lower-level

problem can be replaced by its �rst order optimality conditions in the form of the primal-

dual formulation instead of the equivalent KKT optimality conditions. The former o�ers

computational advantages reducing the mathematical burden of the forthcoming derivation

of strong stationary conditions due to the absence of the KKT complementarity conditions

of the lower-level problem with the form 0 ≤ g(x)⊥µ ≥ 0. Thus, the initial bi-level model is

recast into the following MPEC model:

minimize
Ξ ∪ ΞO ∪ ΞD

(5.1) (5.11)

subjected to :

0 ≤ ODA
i(b1) :

[
ô psi(b1)

]
∀i ∈ IS (5.12)

ODA
i(b−1) ≤ ODA

ib :
[
ô psib
]
∀i ∈ IS, ∀b ≥ b2 (5.13)

0 ≤ ODA
j(f1) :

[
ô wsj(f1)

]
∀j ∈ JS (5.14)

ODA
j(f−1) ≤ ODA

jf :
[
ô wsjf
]
∀j ∈ JS,∀f ≥ f2 (5.15)

0 ≤ Oup
i :

[
ô upsi
]
∀i ∈ IS (5.16)

0 ≤ Odown
i :

[
ô downsi

]
∀i ∈ IS (5.17)
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0 ≤ ORT
j :

[
ô rtsj
]
∀j ∈ JS (5.18)

−
∑

(i∈In)b

PDA
ib −

∑
(j∈Jn)f

WDA
jf

+
∑

(d∈Dn)k

LDAdk +
∑
m∈Θn

Bnm

(
δon − δom

)
= 0 :

[
λ̂DAsn

]
∀n (5.19)

−
∑
i∈In

rupiω +
∑
i∈In

rdowniω −
∑
d∈Dn

Lshdω

−
(∑
j∈Jn

WRT
jω −

∑
(j∈Jn)f

WDA
jf −

∑
j∈Jn

W sp
jω

)
+
∑
m∈Θn

Bnm

(
δnω − δon + δom − δmω

)
= 0 :

[
λ̂RTsnω

]
∀n,∀ω (5.20)

0 ≤ PDA
ib ≤ PMAX

ib :
[
α̂minsib , α̂

max
sib

]
∀i,∀b (5.21)

0 ≤ WDA
jf ≤ WMAX

jf :
[
β̂minsjf , β̂

max
sjf

]
∀j,∀f (5.22)

0 ≤ LDAdk ≤ LMAX
dk :

[
γ̂minsdk , γ̂

max
sdk

]
∀d,∀k (5.23)

0 ≤ rupiω ≤ RESUPi :
[
ε̂minsiω , ε̂

max
siω

]
∀i,∀ω (5.24)

0 ≤ rdowniω ≤ RESDOWN
i :

[
θ̂minsiω , θ̂

max
siω

]
∀i, ∀ω (5.25)∑

b

PDA
ib + rupiω ≤

∑
b

PMAX
ib :

[
µ̂maxsiω

]
∀i, ∀ω (5.26)

rdowniω −
∑
b

PDA
ib ≤ 0 :

[
µ̂minsiω

]
∀i,∀ω (5.27)

0 ≤ W sp
jω ≤ WRT

jω :
[
κ̂minsjω , κ̂

max
sjω

]
∀j,∀ω (5.28)

0 ≤ Lshdω ≤
∑
k

LDAdk :
[
ν̂minsdω , ν̂

max
sdω

]
∀d,∀ω (5.29)

−TMAX
nm ≤ Bnm

(
δon − δom

)
≤ TMAX

nm :
[
ξ̂minsnm, ξ̂

max
snm

]
∀n,∀m ∈ Θn (5.30)

−TMAX
nm ≤ Bnm

(
δnω − δmω

)
≤ TMAX

nm :
[
ξ̂minsnmω, ξ̂

max
snmω

]
∀n,∀m ∈ Θn∀ω (5.31)

−π ≤ δon ≤ π :
[
ρ̂minsn , ρ̂maxsn

]
∀n (5.32)

−π ≤ δnω ≤ π :
[
ρ̂minsnω , ρ̂

max
snω

]
∀n,∀ω (5.33)

δo(n1) = 0 :
[
φ̂osn
]

n = n1 (slack bus) (5.34)

δ(n1)ω = 0 :
[
φ̂snω

]
n = n1 (slack bus) (5.35)
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+
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+
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+
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µmaxiω

(∑
b

PMAX
ib

)
+

∑
n(m∈Θn)

TMAX
nm

(
ξminnm + ξmaxnm

)
+

∑
n(m∈Θn)ω

TMAX
nm

(
ξminnmω + ξmaxnmω

)
+
∑
n

π
(
ρminn + ρmaxn

)
+
∑
nω

π
(
ρminnω + ρmaxnω

)
= 0 :

[
λ̂DTs

]
(5.36)

ODA
ib − λDAn + αmaxib − αminib +

∑
ω

µmaxiω −
∑
ω

µminiω = 0 :
[
ψ̂ p
sib

]
∀i ∈ In, ∀b (5.37)

ODA
jf − λDAn −ORT

j +
∑
ω

λRTnω + βmaxjf − βminjf = 0 :
[
ψ̂ w
sjf

]
∀j ∈ Jn,∀f (5.38)

−udk + λDAn + γmaxdk − γmindk −
∑
ω

νmaxdω = 0 :
[
ψ̂ l
sdk

]
∀d ∈ Dn,∀k (5.39)

πωO
up
i − λRTnω + εmaxiω − εminiω + µmaxiω = 0 :

[
ψ̂ up
siω

]
∀i ∈ In,∀ω (5.40)

−πωOdown
i + λRTnω + θmaxiω − θminiω + µminiω = 0 :

[
ψ̂ down
siω

]
∀i ∈ In,∀ω (5.41)

−πωORT
j + λRTnω + κmaxjω − κminjω = 0 :

[
ψ̂ sp
sjω

]
∀j ∈ Jn, ∀ω (5.42)

πωV OLLd − λRTnω + νmaxdω − νmindω = 0 :
[
ψ̂ sh
sdω

]
∀d ∈ Dn,∀ω (5.43)∑

m∈Θn

Bnm

(
λDAn − λDAm

)
+

∑
(m∈Θn)ω

Bnm

(
− λRTnω + λRTmω

)
+
∑
m∈Θn

Bnm

(
ξmaxnm − ξmaxmn

)
−
∑
m∈Θn

Bnm

(
ξminnm − ξminmn

)
+ ρmaxn − ρminn + φo(n|=n1) = 0 :

[
ψ̂ o
sn

]
∀n (5.44)

∑
m∈Θn

Bnm

(
λRTnω − λRTmω

)
+
∑
m∈Θn

Bnm

(
ξmaxnmω − ξmaxmnω

)
−
∑
m∈Θn

Bnm

(
ξminnmω − ξminmnω

)
+ ρmaxnω − ρminnω + φ(n|=n1)ω = 0 :

[
ψ̂snω

]
∀n,∀ω (5.45)
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0 ≤ αminib , αmaxib :
[
αminsib , α

max
sib

]
∀i,∀b (5.46)

0 ≤ βminjf , βmaxjf :
[
β
min

sjf , β
max

sjf

]
∀j,∀f (5.47)

0 ≤ γmindk , γmaxdk :
[
γminsdk , γ

max
sdk

]
∀d,∀k (5.48)

0 ≤ εminiω , εmaxiω :
[
εminsiω , ε

max
siω

]
∀i, ∀ω (5.49)

0 ≤ θminiω , θmaxiω :
[
θ
min

siω , θ
max

siω

]
∀i,∀ω (5.50)

0 ≤ µminiω , µmaxiω :
[
µminsiω , µ

max
siω

]
∀i, ∀ω (5.51)

0 ≤ κminjω , κmaxjω :
[
κminsjω , κ

max
sjω

]
∀j,∀ω (5.52)

0 ≤ νmindω , νmaxdω :
[
νminsdω , ν

max
sdω

]
∀d,∀ω (5.53)

0 ≤ ξminnm , ξmaxnm :
[
ξ
min

snm, ξ
max

snm

]
∀n,∀m ∈ Θn (5.54)

0 ≤ ξminnmω, ξ
max
nmω :

[
ξ
min

snmω, ξ
max

snmω

]
∀n,∀m ∈ Θn, ∀ω (5.55)

0 ≤ ρminn , ρmaxn :
[
ρminsn , ρmaxsn

]
∀n (5.56)

0 ≤ ρminnω , ρ
max
nω :

[
ρminsnω , ρ

max
snω

]
∀n,∀m ∈ Θn (5.57)

Where ΞD = {λDAn , λRTnω , α
max
ib , αminib , βmaxjf , βminjf , γmaxdk , γmindk , εmaxiω , εminiω , θmaxiω , θminiω , µmaxiω ,

µminiω , κmaxjω , κminjω , νmaxdω , νmindω , ξmaxnm , ξminnm , ξmaxnmω, ξ
min
nmω, ρ

max
n , ρminn , ρmaxnω , ρminnω , φ

o
(n|=n1), φ(n|=n1)ω} is

the set of all dual variables of the lower-level problem. Equations (5.12) − (5.18) and

(5.19)− (5.35) correspond to the primal constraints of the upper-level and lower-level prob-

lem respectively. The constraint (5.36) applies the strong duality theorem which enforces

equality between the optimal prime and optimal dual objective functions. The equalities

(5.37) − (5.45) which are the partial derivatives of the Lagrangian function with respect to

prime variables PDA
ib , WDA

jf , LDAdk , rupiω , r
down
iω , W sp

jω , L
sh
dω, δ

o
n and δnω, and the inequalities

(5.46) − (5.57) correspond to the dual constraints of the lower-level problem. Finally, it

should also be noticed that contrary to the dual variables of the lower-level problem which

are common to all producers (for example the market clearing prices λDAn and
λRTnω
πω

), the

dual variables of the MPEC are producer speci�c which is why they include the subscript s.

This way it is more probable to detect market equilibria (Ruiz et al., 2012).
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5.2.4 EPEC formulation

To identify market equilibria the MPECs of all producers are solved jointly forming an EPEC

model. The latter can be represented by the KKT optimality conditions of all MPEC's as

follows:

(5.19), (5.20), (5.34)−(5.45) (5.58)

∂Ls/∂ODA
i(b1) = −ô psi(b1) + PDA

si(b1)λ̂
DT
s + ψ̂ p

si(b1) = 0 ∀s,∀i ∈ IS (5.59)

∂Ls/∂ODA
ib = −ô psib + ô psi(b−1) + PDA

sib λ̂
DT
s + ψ̂ p

sib = 0 ∀s,∀i ∈ IS, ∀b > b1 (5.60)

∂Ls/∂ODA
j(f1) = −ô wsj(f1) +WDA

sj(f1)λ̂
DT
s + ψ̂ w

sj(f1) = 0 ∀s,∀j ∈ JS (5.61)

∂Ls/∂ODA
jf = −ô wsjf + ô wsj(f−1) +WDA

sjf λ̂
DT
s + ψ̂ w

sjf = 0 ∀s,∀j ∈ JS,∀f > f1 (5.62)

∂Ls/∂Oup
i = −ô upsi + πωr

up
iω λ̂

DT
s + πωψ̂

up
siω = 0 ∀s,∀i ∈ IS,∀ω (5.63)

∂Ls/∂Odown
i = −ô downsi + πωr

down
iω λ̂DTs − πωψ̂ down

siω = 0 ∀s,∀i ∈ IS,∀ω (5.64)

∂Ls/∂ORT
j = −ô rtsj + πω

(
WRT
jω −

∑
f W

DA
jf −W

sp
jω

)
λ̂DTs

−
∑
f

ψ w
sjf − πωψ̂

sp
sjω = 0 ∀s,∀j ∈ JS,∀ω (5.65)

∂Ls/∂PDA
ib = −λDA(n:i∈In) + cib − λ̂DAs(n:i∈In) + α̂maxsib − α̂minsib +

∑
ω

µ̂maxsiω

−
∑
ω

µ̂minsiω +ODA
ib λ̂DTs = 0 ∀s,∀i ∈ Is,∀b (5.66)

∂Ls/∂PDA
ib = −λ̂DAs(n:i∈In) + α̂maxsib − α̂minsib +

∑
ω

µ̂maxsiω

−
∑
ω

µ̂minsiω +ODA
ib λ̂DTs = 0 ∀s,∀i /∈ Is,∀b (5.67)

∂Ls/∂WDA
jf = −λDA(n:j∈Jn) +

∑
ω

λRT(n:j∈Jn)ω − λ̂DAs(n:j∈Jn) +
∑
ω

λ̂RTs(n:j∈Jn)ω + β̂maxsjf

−β̂minsjf +ODA
jf λ̂

DT
s −

∑
ω

πωO
RT
j λ̂DTs = 0 ∀s,∀j ∈ Js, ∀f (5.68)
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∂Ls/∂WDA
jf = −λ̂DAs(n:j∈Jn) +

∑
ω

λ̂RTs(n:j∈Jn)ω + β̂maxsjf − β̂minsjf

+ODA
jf λ̂

DT
s −

∑
ω

πωO
RT
j λ̂DTs = 0 ∀s,∀j /∈ Js, ∀f (5.69)

∂Ls/∂LDAdk = λ̂DAs(n:d∈Dn) + γ̂maxsdk − γ̂minsdk +
∑
ω

ν̂maxsdω − udkλ̂DTs = 0 ∀s,∀k (5.70)

∂Ls/∂rupiω = −λRT(n:i∈In)ω + πωc
up
i − λ̂RTs(n:i∈In)ω + ε̂maxsiω − ε̂minsiω

+µ̂maxsiω + πωO
up
i λ̂

DT
s = 0 ∀s,∀i ∈ Is,∀ω (5.71)

∂Ls/∂rupiω = −λ̂RTs(n:i∈In)ω + ε̂maxsiω − ε̂minsiω

+µ̂maxsiω + πωO
up
i λ̂

DT
s = 0 ∀,∀i /∈ Is,∀ω (5.72)

∂Ls/∂rdowniω = λRT(n:i∈In)ω − πωcdowni + λ̂RTs(n:i∈In)ω + θ̂maxsiω − θ̂minsiω

+µ̂minsiω + πωO
down
i λ̂DTs = 0 ∀s,∀i ∈ Is,∀ω (5.73)

∂Ls/∂rdowniω = λ̂RTs(n:i∈In)ω + θ̂maxsiω − θ̂minsiω

+µ̂minsiω + πωO
down
i λ̂DTs = 0 ∀s,∀i /∈ Is,∀ω (5.74)

∂Ls/∂W sp
jω = λRT(n:j∈Jn)ω + λ̂RTs(n:j∈Jn)ω + κ̂maxsjω − κ̂minsjω

−πωORT
j λ̂DTs = 0 ∀s, ∀j ∈ Js,∀ω (5.75)

∂Ls/∂W sp
jω = λ̂RTs(n:j∈Jn)ω + κ̂maxsjω − κ̂minsjω − πωORT

j λ̂DTs = 0 ∀s,∀j /∈ Js, ∀ω (5.76)

∂Ls/∂Lshjω = −λRT(n:d∈Dn)ω + ν̂maxsdω − ν̂minsdω + πωV OLLdλ̂
DT
s = 0 ∀s,∀ω (5.77)

∂Ls/∂δon =
∑
m∈Θn

Bnm

(
λ̂DAsn − λ̂DAsm

)
+

∑
(m∈Θn)ω

Bnm

(
− λ̂RTsnω + λ̂RTsmω

)
+
∑
m∈Θn

Bnm

(
ξ̂maxsnm − ξ̂maxsmn

)
−
∑
m∈Θn

Bnm

(
ξ̂minsnm − ξ̂minsmn

)
+ρ̂maxsn − ρ̂minsn + φ̂o(n|=n1) = 0 ∀s,∀n (5.78)

∂Ls/∂δnω =
∑

(m∈Θn)

Bnm

(
λ̂RTsnω − λ̂RTsmω

)
+
∑
m∈Θn

Bnm

(
ξ̂maxsnmω − ξ̂maxsmnω

)
−
∑
m∈Θn

Bnmω

(
ξ̂minsnmω − ξ̂minsmnω

)
+ρ̂maxsnω − ρ̂minsnω + φ̂(n|=n1)ω = 0 ∀s,∀n,∀ω (5.79)
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∂Ls/∂λDAn = −
∑

(i∈ISn )b

PDA
ib −

∑
(j∈JS

n )f

WDA
jf − ψ̂

p
s(i∈In)b − ψ̂

w
s(j∈Jn)f + ψ̂ l

s(d∈Dn)k

+
∑
m∈Θn

Bnm

(
ψ̂osn − ψ̂osm

)
= 0 ∀s, ∀n (5.80)

∂Ls/∂λRTnω = −
∑
i∈Isn

rupiω +
∑
i∈Isn

rdowniω −
∑
j∈JS

n

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
+
∑

(j∈Jn)f

ψ̂ w
sjf −

∑
i∈In

ψ̂ up
siω +

∑
i∈In

ψ̂ down
siω +

∑
j∈Jn

ψ̂ sp
sjω −

∑
d∈Dn

ψ̂ sh
sdω

+
∑
m∈Θn

Bnm

(
− ψ̂osn + ψ̂osm

)
+
∑
m∈Θn

Bnm

(
ψ̂snω − ψ̂smω

)
+
∑
j∈JS

n

WRT
jω λ̂

DT
s = 0 ∀s,∀n,∀ω (5.81)

∂Ls/∂αminib = −ψ̂ p
sib − αminsib = 0 ∀s, ∀i, ∀b (5.82)

∂Ls/∂αmaxib = PMAX
ib λ̂DTs + ψ̂ p

sib − αmaxsib = 0 ∀s,∀i,∀b (5.83)

∂Ls/∂βminjf = −ψ̂ p
sjf − β

min

sjf = 0 ∀s,∀j,∀f (5.84)

∂Ls/∂βmaxjf = WMAX
jf λ̂DTs + ψ̂ w

sjf − β
max

sjf = 0 ∀s,∀j,∀f (5.85)

∂Ls/∂γmindk = −ψ̂ l
sdk − γminsdk = 0 ∀s,∀d,∀k (5.86)

∂Ls/∂γmaxdk = LMAX
dk λ̂DTs + ψ̂ l

sdk − γmaxsdk = 0 ∀s,∀d,∀k (5.87)

∂Ls/∂εminiω = −ψ̂ up
siω − εminsiω = 0 ∀s,∀i, ∀ω (5.88)

∂Ls/∂εmaxiω = RESUPi λ̂DTs + ψ̂ up
siω − εmaxsiω = 0 ∀s,∀i,∀ω (5.89)

∂Ls/∂θminiω = −ψ̂ down
siω − θminsiω = 0 ∀s,∀i,∀ω (5.90)

∂Ls/∂θmaxiω = RESDOWN
i λ̂DTs + ψ̂ down

siω − θmaxsiω = 0 ∀s,∀i, ∀ω (5.91)

∂Ls/∂µminiω = −
∑
b

ψ̂ p
sib + ψ̂ down

siω − µminsiω = 0 ∀s,∀i, ∀ω (5.92)

∂Ls/∂µmaxiω =
∑
b

PMAX
ib λ̂DTs +

∑
b

ψ̂ p
sib + ψ̂ up

siω − µmaxsiω = 0 ∀s,∀i, ∀ω (5.93)
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∂Ls/∂κminjω = −ψ̂ sp
sjω − κminsjω = 0 ∀s,∀j,∀ω (5.94)

∂Ls/∂κmaxjω = WRT
jω λ̂

DT
s + ψ̂ sp

sjω − κmaxsjω = 0 ∀s,∀j,∀ω (5.95)

∂Ls/∂νmindω = −ψ̂ sh
sdω − νminsdω = 0 ∀s,∀d,∀ω (5.96)

