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ARISTOTLE UNIVERSITY OF THESSALONIKI

Abstract
Faculty of Engineering

Department of Chemical Engineering

Doctor of Philosophy

Solution methods for complex supply chain network optimization
problems

by Panagiotis KARAKOSTAS

The intertemporal integration of supply chain activities is crucial in devel-
oping sustained competitive advantage in the modern entrepreneurial envi-
ronment. This integration refer to the simultaneous optimization of strategic,
tactical and operational decisions in complex supply chain networks. More-
over, due to the fact that the supply chain activities emit pollutants, like car-
bon dioxide (CO2), increased socio-environmental concerns have shifted the
focus to a balanced goal, which integrates economic, environmental and so-
cial goals. To achieve these goals, the solution of complex supply chain opti-
mization problems is required. New advanced optimization techniques and
tools must be developed to assist decision makers.

This thesis studies and investigates new complex and integrated supply
chain network optimization problems under economic and environmental.
Efficient metaheuristic-based solution methods are developed for the solu-
tion of these problems to derive useful managerial insights.

More specifically, a well-known combinatorial optimization problem which
integrates strategic, tactical and operation decisions is the Location-Inventory-
Routing Problem. Herein, several variants of this complex problem are ad-
dressed. Initially, a Location-Inventory-Routing Problem with Distribution
Outsourcing is introduced to describe cases where the proprietary fleet of
vehicles is either cost-inefficient or specific fleet of vehicles is required (i.e.
customer-specific). Furthermore, a green variant of the Location-Inventory-
Routing Problem, the Pollution-Location-Inventory-Routing Problem is ad-
dressed by considering both economic and environmental concerns. In this
new problem, decisions related to fuel consumption and CO2 emissions are
considered. Next, another green variant of the basic problem is proposed.
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This problem is called the Fleet Size and Mix Pollution Location Inventory
Routing Problem and considers more realistic features, such as fleet com-
position and capacity planning decisions. Furthermore, a healthcare supply
chain network optimization problem related to innovative CAR T-cell cancer
therapies is modelled and investigated. In this, a novel network structure is
proposed to manage challenges associated to the increased demand for these
therapies.

To obtain high-quality solutions of these problems in short computational
times, several heuristic algorithms, based on the Variable Neighborhood Search
metaheuristic framework, are proposed. Solution achieved using these meth-
ods are compared to the corresponding ones using state-of-the-art exact com-
mercial solver, such as CPLEX. Extensive comparisons and numerical tests il-
lustrate the efficiency of the proposed metaheuristic methods using key per-
formance indicators.
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Περίληψη

Η ενοποίηση των δραστηριοτήτων μίας εφοδιαστικής αλυσίδας αποτελεί κρίσιμο

παράγοντα επίτευξης αειφόρου ανταγωνιστικού πλεονεκτήματος εντός των πλαι-

σίων του σύγχρονου επιχειρησιακού περιβάλλοντος. Η εν λόγω ενοποίηση αφορά

την ταυτόχρονη λήψη αποφάσεων στρατηγικού, τακτικού και επιχειρησιακού επι-

πέδου μέσω της αποδοτικής διαχείρισης της εφοδιαστικής αλυσίδας. Επιπρόσθετα,

δεδομένης της εκπομπής ρύπων από τις δραστηριότητες της εφοδιαστικής αλυ-

σίδας, όπως το διοξείδιο του άνθρακα, αυξημένες κοινωνικές και περιβαλλοντι-

κές ανησυχίες έχουν μετατοπίσει την εστίαση στην επίτευξη ενός ισορροπημένου

στόχου, ο οποίος αποτελεί ένα μίγμα οικονομικών, περιβαλλοντικών και κοινωνι-

κών στόχων.

Η παρούσα διδακτορική διατριβή μελετά και διερευνά νέα σύνθετα προβλήματα

βελτιστοποίησης δικτύων ενοποιημένων εφοδιαστικών αλυσίδων με αντικειμενικό

στόχο την οικονομική, την περιβαλλοντική ή τη συνδυαστική απόδοση. Επίσης,

νέες μεθευρετικές τεχνικές επίλυσης έχουν αναπτυχθεί ώστε να λυθούν τα νέα

προβλήματα και να καταγραφούν χρήσιμες παρατηρήσεις αποδοτικής διαχείρισης.

Ακριβέστερα, ένα γνωστό πρόβλημα συνδυαστικής βελτιστοποίησης, το οπο-

ίο συνδυάζει στρατηγικές, τακτικές και λειτουργικές αποφάσεις είναι το σύνθετο

Πρόβλημα Χωροθέτησης Εγκαταστάσεων, Ελέγχου Αποθεμάτων και Δρομολόγη-

σης Οχημάτων. Στην παρούσα διατριβή εισάγονται αρκετές επεκτάσεις του συ-

γκεκριμένου σύνθετου προβλήματος. Αρχικά, εισάγεται το σύνθετο Πρόβλημα

Χωροθέτησης Εγκαταστάσεων, Ελέγχου Αποθεμάτων και Δρομολόγησης Οχη-

μάτων με Εξωτερική Ανάθεση Διανομής για την περιγραφή περιπτώσεων όπου

είτε ο ιδιόκτητος στόλος οχημάτων είναι μη οικονομικώς συμφέρουσα επιλογή ή

απαιτείται ειδικού σκοπού στόλος οχημάτων (π.χ. στόλος οχημάτων προσαρμο-

σμένος στις ανάγκες των πελατών). Επιπλέον, προτείνεται μία επέκταση πράσινης

διαχείρισης του σύνθετου Προβλήματος Χωροθέτησης Εγκαταστάσεων, Ελέγχου

Αποθεμάτων και Δρομολόγησης Οχημάτων, ονομαζόμενο ως σύνθετο Πρόβλη-

μα Χωροθέτησης Εγκαταστάσεων, Ελέγχου Αποθεμάτων, Δρομολόγησης Οχη-

μάτων, Κατανάλωσης Καυσίμου και Εκπομπής Ρύπων Διοξειδίου του ΄Ανθρακα,

το οποίο λαμβάνει ταυτόχρονα οικονομικές και περιβαλλοντικές αποφάσεις, όπως

η κατανάλωση καυσίμου και η εκπομπή ρύπων CO2. Στη συνέχεια, ένα ακόμη

πρόβλημα πράσινης διαχείρισης, επέκταση του βασικού προβλήματος, εισάγεται.

Το νέο πρόβλημα καλείται σύνθετο Πρόβλημα Καθορισμού Μεγέθους και Σύνθε-

σης Στόλου Οχημάτων, Χωροθέτησης Εγκαταστάσεων με Πολλαπλές Επιλογές

Χωρητικότητας, Ελέγχου Αποθεμάτων, Δρομολόγησης Οχημάτων, Κατανάλωσης

Καυσίμου και Εκπομπής Ρύπων Διοξειδίου του ΄Ανθρακα και λαμβάνει υπόψη ε-

πιπλέον ρεαλιστικά χαρακτηριστικά, όπως η σύνθεση στόλου και ο σχεδιασμός
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χωρητικότητας εγκαταστάσεων. Επιπροσθέτως, ένα πρόβλημα βελτιστοποίησης

δικτύων υγειονομικών εφοδιαστικών αλυσίδων σχετιζόμενων με τις καινοτόμες

ανοσολογικές κυτταρικές θεραπείες του καρκίνου. Στο νέο αυτό πρόβλημα προ-

τείνεται μία καινοτόμα δομή δικτύου για τη διαχείριση των προκλήσεων που προ-

κύπτουν από την αυξανόμενη ζήτηση τέτοιων θεραπειών.

Για την αποδοτική επίλυση αυτών των προβλημάτων σε σύντομο υπολογιστι-

κό χρόνο, προτείνονται αρκετοί ευρετικοί αλγόριθμοι βασιζόμενη στο μεθευρετικό

πλαίσιο Αναζήτησης Μεταβλητής Γειτνίασης. Οι λύσεις που παρήχθησαν από τους

προτεινόμενους αλγόριθμους συγκρίθηκαν με εκείνες του state-of-the-art εμπορι-
κού λύτη, CPLEX. Πληθώρα συγκρίσεων και υπολογιστικών πειραμάτων υποδει-
κνύουν την αποδοτικότητα των προτεινόμενων μεθόδων και κύριους παράγοντες

απόδοσης, ώστε τελικώς να κατασκευασθούν ταχείες και ισχυρές υπολογιστικές

τεχνικές επίλυσης.
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Chapter 1

Introduction

1.1 Supply Chain Optimization

The modern entrepreneurial environment constitutes a mixture of several
interrelated components, such as social and technological components, in a
constantly changing process. The inherent characteristics of this dynamic
system are high complexity and uncertainty. Companies, to initially secure
their survival and further their growth, have to develop a competitive advan-
tage (Shadid, 2017). To achieve that, a company should manage efficiently its
whole supply chain, which consists of all entities involved in fulfilling the
demand requests of customers. Those entities are suppliers, facilities of the
company (plants, warehouses and distribution centres) and customers (im-
mediate customers and final consumers). They are connected by material,
information and financial flows in an network representation, known as Sup-
ply Chain Network (SCN) (Stadler et al., 2015). Entities of a typical SCN are
illustrated in Figure 1.1.
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FIGURE 1.1: The entities of a typical SCN
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The coordination of the necessary activities, associated with converting
natural resources, raw materials and semi-finished product components into
final products delivered to consumers, called Supply Chain Management
(SCM) (Stadler et al., 2015). The enrichment of SCM with Operational Re-
search (OR) techniques is known as Supply Chain Optimization (SCO). SCO
constitutes a set of processes and tools developed and applied for optimiz-
ing the decision making process, in order to configure an efficient SCN (Sper-
anza, 2018). An example of a configured SCN is depicted in Figure 1.2.
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FIGURE 1.2: An example of a configured SCN

A relative recent trend in SCM refer to the systematic focus of the SCN
(Speranza, 2018). The intertemporal integration of supply chain activities is
crucial in developing sustained competitive advantage, as it leads to signif-
icant reduction of costs and increase of overall supply chain responsiveness
(Aguirre et al., 2018; Vicente et al., 2015). More specifically, this integration
is characterized by the simultaneous tackling of strategic, tactical and op-
erational decisions (Hiassat et al., 2017). Strategic-level decisions refer to
long-term planning such as resource acquisition decisions. Decisions in a
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medium-term planning horizon are characterized as tactical. For instance,
the inventory planning is a tactical level decision. Operational decisions have
a short execution horizon, such as the daily delivery schedules. The classic
hierarchical supply chain decision-making process is depicted in Figure 1.3,
while the integrated decision-making approach is illustrated in Figure 1.4.