∂Ls/∂νmaxdω = ψ̂ sh
sdω − νmaxsdω = 0 ∀s,∀d,∀ω (5.97)

∂Ls/∂ξminnm = TMAX
nm λ̂DTs −Bnm

(
ψ̂osn − ψ̂osm

)
− ξminsnm = 0 ∀s,∀n,∀m (5.98)

∂Ls/∂ξmaxnm = TMAX
nm λ̂DTs +Bnm

(
ψ̂osn − ψ̂osm

)
− ξmaxsnm = 0 ∀s,∀n,∀m (5.99)

∂Ls/∂ξminnmω = TMAX
nm λ̂DTs −Bnm

(
ψ̂snω − ψ̂smω

)
− ξminsnmω = 0 ∀s,∀n,∀m,∀ω (5.100)

∂Ls/∂ξmaxnmω = TMAX
nm λ̂DTs +Bnm

(
ψ̂snω − ψ̂smω

)
− ξmaxsnmω = 0 ∀s,∀n,∀m,∀ω (5.101)

∂Ls/∂ρminn = πλ̂DTs − ψ̂osn − ρminsn = 0 ∀s,∀n (5.102)

∂Ls/∂ρmaxn = πλ̂DTs + ψ̂osn − ρmaxsn = 0 ∀s,∀n (5.103)

∂Ls/∂ρminnω = πλ̂DTs − ψ̂snω − ρminsnω = 0 ∀s,∀n,∀ω (5.104)

∂Ls/∂ρmaxnω = πλ̂DTs + ψ̂osnω − ρmaxsnω = 0 ∀s,∀n,∀ω (5.105)

∂Ls/∂φo(n1) = ψ̂os(n1) = 0 ∀s (5.106)

∂Ls/∂φ(n1)ω = ψ̂s(n1)ω = 0 ∀s,∀ω (5.107)

0 ≤ ODA
i(b1)⊥ô

p
si(b1) ≥ 0 ∀s,∀i ∈ IS (5.108)

0 ≤ ODA
ib −ODA

i(b−1)⊥ô
p
sib ≥ 0 ∀s,∀i ∈ IS,∀b ≥ b2 (5.109)

0 ≤ ODA
j(f1)⊥ô wsj(f1) ≥ 0 ∀s,∀j ∈ JS (5.110)

0 ≤ ODA
jf −ODA

j(f−1)⊥ô wsjf ≥ 0 ∀s,∀j ∈ JS,∀f ≥ f2 (5.111)

0 ≤ Oup
i ⊥ô

up
si ≥ 0 ∀s, ∀i ∈ IS (5.112)

0 ≤ Odown
i ⊥ô downsi ≥ 0 ∀s,∀i ∈ IS (5.113)

0 ≤ ORT
j ⊥ô rtsj ≥ 0 ∀s, ∀j ∈ JS (5.114)

0 ≤ PDA
ib ⊥α̂minsib ≥ 0 ∀s,∀i ∈ IS,∀b (5.115)
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0 ≤ PMAX
ib − PDA

ib ⊥α̂maxsib ≥ 0 ∀s,∀i ∈ IS,∀b (5.116)

0 ≤ WDA
jf ⊥β̂minsjf ≥ 0 ∀s,∀j ∈ JS,∀f (5.117)

0 ≤ WMAX
jf −WDA

jf ⊥β̂maxsjf ≥ 0 ∀s,∀j ∈ JS, ∀f (5.118)

0 ≤ LDAdk ⊥γ̂minsdk ≥ 0 ∀s,∀d,∀k (5.119)

0 ≤ LMAX
dk − LDAdk ⊥γ̂maxsdk ≥ 0 ∀s, ∀d,∀k (5.120)

0 ≤ rupiω⊥ε̂minsiω ≥ 0 ∀s, ∀i ∈ IS,∀ω (5.121)

0 ≤ RESUPi − rupiω⊥ε̂maxsiω ≥ 0 ∀i ∈ IS,∀ω (5.122)

0 ≤ rdowniω ⊥θ̂minsiω ≥ 0 ∀s,∀i ∈ IS,∀ω (5.123)

0 ≤ RESDOWN
i − rdowniω ⊥θ̂maxsiω ≥ 0 ∀s,∀i ∈ IS,∀ω (5.124)

0 ≤
∑
b

PMAX
ib −

∑
b

PDA
ib − r

up
iω⊥µ̂maxsiω ≥ 0 ∀s,∀i ∈ IS,∀ω (5.125)

0 ≤
∑
b

PDA
ib − rdowniω ⊥µ̂minsiω ≥ 0 ∀s,∀i ∈ IS,∀ω (5.126)

0 ≤ W sp
jω⊥κ̂minsjω ≥ 0 ∀s,∀j ∈ JS,∀ω (5.127)

0 ≤ WRT
jω −W

sp
jω⊥κ̂maxsjω ≥ 0 ∀s,∀j ∈ JS,∀ω (5.128)

0 ≤ Lshdω⊥ν̂minsdω ≥ 0 ∀s,∀d,∀ω (5.129)

0 ≤
∑
k

LDAdk − Lshdω⊥ν̂maxsdω ≥ 0 ∀s,∀d,∀ω (5.130)

0 ≤ Bnm

(
δon − δom

)
+ TMAX

nm ⊥ξ̂minsnm ≥ 0 ∀s,∀n,∀m ∈ Θm (5.131)

0 ≤ TMAX
nm −Bnm

(
δon − δom

)
⊥ξ̂maxsnm ≥ 0 ∀s,∀n,∀m ∈ Θm (5.132)

0 ≤ Bnm

(
δnω − δmω

)
+ TMAX

nm ⊥ξ̂minsnmω ≥ 0 ∀s,∀n,∀m ∈ Θm∀ω (5.133)

0 ≤ TMAX
nm −Bnm

(
δnω − δmω

)
⊥ξ̂maxsnmω ≥ 0 ∀s,∀n,∀m ∈ Θm∀ω (5.134)

0 ≤ δon + π⊥ρ̂minsn ≥ 0 ∀s, ∀n (5.135)

0 ≤ π − δon⊥ρ̂maxsn ≥ 0 ∀s,∀n (5.136)

0 ≤ δnω + π⊥ρ̂minsnω ≥ 0 ∀s,∀n,∀ω (5.137)

0 ≤ π − δnω⊥ρ̂maxsnω ≥ 0 ∀s, ∀n,∀ω (5.138)

0 ≤ αminib ⊥αminsib ≥ 0 ∀s,∀i, ∀b (5.139)
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0 ≤ αmaxib ⊥αmaxsib ≥ 0 ∀s,∀i, ∀b (5.140)

0 ≤ βminjf ⊥β
min

sjf ≥ 0 ∀s,∀j,∀f (5.141)

0 ≤ βmaxjf ⊥β
max

sjf ≥ 0 ∀s,∀j,∀f (5.142)

0 ≤ γmindk ⊥γminsdk ≥ 0 ∀s,∀d,∀k (5.143)

0 ≤ γmaxdk ⊥γmaxsdk ≥ 0 ∀s,∀d,∀k (5.144)

0 ≤ εminiω ⊥εminsiω ≥ 0 ∀s,∀i,∀ω (5.145)

0 ≤ εmaxiω ⊥εmaxsiω ≥ 0 ∀s,∀i, ∀ω (5.146)

0 ≤ θminiω ⊥θ
min

siω ≥ 0 ∀s,∀i, ∀ω (5.147)

0 ≤ θmaxiω ⊥θ
max

siω ≥ 0 ∀s,∀i, ∀ω (5.148)

0 ≤ µminiω ⊥µminsiω ≥ 0 ∀s, ∀i, ∀ω (5.149)

0 ≤ µmaxiω ⊥µmaxsiω ≥ 0 ∀s,∀i,∀ω (5.150)

0 ≤ κminjω ⊥κminsjω ≥ 0 ∀s,∀j,∀ω (5.151)

0 ≤ κmaxiω ⊥κmaxsiω ≥ 0 ∀s,∀j,∀ω (5.152)

0 ≤ νmindω ⊥νminsdω ≥ 0 ∀s, ∀d,∀ω (5.153)

0 ≤ νmaxdω ⊥νmaxsdω ≥ 0 ∀s,∀d,∀ω (5.154)

0 ≤ ξminnm ⊥ξ
min

snm ≥ 0 ∀s,∀n,∀m ∈ Θn (5.155)

0 ≤ ξmaxnm ⊥ξ
max

snm ≥ 0 ∀s,∀n,∀m ∈ Θn (5.156)

0 ≤ ξminnmω⊥ξ
min

snmω ≥ 0 ∀s,∀n,∀m ∈ Θn,∀ω (5.157)

0 ≤ ξmaxnmω⊥ξ
max

snmω ≥ 0 ∀s,∀n,∀m ∈ Θn,∀ω (5.158)

0 ≤ ρminn ⊥ρminsn ≥ 0 ∀s,∀n (5.159)

0 ≤ ρmaxnm ⊥ρmaxsn ≥ 0 ∀s,∀n (5.160)

0 ≤ ρminnω ⊥ρminsnω ≥ 0 ∀s,∀n,∀ω (5.161)

0 ≤ ρmaxnmω⊥ρmaxsnω ≥ 0 ∀s,∀n,∀ω (5.162)

Considering the constraint (5.58), constraints (5.19),(5.20),(5.34) and (5.35) correspond

to primal equalities, constraint (5.36) enforces the strong duality theorem equality while

constraints (5.37)−(5.45) correspond to dual equalities. Constraints (5.59)−(5.107) are the
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KKT equality conditions which correspond to the �rst order partial derivatives of the La-

grangian function Ls of the MPEC model with respect to its prime variables (which are the

prime and dual variables of the bi-level model). Finally, constraints (5.108)-(5.162) are the

KKT complementarity conditions of the MPEC model.

5.2.5 EPEC linearization

The constructed EPEC's constraints include non-linearities which stem from:

i) The non-linear terms ODA
ib PDA

ib , ODA
jf W

DA
jf , Oup

i r
up
iω , O

down
i rdowniω , ORT

j WDA
jf and ORT

j W sp
jω

in equality (5.36).

ii) The complementarity conditions (5.108)−(5.162).

iii) The products of the dual variable λ̂DTs of the strong duality theorem equality with

several variables in equalities (5.59)−(5.69) and (5.71)−(5.76).

The non-linear terms of case (i) are eliminated by substituting the strong duality theorem

equality (5.36), which derives from the primal-dual formulation, with the equivalent KKT

complementarity conditions of the bi-level model's lower-level problem. The aforementioned

complementarity constraints are the products of the lower-level model inequalities with their

corresponding dual variables as shown below:

0 ≤ PDA
ib ⊥αminib ≥ 0 ∀i, ∀b (5.163)

0 ≤ PMAX
ib − PDA

ib ⊥αmaxib ≥ 0 ∀i, ∀b (5.164)

0 ≤ WDA
jf ⊥βminjf ≥ 0 ∀j,∀f (5.165)

0 ≤ WMAX
jf −WDA

jf ⊥βmaxjf ≥ 0 ∀j,∀f (5.166)

0 ≤ LDAdk ⊥γmindk ≥ 0 ∀d,∀k (5.167)

0 ≤ LMAX
dk − LDAdk ⊥γmaxdk ≥ 0 ∀d,∀k (5.168)

0 ≤ rupiω⊥εminiω ≥ 0 ∀i, ∀ω (5.169)

0 ≤ RESUPi − rupiω⊥εmaxiω ≥ 0 ∀i, ∀ω (5.170)
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0 ≤ rdowniω ⊥θminiω ≥ 0 ∀i, ∀ω (5.170)

0 ≤ RESDOWN
i − rdowniω ⊥θmaxiω ≥ 0 ∀i, ∀ω (5.171)

0 ≤
∑
b

PMAX
ib −

∑
b

PDA
ib − r

up
iω⊥µmaxiω ≥ 0 ∀i, ∀ω (5.172)

0 ≤
∑
b

PDA
ib − rdowniω ⊥µminiω ≥ 0 ∀i, ∀ω (5.173)

0 ≤ W sp
jω⊥κminjω ≥ 0 ∀j,∀ω (5.174)

0 ≤ WRT
jω −W

sp
jω⊥κmaxjω ≥ 0 ∀j,∀ω (5.175)

0 ≤ Lshdω⊥νmindω ≥ 0 ∀d,∀ω (5.176)

0 ≤
∑
k

LDAdk − Lshdω⊥νmaxdω ≥ 0 ∀d,∀ω (5.177)

0 ≤ Bnm

(
δon − δom

)
+ TMAX

nm ⊥ξminnm ≥ 0 ∀n,∀m ∈ Θm (5.178)

0 ≤ TMAX
nm −Bnm

(
δon − δom

)
⊥ξmaxnm ≥ 0 ∀n,∀m ∈ Θm (5.179)

0 ≤ Bnm

(
δnω − δmω

)
+ TMAX

nm ⊥ξminnmω ≥ 0 ∀n,∀m ∈ Θm∀ω (5.180)

0 ≤ TMAX
nm −Bnm

(
δnω − δmω

)
⊥ξmaxnmω ≥ 0 ∀n,∀m ∈ Θm∀ω (5.181)

0 ≤ δon + π⊥ρminn ≥ 0 ∀n (5.182)

0 ≤ π − δon⊥ρmaxn ≥ 0 ∀n (5.183)

0 ≤ δnω + π⊥ρminnω ≥ 0 ∀n,∀ω (5.184)

0 ≤ π − δnω⊥ρmaxnω ≥ 0 ∀n,∀ω (5.185)

The complementarity constraints (5.108)−(5.162) of case (ii) and the complementarity

constrains (5.163) − (5.185) can be substituted with equivalent linear disjunctive constrains

of the general form (Fortuny-Amat and McCarl, 1981):

0 ≤ g(x), 0 ≤ µ, g(x) ≤Mpz, µ ≤M v(1− z) (5.186)

where Mp and M v are constants related to prime and dual variables respectively and z ∈

{0, 1} is a binary variable. The full deployment of the EPEC's linear disjunctive constraints
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is presented in Appendix A.3. The calculation method of constants is similar to this followed

in sections 3.2.4 and 4.2.4 and discussed in detail in section 6. Finally, the non-linearities

of case (iii) are eliminated by parameterizing the dual variable λ̂DTs which is common to all

non-linear terms. Moreover, the fact that the variable is unique for each producer s renders

its parameterization the most appropriate to de�ne e�ortlessly the feasible region of the

problem (Ruiz at al., 2012).

5.2.6 Market equilibria

The constraints of the EPEC model (74)−(123) and (125) have a mixed-integer linear form;

however, the latter keeps all the EPEC's characteristics and can therefore derive multiple

solutions. To explore di�erent equilibria, the following problem structure is proposed:

Π(λ̂DTs ) : maximize
Ξ ∪ ΞO ∪ ΞD∪ ΞD

′
objective function

subjected to (5.58)−(5.107), (A.3.1)−(A.3.158) (5.187)

Where ΞD
′
is the set of dual variables of the MPEC model. The problem Π(λ̂DTs ) is param-

eterized in λ̂DTs and it can receive several objective functions which de�ne the properties of

each contextual equilibrium. In this analysis two objective functions are considered. The

�rst represents the total expected pro�ts (TEP) of all producers:

TEP =
∑

(i∈In)b

λDAn PDA
ib −

∑
ib

cibP
DA
ib +

∑
(j∈Jn)f

λDAn WDA
jf

+
∑

(i∈In)ω

λRTnω r
up
iω −

∑
iω

πωc
up
i r

up
iω

−
∑

(i∈In)ω

λRTnω r
down
iω +

∑
iω

πωc
down
i rdowniω

+
∑

(j∈Jn)ω

λRTnω

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
(5.188)
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The aforementioned objective function is non-linear due to the products of the market clear-

ing prices λDAn and λRTnω (dual variables) with the relative power generation (prime variables).

The non-linearities can be eliminated by using the strong duality theorem equality (5.36),

the MPEC's equality conditions (5.37), (5.38), (5.40), (5.41), (5.42), and the lower-level

problem's complementarity conditions (5.163) − (5.166) and (5.169) − (5.175) and following

the process presented in Appendix A.4. Thus, the objective function (5.188) is reduced to

an equivalent linear one with the following form:

TEP =
∑
dk

udkL
DA
dk −

∑
ib

cibP
DA
ib

−
∑
iω

πωc
up
i r

up
iω +

∑
iω

πωc
down
i rdowniω −

∑
(j∈JS)ω

πωO
RT
j WRT

jω

−
∑
dω

πωV OLLdL
sh
dω −

∑
dk

γmaxdk LMAX
dk

−
∑

n(m∈Θn)

TMAX
nm

(
ξminnm + ξmaxnm

)
−

∑
n(m∈Θn)ω

TMAX
nm

(
ξminnmω + ξmaxnmω

)
−
∑
n

π
(
ρminn + ρmaxn

)
−
∑
nω

π
(
ρminnω + ρmaxnω

)
(5.189)

rendering the non-linear Π(λ̂DTs ) problem into an MILP problem.

The second objective function represents the total expected social welfare (TESW) of the

market and has the form:

TESW =
∑
dk

udkL
DA
dk −

∑
ib

cibP
DA
ib −

∑
iω

πωc
up
i r

up
iω

+
∑
iω

πωc
down
i rdowniω −

∑
dω

πωV OLLdL
sh
dω (5.190)

It must be noted that function (5.190) expresses the real total expected social welfare in

contrast to function (5.9) as now the producers o�er at their marginal cost (wind generation

is cost free) instead of their strategic o�ers ODA
ib , ODA

jf , O
up
i , O

down
i and ORT

j .
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5.3 2-bus system case

5.3.1 System data

The proposed algorithm is applied in a two-bus system illustrated in Figure 5.2. The

conventional unit i1 and the wind unit j1 belong to the producer s1 and the units i2 and j2

belong to the producer s2. Technical data for the conventional units i are provided on Table

5.1. Columns 2 to 5 indicate the two energy blocks o�ered by each unit and their respective

marginal costs. The next two columns indicate limitations in upward and downward reserves,

and the last two columns contain the reserve deployment costs respectively.

Figure 5.2: 2-bus system

Table 5.1: Data for the conventional generating units

units PMAX
i,b1 PMAX

i,b2 ci,b1 ci,b2 RESUPi RESDOWN
i cupi cdowni

[MWh] [MWh] [e/MWh] [e/MWh] [MW ] [MW ] [e/MWh] [e/MWh]

i1 25 25 17 21 25 25 21.5 16.5

i2 25 25 19 23 25 25 23.5 18.5
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Table 5.2: Demand energy blocks and utility costs

demand LMAX
d,k1 LMAX

d,k2 ud,k1 ud,k2

[MWh] [MWh] [e/MWh] [e/MWh]

d1 40 20 22 19

d2 40 20 25 20

The two wind units j are similar, and each one has installed capacity 10 MWh which

is o�ered in one energy block. Their uncertain production is realized through two wind

scenarios ω1 (high production) 10 MWh, and ω2 (low production) 2.5 MWh with occurrence

probability 50% each. The system has also two demands d1 and d2. The demand blocks and

their respective utility costs are presented in Table 5.2. Finally, the value of lost load is 200

e/MWh for both demands and the line transmission capacity is 100 MW with a susceptance

9.142 per unit.

5.3.2 Uncongested network

Based on the above information, we examine four types of equilibrium. The �rst type

considers perfect competition (competitive equilibrium) where all the producers o�er at

their marginal cost. The second one corresponds to a monopolistic market (monopoly equi-

librium). In this case, all the generating units belong to one producer and the results

are obtained by solving the MPEC model. The third and fourth types represent equilib-

ria derived by the EPEC model setting the values of λ̂DTs1 and λ̂DTs2 equal to 3 arbitrarily.

The former solves the EPEC opting the (5.190) as objective function maximizing the to-

tal expected social welfare (TESW equilibrium), and the latter solves the EPEC using the
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Table 5.3: Day-ahead and real-time market clearing prices [e/MWh] in uncongested network

λDAn1 λDAn2

λRTn1,ω1

πω1

λRTn1,ω2

πω2

λRTn2,ω1

πω1

λRTn2,ω2

πω2

perfect competition 21 21 18.5 21.5 18.5 21.5

monopoly 25 25 0 50 0 50

TESW maximization 22 22 0 44 0 44

TEP maximization 25 25 0 50 0 50

Table 5.4: Energy, reserves and consumption [MWh] in uncongested network

PDA
i1,b WDA

j1,f PDA
i2,b WDA

j2,f LDAd1,k LDAd2,k rupi1,ω2 rdowni1,ω1 rupi2,ω2 rdowni2,ω1

perfect competition 25;10 10 25;0 10 40;0 40;0 15 0 0 0

monopoly 25;0 0 10;0 5 0;0 40;0 0 5 0 10

TESW maximization 25;10 10 25;0 10 40;0 40;0 15 0 0 0

TEP maximization 25;0 0 10;0 5 0;0 40;0 0 5 0 10

Table 5.5: Expected pro�ts [e] in uncongested network

i1 j1 i2 j2 s1 s2 Total

perfect competition 103.75 129.38 50.00 129.37 233.13 179.37 412.50

monopoly 242.50 62.50 155.00 62.50 305.00 217.50 522.50

TESW maximization 307.50 55.00 75.00 55.00 362.50 130.00 492.50

TEP maximization 242.50 62.50 155.00 62.50 305.00 217.50 522.50

(5.189) as objective function maximizing the total expected pro�ts of all producers (TEP

equilibrium). Table 5.3 depicts the con�guration of the DA and RT market clearing prices.
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As expected under exercise of capacity withholdings in monopoly and TEP equilibrium, the

market exhibits the highest prices. It should be noted that the price of these equilibria

coincide. At the same time, the market prices in TESW equilibrium are quite lower than

those in monopoly and TEP but higher than those in competitive market. Considering energy

production as shown in Table 5.4, under TESW equilibrium, the producers cover demand of

80 MW similar to that in perfect competition. However, exercising �nancial withholdings,

they raise the DA price at 1 e/MWh increasing the total pro�ts in DA market. In addition,

in low wind scenario ω2 the total scheduled wind generation of 20 MWh in DA market

creates a need of 15 MWh upward reserve to balance the system which is now paid at 44

e/MWh increasing the total expected pro�ts compared to those of competitive equilibrium

as shown in Table 5.5. On the other hand, in monopoly and TEP cases the producers acting

identically restrict the DA production meeting only 40 MWh of demand at the price of 25

e/MWh. Additionally, in high wind scenario ω1, the low scheduled wind generation of 5

MWh results in a surplus of 15 MWh. However, the producers are called to pay for their

downward reserve deployments at zero price . As a result, the total expected pro�ts reach

the highest level of 522.5 e.

5.3.3 Searching for market equilibria

Scanning the feasible region of the EPEC for probable equilibria the variable λ̂DTs is

parameterized from 0.1 to 3 for both producers s1 and s2. It should be noted that λ̂DTs is

positive considering the constrains (5.104), (5.105), (5.159) and (5.160). Figure 5.3 presents

the EPEC results maximizing the TEP objective function. It can be seen that there are

four subsets of λ̂DTs1 and λ̂DTs2 which correspond to four market equilibria. In equilibria

(a), (b) and (c) the producers cover a demand of 40 MWh; however, they follow di�erent
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Figure 5.3: Total expected pro�ts as a function of λ̂DTs1 and λ̂DTs2
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Figure 5.4: O�er curve for (a) equilibrium [λ̂DTs1 = λ̂DTs2 = 2.5]
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Figure 5.5: O�er curve for (a) equilibrium [λ̂DTs1 = λ̂DTs2 = 0.5]
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Figure 5.6: O�er curve for (d) equilibrium [λ̂DTs1 = λ̂DTs2 = 0.2]

o�ering strategies. In equilibrium (a) at DA market as shown in Figure 5.4, producer s1

o�ers the �rst conventional energy block at marginal cost ensuring the total dispatch of the

block and withholds any further production by o�ering at a price higher than the utility cost

of LMAX
d2,k1 . Producer s2 covers the rest of the demand block by o�ering its �rst conventional

and wind energy block at a price equal to utility cost 25 e/MWh de�ning actually the DA
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market price. In equilibrium (c) the producers shape the DA price by o�ering their wind

energy at 25 e/MWh while the producer s2 withholds the production of unit i2 completely

as depicted in Figure 5.5. On the other hand, in equilibrium (d) the producers cover a

demand of 80 MWh. In this case, they do not exercise any market power with their wind

units whose scheduled generation is o�ered at zero price; therefore, it is fully dispatched.

Finally, the DA market price is formed by the increased o�ers of the second conventional

block of producer s1 and the �rst block of producer s2 at the price of 22 e/MWh covering

the bid of the LMAX
d1,k1 demand block as shown in Figure 5.6.

5.3.4 Congested network

Keeping λ̂DTs1 and λ̂DTs2 equal to 3 the line capacity is reduced to 10 MW. In this case under

perfect competition and TESWmaximization the line still facilitates the energy transmission,

and the buses show DA and RT prices similar to those of uncongested network. However,

under monopoly and TEP maximization the system becomes congested, and LMPs emerge

as presented in Table 5.6. The TEP equilibrium leads the producers to change the mixture

of their production covering 65 MWh of demand. As illustrated in Table 5.7, they recognize

Table 5.6: Day-ahead and real-time market clearing prices [e/MWh] in congested network

λDAn1 λDAn2

λRTn1,ω1

πω1

λRTn1,ω2

πω2

λRTn2,ω1

πω1

λRTn2,ω2

πω2

perfect competition 21 21 18.5 21.5 18.5 21.5

monopoly 22 25 0 44 0 50

TESW maximization 22 22 0 44 0 44

TEP maximization 22 25 0 44 0 50
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Table 5.7: Energy, reserves and consumption [MWh] in congested network

PDA
i1,b WDA

j1,f PDA
i2,b WDA

j2,f LDAd1,k LDAd2,k rupi1,ω2 rdowni1,ω1 rupi2,ω2 rdowni2,ω1

perfect competition 25;10 10 25;0 10 40;0 40;0 15 0 0 0

monopoly 25;0 5 25;0 10 25;0 40;0 7.5 0 2.5 5

TESW maximization 25;10 10 25;0 10 40;0 40;0 15 0 0 0

TEP maximization 25;0 5 25;0 10 25;0 40;0 7.5 0 2.5 5

Table 5.8: Expected pro�ts [e] in congested network

i1 j1 i2 j2 s1 s2 Total

perfect competition 103.75 129.38 50.00 129.37 233.13 179.37 412.50

monopoly 211.25 55.00 223.75 62.50 266.25 286.25 552.50

TESW maximization 307.50 55.00 75.00 55.00 362.50 130.00 492.50

TEP maximization 211.25 55.00 223.75 62.50 266.25 286.25 552.50

a further arbitrage opportunity and increase the scheduled wind energy from 5 to 15 MWh

compared to uncongested case. Thus, under low wind scenario ω1 they deploy a total

7.5 + 2.5 = 10 MWh of upward reserves at price of 50 e/MWh raising their total expected

pro�ts at the highest of 552.5 eas shown in Table 5.8. Finally, it should also be noted that

once again monopoly and TEP equilibria results coincide.

5.3.5 Justifying market equilibria

The results derived from the EPEC solution do not always constitute Nash equilibrium

points as they can be either local maxima or saddle points. Considering game theory, in

Nash equilibrium no producer can bene�t by changing its actual strategy unilaterally; con-

sequently, an EPEC solution is Nash equilibrium if the received values of set ΞO (producers'

o�ering variables) and set Ξ (ISO's decision variables) maximize simultaneously each pro-
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ducer's expected pro�ts under system economic dispatch. Therefore, to verify if an obtained

solution is equilibrium or not, the below single-iteration diagonalization process is followed.

Receiving the EPEC solution for speci�c λ̂DTs the results for the producer s1 are set �xed

and used to solve the MPEC for the producer s2. If the EPEC and MPEC results for the

producer s2 coincide, then the EPEC solution determines a Nash equilibrium.

5.4 6-bus system case

5.4.1 6-bus system data

The proposed EPEC model is also applied to a 6-bus system as depicted in section

3.4.1 Figure 3.2. The system accommodates eight conventional units i two wind power

units j and four demands d. Table 5.9 presents technical data for the conventional units.

Table 5.9: Data for conventional generating units

units i1 i2 i3 i4 i5 i6 i7 i8

capacity [MW ] 155 100 155 197 350 197 197 155

PMAX
i,b1 [MWh] 54.25 25 54.25 68.95 140 68.95 68.95 54.25

PMAX
i,b2 [MWh] 38.75 25 38.75 49.25 97.50 49.25 49.25 38.75

PMAX
i,b3 [MWh] 31 20 31 39.4 52.50 39.4 39.4 31

PMAX
i,b4 [MWh] 31 20 31 39.4 70 39.4 39.4 31

ci,b1 [e/MWh] 9.92 18.60 9.92 11.09 19.20 10.08 10.08 11.46

ci,b2 [e/MWh] 10.25 20.03 10.25 11.42 20.32 10.66 10.66 11.96

ci,b3 [e/MWh] 10.68 21.67 10.68 16.06 21.22 11.09 11.09 13.89

ci,b4 [e/MWh] 11.26 22.72 11.26 16.24 22.13 11.72 11.72 15.97

RESUPi [MW ] 0 100 10 40 90 20 20 40

RESDOWN
i [MW ] 0 100 10 40 90 20 20 40

cupi [e/MWh] 11.76 23.22 11.76 16.74 23.63 12.22 12.22 16.47

cdowni [e/MWh] 9.42 18.10 9.42 10.59 18.70 9.58 9.58 10.21
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Table 5.10: Distribution and data for demand

demands d1 d2 d3 d4

factor [%] 19 27 27 27

LMAX
d,k1 [MWh] 171 243 243 243

LMAX
d,k2 [MWh] 4.75 6.75 6.75 6.75

LMAX
d,k3 [MWh] 4.75 6.75 6.75 6.75

LMAX
d,k4 [MWh] 4.75 6.75 6.75 6.75

LMAX
d,k5 [MWh] 4.75 6.75 6.75 6.75

ud,k1 [e/MWh] 19.922 22.628 22.628 25.000

ud,k2 [e/MWh] 19.532 20.876 20.876 24.968

ud,k3 [e/MWh] 19.232 20.606 20.606 22.628

ud,k4 [e/MWh] 18.932 20.378 20.378 20.876

ud,k5 [e/MWh] 18.806 19.922 19.922 20.606

The �rst two rows refer to units and their power capacities. The next eight rows refer to

the o�ered energy blocks and their respective marginal costs. The last four rows provide the

units' upward and downward generating capacities and their respective deployment costs.

It can be seen that, units i1, i3, i6 and i7 are cheap with limited reserve �exibility, units

i4 and i8 are cheap with relative reserve �exibility, and units i2 and i5 are expensive but

with high �exibility. The two wind power units j1 and j2 are located at bus n2 and n5 with

installed capacity 150 MW and 100 MW, and their scheduled production is o�ered in one

block. The units' stochastic generation is modeled through three scenarios, ω1 (high) with

150 and 100 MWh, ω2 (medium) with 75 and 50 MWh, and ω3 (low) with 30 and 20 MWh

and occurrence probability 0.2, 0.5 and 0.3 respectively. A total demand of 1 GWh is shared

among the buses as presented in Table 5.10. Each demand is bid by �ve energy blocks (rows

from 3 to 7) at their respective utility costs (rows from 8 to 12) with a value of lost load

equal to 200 e/MWh for all demands.It should be pointed out that the demand bidding

prices in the right area of the system are higher than those in the left area; therefore, power

is expected to �ow from left to right. Finally, all circuit lines have a transmission capacity

of 500 MW with susceptance 9.412 per unit.
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5.4.2 Uncongested network

Two strategic producers are considered in a duopoly market. Units units i1 − i4 and j1

belong to producers s1 and units i5 − i8 and j2 belong to producer s2. For the purpose of

this study, the values of λ̂DTs1 and λ̂DTs2 are set equal to 2.5. We examine equilibria under cost

optimization (competitive market), TESW and TEP maximization. The outcomes for DA

and RT market clearing prices, scheduled production, and expected pro�ts are presented in

Table 5.11, Table 5.12 and Table 5.13 respectively.

Table 5.11: Day-ahead and real-time market clearing prices [e/MWh] in uncongested net-
work

λDAn
λRTn,ω1

πω1

λRTn,ω2

πω2

λRTn,ω3

πω3

competitive 12.673 9.260 11.760 16.470

TESW max. 18.806 3.510 22.630 22.630

TEP max. 22.628 0 28.285 28.285

Table 5.12: Scheduled conventional and wind production [MWh] in uncongested network

i1 i2 i3 i4 j1 i5 i6 i7 i8 j2 s1 s2 total

competitive 155 0 149.8 118.2 30 0 177 177 93 100 453 547 1,000

TESW max. 155 0 149.8 118.2 30 0 177 177 93 100 453 547 1,000

TEP max. 155 0 93 0 73.5 0 0 197 124 100 321.5 421 742.5

Table 5.13: Expected pro�ts [e] in uncongested network

i1 i2 i3 i4 j1 i5 i6 i7 i8 j2 s1 s2 total

competitive 349 0 352 182 867 0 391 391 116 578 1,751 1,475 3,226

TESW max. 1,299 0 1,303 956 1,158 0 1,536 1,536 796 772 4,716 4,640 9,356

TEP max. 1,892 0 1,325 220 1,315 60 265 2,380 1,496 876 4,752 5,077 9,829
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Figure 5.7: Day-ahead cumulative o�er curve in TESW equilibrium

Table 5.14: Covered demand [MWh] in uncongested network

d1 d2 d3 d4 Total

competitive 190 270 270 270 1,000

TESW max. 190 270 270 270 1,000

TEP max. 0 243 243 256.5 742.5

In competitive and TESW equilibria the scheduled production is identical covering the 100%

of the demand. Nevertheless, in TESW equilibrium the producers are paid at higher prices.

As can be seen at Figure 5.7, the cumulative o�er curve meets the demand at the price

of 18.806 e/MWh, which coincides with the ud1,k5, the lowest bid demand energy block.

Thus, the total expected pro�ts increase compared to competitive equilibrium. On the

other hand, as expected, in TEP equilibrium market price con�gurations and total expected

pro�ts are higher than those in competitive and TESW equilibria. As shown in Table 5.14,

the producers meet the 74.25 % of the total demand avoiding coverage of energy blocks of

demand d1 which are bid at low prices. Figure 5.8 depicts the DA cumulative o�er curve
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Figure 5.8: Day-ahead cumulative o�er curve in TEP equilibrium

in TEP equilibrium. This way, producers cover high o�ered demand with low cost units as

now the medium cost units i4 and i6 are not scheduled for DA production. However, the

latter are involved in provision of upward reserves at the high price of 28.285 e/MWh raising

the producers' pro�ts as the increased scheduled production of wind unit j1 now creates a

further need for positive regulation in medium and low wind scenarios.

5.4.3 Congested network

In uncongested network, the maximum power �ow from bus n3 to bus n6 is 271.56 MW.

The line capacity is now reduced at the level of 200 MW. In this case, the system becomes

congested leading to di�erent LMP's in all equilibria. As seen in Table 5.15, in competitive

and TESW equilibria the producers change the mixture of production covering again all

the demand. However, in competitive equilibria, the congested network introduces a more

intense competition on the left area of the system, where the generation prevails, resulting in

left area average DA market price, as illustrated in Table 5.16, lower than the uniform price

18.806 e/MWh of uncongested case. Thus, even though the generating units i4, i8 and j2,

located at the right area, sell at a higher price there is a decrease in the total expected prof-

its of producers as shown in Table 5.17. On the contrary, in TESW equilibrium the congested
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Table 5.15: Scheduled production [MWh] with line 3− 6 capacity limited to 200 MW

i1 i2 i3 i4 j1 i5 i6 i7 i8 j2 s1 s2 total

competitive 155 0 123.23 131.57 71 0 177 118.2 124 100 480.8 519.2 1,000

TESW max. 155 0 123.23 131.57 71 0 177 118.2 124 100 480.8 519.2 1,000

TEP max. 124 0 54.25 157.55 150 0 118.2 177 0 100 485.8 395.2 881

Table 5.16: Left and right area average DA prices [e/MWh] with line 3− 6capacity limited
to 200 MW

left area average λDAn right area average λDAn
competitive 11.448 15.292

TESW max. 18.992 19.922

TEP max. 20.373 22.628

Table 5.17: Expected pro�ts [e] with line 3− 6 capacity limited to 200 MW

i1 i2 i3 i4 j1 i5 i6 i7 i8 j2 s1 s2 total

competitive 159 0 67 606 850 0 305 58 404 707 1,682 1,474 3,156

TESW max. 1,328 0 1,090 1,287 1,269 0 1,662 1,065 1,053 861 4,974 4,641 9,615

TEP max. 1,260 12 596 1,820 1,707 0 1,425 1,786 232 1,125 5,395 4,568 9,963

Table 5.18: Covered demand [MWh] with line 3− 6 capacity limited to 200 MW

d1 d2 d3 d4 Total

competitive 190 270 270 270 1,000

TESW max. 190 270 270 270 1,000

TEP max. 155 243 233.25 249.75 881
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Table 5.19: Scheduled production [MWh] with line 3− 6 capacity limited to 50 MW

i1 i2 i3 i4 j1 i5 i6 i7 i8 j2 s1 s2 total

competitive 155 25 54.25 157 54 0 177 25.75 124 100 445.25 426.75 872

TESW max. 155 0 54.25 157 85 0 177 25.75 124 86 451.25 412.75 864

TEP max. 155 0 0 157 85 57 177 0 93 95 397 422 819

Table 5.20: Expected pro�ts [e] with line 3− 6 capacity limited to 50 MW

i1 i2 i3 i4 j1 i5 i6 i7 i8 j2 s1 s2 total

competitive 217 27 19 2,311 881 0 718 16 1,539 853 3,455 3,126 6,581

TESW max. 325 0 108 2,216 735 0 824 161 1,400 994 3,384 3,379 6,763

TEP max. 1,542 0 91 2,001 1,446 261 1,995 175 1,243 910 5,080 4,584 9,664

Table 5.21: Covered demand [MWh] with line 3− 6 capacity limited to 50 MW

d1 d2 d3 d4 Total

competitive 190 256 176.25 249.75 872

TESW max. 190 256 168.25 249.75 864

TEP max. 159.25 243 167 249.75 819

line works pro�tably for the producers as both left and right area average DA market prices

are raised compared to uncongested equilibrium increasing slightly the producers' expected

pro�ts. Considering the TEP equilibrium, the producers rearrange the scheduled production

covering also part of the demand d1 as seen in Table 5.18. Hence the increased conventional

production in combination with the scheduled over-production of wind unit j1, which creates

need for more expensive regulation at balancing stage, keeps the total expected pro�ts at

high-rise level despite the fact that the formed market prices are lower compared to the
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uncongested case. Table 5.19, Table 5.20 and Table 5.21 provide energy and expected pro�t

results when the line 3−6 capacity is further limited to 50 MW. It can be seen that contrary

to the previous case, TESW and TEP equilibria become less pro�table. The line bottleneck

prevents the cheap energy produced in the left area from being transmitted to the right.