FIGURE 1.3: Hierarchical supply chain decision-making pro-
cess
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FIGURE 1.4: Integrated supply chain decision-making process

Three classic SCO problems have been used to address the three previ-
ously mentioned decision levels, separately:

• The Facility Location Problem (FLP) tackles the strategic-level decision of
optimal designing a SCN.

• The Inventory Control Problem (ICP) refers to selecting the optimal in-
ventory policy by determining tactical decisions, such as the delivery
quantity and frequency.

• The Vehicle Routing Problem (VRP) which tackles operational-level deci-
sions of scheduling optimal delivery routes.

Therefore, the hierarchical decision-making process refers to the sequential
solution of these problems, which may lead to suboptimality (Zhang et al.,
2014). Several contributions have been combined two of these classic prob-
lems in a single model, following the idea of integration, in an effort to over-
come the potential sub-optimality. Traditionally, this two-level integration is
addressed by the following complex SCO problems:

• The Location Routing Problem (LRP), which tackles both strategic and
operational decision levels (Cuda et al., 2015; Drexl & Schneider, 2015).
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• The Inventory Routing Problem (IRP), which tackles tactical and opera-
tional decisions (Dong et al., 2017; Soysal et al., 2019).

• The Location Inventory Problem (LIP), which integrates strategic and tac-
tical decisions (Farahani et al., 2015).

Amiri-Aref et al. (2018) studied a multi-period LIP considering multi-
echelon SCN, demand uncertainty and a multi-sourcing strategy. They de-
veloped a two-stage stochastic mathematical model to maximize the total
profit. A linearization method was applied to make the model tractable and a
Sample Average Approximation algorithm, a Monte-Carlo simulation-based
approach, is used to produce near-optimal solutions. Yu et al. (2019a) stud-
ied a capacitated LRP with tight capacity constraints on both depots and ve-
hicles. To solve the problem, a hybrid Genetic Algorithm (GA) was devel-
oped which tackles feasible and infeasible solutions, by using a customized
population management mechanism. Amiri et al. (2019) developed a Mixed
Integer Non-Linear Programming (MINLP) model for the periodic LRP with
time windows and fleet composition decisions. For the solution of the prob-
lem, a two-phase Lagrangean decomposition method was proposed. In the
first phase, two sub-problems were solved. The first referred to products dis-
tribution from suppliers to onshore bases, while the second one to the deliv-
ery of products from onshore bases to offshore units. Then, a VRP with Time
Windows (VRPTW) was solved to complete the overall problem solution.
Darvish et al. (2019) investigated a flexible LRP by considering two sources
of flexibility, the network design flexibility and the flexibility in due-dates.
The first one refer to the potential selection of different facilities in a daily ba-
sis, while the second source of flexibility depends on the frequency of deliv-
eries. Authors proposed a parallel exact algorithm to efficiently solve small-
and medium-sized problem instances. They concluded that both sources of
flexibility can lead to significant cost savings in comparison with fixed prob-
lem cases. A multi-depot IRP was studied by Bertazzi et al. (2019). They
developed a Mixed Integer Linear Programming (MILP) model as well as a
matheuristic algorithm based on a three-phase decomposition approach. The
first phase is a clustering phase which build clusters of customers for each de-
pot. The next is a route construction phase applied in each cluster and finally,
an optimization phase which improves routing and delivery schemes. The
proposed matheuristic outperformed a branch-and-cut algorithm with sev-
eral families of cuts. Archetti et al. (2019) studied a variant of the IRP where
the ratio between the total distribution cost and the total delivered quantity
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is minimized. They developed an exact algorithm based on the idea to se-
quentially solve different IRPs with a linear objective function. Also, two
acceleration techniques were implemented to speed-up the proposed algo-
rithm. A comparison between this enhanced version of the algorithm, called
ACS, and another exact algorithm from the literature was performed. The
results indicated that ACS outperformed the other algorithm in cases with
small number of vehicles. Moreover, the proposed approach can solve prob-
lem cases with more customers.

Almouhanna et al. (2020) introduced a new variant of the LRP by con-
sidering electric vehicles and constrained distances. For the solution of the
new problem, two heuristic algorithms were developed, a fast multi-start
biased-randomized heuristic and a biased-randomized Variable Neighbor-
hood Search (VNS) solution method. Numerical results showed that the
proposed multi-start heuristic algorithm can generate quite good solutions
in very short computational times. On the other hand, the VNS-based so-
lution method leads to better solutions requiring more computational time.
Oudouar et al. (2020) studied a capacitated LRP. They developed a two-steps
hybrid solution approach to solve the problem under consideration. In its
first step, location-allocations are made by using a self-organizing map al-
gorithm, while routing decisions are tackled by applying a combination of
the Clarke and Wright algorithm and the Or-opt local search method. The
proposed solution approach was compared to the most effective heuristics in
the literature. The results indicated that the hybrid algorithm can generate
competitive algorithms and 38 new best found solutions were reported out
of 79 problem instances. Alvarez et al. (2020) studied an IRP by considering
a single type perishable commodity. More specifically, they considered per-
ishability through a fixed shelf-life of an aging product under age-dependent
inventory holding costs and sales revenues. Four mathematical formulations
of the problem were presented and their advantages were further investi-
gated. For the solution of small-sized problem instances exact algorithms
were applied, while a hybrid Iterated Local Search (ILS) heuristic was de-
veloped for tackling efficiently larger problem cases. Markov et al. (2020)
solved a recyclable waste collection IRP with heterogeneous fixed fleet of
vehicles and stochastic demands. Authors developed an MINLP model as
well as an Adaptive Large Neighborhood Search (ALNS) algorithm com-
bined with a realistic demand forecasting model to solve the problem effi-
ciently. Their proposed approach was compared to alternative deterministic
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policies for the control of occurrence of container overflows. This compara-
tive study indicated the efficiency of their proposed approach. A cyclic IRP
under Vendor Management Inventory policy was studied by Dai et al. (2020).
They considered perishable products and price-dependent demand. To solve
the problem, they developed MINLP models and a hybrid cuckoo algorithm
with an improved Clarke-Wright savings algorithm. Their proposed algo-
rithm proved quite efficient compared to optimization solver, CLPEX. Liu et
al. (2020) studied an LIP in a stochastic supply chain system where random
supply disruptions and stochastic demands and replenishment lead-times
were considered. They developed a two-phase queuing theory-optimization
model and a tailored hybrid GA to solve the problem. Araya-Sassi et al.
(2020) introduced two multi-commodity LIP considering continuous and pe-
riodic review inventory control policies and modular stochastic capacity con-
straints. These new problems were formulated as MINLP models and a La-
grangian relaxation with a subgradient method were developed to tackle the
high complexity of the problem under consideration. Tirkolaee et al. (2020)
investigated a green LIP in order to design an efficient municipal solid waste
management system. The problem was formulated as an MILP and several
problems with real-life data were solved using CPLEX.