Therefore, less demand is covered in the right, and even if units i4 and i8 are more involved

in scheduled production showing the highest earnings in all cases, the total expected pro�ts

of producers drop. Nevertheless, as in all previous cases, the TESW equilibrium pro�ts

remain higher than those of competitive equilibrium and less than those of TEP one.

5.4.4 Impact of wind generation increment on TEP equilibrium

To study the e�ect of the wind power penetration on the TEP equilibrium and the

expected pro�ts of generating units we consider only the wind unit j1 at bus n2 and set

again the values of λ̂DTs1 and λ̂DTs2 equal to 2.5. It should be reminded that i7 is a low

cost unit with limited reserve �exibility while i4 and i8 are more expensive units but with

increased reserve �exibility. The capacity of the wind unit increases gradually from 5% to

30% of the total installed capacity. The uncertain generation at each level of penetration

is modeled through three scenarios which correspond to 100%, 50% and 30% of wind unit's

capacity with probability occurrence 0.3, 0.5 and 0.2 respectively.

Figure 5.9 presents the scheduled wind unit production in DA market and the expected

wind power spillage. It can be seen that, scheduled wind production increases steadily as

more wind power is integrated into the system. Up to 12.5% of wind penetration spillage is

zero as the system can o�er reserves su�ciently. However, as the wind penetration rises fur-

ther the system becomes inadequate to provide the appropriate balance regulation, thereby

increasing the wind spillage. As a result, there is a drop in wind power absorption depicted by

the decline of the scheduled production curve gradient just after the 20% of wind penetration.

This re�ects also on wind unit's expected pro�ts. As shown in Figure 5.10, the pro�ts increase

gradually, however, they show a stagnation beyond the 25% of wind penetration increment.
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Figure 5.9: Scheduled wind production and expected spillage [MWh]
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Figure 5.10: Expected pro�ts of wind unit j1 [e]
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Figure 5.11: Expected pro�ts of unit i7 [e]
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Figure 5.12: Expected pro�ts of unit i4 [e]
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Figure 5.13: Expected pro�ts of unit i8 [e]

Considering the conventional unit i7, the expected pro�ts shown in Figure 5.11 remain

initially stable as the wind power penetration displaces high cost generation. Nevertheless,

as the penetration continues to increase, the unit starts to lose business exhibiting a gradual

drop in earnings. On the other hand, as presented in Figure 5.12 and Figure 5.13, units

i4 and i8 follow a di�erent pattern. The units are more expensive; thus, their scheduled

production reduces from the very low level of wind power integration, leading to a constant

fall in expected pro�ts. However, as the need for reserves increase with the increase of wind

penetration, the units become more involved in reserve supply, recovering part of their lost

expected pro�ts.
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5.5 Impact of wind generation volatility on TEP equilib-

rium

To investigate how the wind generation volatility a�ects the TEP equilibrium results, we

consider the previous market settlement of the subsection 5.4.4. The capacity of wind unit

j1 is now 350 MW corresponding to a 19% of wind power penetration. The expected wind

power production is 190 MW with three gradually increasing values of expected standard

deviation σ equal to 34.641, 59.431 and 87.187 MW respectively.

Table 5.22: Wind generation volatility impact on TEP equilibrium

σ = 34.641 σ = 59.431 σ = 87.178

expected wind spillage [MWh] 0 3.27 26.46

wind unit's total expected pro�ts [e] 3,450 2,859 2,751

conventional units' total expected pro�ts [e] 6,658 7,486 7,928

producers' total expected pro�ts [e] 10,118 10,345 10,679

The EPEC outcomes are presented in Table 5.22. It can be seen that, as the volatility

increases, the expected wind power spillage increases as well, resulting in a continuous loss of

wind unit's expected pro�ts. On the contrary, the unstable wind production gives advantage

to conventional units as the increased demand for conventional scheduled energy and reserves

expands their expected pro�ts. Finally, the continuous increase of wind generation volatility

results also in constant raise of all producers' total expected pro�ts, leading gradually in

costlier equilibria.

5.6 Computational issues

The �nal MILP model has been solved using CPLEX 12.5.1/GAMS 24.1.3 on an Intel

Core i7 at 2.7 GHz and 16 GB RAM. Contrary to the MPEC models in Chapters 3 and 4
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where the GAMS option OptCR is set 0 in the case of EPEC the OptCR is set 0.1. Thus,

actually the relative optimality criterion asking CPLEX to stop when:

(|BP −BF |)
(1.0e− 10 + |BF |)

< 0.1 (5.191)

Where BP determines the best possible integer solution and BF expresses the objective

function value of the best integer solution found so far (Rosenthal, 2018). Table 5.23 presents

the computational (CPU) time needed at each case. The CPU time increases with the

complexity of the network and the objective function as the TEP objective function is more

time demanding compared to the TESW one. The CPU time also increases with congestion

as well as with larger number of wind scenarios. However, the computational burden is

lower compared to Dai and Qiao (2017) since the proposed algorithm does not use any

multi-iteration diagonalization process.

Table 5.23: CPU time [sec]

2-bus system 6-bus system

uncongested congested 12 scenarios uncongested congested 12 scenarios

TESW max. 0.195 0.576 0.335 1.800 11.897 63.990

TEP max. 0.368 0.678 2.891 4.720 30.530 4,520.574

Finally, the process for the calculation of the constants M associated with the disjunctive

constraints used for the linearization of the proposed EPEC is similar to the process presented

in section 3.6.
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5.7 Conclusions

This Chapter provides an EPEC model to derive meaningful equilibria in a pool-based mar-

ket with high penetration of wind power. Initially an MPEC is constructed to explicitly

model the strategic behavior of each producer. The MPEC optimizes jointly energy dis-

patch and reserve procurements through a two-stage stochastic programming. The MPEC

generates endogenously LMPs as dual variables associated to the energy balance equalities

at DA and RT stage. The algorithm also uses stepwise supply and demand o�er functions

and considers only wind generation uncertainty. The simultaneous solution of all MPECs

formulates an EPEC model. The latter is recast into an equivalent parametrized MILP

whose selected objective function determines the characteristics of the derived equilibria.

Scanning the results in an ex-post analysis, a single-iteration process is used to justify mean-

ingful equilibria. The received results show that the higher the collusion between producers,

the higher the market clearing prices and the higher the expected pro�ts even though the

production is lower. The results also show that the producers change the mixture of their

production to retain or even increase their expected pro�ts in cases of congested network. In

case of wind power increment a slice of the earnings is transferred to wind power producers.

However, if the system is not reserve su�cient, part of wind generation may spillage slowing

down the expected pro�t growth of wind power producers. On the contrary, conventional

units show losses in pro�ts due to their reduced production volume even if reserve �exible

units could retrieve part of them. Finally, high wind generation volatility is less pro�table

for wind power units as portion of their generation may not be absorbed, thereby increasing

dispatch energy and reserves, and as result the expected pro�ts of the conventional units.
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Conclusion and future research

The integration of large scale renewable power generation has brought a paradigm shift

in the electricity system operation. The stochastic nature of RES has led the conventional

units to run intermittently, increasing their operational cost. In addition, the merit-order

e�ect (prioritization of RES) lowers the market prices and displaces the more expensive

conventional units. In the above context, this thesis addresses the price-making behavior of

a power producer seeking to o�set its expected pro�t losses. The producer participates in a

pool-based market which accommodates signi�cant amounts of wind power generation and

clears jointly energy and reserves under economic dispatch. For this purpose, two MPEC

models are developed to derive optimal o�ering strategies for a producer with a conventional

only as well as a conventional and wind generation portfolios. Finally, an EPEC model

is proposed to investigate the interaction between producers who act strategically and to

identify meaningful Nash equilibria in the market.

6.1 Conclusions

Considering the strategic behavior of a price maker producer, the relevant conclusions

drawn form the application of the proposed MPEC models are enumerated below:

1) Exercising market power, the strategic producer o�ers part of its conventional capac-

155



Chapter 6 Conclusion and future research

ity at high price increasing the pro�ts from DA market even if the producer curtails

dispatch production. In addition, the producer exploits arbitrage opportunities ap-

pearing between DA and RT markets and de�nes the appropriate reserve deployments

to balance the system. This way, the producer has the ability to arrange dispatch and

balancing procurements through the coupling between DA and RT stage maximizing

its total expected pro�ts.

2) When the strategic producer exercises market power with wind generation portfolio as

well, then it recognizes a new arbitrage opportunity. Therefore, the producer proceeds

to a further withholding of conventional dispatch and gives space for more DA wind

power dispatch anticipating an increase in upward reserve supply at even higher prices.

As a result, even if wind power generation pro�ts show a decline, the producer's total

expected pro�ts increase.

3) Capacity limits of transmission lines can be used by the strategic producer as a tool

to maintain or further increase its expected pro�ts. Thus, there are lines that the

strategic producer congests by changing the mixture of its production. This way,

LMPs appear at system's buses. Some LMPs are higher than the uncongested network

uniform price, thereby increasing the producer's total expected pro�ts. On the other

hand, congested lines, which incur losses for the strategic producer, can be rendered

uncongested keeping the expected earnings stable.

4) Having a conventional and wind generation portfolio, the strategic producer can take

advantage of a probable increment in wind power installed capacity rearranging the

mixture of scheduled production and raising the expected pro�ts even in case of wind

power production spillages.

Considering the interaction between strategic producers, the results of the EPEC models

show that:

5) The lower the degree of competition in the market the higher the prices and the higher
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the expected pro�ts. Actually, under maximization of all producers' expected pro�ts

the EPEC results coincide with the those of a monopoly.

6) In congested networks, the producers behaving strategically cover more demand with

lower prices at some buses compared to uncongested networks, thereby retaining or

even increasing their total expected pro�ts.

7) In case of wind power increment, a slice of the earnings is transferred to wind power

producers. However, if the system is not reserve su�cient, part of wind generation

may spillage slowing down the expected pro�t growth of wind power producers. On

the contrary, conventional units show losses in pro�ts due to their reduced production

volume even if reserve �exible units could retrieve part of them.

8) High wind generation volatility is less pro�table for wind power units since portion of

their generation may not be absorbed, thereby increasing dispatch energy and reserves,

and eventually the expected pro�ts of the conventional units.

6.2 Contributions

The main contributions of the thesis are summarized below:

1) In Chapter 3 a stochastic bi-level model is developed to derive optimal o�ering strate-

gies for an incumbent producer with conventional generation portfolio. The upper-level

problem maximizes the expected pro�ts of the aforementioned producer and the lower-

level problem minimizes the operational cost of the system.

2) In Chapter 4 the bi-level model is extended considering a strategic producer with

conventional and wind generation portfolio.

3) Supply and demand o�ers are modeled by using linear stepwise curves, and the uncer-

tainty of wind production is realized through a set of plausible wind power production

scenarios.
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4) The market clearing mechanism is network-constrained, thereby growing the compu-

tational abilities of the models.

5) A premium is imposed on generation cost o�ers in RT markets to reward the producers

for balancing the system, thereby aligning further the models with energy-only markets

and preventing market clearing multiple solutions.

6) Both bi-level models are e�ciently recast into MPEC models by replacing the lower-

level problem with its KKT optimality conditions. Following this the KKT comple-

mentarity conditions are replaced by linear disjunctive constraints, thereby reforming

the MPECs into equivalent MILPs solvable in global optimality by commercial solvers.

7) The objective functions of the MPECs are linearized without any approximations avoid-

ing the introduction of extra binary variables. This way, the proposed algorithms

reduce their computational burden rendering more sophisticated networks tractable.

8) Best o�ering strategies can be developed for the DA market based on the derived

scheduled energy dispatch and reserve deployments as well as on the endogenously

produced DA and RT market clearing prices. The prices are received as dual variables

of their respective energy balance constraints.

9) In Chapter 5, an EPEC model is introduced to �nd Nash equilibria among price-

making producers participating with conventional and wind generation portfolios in a

pool market.

10) The EPEC is based on the joint solution of all strategic producers' MPECs which are

constructed with a primal-dual formulation to reduce the mathematical and computa-

tional load of the algorithm.

11) Diverse objective functions are applied to the EPEC considering the degree of compe-

tition in the market to �nd alternative Nash equilibria.

12) The two MPEC models are illustrated with a 6-bus system, and the analysis is per-

formed taking into consideration wind uncertainty, transmission line congestions, and

di�erent levels of wind power penetration. The MPECs are also applied to the more
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realistic one-area (24-bus) RTS system to show their applicability.

13) The EPEC model is illustrated in two case studies: 2-bus and 6-bus systems. Since

the EPEC identi�es stationary points which could be either Nash equilibria, saddle

points, or local minima, a single-iteration diagonalization process is used in an ex-post

analysis to justify whether the received solution constitutes Nash equilibrium or not.

This thesis also led to three published articles in JCR (Thomson Reuters) journals and

one article under publication listed below:

1) Tsimopoulos, E. G., & Georgiadis, M. C. (2019). Strategic o�ers in day-ahead market

co-optimizing energy and reserve under high penetration of wind power production:

An MPEC approach. AIChE Journal, 65(7), e16495

2) Tsimopoulos, E. G., & Georgiadis, M. C. (2019). Optimal strategic o�erings for a

conventional producer in jointly cleared energy and balancing markets under high pen-

etration of wind power production. Applied Energy, 244, 16-35.

3) Tsimopoulos, E. G., & Georgiadis, M. C. (2020). Withholding strategies for a con-

ventional and wind generation portfolio in a joint energy and reserve pool market: A

gaming-based approach. Computers & Chemical Engineering, 134, 106692.

4) Tsimopoulos, E. G., & Georgiadis, M. C. (2020). Nash equilibria in electricity pool

markets with large scale of wind power integration: An EPEC approach. European

Journal of Operational Research(under publication).

In addition, parts of this work have been included in international conference proceedings

as follows:

1) Tsimopoulos, E. G., & Georgiadis, M. C. (2019). An MPEC model for Strategic O�ers

in a Jointly Cleared Energy and Reserve Market under Stochastic Production. In

Computer Aided Chemical Engineering (Vol. 46, pp. 1633-1638). Elsevier.
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2) Tsimopoulos, E. G., & Georgiadis, M. C. (2020). Wind and Thermal Generation

Portfolio: Optimal strategies in Energy-only Pool Markets under Wind Production

Uncertainty. In Computer Aided Chemical Engineering. Elsevier. in press

6.3 Recommendations for future research

Exertion of market power is inherently hard to prove whereas the continuous growth

of stochastic generation makes this e�ort much more complicated. The extensions of the

proposed models considering the strategic o�ering problem could be numerous; however, the

most notable are summarized below as an entreaty for further research.

1) One drawback of the stochastic bi-level modelling refers to the employment of a par-

simonious wind generation scenario range. Thus, an adequate representation of wind

generation volatility by the usage of greater number of scenarios and relevant reduc-

tion techniques is essential for a more accurate evaluation of the strategic producer

performance (Dupacová et al., 2000; Morales et al., 2009; Wang et al., 2012).

2) Considering di�erent degrees of risk-avert o�ering strategies, conditional value at risk

(CVAR) can be incorporated into the formulation of the decision-making problem (Kar-

dakos et al., 2015). Furthermore, for optimal solution in a worst-case realization, the

proposed models can involve adaptive robust optimization in a max-min-max structure

of the problem substituting the wind power generation scenarios with polyhedral gen-

eration uncertainty sets and using a Bender's decomposition hyperplane cutter (Conejo

et al., 2006; Bertsimas et al., 2011, 2012; Ning and You, 2019).

3) The proposed models could incorporate inter-temporal constraints such as units' ramp-

up and ramp-down limitations extending the scope of the algorithms to multi-period

auctions (Moiseeva et al., 2014). They could also involve solving methods to deal

with non-convexities such as unit minimum power production limitations and unit

commitment decisions of start-up and shut-down (Kleniati and Adjiman, 2015).
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4) In this thesis, only wind production uncertainty is considered; however, units' pro-

duction costs and failure rates as well as consumer demand could also be modeled as

uncertainties.

5) Finally, within the context of RES integration, future research could focus on the

critical role of energy storage as a hedging tools to o�set system imbalances. Thus,

the proposed models could be extended including storage in the strategic generation

portfolio (Shahmohammadi et al., 2018).
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Appendix A

Linearization of MPEC and EPEC

models

This Appendix illustrates the linearization process of the proposed MPEC and EPEC

models. More speci�c, A.1 and A.2 provide the algebraic transformations of the non-linear

strategic producer's objective functions for the MPEC models presented in Chapters 3 and 4

respectively. Similarly, A.4 provides the linearization of the EPEC's objective function which

considers the total expected pro�ts (TEP) of all strategic producers and it is presented in

Chapter 5. The linearizations are attained with the use of some KKT equality constraints

and the application of the strong duality equality corresponding to each bi-level model's

lower-level problem.

Finally, A.3 presents the formulation of the non-linear KKT complementarity constraints

of the EPEC model as linear disjunctive constraints based on the transformation proposed

by Fortuny-Amat and McCarl (1981).
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A.1 MPEC's objective function (3.4) linearization

To eliminate the nonlinear terms λDAn PDA
ib , λRTnω r

up
iω and λRTnω r

down
iω of MPEC's objective func-

tion (3.4), the below process is followed:

for the term λDAn PDA
ib , the KKT equality (3.5) results in

λDAn = ODA
ib + αmaxib − αminib +

∑
ω

µmaxiω −
∑
ω

µminiω ∀i ∈ ISn ,∀b (A.1.1)

multiplying by PDA
ib gives

∑
(i∈ISn )b

λDAn PDA
ib =

∑
(i∈ISn )b

ODA
ib PDA

ib +
∑

(i∈ISn )b

αmaxib PDA
ib −

∑
(i∈ISn )b

αminib PDA
ib

+
∑

(i∈ISn )b

(∑
ω

µmaxiω

)
PDA
ib −

∑
(i∈ISn )b

(∑
ω

µminiω

)
PDA
ib (A.1.2)

from the KKT complementarity condition (3.21)

αminib PDA
ib = 0 ∀i, ∀b ⇒

∑
ib

αminib PDA
ib = 0 (A.1.3)

from the KKT complementarity condition (3.22)

αmaxib PDA
ib = αmaxib PMAX

ib ∀i,∀b ⇒
∑
ib

αmaxib PDA
ib =

∑
ib

αmaxib PMAX
ib (A.1.4)

from the KKT complementarity condition (3.31)

µmaxiω

∑
b

PDA
ib = µmaxiω

∑
b

PMAX
ib − µmaxiω rupiω ∀i, ∀ω ⇒∑

ib

(∑
ω

µmaxiω

)
PDA
ib =

∑
ib

(∑
ω

µmaxiω

)
PMAX
ib −

∑
iω

µmaxiω ruptiω (A.1.5)

from the KKT complementarity condition (3.32)
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µminiω

∑
b

PDA
ib = µminiω rdowniω ∀i, ∀ω ⇒

∑
ib

(∑
ω

µminiω

)
PDA
ib =

∑
iω

µminiω ρdowniω (A.1.6)

hence the (A.1.2) becomes

∑
(i∈ISn )b

λDAn PDA
ib =

∑
(i∈ISn )b

ODA
ib PDA

ib +
∑

(i∈ISn )b

αmaxib PMAX
ib

+
∑

(i∈ISn )b

(∑
ω

µmaxiω

)
PMAX
ib −

∑
(i∈ISn )ω

µmaxiω rupiω −
∑

(i∈ISn )ω

µminiω ρdowniω (A.1.7)

for the term λRTiω r
up
iω , the KKT equality (3.9) produces

λRTnω = πωO
up
i + εmaxiω − εminiω + µmaxiω ∀i ∈ ISn ,∀ω (A.1.8)

multiplying by rupiω gives

∑
(i∈ISn )ω

λRTnω r
up
iω =

∑
(i∈ISn )ω

πωO
up
i r

up
iω +

∑
(i∈ISn )ω

εmaxiω rupiω −
∑

(i∈ISn )ω

εminiω rupiω +
∑

(i∈ISn )ω

µmaxiω rupiω (A.1.9)

from the KKT complementarity condition (3.27)