Other studies proposed the integration of two of the decision levels, while
considering selected priorities of the third level. More specifically, a Multi-
depot Location Routing Problem (MDLRP) taking into account inventory
costs was considered by Liu and Lee (2003). They developed a two-phase
heuristic applied on 144 random generated test instances. A hybrid Tabu
Search (TS)/Simulated Annealing (SA) approach was then proposed for solv-
ing the same MDLRP (Liu & Lin, 2005). Furthermore, a linear program-
ming model incorporating location, routing, and inventory decisions was
proposed by Ambrosino and Scutella (2005), but feasible solutions were pre-
sented only for the case of the LRP on 12 single-period instances. Max Shen
and Qi (2007) presented a nonlinear integer programming model for the in-
tegrated supply chain design. A Lagrangian-relaxation based algorithm was
developed and its performance was evaluated on several randomly gener-
ated test instances. A Location Arc Routing Problem (LARP) with inven-
tory constraints was studied by Riquelme-Rodriguez et al. (2016). They pro-
posed two location constructive algorithms for building initial solutions and
an ALNS algorithm for further improvement of solutions. Turan et al. (2017)



8 Chapter 1. Introduction

considered a two-echelon LIP within distribution decisions in order to re-
balance inventory levels due to high demand uncertainty and high procure-
ment costs. To efficiently tackle this problem, they developed a hybrid VNS
algorithm with a dynamic programming method. A MDLRP considering in-
ventory risks was studied by Zhao and Ke (2017) in the context of explosive
waste management. They developed a multicriteria decision-making solu-
tion approach based on the Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS) method in order to solve the studied problem in
a reasonable computation time. By applying their method on a real applica-
tion they observed 34% system costs decrease and 57% environmental risk
reduction.

The integrated Location Inventory Routing Problem (LIRP) has received
rather limited attention in the literature (Hiassat et al., 2017; Zhang et al.,
2014). This problem considers simultaneous all three decisions levels and
it is classified as an NP-Hard problem (Javid & Azad, 2010). Because of its
computational complexity, large scale LIRP instances cannot be solved to op-
timality by exact solution methods (Eskandarpour et al., 2017). In order to
overcome such computational limitations, heuristic and meta-heuristic ap-
proaches are often applied.

The first attempt to tackle simultaneously location, inventory and routing
decisions was presented by Javid and Azad (2010). They proposed a MINLP
model and a hybridization of TS and SA for solving large sized problem in-
stances. Tavakkoli-Moghaddam et al. (2013) presented an MINLP model for
a stochastic distribution network and solved five examples using the Lingo
software. A hybrid Variable Neighborhood Descent (VND) - ILS metaheuris-
tic solution approach was applied by Guerrero et al. (2013) for solving LIRP
cases, described by an MILP formulation. Reza Sajjadi et al. (2013) developed
an MINLP model for the two-layer multi-product capacitated LIRP (MP-
CLIRP) and they solved larger instances using a sequential heuristic. Seyed-
hosseini et al. (2014) developed an MINLP model for the three-level SCN
design and solved random generated instances with the Lingo solver for the
small cases and a GA for larger instances. A two-stage hybrid TS heuristic
for solving the combined LIRP in Business to Consumer (B2C) e-Commerce
distribution system was proposed by Chen et al. (2014). Nekooghadirli et al.
(2014) studied a bi-objective LIRP and applied four evolutionary based meta-
heuristics for solving several test instances. Zhang et al. (2014) presented
an MILP model for the multi-period LIRP with flexible replenishment pol-
icy and they developed a hybrid SA metaheuristic for solving the proposed
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problem. Liu et al. (2015) studied a stochastic LIRP for designing a logistic
system for e-commerce and implemented a Pseudo Parallel hybridization of
GA and SA. Zhalechian et al. (2016) presented an MINLP model for a sus-
tainable closed-loop LIRP and they applied a hybrid two-phase stochastic-
possibilistic programming method within a game theory approach, in order
to manage the uncertainty and a Self-Adaptive GA for addressing efficient
solutions on large instances. A hybrid SA and Imperialist Competitive Al-
gorithm (ICA) for tackling the LIRP was presented by Ghorbani and Akbari
Jokar (2016). Hiassat et al. (2017) proposed evolutionary based optimization
metaheuristics and more precisely, different versions of GA based solution
approaches. Rayat et al. (2017a) studied an LIRP with multiple commodities
and multiple time periods. They formulated the problem as Multi-Objective
MINLP (MOMINLP) and they developed an Archived Multi-Objective SA
(AMOSA) algorithm for the solution of large problem cases. To further im-
prove the performance of proposed algorithm, they used the Taguchi method
for tuning parameters.

Rafie-Majd et al. (2018) studied the design of a supply chain system of
perishable products under uncertainty and they employed a Lagrangian Re-
laxation heuristic for solving it. Guo et al. (2018) studied a single-period
closed-loop LIRP. They formulated the problem as a Nonlinear Integer Pro-
gramming Model and developed a hybrid SA with an adaptive GA to solve
it efficiently. Extensive sensitivity analysis was performed to highlight the
impact of key solution method parameters on its efficiency. A multi-period,
multi-stage closed-loop LIRP was investigated by Forouzanfar et al. (2018).
They developed a bi-objective nonlinear integer model to address the prob-
lem. For the solution of small-sized problem instances the applied the ε-
constrained method, while for solving larger problem cases they proposed a
hybrid metaheuristic algorithm which combines the Non-Dominated Sorting
GA-II (NSGA-II) and a multi-objective Particle Swarm Optimization (MOPSO).
To improve the performance of the proposed solution method, they used the
Taguchi method during parameter setting. Habibi et al. (2018) modeled an
LIRP as an MINLP to optimize a microalgae biofuel supply chain system. To
solve problem instances of practical interest, they properly modified three
well-known metaheuristic frameworks, a SA, a GA and a Firefly Algorithm
(FA). The obtained numerical results showed that the SA was the most effi-
cient solution method and the GA performed better than FA.

Tavana et al. (2018) developed a Multi-objective MILP (MOMILP) model
to address a new humanitarian LIRP, which considers pre- and post-disaster
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planning. For the solution of the problem, an Epsilon-constraint method was
initially developed. However, it was not able to produce any solution of
the studied problem. Therefore, they proposed two metaheuristic solution
schemes, an NSGA-II and a Reference Point based NSGA-II (RPBNSGA-II).
They concluded, through a statistical analysis on the obtained solutions, that
NSGA-II provided better solutions than RPBNSGA-II for the case of small-
sized instances, while RPBNSHA-II outperformed NSGA-II in large problem
cases. Asadi et al. (2018) presented a bi-objective LIRP model for the opti-
mization of production and distribution of a microalgae biofuel SCN. They
developed two metaheuristic solution methods, the MOPSO and the NSGA-
II. Due to the fact that both of them includes several parameters, authors
used the Taguchi method to properly set them. Several problem instances
of different size were used to perform a comparison between the proposed
methods. NSGA-II proved to be more efficient than MOPSO. Yuchi et al.
(2018) studied an LIRP in a closed-loop SCN, which formulated as an MINLP.
For the solution of computationally challenging problem instances, a hybrid
TS-SA heuristic algorithm was proposed. As a SA-based algorithm includes
several parameters, a sensitivity analysis was performed to indicate the po-
tential impact of them on the total costs. A multi-period, multi-commodity
LIRP was studied by Vahdani et al. (2018) for the design of a humanitarian
logistics network. They developed a MOMIP model to address the problem
and two multi-objective metaheuristic algorithms were proposed to solve it
efficiently. More specifically, NSGA-II and MOPSO were implemented and
tested on several problem cases. In problem cases with certain conditions,
MOPSO was proved more efficient than NSGA-II, while the last one worked
better under uncertain conditions.

Saif-Eddine et al. (2019) studied an LIRP with Vendor Managed Inventory
strategy and developed an improved GA to solve it efficiently. A General
Benders Decomposition (GBD) method was proposed by Zheng et al. (2019)
to solve an integrated LIRP for the design of a passenger car SCN. Rabbami
et al. (2019) investigated a multi-period LIRP in the context of of industrial
hazardous waste management. They developed an MINLP model to math-
ematically formulate the problem and applied an exact linearization method
to reduce the initial model to an MILP one. For the solution of medium- and
large-sized problem instances a simheuristic, based on NSGA-II and Monte
Carlo simulation method, was developed. Numerical tests indicated the ef-
ficiency of the proposed method. Furthermore, interesting insights were ob-
served, such those about the relation between the uncertainty levels and the
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CPU time requirements. More specifically, an increase on the uncertainty
level lead to increase to the required CPU time. Saragih et al. (2019) for-
mulated a three-echelon supply chain system as an MINLP by simultane-
ously considering location, inventory and routing decisions. They devel-
oped a two-stage SA-based heuristic solution method. The first stage con-
sists of a constructive procedure for generating an initial solution, while a SA
metaheuristic framework constitutes the improvement stage. For small-sized
problem cases, the proposed heuristic produced near-optimal solutions. Au-
thors, also, investigated the impact of tackling inventory decisions within
the improvement stage. The obtained results with inventory decisions con-
sideration were 17% better than those achieved without integrating inven-
tory decisions. Chao et al. (2019) developed an MIP model to address a two
stage LIRP with Time Windows for a food delivery system. They proposed
an Improved Ant Colony Optimization (IACO) algorithm with a distance-
based clustering approach. More specifically, the distance-based clustering
method was applied to reduce the initial problem into several VRPs. Then,
the IACO algorithm was used to for generating high quality routes. Finally,
a relocate-exchange method was used to further improve solutions. Biuki
et al. (2020) tackled a multi-period LIRP by considering sustainability issues,
integrated decision-making and real-world assumptions. They proposed a
two-phased approach. Initially, the Multicriteria Decision Analysis (MCDA)
method, known as Preference Ranking Organization Method for Enrichment
Evaluations (PROMETHEE) method was employed to rank the suppliers by
a sustainability perspective. Next, an MOMILP was formulated in an effort
to further enhance sustainability performance. Due to the high computa-
tional complexity of the problem, two hybrid metaheuristic solution meth-
ods based on different combinations of a GA and a PSO were implemented
for the solution of test instances. Extensive numerical analyses indicated that
further improvements on the supply chain performance can be achieved in a
cost efficient manner. Table 1.1 summarizes the main LIRP contributions.
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1.2 Sustainable Supply Chain Optimization