εminiω rupiω = 0 ∀i, ∀ω ⇒
∑
iω

εminiω rupiω = 0 (A.1.10)

from the KKT complementarity condition (3.28)

εmaxiω RESUPi = εmaxiω rupiω ∀i, ∀ω ⇒
∑
iω

εmaxiω RESUPi =
∑
iω

εmaxiω rupiω (A.1.11)

thus the (A.1.9) becomes

∑
(i∈ISn )ω

λRTnω r
up
iω =

∑
(i∈ISn )ω

πωO
up
i r

up
iω +

∑
(i∈ISn )ω

εmaxiω RESUPi +
∑

(i∈ISn )ω

µmaxiω rupiω (A.1.12)
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for the term λRTiω r
down
iω , the KKT equality (3.11) leads to

−λRTnω = −πωOdown
i + θmaxiω − θminiω + µminiω ∀i ∈ ISn ,∀ω (A.1.13)

multiplying by rdowniω gives

−
∑

(i∈ISn )ω

λRTnω r
down
iω = −

∑
(i∈ISn )ω

πωO
down
i rdowniω +

∑
(i∈ISn )ω

θmaxiω rdowniω

−
∑

(i∈ISn )ω

θminiω rdowniω +
∑

(i∈ISn )ω

µminiω rdowniω (A.1.14)

from the KKT complementarity condition (3.29)

θminiω rdowniω = 0 ∀i, ∀ω ⇒
∑
iω

θminiω rdowniω = 0 (A.1.15)

from the KKT complementarity condition (3.30)

θmaxiω RESDOWN
i = θmaxiω rdowniω ∀i,∀ω ⇒

∑
iω

θmaxiω RESDOWN
i =

∑
iω

θmaxiω rdowniω (A.1.16)

thus the (A.1.14) becomes

−
∑

(i∈ISn )ω

λRTnω r
down
iω = −

∑
(i∈ISn )ω

πωO
down
i rdowniω +

∑
(i∈ISn )ω

θmaxiω rdowniω (A.1.17)

Using the expressions (A.1.7), (A.1.12) and (A.1.17), the expected pro�t of strategic pro-

ducer equation (3.4) is reformed as follows:

∑
(i∈IS)b

ODA
ib PDA

ib +
∑

(i∈IS)b

αmaxib PMAX
ib +

∑
(i∈IS)b

(∑
ω

µmaxiω

)
PMAX
ib −

∑
(i∈IS)b

cibP
DA
ib

+
∑

(i∈IS)ω

πωO
up
i r

up
iω +

∑
(i∈IS)ω

εmaxiω RESUPi −
∑

(i∈IS)ω

πωc
up
i r

up
iω

−
∑

(i∈IS)ω

πωO
down
i rdowniω +

∑
(i∈IS)ω

θmaxiω RESDOWN
i +

∑
(i∈IS)ω

πωc
down
i rdowniω (A.1.18)
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The application of the strong duality theorem to the ISO's optimization problem (3.2)−(3.3),

which states that if a problem is convex, the optimal solution of the primal problem can guar-

antee an optimal and equal solution for the dual problem, results in the following equality:

∑
(i∈IS)b

ODA
ib PDA

ib +
∑

(i∈IS)ω

πωO
up
i r

up
iω −

∑
(i∈IS)ω

πωO
down
i rdowniω

+
∑

(i∈Io)b

cibP
DA
ib +

∑
(i∈IO)ω

πωc
up
i r

up
iω −

∑
(i∈IO)ω

πωc
down
i rdowniω

+
∑

(j∈JO)f

cDAjf W
DA
jf +

∑
(j∈JO)ω

πωc
RT
j

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
−
∑
dk

udL
DA
dk +

∑
dω

πωV OLLdL
sh
dω =

−
∑

(j∈JO
n )ω

λRTnωW
RT
jω −

∑
(i∈IS)b

αmaxib PMAX
ib −

∑
(i∈IO)b

αmaxib PMAX
ib −

∑
(j∈JO)f

βmaxjf WMAX
jf

−
∑
dk

γmaxdk LMAX
dk −

∑
(i∈IS)ω

εmaxiω RESUPi −
∑

(i∈IO)ω

εmaxiω RESUPi

−
∑

(i∈IS)ω

θmaxiω RESDOWN
i −

∑
(i∈IO)ω

θmaxiω RESDOWN
i −

∑
(i∈IS)ω

(
µmaxiω

∑
b

PMAX
ib

)
−
∑

(i∈IO)ω

(
µmaxiω

∑
b

PMAX
ib

)
−
∑
jω

κmax(j∈JO)ωW
RT
jω

−
∑

n(m∈Θn)

TMAX
nm

(
ξminnm + ξmaxnm

)
−

∑
n(m∈Θn)ω

TMAX
nm

(
ξminnmω + ξmaxnmω

)
−
∑
n

π
(
ρminn + ρmaxn

)
−
∑
nω

π
(
ρminnω + ρmaxnω

)
(A.1.19)

keeping the non-linear terms on the left part of equality the (A.1.19) is rearranged as:

∑
(i∈IS)b

ODA
ib PDA

ib +
∑

(i∈IS)ω

πωO
up
i r

up
iω −

∑
(i∈IS)ω

πωO
down
i rdowniω =

−
∑

(i∈IO)b

cibP
DA
ib −

∑
(i∈IO)ω

πωc
up
i r

up
iω −

∑
(i∈IO)ω

πωc
down
i rdowniω

−
∑

(j∈JO)f

cDAjf W
DA
jf −

∑
(j∈JO)ω

πωc
RT
j

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
+
∑
dk

udkL
DA
dk −

∑
dω

πωV OLLdL
sh
dω
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−
∑

(j∈JO
n )ω

λRTnωW
RT
jω −

∑
(i∈IS)b

αmaxib PMAX
ib −

∑
(i∈IO)b

αmaxib PMAX
ib −

∑
(j∈JO)f

βmaxjf WMAX
jf

−
∑
dk

γmaxdk LMAX
dk −

∑
(i∈IS)ω

εmaxiω RESUPi −
∑

(i∈IO)ω

εmaxiω RESUPi

−
∑

(i∈IS)ω

θmaxiω RESDOWN
i −

∑
(i∈IO)ω

θmaxiω RESDOWN
i −

∑
(i∈IS)ω

(
µmaxiω

∑
b

PMAX
ib

)
−
∑

(i∈IO)ω

(
µmaxiω

∑
b

PMAX
ib

)
−

∑
(j∈JO)ω

κmaxjω WRT
jω

−
∑

n(m∈Θn)

TMAX
nm

(
ξminnm + ξmaxnm

)
−

∑
n(m∈Θn)ω

TMAX
nm

(
ξminnmω + ξmaxnmω

)
−
∑
n

π
(
ρminn + ρmaxn

)
−
∑
nω

π
(
ρminnω + ρmaxnω

)
(A.1.20)

Substituting the non-linear terms ODA
ib PDA

ib , Oup
i r

up
iω and Odown

i rdowniω of (A.1.18) for the

right part of equality (A.1.20), the non-linear objective function (3.4) of the strategic pro-

ducer is reduced to the equivalent linear expression:

−
∑

(i∈IS)b

cibP
DA
ib −

∑
(i∈IS)ω

πωc
up
i r

up
iω +

∑
(i∈IS)ω

πωc
down
i rdowniω

−
∑

(i∈IO)b

cibP
DA
ib −

∑
(i∈IO)ω

πωc
up
i r

up
iω +

∑
(i∈IO)ω

πωc
down
i rdowniω

−
∑

(j∈JO)f

cDAjf W
DA
jf −

∑
(j∈JO)ω

πωc
RT
j

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
+
∑
dk

udkL
DA
dk −

∑
dω

πωV OLLdL
sh
dω

−
∑

(j∈JO
n )ω

λRTnωW
RT
jω −

∑
(i∈IO)b

αmaxib PMAX
ib −

∑
(j∈JO)f

βmaxjf WMAX
jf

−
∑
dk

γmaxdk LMAX
dk −

∑
(i∈IO)ω

εmaxiω RESUPi −
∑

(i∈IO)ω

θmaxiω RESDOWN
i

−
∑

(i∈IO)ω

(
µmaxiω

∑
b

PMAX
ib

)
−

∑
(j∈JO)ω

κmaxjω WRT
jω

−
∑

n(m∈Θn)

TMAX
nm

(
ξminnm + ξmaxnm

)
−

∑
n(m∈Θn)ω

TMAX
nm

(
ξminnmω + ξmaxnmω

)
−
∑
n

π
(
ρminn + ρmaxn

)
−
∑
nω

π
(
ρminnω + ρmaxnω

)
(A.1.21)
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A.2 MPEC's objective function (4.4) linearization

To eliminate the nonlinear terms λDAn PDA
ib , λDAn WDA

jf , λRTnω r
up
iω , λ

RT
nω r

down
iω ,λRTnωW

DA
jf and λRTnωW

sp
jω

of objective function (4.4), we follow the process below:

for the term λDAn PDA
ib , the KKT equality (4.5) results in

λDAn = ODA
ib + αmaxib − αminib +

∑
ω

µmaxiω −
∑
ω

µminiω ∀i ∈ ISn ,∀b (A.2.1)

multiplying by PDA
ib gives

∑
(i∈ISn )b

λDAn PDA
ib =

∑
(i∈IS)b

ODA
ib PDA

ib +
∑

(i∈IS)b

αmaxib PDA
ib −

∑
(i∈IS)b

αminib PDA
ib

+
∑

(i∈IS)b

(∑
ω

µmaxiω

)
PDA
ib −

∑
(i∈IS)b

(∑
ω

µminiω

)
PDA
ib (A.2.2)

from the KKT complementarity condition (4.23)

αminib PDA
ib = 0 ∀i ∈ IS,∀b ⇒

∑
(i∈IS)b

αminib PDA
ib = 0 (A.2.3)

from the KKT complementarity condition (4.24)

αmaxib PDA
ib = αmaxib PMAX

ib ∀i ∈ IS, ∀b ⇒
∑

(i∈IS)b

αmaxib PDA
ib =

∑
(i∈IS)b

αmaxib PMAX
ib (A.2.4)

from the KKT complementarity condition (4.33)

µmaxiω

∑
b

PDA
ib = µmaxiω

∑
b

PMAX
ib − µmaxiω rupiω ∀i ∈ IS,∀ω ⇒∑

(i∈IS)b

(∑
ω

µmaxiω

)
PDA
ib =

∑
(i∈IS)b

(∑
ω

µmaxiω

)
PMAX
ib −

∑
(i∈IS)ω

µmaxiω ruptiω (A.2.5)

from the KKT complementarity condition (4.34)
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µminiω

∑
b

PDA
ib = µminiω rdowniω ∀i ∈ IS,∀ω ⇒∑

(i∈IS)b

(∑
ω

µminiω

)
PDA
ib =

∑
(i∈IS)ω

µminiω ρdownω (A.2.6)

hence the (A.2.2) becomes

∑
(i∈ISn )b

λDAn PDA
ib =

∑
(i∈IS)b

ODA
ib PDA

ib +
∑

(i∈IS)b

αmaxib PMAX
ib

+
∑

(i∈IS)b

(∑
ω

µmaxiω

)
PMAX
ib −

∑
(i∈IS)ω

µmaxiω rupiω −
∑

(i∈IS)ω

µminiω ρdowniω (A.2.7)

for the terms λDAn WDA
jf and λRTnωW

DA
jf , the KKT equality (4.7) results in

λDAn −
∑
ω

λRTnω = ODA
jf −ORT

j + βmaxjf − βminjf ∀j ∈ JSn ,∀f (A.2.8)

multiplying by WDA
jf gives

∑
(j∈JS

n )f

λDAn WDA
jf −

∑
(j∈JS

n )ω

λRTnω

(∑
f

WDA
jf

)
=

∑
(j∈JS)f

ODA
jf W

DA
jf −

∑
(j∈JS)f

ORT
j WDA

jf

+
∑

(j∈JS)f

βmaxjf WDA
jf −

∑
(j∈JS)f

βminjf WDA
jf (A.2.9)

from the KKT complementarity condition (4.25)

βminjf WDA
jf = 0 ∀j ∈ JS,∀f ⇒

∑
(j∈JS)f

βminjf WDA
jf = 0 (A.2.10)

from the KKT complementarity condition (4.26)

βmaxjf WDA
jf = βmaxjf WMAX

jf ∀i ∈ JS,∀f ⇒
∑

(j∈JS)f

βmaxjf WDA
jf =

∑
(j∈JS)f

βmaxjf WMAX
jf (A.2.11)

hence the (A.2.9) becomes
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∑
(j∈JS

n )f

λDAn WDA
jf −

∑
(j∈JS

n )ω

λRTnω

(∑
f

WDA
jf

)
=

∑
(j∈JS)f

ODA
jf W

DA
jf −

∑
(j∈JS)f

ORT
j WDA

jf

+
∑

(j∈JS)f

βmaxjf WMAX
jf (A.2.12)

for the term λRTiω r
up
iω , the KKT equality (4.10) produces

λRTnω = πωO
up
i + εmaxiω − εminiω + µmaxiω ∀i ∈ ISn ,∀ω (A.2.13)

multiplying by rupiω gives

∑
(i∈ISn )ω

λRTnω r
up
iω =

∑
(i∈IS)ω

πωO
up
i r

up
iω +

∑
(i∈IS)ω

εmaxiω rupiω

−
∑

(i∈IS)ω

εminiω rupiω +
∑

(i∈IS)ω

µmaxiω rupiω (A.2.14)

from the KKT complementarity condition (4.29)

εminiω rupiω = 0 ∀i ∈ IS,∀ω ⇒
∑

(i∈IS)ω

εminiω rupiω = 0 (A.2.15)

from the KKT complementarity condition (4.30)

εmaxiω RESUPi = εmaxiω rupiω ∀i ∈ IS,∀ω ⇒
∑

(i∈IS)ω

εmaxiω RESUPi =
∑

(i∈IS)ω

εmaxiω rupiω (A.2.16)

thus the (A.2.14) becomes

∑
(i∈ISn )ω

λRTnω r
up
iω =

∑
(i∈IS)ω

πωO
up
i r

up
iω +

∑
(i∈IS)ω

εmaxiω RESUPi +
∑

(i∈IS)ω

µmaxiω rupiω (A.2.17)

for the term λRTiω r
down
iω , the KKT equality (4.13) leads to
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−λRTnω = −πωOdown
i + θmaxiω − θminiω + µminiω ∀i ∈ ISn ,∀ω (A.2.18)

multiplying by rdowniω gives

−
∑

(i∈ISn )ω

λRTnω r
down
iω = −

∑
(i∈IS)ω

πωO
down
i rdowniω +

∑
(i∈IS)ω

θmaxiω rdowniω

−
∑

(i∈IS)ω

θminiω rdowniω +
∑

(i∈IS)ω

µminiω rdowniω (A.2.19)

from the KKT complementarity condition (4.31)

θminiω rdowniω = 0 ∀i ∈ IS,∀ω ⇒
∑

(i∈IS)ω

θminiω rdowniω = 0 (A.2.20)

from the KKT complementarity condition (4.32)

θmaxiω RESDOWN
i = θmaxiω rdowniω ∀i ∈ IS,∀ω ⇒

∑
(i∈IS)ω

θmaxiω RESDOWN
i =

∑
(i∈IS)ω

θmaxiω rdowniω (A.2.21)

thus the (A.2.19) becomes

−
∑

(i∈ISn )ω

λRTnω r
down
iω = −

∑
(i∈IS)ω

πωO
down
i rdowniω +

∑
(i∈IS)ω

θmaxiω rdowniω (A.2.22)

for the term λRTnωW
sp
jω , the KKT equality (4.14) results in

−λRTnω = −πωORT
j + κmaxjω − κminjω ∀j ∈ JSn ,∀ω (A.2.23)

multiplying by W sp
jω gives
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−
∑

(j∈JS
n )ω

λRTnωW
sp
jω = −

∑
(j∈JS)ω

πωO
RT
j W sp

jω +
∑

(j∈JS)ω

κmaxjω W sp
jω −

∑
(j∈JS)ω

κminjω W sp
jω (A.2.24)

from the KKT complementarity condition (4.35)

κminjω W sp
jω = 0 ∀j ∈ JSn ,∀ω ⇒

∑
(j∈JS)ω

κminjω W sp
jω = 0 (A.2.25)

from the KKT complementarity condition (4.36)

κmaxjω W sp
jω = κmaxjω WRT

jω ∀j ∈ JSn ,∀ω ⇒
∑

(j∈JS)ω

κmaxjω W sp
jω =

∑
(j∈JS)ω

κmaxjω WRT
jω (A.2.26)

thus the (A.2.24) becomes

−
∑

(j∈JS
n )ω

λRTnωW
sp
jω = −

∑
(j∈JS)ω

πωO
RT
j W sp

jω +
∑

(j∈JS)ω

κmaxjω WRT
jω (A.2.27)

Using the expressions (A.2.7), (A.2.12), (A.2.17), (A.2.22) and (A.2.27) we reformulate the

objective function (4.4) as follows:

∑
(i∈IS)b

ODA
ib PDA

ib +
∑

(i∈IS)b

αmaxib PMAX
ib

+
∑

(i∈ISn )ω µ
max
iω

(∑
b P

MAX
ib

)
−
∑

(i∈IS)b cibP
DA
ib∑

(j∈JS),f

ODA
jf W

DA
jf −

∑
(j∈JS)f

ORT
j WDA

jf +
∑

(j∈JS)f

βmaxjf WMAX
jf

+
∑

(i∈ISn )ω

πωO
up
i r

up
iω +

∑
(i∈IS),ω

εmaxiω RESUPi −
∑

(i∈IS)ω

πωc
up
i r

up
iω

−
∑

(i∈ISn )ω

πωO
down
i rdowniω +

∑
(i∈IS)ω

θmaxiω RESDOWN
i +

∑
(i∈IS)ω

πωc
down
i rdowniω

+
∑

(j∈JS
n )ω

λRTnωW
RT
jω −

∑
(j∈JS)ω

πωO
RT
j W sp

jω +
∑

(j∈JS)ω

κmaxjω WRT
jω (A.2.28)

According to strong duality theorem if an optimization problem is convex the duality gap
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is zero. Thus, the optimal solution of the primal problem is equal to the optimal solution

of the dual problem. Applying the strong duality theorem to the lower-level optimization

problem (4.2)− (4.3), the following equality is formed:

∑
(i∈IS)b

ODA
ib PDA

ib +
∑

(i∈IS)ω

πωO
up
i r

up
iω −

∑
(i∈IS)ω

πωO
down
i rdowniω

+
∑

(j∈JS)f

ODA
jf W

DA
jf +

∑
(j∈JS)ω

πωO
RT
j

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
+
∑

(i∈IO)b

cibP
DA
ib +

∑
(i∈IO)ω

πωc
up
i r

up
iω −

∑
(i∈IO)ω

πωc
down
i rdowniω

+
∑

(j∈JO)f

cjfW
DA
jf +

∑
(j∈JO)ω

πωc
RT
j

(
WRT
jω −

∑
f

WDA
jf −W

sp
jω

)
−
∑
dk

udkL
DA
dk +

∑
dω

πωV OLLdL
sh
dω =

−
∑

(j∈Jn)ω

λRTnωW
RT
jω −

∑
ib

αmaxib PMAX
ib −

∑
jf

βmaxjf WMAX
jf

−
∑
iω

εmaxiω RESUPi −
∑
iω

θmaxiω RESDOWN
i −

∑
iω

µmaxiω

(∑
b

PMAX
ib

)
−
∑
dk

γmaxdk LMAX
dk −

∑
jω

κmaxjω WRT
jω

−
∑

n(m∈Θn)

TMAX
nm

(
ξminnm + ξmaxnm

)
−

∑
n(m∈Θn)ω

TMAX
nm

(
ξminnmω + ξmaxnmω

)
−
∑
n

π
(
ρminn + ρmaxn

)
−
∑
nω

π
(
ρminnω + ρmaxnω

)
(A.2.29)

Transferring the linear terms from the left to the right part of the equality (A.2.29) the

latter is rearranged as:

∑
(i∈IS)b

ODA
ib PDA

ib +
∑

(i∈IS)ω

πωO
up
i r

up
iω −

∑
(i∈IS)ω

πωO
down
i rdowniω

+
∑

(j∈JS)f

ODA
jf W

DA
jf −

∑
(j∈JS)f

ORT
j WDA

jf −
∑

(j∈JS)ω

πωO
RT
j W sp

jω =

−
∑

(i∈IO)b

cibP
DA
ib −

∑
(i∈IO)ω

πωc
up
i r

up
iω +

∑
(i∈IO)ω

πωc
down
i rdowniω

−
∑

(j∈JS)ω

πωO
RT
j WRT

jω −
∑

(j∈JO)f

cjfW
DA
jf −

∑
(j∈JO)ω

πωc
RT
j WRT

jω
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+
∑

(j∈JO)f

cRTj WDA
jf +

∑
(j∈JO)ω

πωc
RT
j W sp

jω

+
∑
dk

udkL
DA
dk −

∑
dω

πωV OLLdL
sh
dω

−
∑

(j∈Jn)ω

λRTnωW
RT
jω −

∑
ib

αmaxib PMAX
ib −

∑
jf

βmaxjf WMAX
jf

−
∑
iω

εmaxiω RESUPi −
∑
iω

θmaxiω RESDOWN
i −

∑
iω

µmaxiω

(∑
b

PMAX
ib

)
−
∑
dk

γmaxdk LMAX
dk −

∑
jω

κmaxjω WRT
jω

−
∑

n(m∈Θn)

TMAX
nm

(
ξminnm + ξmaxnm

)
−

∑
n(m∈Θn)ω

TMAX
nm

(
ξminnmω + ξmaxnmω

)
−
∑
n

π
(
ρminn + ρmaxn

)
−
∑
nω

π
(
ρminnω + ρmaxnω

)
(A.2.30)

Substituting the non-linear terms ODA
ib PDA

ib , Oup
i r

up
iω , O

down
i rdowniω ,ODA

jf W
DA
jf ,ORT

j WDA
jf and

ORT
j W sp

jω of (A.2.28) for the left part of equality (A.2.30), the non-linear objective function

(4.4) is recast into the following equivalent linear expression:

−
∑

(i∈IS)b

cibP
DA
ib −

∑
(i∈IS)ω

πωc
up
i r

up
iω +

∑
(i∈IS)ω

πωc
down
i rdowniω

−
∑

(i∈IO)b

cibP
DA
ib −

∑
(i∈IO)ω

πωc
up
i r

up
iω +

∑
(i∈IO)ω

πωc
down
i rdowniω

−
∑

(j∈JS)ω

πωO
RT
j WRT

jω −
∑

(j∈JO)f

cjfW
DA
jf −

∑
(j∈JO)ω

πωc
RT
j WRT

jω

+
∑

(j∈JO)f

cRTj WDA
jf +

∑
(j∈JO)ω

πωc
RT
j W sp

jω +
∑
dk

udkL
DA
dk

−
∑
dω

πωV OLLdL
sh
dω −

∑
(j∈JO

n )ω

λRTnωW
RT
jω −

∑
(i∈IO)b

αmaxib PMAX
ib

−
∑

(j∈JO)f

βmaxjf WMAX
jf −

∑
(i∈IO)ω

εmaxiω RESUPi −
∑

(i∈IO)ω

θmaxiω RESDOWN
i

−
∑

(i∈IO)ω

µmaxiω

(∑
b

PMAX
ib

)
−
∑
dk

γmaxdk LMAX
dk −

∑
(j∈JO),ω

κmaxjω WRT
jω

−
∑

n(m∈Θn)

TMAX
nm

(
ξminnm + ξmaxnm

)
−

∑
n(m∈Θn),ω

TMAX
nm

(
ξminnmω + ξmaxnmω

)
−
∑
n

π
(
ρminn + ρmaxn

)
−
∑
nω

π
(
ρminnω + ρmaxnω

)
(A.2.31)
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A.3 EPEC's KKT complementarity constraints

linearization

The KKT complementarity constraints of the EPEC model are substituted with equiv-

alent linear disjunctive constrains following the linearization process proposed by Fortuny-

Amat and McCarl (1981).

Transformation of KKT complementarity constraints (5.163)−(5.185):

0 ≤ PDA
ib ≤MpP z1

ib ∀i, ∀b (A.3.1)

0 ≤ αminib ≤M vP (1− z1
ib) ∀i, ∀b (A.3.2)

0 ≤ PMAX
ib − PDA

ib ≤MpP z2
ib ∀i, ∀b (A.3.3)

0 ≤ αmaxib ≤M vP (1− z2
ib) ∀i,∀b (A.3.4)

0 ≤ WDA
jf ≤MpP z3

jf ∀j,∀f (A.3.5)

0 ≤ βminjf ≤M vP (1− z3
jf ) ∀j,∀f (A.3.6)

0 ≤ WMAX
jf −WDA

jf ≤MpP z4
jf ∀j,∀f (A.3.7)

0 ≤ βmaxjf ≤M vP (1− z4
jf ) ∀j,∀f (A.3.8)

0 ≤ LDAdk ≤MpP z5
dk ∀d,∀k (A.3.9)

0 ≤ γmindk ≤M vP (1− z5
dk) ∀d,∀k (A.3.10)

0 ≤ LMAX
dk − LDAdk ≤MpP z6

dk ∀d,∀k (A.3.11)

0 ≤ γmaxdk ≤M vP (1− z6
dk) ∀d,∀k (A.3.12)

0 ≤ rupiω ≤MpP z7
iω ∀i, ∀ω (A.3.13)

0 ≤ εminiω ≤M vP (1− z7
iω) ∀i, ∀ω (A.3.14)

0 ≤ RESUPi − rupiω ≤MpP z8
iω ∀i,∀ω (A.3.15)

0 ≤ εmaxiω ≤M vP (1− z8
iω) ∀i, ∀ω (A.3.16)

0 ≤ rdowniω ≤MpP z9
iω ∀i, ∀ω (A.3.17)

0 ≤ θminiω ≤M vP (1− z9
iω) ∀i, ∀ω (A.3.18)

0 ≤ RESDOWN
i − rdowniω ≤MpP z10

iω ∀i, ∀ω (A.3.19)
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0 ≤ θmaxiω ≤M vP (1− z10
iω) ∀i,∀ω (A.3.20)

0 ≤
∑
b

PMAX
ib −

∑
b

PDA
ib − r

up
iω ≤MpP z11

iω ∀i,∀ω (A.3.21)

0 ≤ µmaxiω ≤M vP (1− z11
iω) ∀i, ∀ω (A.3.22)

0 ≤
∑
b

PDA
ib − rdowniω ≤MpP z12

iω ∀i, ∀ω (A.3.23)

0 ≤ µminiω ≤M vP (1− z12
iω) ∀i, ∀ω (A.3.24)

0 ≤ W sp
jω ≤MpP z13

jω ∀j,∀ω (A.3.25)

0 ≤ κminjω ≤M vP (1− z13
jω) ∀j,∀ω (A.3.26)

0 ≤ WRT
jω −W

sp
jω ≤MpP z14

jω ∀j,∀ω (A.3.27)

0 ≤ κmaxjω ≤M vP (1− z14
jω) ∀j,∀ω (A.3.28)

0 ≤ Lshdω ≤MpP z15
dω ∀d,∀ω (A.3.29)

0 ≤ νmindω ≤M vP (1− z15
dω) ∀d,∀ω (A.3.30)

0 ≤
∑
k

LDAdk − Lshdω ≤MpP z16
dω ∀d,∀ω (A.3.31)

0 ≤ νmaxdω ≤M vP (1− z16
dω) ∀d,∀ω (A.3.32)

0 ≤ Bnm

(
δon − δom

)
+ TMAX

nm ≤MpCz17
nm ∀n,∀m ∈ Θm (A.3.33)

0 ≤ ξminnm ≤M vC(1− z17
nm) ∀n,∀m ∈ Θm (A.3.34)

0 ≤ TMAX
nm −Bnm

(
δon − δom

)
≤MpCz18

nm ∀n,∀m ∈ Θm (A.3.35)

0 ≤ ξmaxnm ≤M vC(1− z18
nm) ∀n,∀m ∈ Θm (A.3.36)

0 ≤ Bnm

(
δnω − δmω

)
+ TMAX

nm ≤MpCz19
nmω ∀n,∀m ∈ Θm,∀ω (A.3.37)

0 ≤ ξminnmω ≤M vC(1− z19
nmω) ∀n,∀m ∈ Θm,∀ω (A.3.38)

0 ≤ TMAX
nm −Bnm

(
δnω − δmω

)
≤MpCz20

nmω ∀n,∀m ∈ Θm,∀ω (A.3.39)

0 ≤ ξmaxnmω ≤M vC(1− z20
nmω) ∀n,∀m ∈ Θm,∀ω (A.3.40)

0 ≤ δon + π ≤MpV z21
n ∀n (A.3.41)

0 ≤ ρminn ≤M vV (1− z21
n ) ∀n (A.3.42)

0 ≤ π − δon ≤MpV z22
n ∀n (A.3.43)

0 ≤ ρmaxn ≤M vV (1− z22
n ) ∀n (A.3.44)

0 ≤ δnω + π ≤MpV z23
nω ∀n,∀ω (A.3.45)
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0 ≤ ρminnω ≤M vV (1− z23
nω) ∀n,∀ω (A.3.46)

0 ≤ π − δnω ≤MpV z24
nω ∀n,∀ω (A.3.47)

0 ≤ ρmaxnω ≤M vV (1− z24
nω) ∀n,∀ω (A.3.48)

Transformation of KKT complementarity constraints (5.108)−(5.162):

0 ≤ ODA
i(b1) ≤ Npz25

si(b1) ∀s,∀i ∈ IS (A.3.49)

0 ≤ ô psi(b1) ≤ N v(1− z25
si(b1)) ∀s,∀i ∈ IS (A.3.50)

0 ≤ ODA
ib −ODA

i(b−1) ≤ Npz26
sib ∀s,∀i ∈ IS,∀b ≥ b2 (A.3.51)

0 ≤ ô psib ≤ N v(1− z26
sib) ∀s,∀i ∈ IS, ∀b ≥ b2 (A.3.52)

0 ≤ ODA
j(f1) ≤ Npz27

sj(f1) ∀s,∀j ∈ JS (A.3.53)

0 ≤ ô wsj(f1) ≤ N v(1− z27
sj(f1)) ∀s,∀j ∈ JS (A.3.54)

0 ≤ ODA
jf −ODA

j(f−1) ≤ Npz28
sjf ∀s, ∀j ∈ JS,∀f ≥ f2 (A.3.55)

0 ≤ ô wsjf ≤ N v(1− z28
sjf ) ∀s,∀j ∈ JS,∀f ≥ f2 (A.3.56)

0 ≤ Oup
i ≤ Npz29

si ∀s,∀i ∈ IS (A.3.57)

0 ≤ ô upsi ≤ N v(1− z29
si ) ∀s,∀i ∈ IS (A.3.58)

0 ≤ Odown
i ≤ Npz30

si ∀s,∀i ∈ IS (A.3.59)

0 ≤ ô downsi ≤ N v(1− z30
si ) ∀s,∀i ∈ IS (A.3.60)

0 ≤ ORT
j ≤ Npz31

sj ∀s,∀j ∈ JS (A.3.61)

0 ≤ ô rtsj ≤ N v(1− z31
sj ) ∀s,∀j ∈ JS (A.3.62)

0 ≤ PDA
ib ≤MpP z32

sib ∀s,∀i ∈ IS,∀b (A.3.63)

0 ≤ α̂minsib ≤M vP (1− z32
sib) ∀s,∀i ∈ IS,∀b (A.3.64)

0 ≤ PMAX
ib − PDA

ib ≤MpP z33
sib ∀s,∀i ∈ IS,∀b (A.3.65)

0 ≤ α̂maxsib ≤M vP (1− z33
sib) ∀s,∀i ∈ IS,∀b (A.3.66)

0 ≤ WDA
jf ≤MpP z34

sjf ∀s,∀j ∈ JS,∀f (A.3.67)

0 ≤ β̂minsjf ≤M vP (1− z34
sjf ) ∀s,∀j ∈ JS,∀f (A.3.68)

0 ≤ WMAX
jf −WDA

jf ≤MpP z35
sjf ∀s,∀j ∈ JS,∀f (A.3.69)
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0 ≤ β̂maxsjf ≤M vP (1− z35
sjf ) ∀s,∀j ∈ JS,∀f (A.3.70)

0 ≤ LDAdk ≤MpP z36
sdk ∀s,∀d,∀k (A.3.71)

0 ≤ γ̂minsdk ≤M vP (1− z36
sdk) ∀s,∀d,∀k (A.3.72)

0 ≤ LMAX
dk − LDAdk ≤MpP z37

sdk ∀s,∀d,∀k (A.3.73)

0 ≤ γ̂maxsdk ≤M vP (1− z37
sdk) ∀s,∀d,∀k (A.3.74)

0 ≤ rupiω ≤MpP z38
siω ∀s,∀i ∈ IS, ∀ω (A.3.75)

0 ≤ ε̂minsiω ≤M vP (1− z38
siω) ∀s,∀i ∈ IS,∀ω (A.3.76)

0 ≤ RESUPi − rupiω ≤MpP z39
siω ∀s,∀i ∈ IS, ∀ω (A.3.77)

0 ≤ ε̂maxsiω ≤M vP (1− z39
siω) ∀s,∀i ∈ IS,∀ω (A.3.78)

0 ≤ rdowniω ≤MpP z40
siω ∀s,∀i ∈ IS,∀ω (A.3.79)

0 ≤ θ̂minsiω ≤M vP (1− z40
siω) ∀s,∀i ∈ IS,∀ω (A.3.80)

0 ≤ RESDOWN
i − rdowniω ≤MpP z41

siω ∀s,∀i ∈ IS,∀ω (A.3.81)

0 ≤ θ̂maxsiω ≤M vP (1− z41
siω) ∀s,∀i ∈ IS, ∀ω (A.3.82)

0 ≤
∑
b

PMAX
ib −

∑
b

PDA
ib − r

up
iω ≤MpP z42

siω ∀s, ∀i ∈ IS,∀ω (A.3.83)

0 ≤ µ̂maxsiω ≤M vP (1− z42
siω) ∀s,∀i ∈ IS,∀ω (A.3.84)

0 ≤
∑
b

PDA
ib − rdowniω ≤MpP z43

siω ∀s,∀i ∈ IS,∀ω (A.3.85)

0 ≤ µ̂minsiω ≤M vP (1− z43
siω) ∀s,∀i ∈ IS,∀ω (A.3.86)

0 ≤ W sp
jω ≤MpP z44

sjω ∀s,∀j ∈ JS,∀ω (A.3.87)

0 ≤ κ̂minsjω ≤M vP (1− z44
sjω) ∀s,∀j ∈ JS,∀ω (A.3.88)

0 ≤ WRT
jω −W

sp
jω ≤MpP z45

sjω ∀s,∀j ∈ JS,∀ω (A.3.89)

0 ≤ κ̂maxsjω ≤M vP (1− z45
sjω) ∀s,∀j ∈ JS,∀ω (A.3.90)

0 ≤ Lshdω ≤MpP z46
sdω ∀s, ∀d,∀ω (A.3.91)

0 ≤ ν̂minsdω ≤M vP (1− z46
sdω) ∀s,∀d,∀ω (A.3.92)

0 ≤
∑
k

LDAdk − Lshdω ≤MpP z47
sdω ∀s,∀d,∀ω (A.3.93)

0 ≤ ν̂maxsdω ≤M vP (1− z47
sdω) ∀s,∀d,∀ω (A.3.94)

0 ≤ Bnm

(
δon − δom

)
+ TMAX

nm ≤MpCz48
snm ∀s,∀n,∀m ∈ Θm (A.3.95)
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0 ≤ ξ̂minsnm ≤M vC(1− z48
snm) ∀s,∀n,∀m ∈ Θm (A.3.96)

0 ≤ TMAX
nm −Bnm

(
δon − δom

)
≤MpCz49

snm ∀s,∀n,∀m ∈ Θm (A.3.97)

0 ≤ ξ̂maxsnm ≤M vC(1− z49
snm) ∀s,∀n,∀m ∈ Θm (A.3.98)

0 ≤ Bnm

(
δnω − δmω

)
+ TMAX

nm ≤MpCz50
snmω ∀s,∀n,∀m ∈ Θm,∀ω (A.3.99)

0 ≤ ξ̂minsnmω ≤M vC(1− z50
snmω) ∀s,∀n,∀m ∈ Θm, ∀ω (A.3.100)

0 ≤ TMAX
nm −Bnm

(
δnω − δmω

)
≤MpCz51

snmω ∀s,∀n,∀m ∈ Θm, ∀ω (A.3.101)

0 ≤ ξ̂maxsnmω ≤M vC(1− z51
snmω) ∀s,∀n,∀m ∈ Θm, ∀ω (A.3.102)

0 ≤ δon + π ≤MpV z52
sn ∀n (A.3.103)

0 ≤ ρ̂minsn ≤M vV (1− z52
sn) ∀s,∀n (A.3.104)

0 ≤ π − δon ≤MpV z53
sn ∀s,∀n (A.3.105)

0 ≤ ρ̂maxsn ≤M vV (1− z53
sn) ∀s,∀n (A.3.106)

0 ≤ δnω + π ≤MpV z54
snω ∀s, ∀n,∀ω (A.3.107)

0 ≤ ρ̂minsnω ≤M vV (1− z54
snω) ∀s, ∀n,∀ω (A.3.108)

0 ≤ π − δnω ≤MpV z55
snω ∀s,∀n,∀ω (A.3.109)

0 ≤ ρ̂maxsnω ≤M vV (1− z55
snω) ∀s,∀n,∀ω (A.3.110)

0 ≤ αminib ≤M vP z56
sib ∀s,∀i ∈ Is,∀b (A.3.111)

0 ≤ αminsib ≤M vP (1− z56
sib) ∀s,∀i ∈ Is,∀b (A.3.112)

0 ≤ αmaxib ≤M vP z57
sib ∀s,∀i ∈ Is,∀b (A.3.113)

0 ≤ αmaxsib ≤M vP (1− z57
sib) ∀s,∀i ∈ Is,∀b (A.3.114)

0 ≤ βminjf ≤M vP z58
sjf ∀s,∀j ∈ Js,∀f (A.3.115)

0 ≤ β
min

sjf ≤M vP (1− z58
sjf ) ∀s,∀j ∈ Js,∀f (A.3.116)

0 ≤ βmaxjf ≤M vP z59
sjf ∀s,∀j ∈ Js,∀f (A.3.117)

0 ≤ β
max

sjf ≤M vP (1− z59
sjf ) ∀s, ∀j ∈ Js,∀f (A.3.118)

0 ≤ γmindk ≤M vP z60
sdk ∀s,∀d,∀k (A.3.119)

0 ≤ γminsdk ≤M vP (1− z60
sdk) ∀s,∀d,∀k (A.3.120)