Despite SCM traditionally focuses on cost-efficient practices in order to
achieve high profit levels and consequently, continuous competitive advan-
tage, the environmental and social dimensions of its activities should be con-
sidered (Hristu-Varsakelis et al., 2012; Mallidis et al., 2020; Mallidis et al.,
2014). Moreover, due to the fact that the supply chain activities emit pol-
lutants, like carbon dioxide (CO2), increased socio-environmental concerns
have shifted the focus to a balanced goal which integrates economic, envi-
ronmental and social goals (Foo et al., 2018; Koç et al., 2014). These three
dimensions are the major pillars of sustainability.

According to the definition provided by the United Nations in the World
Commission on the Environment and Development, sustainability is the ef-
fort to achieve the current performance objectives with respect to future gen-
erations needs 1. Obviously, this definition is quite general and cannot pro-
vide the sustainable philosophy in clarity.

The sustainable philosophy refers to proper incorporation of economic,
environmental and social aspects in the operation of an organization (Iakovou
et al., 2016). For instance, the environmental sustainability refers to efforts
on reducing the environmental footprint of an organization (i.e. minimize
carbon emissions). The social sustainability consists of actions made to guar-
antee societal requirements, such as the promotion of health or the creation
of working capabilities. Moreover, the economic dimension of sustainability
refers to cost-efficient application of the proper sustainable operations in or-
der to secure the competitive advantage of the organization. Figures 1.5, 1.6
and 1.7 summarize the most significant indicators of the three dimensions of
sustainability (Barbosa-Povoa & Pinto, 2018).

1https://sustainabledevelopment.un.org/milestones/wced
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FIGURE 1.7: Social indicators of sustainability
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Despite SCM constitutes a crucial element of economic efficiency in an
organization, it cannot guarantee sustainable development without consider-
ing environmental and social aspects (Hong et al., 2018). To manage the three
dimensions of sustainability in perfect balance, a new wider systematic coor-
dination of supply chain activities needs to be addressed (Vivas et al., 2020).
This new type of management is known as Sustainable SCM (SSCM) (Fritz,
2019). To successfully achieve sustainable development through SSCM, en-
tails the efficient application of sustainable supply chain practices (Jia et al.,
2015). However, it should be clarified that SSCM does not extend the SCM as
depicted in Figure 1.8, but it consists of the following three interdependent
supply chain management components:

• SCM. It deals with the economic aspect of SSCM.

• Green SCM (GSCM). It refers to the environmental aspect of SSCM.

• Social SCM (SoSCM). It deals with the social aspect of SSCM.

SCM Environmental & Social

aspects
SSCM Sustainable Development

Considering Leads to

Sustainable Supply Chain Practices

To achieve

Competitive Advantage

Secure/Maintain

FIGURE 1.8: A false approach of SSCM

The proper approach of the SSCM is illustrated in Figure 1.9.
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SSCM

SCM GSCM SoSCM

Economic

Aspects

Environmental

Aspects

Social

Aspects

Considering Considering Considering

Sustainable Development

Competitive Advantage

Sustainable Supply Chain Practices

To achieve

Secure/Maintain

FIGURE 1.9: The SSCM approach

Sustainability can be achieved by the adoption of proper sustainable sup-
ply chain practices. These practices aim to address specific characteristics in
a supply chain to reform it into a lean, resilient and green system (Govindan
et al., 2014). Some examples of such practices are:

• Lean practices

– Supplier compliance auditing.

– Total quality management.

– Just-in-Time (JiT).

• Resilient practices

– Flexible sourcing.

– Supply chain risk management.

– Flexible transportation.

• Green practices

– Environmental collaboration with suppliers.

– To decrease the consumption of hazardous and toxic materials.
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– Reverse logistics.

Obviously several sustainable supply chain practices can contribute to two
or even to all three sustainable characteristics. The impact of several lean,
resilient and green SSCM practices on the sustainability of a supply chain
has been thoroughly investigated in the recent literature (Govindan et al.,
2014; Jia et al., 2015).

From an optimization perspective, problems which tackle environmental-
related decisions are characterized as green optimization problems (Bektaş
et al., 2019; Martins & Pato, 2019; Rafie-Majd et al., 2018; Skouri et al., 2018).
Freight transportation is mentioned as the main source of CO2 (Bektaş et al.,
2019; Leenders et al., 2017). Especially, road transportation generates more
than 20% of the total CO2 emissions in European Union (Leenders et al., 2017)
and 30% in the Organization for Economic Co-operation and Development
(OECD) countries (Reichert et al., 2016). Therefore, the majority of previous
works in this area has focused on green routing optimization problems (Li
et al., 2018; Soon et al., 2019; Yu et al., 2019b).

However, as recently noticed by Koç et al. (2016) depot- and fleet composition-
related decisions also affect emissions. In this direction, several contributions
have studied more complex supply chain optimization problems within en-
vironmental considerations. Dukkanci et al. (2019) addressed a green LRP.
They used a comprehensive modal emission model in order to estimate the
emitted pollutants. Zhang et al. (2018) studied a multi-depot emergency
LRP with carbon dioxide emissions. Cheng et al. (2017) proposed a green
IRP with fleet heterogeneity. They highlighted the benefits of using a mixed
fleet. Toro et al. (2017) studied the multi-objective green LRP and they high-
lighted the importance of using more vehicles in shorter routes to minimize
both fuel consumption and emissions. Micheli and Mantella (2018) studied
an environmentally extended IRP with heterogeneous fleet and they exam-
ined the effect of different carbon control policies on emissions reduction.
Even though the environmental-related decisions are critical in achieving
sustainability, limited contributions of green LIRP cases have been reported.
More specifically, a MOMINLP model for the closed-loop LIRP was proposed
(Zhalechian et al., 2016). They used a stochastic-possibilistic approach in
order to tackle uncertainty and they developed a hybrid self-adaptive GA-
VNS metaheuristic algorithm to solve large-sized instances. A bi-objective
stochastic LIRP, which considers CO2 emissions at distribution facilities, was
proposed by Asadi et al. (2018).
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1.3 Cell Therapies Supply Chain Optimization

Healthcare Supply Chains

Healthcare or medical supply chain refers to the flow of medical prod-
ucts and services between several independent parts, such as hospitals, drug
manufacturers and patients (Imran et al., 2018). An illustration of a typical
healthcare SCN (hSCN) is provided in Figure 1.10.
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FIGURE 1.10: An example of an hSCN

The management of hSCN includes the activities, required for the efficient
tackling of physical, information and financial flows.

The physical flow may contain (Imran et al., 2018):

• pharmaceuticals,

• surgical consumables,

• medical devices,

• hygiene consumables.

Some examples of information flow are the following (Gonul Kochan et al.,
2018):
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• Order entry and processing data,

• patients’ medical information,

• inventory information,

• pricing data.

The financial flow commonly involves:

• payment schedules,

• credit terms,

• consignment agreements.

Despite both physical and information flows can be clearly understood
to the reader, further details may be needed for the examples of financial
flows due to their technical terminology. The payment schedules are typical
payments for purchased products and services. Credit terms are payment re-
quirements which are declared on invoices according to early payment terms
(Li et al., 2019). An invoice is a formal financial document which summa-
rizes identification-oriented data of a transaction such as transaction number,
seller and buyer details, quantities of items and payment amount and terms.
Consignment agreement is a contract signed by a seller, the consignor, and
a buyer, the consignee. According to that signed agreement, the consignor
delivers products to consignee but their title remains with the consignor. For
the sold or used products, the consignee executes a payment, as denoted by
a commission. Non- sold or used products can be returned to the consignor
(Gharaei et al., 2019). This financial agreement can be adopted by health-
care entities, especially for the case of pharmaceuticals supply as a tool for
handling demand variability.

Cell Therapies

Biopharmaceuticals constitute sophisticated medical products with pure
biological basis, such as cells, bacteria and enzymes (Holder et al., 2019). The
main scope of biopharmaceutical industry is to handle the recent advances in
fields of bioengineering and biomanufacturing, in order to control and guide
the behavior and function of a living cell (Xie & Murphy, 2019). The branch
of medicine which utilizes this new advanced pharmaceuticals is known as
biomedicine or more commonly as regenerative medicine (Gardner & Web-
ster, 2016).
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Cells are critical components of those new products. The cellular pro-
duced therapies are classified into (Wei Teng et al., 2014):

• Allogeneic. In these therapies, different donor and recipient are con-
sidered.

• Autologous. Cells are removed from a patient, re-engineered and re-
turned to the same patient.

To better understand the essential difference between the two classes of cel-
lular therapies, a comparative illustration is provided in Figure 1.11.

FIGURE 1.11: A comparison between autologous and allo-
geneic cellular therapies (Karantalis et al., 2015)

Malik and Durby (2015) attempted a more detailed comparison between
allogeneic and autologous cell therapies on the base of the following factors:

• Immunological issues,

• patient-centric factors,

• commercial-scale manufacturing,

• business model,

• reimbursement price potential.

Some of the key differences, according to the mentioned factors, are:

Immunological issues. An allogeneic cell therapy entails a higher risk of im-
mune rejection than an autologous cell therapy. A potential immunological
rejection may cause a significant limitation of the persistence of administered
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cells and consequently to eliminate any possible therapeutic impact, or an in-
flammatory reaction which leads to patient tissue damage (Malik & Durby,
2015; Mo et al., 2019).

Patient-centric factors. In case of allogeneic cell therapies, the cells can be do-
nated by selected young and healthy adults. On the other hand, in autol-
ogous therapies cells taken from older patients have lower proliferative ca-
pacity, which may negatively affect the therapeutic benefit (Narbonne, 2018;
Scruggs et al., 2013).

Commercial-scale manufacturing. The cell-based products, such as the cell ther-
apies have higher manufacturing costs compared to other biopharmaceuti-
cals (Malik & Durby, 2015). Focused on the two classes of cell therapies, the
personalized manufacturing character of autologous cell therapies thwarts
their mass production and increases their manufacturing cost. Moreover, in
allogeneic approach a potential damage of the product can be restored in
significantly shorter time than in the autologous therapies (Morizane et al.,
2013).