0 ≤ γmaxdk ≤M vP z61
sdk ∀s,∀d,∀k (A.3.121)

0 ≤ γmaxsdk ≤M vP (1− z61
sdk) ∀s, ∀d,∀k (A.3.122)
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0 ≤ εminiω ≤M vP z62
siω ∀s, ∀i ∈ Is, ∀ω (A.3.123)

0 ≤ εminsiω ≤M vP (1− z62
siω) ∀s,∀i ∈ Is,∀ω (A.3.124)

0 ≤ εmaxiω ≤M vP z63
siω ∀s,∀i ∈ Is,∀ω (A.3.125)

0 ≤ εmaxsiω ≤M vP (1− z63
siω) ∀s,∀i ∈ Is,∀ω (A.3.126)

0 ≤ θminiω ≤M vP z64
siω ∀s,∀i ∈ Is,∀ω (A.3.127)

0 ≤ θ
min

siω ≤M vP (1− z64
siω) ∀s,∀i ∈ Is,∀ω (A.3.128)

0 ≤ θmaxiω ≤M vP z65
siω) ∀s,∀i ∈ Is,∀ω (A.3.129)

0 ≤ θ
max

siω ≤M vP (1− z65
siω) ∀s,∀i ∈ Is,∀ω (A.3.130)

0 ≤ µmaxiω ≤M vP z66
siω ∀s,∀i ∈ Is,∀ω (A.3.131)

0 ≤ µmaxsiω ≤M vP (1− z66
siω) ∀s,∀i ∈ Is,∀ω (A.3.132)

0 ≤ µminiω ≤M vP z67
siω ∀s,∀i ∈ Is,∀ω (A.3.133)

0 ≤ µminsiω ≤M vP (1− z67
siω) ∀s,∀i ∈ Is,∀ω (A.3.134)

0 ≤ κminjω ≤M vP z68
sjω ∀s,∀j ∈ Js,∀ω (A.3.135)

0 ≤ κminsjω ≤M vP (1− z68
sjω) ∀s,∀j ∈ Js,∀ω (A.3.136)

0 ≤ κmaxjω ≤M vP z69
sjω ∀s,∀j ∈ Js,∀ω (A.3.137)

0 ≤ κmaxsjω ≤M vP (1− z69
sjω) ∀s,∀j ∈ Js,∀ω (A.3.138)

0 ≤ νminsdω ≤M vP z70
sdω ∀s,∀d,∀ω (A.3.139)

0 ≤ νminsdω ≤M vP (1− z70
sdω) ∀s, ∀d,∀ω (A.3.140)

0 ≤ νmaxdω ≤M vP z71
sdω ∀s,∀d,∀ω (A.3.141)

0 ≤ νmaxsdω ≤M vP (1− z71
sdω) ∀s,∀d,∀ω (A.3.142)

0 ≤ ξminnm ≤M vCz72
snm ∀s,∀n,∀m ∈ Θm (A.3.143)

0 ≤ ξ
min

snm ≤M vC(1− z72
snm) ∀s, ∀n,∀m ∈ Θm (A.3.144)

0 ≤ ξmaxnm ≤M vCz73
snm ∀s,∀n,∀m ∈ Θm (A.3.145)

0 ≤ ξ
max

snm ≤M vC(1− z73
snm) ∀s,∀n,∀m ∈ Θm (A.3.146)

0 ≤ ξminnmω ≤M vCz74
snmω ∀s,∀n,∀m ∈ Θm,∀ω (A.3.147)

0 ≤ ξ
min

snmω ≤M vC(1− z74
snmω) ∀s,∀n,∀m ∈ Θm,∀ω (A.3.148)

0 ≤ ξmaxnmω ≤M vCz75
snmω ∀s,∀n,∀m ∈ Θm,∀ω (A.3.149)
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0 ≤ ξ
max

snmω ≤M vC(1− z75
snmω) ∀s,∀n,∀m ∈ Θm,∀ω (A.3.150)

0 ≤ ρminn ≤M vV z76
sn ∀s,∀n (A.3.151)

0 ≤ ρminsn ≤M vV (1− z76
sn) ∀s,∀n (A.3.152)

0 ≤ ρmaxn ≤M vV z77
sn ∀s,∀n (A.3.153)

0 ≤ ρmaxsn ≤M vV (1− z77
sn) ∀s,∀n (A.3.154)

0 ≤ ρminnω ≤M vV z76
snω ∀s,∀n,∀ω (A.3.155)

0 ≤ ρminsnω ≤M vV (1− z76
snω) ∀s,∀n,∀ω (A.3.156)

0 ≤ ρmaxnω ≤M vV z77
snω ∀s,∀n,∀ω (A.3.157)

0 ≤ ρmaxsnω ≤M vV (1− z77
snω) ∀s,∀n,∀ω (A.3.158)

A.4 EPEC's objective function TEP (5.188) linearization

To eliminate the nonlinear terms λDAn PDA
ib , λDAn WDA

jf , λRTnω r
up
iω , λRTnω r

down
iω , λRTnωW

DA
jf

and λRTnωW
sp
jω of the TEP objective function (5.189), we follow the process below:

for the term λDAn PDA
ib , the KKT equality (5.37) results in

λDAn = ODA
ib + αmaxib − αminib +

∑
ω

µmaxiω −
∑
ω

µminiω ∀i ∈ In,∀b (A.4.1)

multiplying by PDA
ib gives

∑
(i∈In)b

λDAn PDA
ib =

∑
ib

ODA
ib PDA

ib +
∑
ib

αmaxib PDA
ib −

∑
ib

αminib PDA
ib

+
∑
ib

(∑
ω

µmaxiω

)
PDA
ib −

∑
ib

(∑
ω

µminiω

)
PDA
ib (A.4.2)

from the KKT complementarity condition (5.163)

αminib PDA
ib = 0 ∀i, ∀b ⇒

∑
ib

αminib PDA
ib = 0 (A.4.3)

from the KKT complementarity condition (5.164)
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αmaxib PDA
ib = αmaxib PMAX

ib ∀i, ∀b ⇒
∑
ib

αmaxib PDA
ib =

∑
ib

αmaxib PMAX
ib (A.4.4)

from the KKT complementarity condition (5.172)

µmaxiω

∑
b

PDA
ib = µmaxiω

∑
b

PMAX
ib − µmaxiω rupiω ∀i, ∀ω ⇒∑

ib

(∑
ω

µmaxiω

)
PDA
ib =

∑
ib

(∑
ω

µmaxiω

)
PMAX
ib −

∑
iω

µmaxiω rupiω (A.4.5)

from the KKT complementarity condition (5.137)

µminiω

∑
b

PDA
ib = µminiω rdowniω ∀i, ∀ω ⇒∑

ib

(∑
ω

µminiω

)
PDA
ib =

∑
iω

µminiω ρdownω (A.4.6)

hence the (A.4.2) becomes

∑
(i∈In)b

λDAn PDA
ib =

∑
ib

ODA
ib PDA

ib +
∑
ib

αmaxib PMAX
ib

+
∑
ib

(∑
ω

µmaxiω

)
PMAX
ib −

∑
iω

µmaxiω rupiω −
∑
iω

µminiω ρdowniω (A.4.7)

for the terms λDAn WDA
jf and λRTnωW

DA
jf , the KKT equality (5.38) results in

λDAn −
∑
ω

λRTnω = ODA
jf −ORT

j + βmaxjf − βminjf ∀j ∈ Jn,∀f (A.4.8)

multiplying by WDA
jf gives

∑
(j∈Jn)f

λDAn WDA
jf −

∑
(j∈Jn)ω

λRTnω

(∑
f

WDA
jf

)
=
∑
jf

ODA
jf W

DA
jf −

∑
jf

ORT
j WDA

jf

+
∑
jf

βmaxjf WDA
jf −

∑
jf

βminjf WDA
jf (A.4.9)

from the KKT complementarity condition (5.165)
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βminjf WDA
jf = 0 ∀j,∀f ⇒

∑
jf

βminjf WDA
jf = 0 (A.4.10)

from the KKT complementarity condition (5.166)

βmaxjf WDA
jf = βmaxjf WMAX

jf ∀j,∀f ⇒
∑
jf

βmaxjf WDA
jf =

∑
jf

βmaxjf WMAX
jf (A.4.11)

hence the (A.4.9) becomes

∑
(j∈Jn)f

λDAn WDA
jf −

∑
(j∈Jn)ω

λRTnω

(∑
f

WDA
jf

)
=
∑
jf

ODA
jf W

DA
jf −

∑
jf

ORT
j WDA

jf

+
∑
jf

βmaxjf WMAX
jf (A.4.12)

for the term λRTiω r
up
iω , the KKT equality (5.40) produces

λRTnω = πωO
up
i + εmaxiω − εminiω + µmaxiω ∀i,∀ω (A.4.13)

multiplying by rupiω gives

∑
(i∈In)ω

λRTnω r
up
iω =

∑
iω

πωO
up
i r

up
iω +

∑
iω

εmaxiω rupiω

−
∑
iω

εminiω rupiω +
∑
iω

µmaxiω rupiω (A.4.14)

from the KKT complementarity condition (5.169)

εminiω rupiω = 0 ∀i, ∀ω ⇒
∑
iω

εminiω rupiω = 0 (A.4.15)

from the KKT complementarity condition (5.170)
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εmaxiω RESUPi = εmaxiω rupiω ∀i,∀ω ⇒
∑
iω

εmaxiω RESUPi =
∑
iω

εmaxiω rupiω (A.4.16)

thus the (A.4.14) becomes

∑
(i∈In)ω

λRTnω r
up
iω =

∑
iω

πωO
up
i r

up
iω +

∑
iω

εmaxiω RESUPi +
∑
iω

µmaxiω rupiω (A.4.17)

for the term λRTiω r
down
iω , the KKT equality (5.41) leads to

−λRTnω = −πωOdown
i + θmaxiω − θminiω + µminiω ∀i ∈ In,∀ω (A.4.18)

multiplying by rdowniω gives

−
∑

(i∈In)ω

λRTnω r
down
iω = −

∑
iω

πωO
down
i rdowniω +

∑
iω

θmaxiω rdowniω

−
∑
iω

θminiω rdowniω +
∑
iω

µminiω rdowniω (A.4.19)

from the KKT complementarity condition (5.170)

θminiω rdowniω = 0 ∀i, ∀ω ⇒
∑
iω

θminiω rdowniω = 0 (A.4.20)

from the KKT complementarity condition (5.171)

θmaxiω RESDOWN
i = θmaxiω rdowniω ∀i,∀ω ⇒

∑
iω

θmaxiω RESDOWN
i =

∑
iω

θmaxiω rdowniω (A.4.21)

thus the (A.4.19) becomes
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−
∑

(i∈In)ω

λRTnω r
down
iω = −

∑
iω

πωO
down
i rdowniω +

∑
iω

θmaxiω rdowniω (A.4.22)

for the term λRTnωW
sp
jω , the KKT equality (5.42) results in

−λRTnω = −πωORT
j + κmaxjω − κminjω ∀j,∀ω (A.4.23)

multiplying by W sp
jω gives

−
∑

(j∈Jn)ω

λRTnωW
sp
jω = −

∑
jω

πωO
RT
j W sp

jω +
∑
jω

κmaxjω W sp
jω −

∑
jω

κminjω W sp
jω (A.4.24)

from the KKT complementarity condition (5.174)

κminjω W sp
jω = 0 ∀j,∀ω ⇒

∑
jω

κminjω W sp
jω = 0 (A.4.25)

from the KKT complementarity condition (5.175)

κmaxjω W sp
jω = κmaxjω WRT

jω ∀j,∀ω ⇒
∑
jω

κmaxjω W sp
jω =

∑
jω

κmaxjω WRT
jω (A.4.26)

thus the (A.4.24) becomes

−
∑

(j∈Jn)ω

λRTnωW
sp
jω = −

∑
jω

πωO
RT
j W sp

jω +
∑
jω

κmaxjω WRT
jω (A.4.27)

Using the expressions (A.4.7), (A.4.12), (A.4.17), (A.4.22) and (A.4.27) we reformulate the

TEP objective function (5.189) as follows:
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∑
ib

ODA
ib PDA

ib +
∑
ib

αmaxib PMAX
ib +

∑
iω

µmaxiω

(∑
b

PMAX
ib

)
−
∑
ib

cibP
DA
ib∑

jf

ODA
jf W

DA
jf −

∑
jf

ORT
j WDA

jf +
∑
jf

βmaxjf WMAX
jf

+
∑
iω

πωO
up
i r

up
iω +

∑
iω

εmaxiω RESUPi −
∑
iω

πωc
up
i r

up
iω

−
∑
iω

πωO
down
i rdowniω +

∑
iω

θmaxiω RESDOWN
i +

∑
iω

πωc
down
i rdowniω

+
∑
jω

λRTnωW
RT
jω −

∑
jω

πωO
RT
j W sp

jω +
∑
jω

κmaxjω WRT
jω (A.4.28)

Transferring the linear terms from the left to the right part of the strong duality theorem

equality (5.36) the latter is rearranged as:

∑
ib

ODA
ib PDA

ib +
∑
iω

πωO
up
i r

up
iω −

∑
iω

πωO
down
i rdowniω

+
∑
jf

ODA
jf W

DA
jf −

∑
jf

ORT
j WDA

jf −
∑
jω

πωO
RT
j W sp

jω =∑
dk

udkL
DA
dk −

∑
dω

πωV OLLdL
sh
dω −

∑
jω

πωO
RT
j WRT

jω

−
∑

(j∈Jn)ω

λRTnωW
RT
jω −

∑
ib

αmaxib PMAX
ib −

∑
jf

βmaxjf WMAX
jf

−
∑
iω

εmaxiω RESUPi −
∑
iω

θmaxiω RESDOWN
i

−
∑
dk

γmaxdk LMAX
dk −

∑
jω

κmaxjω WRT
jω −

∑
iω

µmaxiω

(∑
b

PMAX
ib

)
−

∑
n(m∈Θn)

TMAX
nm

(
ξminnm + ξmaxnm

)
−

∑
n(m∈Θn)ω

TMAX
nm

(
ξminnmω + ξmaxnmω

)
−
∑
n

π
(
ρminn + ρmaxn

)
−
∑
nω

π
(
ρminnω + ρmaxnω

)
(A.4.29)

Substituting the non-linear terms ODA
ib PDA

ib , Oup
i r

up
iω , O

down
i rdowniω ,ODA

jf W
DA
jf ,ORT

j WDA
jf and

ORT
j W sp

jω of (A.4.28) for the left part of equality (A.4.29), the non-linear TEP objective func-

tion (5.189) is recast into the following equivalent linear expression:
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∑
dk

udkL
DA
dk −

∑
ib

cibP
DA
ib

−
∑
iω

πωc
up
i r

up
iω +

∑
iω

πωc
down
i rdowniω −

∑
(j∈JS)ω

πωO
RT
j WRT

jω

−
∑
dω

πωV OLLdL
sh
dω −

∑
dk

γmaxdk LMAX
dk

−
∑

n(m∈Θn)

TMAX
nm

(
ξminnm + ξmaxnm

)
−

∑
n(m∈Θn)ω

TMAX
nm

(
ξminnmω + ξmaxnmω

)
−
∑
n

π
(
ρminn + ρmaxn

)
−
∑
nω

π
(
ρminnω + ρmaxnω

)
(A.4.30)
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Marginal utility of demand

This Appendix provides the pattern following the marginal utility (pairs of energy and

prices) of the demand through a 24-hour time period. In Table B.1 each column corresponds

to a time period of one hour and each row corresponds to a di�erent bid price (e/MWh)

while the relevant cells' entries represent the percentage of the total demand bid at this price.

It can be seen that the demand is bid by 5 energy blocks, the �rst of which accommodates

the 90% and each of the next four accommodates 2.5% of the total demand. The provided

data are used in case studies of 6-bus and one-area RTS systems for both MPEC models

presented in Chapters 3 and 4.
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Reliability Test System (RTS) of IEEE

This Appendix provides data for the modi�ed IEEE one-area Reliability Test System

(RTS). Figures C.1 and C.2 depict the networks used in case studies of Chapters 3 and 4

respectively. Technical data considering the conventional power generating units are provided

in Table C.3. The two �rst rows indicate the ownership of the units. The third row indicates

the type and the power capacity of each unit. The rows from four to eleven refer to the

maximum size of the four power blocks o�ered by each unit and to their respective cost

o�ers. The last four rows present the reserve capacity limits of each unit and the respective

deployment cost o�ers. Finally, Table C.4 provides data for the the 17 demands of the system.

The second column shows the location of each demand and the third column provides the

load factor [%] of a total demand 2.85 GWh. Each demand is o�ered as shown in Table B.1.

Finally, all the double circuit lines of the RTS are replaced by single ones with the same

transmission capacity. The susceptance Bnm for all lines is 9.412 per unit, and the value of

lost load V OLLd for each demand is 200 e/MWh .
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Figure C.1: RTS one-area network with only non-strategic wind generating units
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Figure C.2: RTS one-area network with strategic wind generating unit j1
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Appendix C

Table C.2: Location and distribution of 2.85 GW total system demand [MW]

demand bus load factor [%]

d1 n1 3.8

d2 n2 3.4

d3 n3 6.3

d4 n4 2.6

d5 n5 2.5

d6 n6 4.8

d7 n7 4.4

d8 n8 6.0

d9 n9 6.1

d10 n10 6.8

d11 n13 9.3

d12 n15 6.8

d13 n14 11.1

d14 n16 3.5

d15 n18 11.7

d16 n19 6.4

d17 n20 4.5

196



Bibliography

Aminifar, F., Fotuhi-Firuzabad, M., & Shahidehpour, M. (2009). Unit commitment with

probabilistic spinning reserve and interruptible load considerations. IEEE Trans-

actions on Power Systems, 24(1), 388-397.

Amjady, N., Aghaei, J., & Shayanfar, H. A. (2009). Stochastic multiobjective market clearing

of joint energy and reserves auctions ensuring power system security. IEEE Trans-

actions on Power Systems, 24(4), 1841-1854.

Anderson, E. J., & Hu, X. (2008). Finding supply function equilibria with asymmetric �rms.

Operations research, 56(3), 697-711.

Arroyo, J. M., & Galiana, F. D. (2005). Energy and reserve pricing in security and network-

constrained electricity markets. IEEE transactions on power systems, 20(2), 634-643.

Arroyo, J. M. (2010). Bilevel programming applied to power system vulnerability analysis

under multiple contingencies. IET generation, transmission & distribution, 4(2), 178-

190.

Baker, P. E., Mitchell, C., & Woodman, B. (2010). Electricity market design for a low-carbon

future. London, UKERC, 24.

Bakirtzis, A. G., Ziogos, N. P., Tellidou, A. C., & Bakirtzis, G. A. (2007). Electricity

producer o�ering strategies in day-ahead energy market with step-wise o�ers. IEEE

Transactions on Power Systems, 22(4), 1804-1818.

197



Bibliography

Baldick, R., & Hogan, W. W. (2001). Capacity constrained supply function equilibrium

models of electricity markets: Stability, non-decreasing constraints, and function space

iterations. University of California Energy Institute.

Baldick, R. (2002). Electricity market equilibrium models: The e�ect of parameteriza-

tion. IEEE Power Engineering Review, 22(7), 53-53.

Baldick, R., Grant, R., & Kahn, E. (2004). Theory and application of linear supply function

equilibrium in electricity markets. Journal of regulatory economics, 25(2), 143-167.

Baringo, L., & Conejo, A. J. (2013). Strategic o�ering for a wind power producer. IEEE

Transactions on Power Systems, 28(4), 4645-4654.

Barroso, L. A., Carneiro, R. D., Granville, S., Pereira, M. V.,& Fampa, M. H. (2006a). Nash

equilibrium in strategic bidding: A binary expansion approach. IEEE Transactions

on Power systems, 21(2), 629-638.

Barroso, L. A., & Conejo, A. J. (2006b) Decision making under uncertainty in electricity

markets. IEEE Power Engineering Society General Meeting, 2006, Montreal, QC,

Canada, p. 3.

Bautista, G., Quintana, V. H., & Aguado, J. A. (2006). An oligopolistic model of an in-

tegrated market for energy and spinning reserve. IEEE Transactions on Power Sy-

stems, 21(1), 132-142.

Bertsekas, D. P. (1999). Nonlinear Programming 2nd edn. Belmont, MA: Athena Scienti�c.

Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications of robust

optimization. SIAM review, 53(3), 464-501.

Bertsimas, D., Litvinov, E., Sun, X. A., Zhao, J., & Zheng, T. (2012). Adaptive robust

optimization for the security constrained unit commitment problem. IEEE transa-

ctions on power systems, 28(1), 52-63.

Bhattacharya, K., Bollen, M. H., & Daalder, J. E. (2001). Power System Operation in Com-

petitive Environment. In Operation of Restructured Power Systems (pp. 73-117).

Springer, Boston, MA.

198



Bibliography

Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer

Science & Business Media.

Borenstein, S. (2000). Understanding competitive pricing and market power in wholesale

electricity markets. The Electricity Journal, 13(6), 49-57.

Bou�ard, F., Galiana, F. D., & Conejo, A. J. (2005). Market-clearing with stochastic

security-part I: formulation. IEEE Transactions on Power Systems, 20(4), 1818-1826.

Cabral, L. M. (2006). Industrial Organization. Jaico.

Cheung, K. W., Shamsollahi, P., Sun, D., Milligan, J., & Potishnak, M. (1999, May). Ener-

gy and ancillary service dispatch for the interim ISO New England electricity mar-

ket. In Proceedings of the 21st International Conference on Power Industry Computer

Applications. Connecting Utilities. PICA 99. To the Millennium and Beyond (Cat.

No. 99CH36351) (pp. 47-53). IEEE.

Colson, B., Marcotte, P., & Savard, G. (2005). Bilevel programming: A survey. 4or, 3(2),

87-107.

Conejo, A. J., Carrión, M., & Morales, J. M. (2010). Decision making under uncertainty in

electricity markets (Vol. 1). New York: Springer.

Conejo, A. J., Castillo, E., Minguez, R., & Garcia-Bertrand, R. (2006). Decomposition

techniques in mathematical programming: engineering and science applications. Sprin-

ger Science & Business Media.

Conejo, A. J., Morales, J. M., & Martinez, J. A. (2011). Tools for the analysis and design of

distributed resources�Part III: Market studies. IEEE transactions on power delivery,

26(3), 1663-1670.

Contreras, J., Klusch, M., & Krawczyk, J. B. (2004). Numerical solutions to Nash-Cournot

equilibria in coupled constraint electricity markets. IEEE Transactions on Power

Systems, 19(1), 195-206.

199



Bibliography

Dai, T., & Qiao, W. (2017). Finding equilibria in the pool-based electricity market with

strategic wind power producers and network constraints. IEEE Transactions on Power

Systems, 32(1), 389-399.

David, A. K., & Wen, F. (2001). Market power in electricity supply. IEEE Transactions on

energy conversion, 16(4), 352-360.

Daxhelet, O., & Smeers, Y. (2007). The EU regulation on cross-border trade of electricity:

A two-stage equilibrium model. European Journal of Operational Research, 181(3),

1396-1412.

Day, C. J., Hobbs, B. F., & Pang, J. S. (2002). Oligopolistic competition in power networks:

a conjectured supply function approach. IEEE Transactions on power systems, 17(3),

597-607.

Delikaraoglou, S., Papakonstantinou, A., Ordoudis, C., & Pinson, P. (2015, May). Price-

maker wind power producer participating in a joint day-ahead and real-time market.

In 2015 12th International Conference on the European Energy Market (EEM) (pp.

1-5). IEEE.

DeMiguel, V., & Xu, H. (2009). A stochastic multiple-leader Stackelberg model: analysis,

computation, and application. Operations Research, 57(5), 1220-1235.

Dempe, S. (2003). Annotated bibliography on bilevel programming and mathematical

programs with equilibrium constraints.

Dent, C. J., Bialek, J. W., & Hobbs, B. F. (2011). Opportunity cost bidding by wind

generators in forward markets: Analytical results. IEEE Transactions on Power Sy-

stems, 26(3), 1600-1608.

De Wolf, D., & Smeers, Y. (1997). A stochastic version of a Stackelberg-Nash-Cournot

equilibrium model. Management Science, 43(2), 190-197.

Dowling, A. W., Kumar, R., & Zavala, V. M. (2017). A multi-scale optimization framework

for electricity market participation. Applied Energy, 190, 147-164.

200



Bibliography

Dupacová, J., Gröwe-Kuska, N., & Römisch, W. (2000). Scenario reduction in stocha-

stic programming: An approach using probability metrics. Humboldt-Universität zu

Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik.

Dutta, P. K., & Dutta, P. K. (1999). Strategies and games: theory and practice. MIT press.

Easterbrook, F. H. (1981). Predatory strategies and counterstrategies, The University of

Chicago Law Review, pp. 263�337.

Eurelectric (2011) Flexible Generation. Backing Up Renewables. Retrieved from http://

www3.eurelectric.org/media/61388/�exibility−report−�nal-2011-102-0003-01-e.pdf

European Commission's communication for Energy. Energy road map 2050 (COM (2011)

885 �nal of 15 December 2011). Retrieved from http://ec.europa.eu/energy/sites/ener

/�les/documents/2012−energy−energy−roadmap−2050−en−0.pdf

Facchinei, F., & Pang, J. S. (2007). Finite-dimensional variational inequalities and complemen-

tarity problems. Springer Science & Business Media.

Federal Energy Regulatory Commission (FERC). (2020). Transmission economic assessment

methodology. Retrieved from https://www.ferc.gov

Floudas, C. A. (1995). Nonlinear and mixed-integer optimization: fundamentals and appli-

cations. Oxford University Press.

Fortuny-Amat, J., & McCarl, B. (1981). A Representation and Economic Interpretation of

a Two-Level Programming Problem. The Journal of the Operational Research Society,

32 (9), 783-792.

Fudenberg, D., & Tirole, J. (1991). Game Theory. Cambridge MA.

Gabriel, S.A., Conejo, A. J., Fuller, J. D., Hobbs, B.F., & Ruiz C. (2012). Complementarity

modeling in energy markets vol. 18. Springer Science & Business Media.

Gabriel, S. A., & Leuthold, F. U. (2010) Solving discretely-constrained MPEC problems

with applications in electric power markets. Energy Economics, 32 (1), 3-14.

201



Bibliography

Galiana, F. D., Bou�ard, F., Arroyo, J. M., & Restrepo, J. F. (2005). Scheduling and pricing

of coupled energy and primary, secondary, and tertiary reserves. Proceedings of the

IEEE, 93(11), 1970-1983.

Garcés, L. P., Conejo, A. J., García-Bertrand, R., & Romero, R. (2009). A bilevel approach

to transmission expansion planning within a market environment. IEEE Transactions

on Power Systems, 24(3), 1513-1522.

García-Alcalde, A., Ventosa, M., Rivier, M., Ramos, A., & Relano, G. (2002). Fitting

electricity market models: A conjectural variations approach. Proc. 14th PSCC 2002.

Gomez-Exposito, A., Conejo, A. J., & Canizares, C. (2018). Electric energy systems: analysis

and operation. CRC press.

González, P., Villar, J., Díaz, C. A., & Campos, F. A. (2014). Joint energy and reserve

markets: Current implementations and modeling trends. Electric Power Systems

Research, 109, 101-111.

Green, R. J. (2008). Electricity wholesale markets: designs now and in a low-carbon future.

The Energy Journal, 29(Special Issue 2).

Guo, Z., Cheng, R., Xu, Z., Liu, P., Wang, Z., Li, Z., ... & Sun, Y. (2017). A multi-

region load dispatch model for the long-term optimum planning of China's electricity

sector. Applied energy, 185, 556-572.

Haghighat, H., Sei�, H., & Kian, A. R. (2007). Gaming analysis in joint energy and spinning

reserve markets. IEEE Transactions on Power Systems, 22(4), 2074-2085.

Hansen, J. P., & Percebois, J. (2019). Energie: Economie et politiques. De Boeck Superieur.

Hatziargyriou, N., & Zervos, A. (2001). Wind power development in Europe. Proceedings

of the IEEE, 89(12), 1765-1782.

Heuberger, C. F., Sta�ell, I., Shah, N., & Mac Dowell, N. (2017). A systems approach to

quantifying the value of power generation and energy storage technologies in future

electricity networks. Computers & Chemical Engineering, 107, 247-256.

Hillier, F. S. (2012). Introduction to operations research. Tata McGraw-Hill Education.

202



Bibliography

Hobbs, B. F. (1986). Network models of spatial oligopoly with an application to deregulation

of electricity generation. Operations research, 34(3), 395-409.

Hobbs, B. F., Metzler, C. B., & Pang, J. S. (2000). Strategic gaming analysis for electric

power systems: An MPEC approach. IEEE transactions on power systems, 15(2),

638-645.

Hobbs, B. E. (2001). Linear complementarity models of Nash-Cournot competition in bila-

teral and POOLCO power markets. IEEE Transactions on power systems, 16(2),

194-202.

Hu, X., & Ralph, D. (2007). Using EPECs to model bilevel games in restructured electricity

markets with locational prices. Operations research, 55(5), 809-827.

Huang, D., Han, X., Meng, X., & Guo, Z. (2006, October). Analysis of Nash equilibrium

considering multi-commodity trade in coupled constraint electricity markets. In 2006

International Conference on Power System Technology (pp. 1-6). IEEE.

Ilic, M., Galiana, F., & Fink, L. (Eds.). (2013). Power systems restructuring: engineering

and economics. Springer Science & Business Media

Joskow, P. L. (2008). Lessons learned from electricity market liberalization. The Energy

Journal, 29 (Special Issue# 2).

Kardakos, E. G., Simoglou, C. K., & Bakirtzis, A. G. (2015). Optimal o�ering strategy of

a virtual power plant: A stochastic bi-level approach. IEEE Transactions on Smart

Grid, 7(2), 794-806.

Kazempour, S. J., & Zareipour, H. (2014). Equilibria in an oligopolistic market with wind

power production. IEEE Transactions on Power Systems, 29(2), 686-697.

Kirschen, D. S., & Strbac, G.(2004) Fundamentals of power system economics. Chichester,

John Wiley & Sons.

Kleniati, P. M., & Adjiman, C. S. (2015). A generalization of the branch-and-sandwich

algorithm: from continuous to mixed-integer nonlinear bilevel problems. Computers

& Chemical Engineering, 72, 373-386.

203



Bibliography

Klemperer, P. D., & Meyer, M. A. (1989). Supply function equilibria in oligopoly under

uncertainty. Econometrica: Journal of the Econometric Society, 1243-1277.

Krugman, P., & Wells, R. (2009). Microeconomics, Worth Publishers, New York.

Lee, K. H., & Baldick, R. (2003). Solving three-player games by the matrix approach with

application to an electric power market. IEEE Transactions on Power Systems, 18(4),

1573-1580.

Ley�er, S., & Munson, T. (2010). Solving multi-leader�common-follower games. Optimisa-

tion Methods & Software, 25(4), 601-623.

Liu, Y., Ni, Y. X., & Wu, F. F. (2004, June). Existence, uniqueness, stability of linear

supply function equilibrium in electricity markets. In IEEE Power Engineering Society

General Meeting, 2004. (pp. 249-254). IEEE.

Luenberger, D. G., & Ye, Y. (1984). Linear and nonlinear programming (Vol. 2). Reading,

MA: Addison-Wesley.

Mankiw, N. G. (2016). Principles of economics. Cengage Learning.

McGee, J. S. (1980). Predatory pricing revisited, Journal of Law and Economics, pp.

289�330.

MIT (2011) Managing Large-Scale Penetration of Intermittent Renewables. Retrieved from

http://energy.mit.edu/wp-content/uploads/2012/03/MITEI-RP-2011-001.pdf

Moiseeva, E., Hesamzadeh, M. R., & Biggar, D. R. (2014). Exercise of market power on

ramp rate in wind-integrated power systems. IEEE Transactions on Power Systems,

30(3), 1614-1623.

Morales, J. M., Pineda, S., Conejo, A. J., & Carrion, M. (2009). Scenario reduction for

futures market trading in electricity markets. IEEE Transactions on Power Systems,

24(2), 878-888.

Morales, J. M., Conejo, A. J., Liu, K., & Zhong, J. (2012). Pricing electricity in pools with

wind producers. IEEE Transactions on Power Systems, 27(3), 1366-1376.

204



Bibliography

Morales, J. M., Conejo, A. J., Madsen, H., Pinson, P., & Zugno, M. (2013). Integrating

renewables in electricity markets: operational problems (Vol. 205). Springer Science

& Business Media.

Morales, M. J., Conejo, J. A., Madsen, H., Pinson, P. & Zugno, M. (2014). Integrating renew-

ables in electricity markets: Operational problems. International Series in Operations

Research & Management

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the national

academy of sciences, 36(1), 48-49.

Ning, C., & You, F. (2019). Data-driven adaptive robust unit commitment under wind

power uncertainty: a Bayesian nonparametric approach. IEEE Transactions on Power

Systems, 34(3), 2409-2418.

Ott, A. L. (2003). Experience with PJM market operation, system design, and implementa-

tion. IEEE Transactions on Power Systems, 18(2), 528-534.

Pang, J. S., & Fukushima, M. (2005). Quasi-variational inequalities, generalized Nash

equilibria, and multi-leader-follower games. Computational Management Science,

2(1), 21-56.

Papavasiliou, A., Oren, S. S., & O'Neill, R. P. (2011). Reserve requirements for wind power

integration: A scenario-based stochastic programming framework. IEEE Transactions

on Power Systems, 26(4), 2197-2206.

Pereira, M. V., Granville, S., Fampa, M. H., Dix, R., & Barroso, L. A. (2005). Strategic

bidding under uncertainty: a binary expansion approach. IEEE Transactions on

Power Systems, 20(1), 180-188.

Pierre I, Bauer F, Blasko R, et al. (2011). Flexible generation: backing up renewables.

Eurelectric, Tech Rep.

Pinson, P., Chevallier, C., & Kariniotakis, G. N. (2007). Trading wind generation from

short-term probabilistic forecasts of wind power. IEEE Transactions on Power Sy-

stems, 22(3), 1148-1156.

205



Bibliography

Pozo, D., & Contreras, J. (2011). Finding multiple nash equilibria in pool-based markets:

A stochastic EPEC approach. IEEE Transactions on Power Systems, 26(3), 1744-

1752.

Pritchard, G., Zakeri, G. & Philpott, A. (2010) A Single-Settlement, Energy-Only Electric

Power Market for Unpredictable and Intermittent Participants. Operations Research,

58 (4), 1210-1219.

Ralph, D. (2008). Mathematical programs with complementarity constraints in tra�c and

telecommunications networks. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 366(1872), 1973-1987.

Ralph, D., & Smeers, Y. (2006, November). EPECs as models for electricity markets. In

2006 IEEE PES Power Systems Conference and Exposition (pp. 74-80). IEEE.

Reliability System Task Force. (1999). The IEEE reliability test system-1996: A report

prepared by the reliability test system task force of the application of probability

methods subcommittee. IEEE Transactions on power systems, 14(3), 1010-1020.

Rosenthal, R. E. E. (2018). General algebraic modeling system (GAMS). GAMS Develop-

ment Corporation, USA. Retrieved from http://www.gams.com

Ruiz, C., & Conejo, A. J. (2009). Pool strategy of a producer with endogenous formation of

locational marginal prices. IEEE Transactions on Power Systems, 24(4), 1855-1866.

Ruiz, C., Conejo, A. J., & Smeers, Y. (2012). Equilibria in an oligopolistic electricity pool

with stepwise o�er curves. IEEE Transactions on Power Systems, 27(2), 752-761.

Sauma, E. E., & Oren, S. S. (2007). Economic criteria for planning transmission investment

in restructured electricity markets. IEEE Transactions on Power Systems, 22(4),

1394-1405.

Sensfuÿ, F., Ragwitz, M., & Genoese, M. (2008). The merit-order e�ect: A detailed analysis

of the price e�ect of renewable electricity generation on spot market prices in Germany.

Energy policy, 36(8), 3086-3094.

206



Bibliography

Shahmohammadi, A., Sioshansi, R., Conejo, A. J., & Afsharnia, S. (2018). Market equilibria

and interactions between strategic generation, wind, and storage. Applied energy, 220,

876-892.

Sheblé, G. B. (2012). Computational auction mechanisms for restructured power industry

operation. Springer Science & Business Media.

Smeers, Y. (1997). Computable equilibrium models and the restructuring of the European

electricity and gas markets. The Energy Journal, 18(4).

Song, Y., Ni, Y., Wen, F., Hou, Z., & Wu, F. F. (2003). Conjectural variation based bidding

strategy in spot markets: fundamentals and comparison with classical game theoretical

bidding strategies. Electric Power Systems Research, 67(1), 45-51.

Stackelberg, H. (1934) Marktform und Gleichgewicht (Market structure and equilibrium).

Vienna, J. Springer.

Stoft, S. (2002). Power system economics. Journal of Energy Literature, 8, 94-99.

Twomey, P., Green, R. J., Neuho�, K., & Newbery, D. (2006). A review of the monitoring

of market power the possible roles of tsos in monitoring for market power issues in

congested transmission systems.

Wang, F., Mi, Z., Su, S., & Zhao, H. (2012). Short-term solar irradiance forecasting model

based on arti�cial neural network using statistical feature parameters. Energies, 5(5),

1355-1370.

Wang, J., Redondo, N. E., & Galiana, F. D. (2003). Demand-side reserve o�ers in joint

energy/reserve electricity markets. IEEE Transactions on Power Systems, 18(4), 1300-

1306.

Wang, J., Wang, X., & Wu, Y. (2005). Operating reserve model in the power market. IEEE

Transactions on Power systems, 20(1), 223-229.

Weber, J. D., & Overbye, T. J. (1999, July). A two-level optimization problem for analy-

sis of market bidding strategies. In 1999 IEEE Power Engineering Society Summer

Meeting. Conference Proceedings (Cat. No. 99CH36364) (Vol. 2, pp. 682-687).

207



Bibliography

Williams, H. P. (2013). Model building in mathematical programming. John Wiley & Sons.

Xu, H. (2005). An MPCC approach for stochastic Stackelberg�Nash�Cournot equilibrium.

Optimization, 54(1), 27-57.

Yao, J., Adler, I., & Oren, S. S. (2008). Modeling and computing two-settlement oligopolistic

equilibrium in a congested electricity network. Operations Research, 56(1), 34-47.

Zavala, V. M., Kim, K., Anitescu, M., & Birge, J. (2017). A stochastic electricity market

clearing formulation with consistent pricing properties. Operations Research, 65(3),

557-576.

Zhang, X. P. (Ed.). (2010). Restructured electric power systems: analysis of electricity

markets with equilibrium models (Vol. 71). John Wiley & Sons.

Zheng, T., & Litvinov, E. (2006). Ex post pricing in the co-optimized energy and reserve

market. IEEE Transactions on Power Systems, 21(4), 1528-1538.

Zugno, M., Morales, J. M., Pinson, P., & Madsen, H. (2013). Pool strategy of a price-maker

wind power producer. IEEE Transactions on Power Systems, 28(3), 3440-3450.

208