Business model. Allogeneic cell therapies follow the well-known “Off-the-Shelf”
production model, which refers to non-customized products. Therefore, they
properly fit in the current model of biomanufacturing industry. Also, they
can be applied both in acute and chronic diseases (Malik & Durby, 2015). In
contrast, the autologous cell therapies are restricted to a product-customized
model and applied to non-acute diseases (Morizane et al., 2013).

Reimbursement price potential. The worldwide financial crisis leads to signifi-
cant limitations on the healthcare budgets. Thus, securing reimbursement is
almost crucial in the successful early life-cycle of a medical product. For both
allogeneic and autologous therapies, the insurer is expected to pay a high re-
imbursement, especially in case of life-threatening diseases (Malik & Durby,
2015; Pereira Chilima et al., 2018).
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Chimeric antigen receptor (CAR) T-cell therapy

According to the American Cancer Society and National Cancer Institute,
immunotherapy represents a biological cancer therapy, which can either en-
hance the immune system of a patient or lead to the training of the immune
system in order to attack specific cancer cells 2, 3. Chimeric antigen receptor
(CAR) T-cell therapy is a promising new type of immunotherapy (Baboo et
al., 2019). The pillar of this cellular therapy is T-cells, which are re-engineered
in specialized laboratories in order to be able to identify and destroy can-
cer cells. The re-engineering process is achieved by performing critical steps
(Vormittag et al., 2018). In the first step, blood is removed from the patient
and through leukapheresis, separation of leukocytes is carefully performed
and the rest of the blood is returned to the patient. This initial process is com-
pleted when a sufficient number of leukocytes is collected. Next, anticoagu-
lants are added in the leukapheresis buffer and a washing step is performed
by removing the remaining red blood cells and platelets followed by T-cell
selection, which separates cells based on their density. The next step includes
activation of T-cells by using soluble monoclonal antibodies (anti-CD3/anti-
CD8), coated magnetic beads or artificial autologous antigen-presenting cells
(APCs). CAR is then delivered to T-cells by using either viral or non-viral
methods (Vormittag et al., 2018). Following gene delivery, expansion of CAR
T-cells is required, which can take up to few weeks since millions of CAR
T-cells need to be generated for each therapy. The expansion process is per-
formed in different culture platforms (T-Flasks, Static Culture Bags, Rocking
Motion Bioreactors). Finally, the appropriately CAR T-cells are either imme-
diately administered, through infusion, to patients or are frozen. For clarity
for the reader, both the overall CAR T-cell manufacturing and administration
process and its major steps are illustrated in Figures 1.12 and 1.13.

2https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/
immunotherapy/car-t-cell1.html#written_by

3https://www.cancer.gov/about-cancer/treatment/research/car-t-cells

https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/car-t-cell1.html#written_by
https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/car-t-cell1.html#written_by
https://www.cancer.gov/about-cancer/treatment/research/car-t-cells
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FIGURE 1.12: The overall process of CAR T-cell therapy
source : National Cancer Institute4

FIGURE 1.13: Key steps in CAR T-cell therapy manufacturing
(Wang & Riviere, 2016)

4https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/
t-cell-transfer-therapy

https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/t-cell-transfer-therapy
https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/t-cell-transfer-therapy
https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/t-cell-transfer-therapy
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Currently, very limited attention has been placed on the design and opera-
tion of CAR T-cell therapies supply chains, while the network representation
is still an open research challenge. The overall process of CAR T-cell ther-
apies relies on four main entities (Boyiadzis et al., 2018). A cancer patient
visits a specialized treatment facility and a blood sample is collected. Then,
the collected blood is sent to the manufacturing centre where the therapy
is produced. Finally, the patient revisits the treatment facility to receive the
required bridge chemotherapy (a chemotherapy administered in the time be-
tween collection of autologous T-cells and the infusion of CAR T-cell therapy)
and the cell therapy is delivered to the treatment facility in order to be ad-
ministered to the patient.

The complex and precise biomanufacturing of CAR T-cells requires highly-
specialized staff, facilities and equipment (Harrison et al., 2019), which result
in high costs associated with CAR T-cell therapy. Specifically, 2019 reports 5

place cost of CAR T-cell therapy to $375000. Certain treatments, such as No-
vartis’ Kymriah cost up to $475000 (Vormittag et al., 2018). A major cost con-
tributor is logistics, such as facilities selection costs, consumables, and trans-
portation costs (Harrison et al., 2019). As such, supply chain costs represent
approximately 30% of the total cost of treatment (Franco & Alfonso-Lizarazo,
2019). Consequently, SCO is crucial in reducing costs and rendering the de-
sign and operation of the CAR T-cell therapies SCN financially sustainable
and competitive (Barbosa-Povoa & J.M., 2019; Numbi & Kupa, 2017).

Although significant progress has been made in the optimal design and
operation of traditional supply chain production and distribution networks,
the integrated CAR T-cell supply chain network problem has not been stud-
ied in the open literature. A couple of recent contributions have solely fo-
cused on studying specific aspects of the underlying supply chain problem
of CAR T-cell therapies without considering the integrated optimization of
design and operational aspects (Wang et al., 2019; Wang et al., 2018).

A multi-objective stochastic programming model for the optimal network
design of CAR T-cell supply chain was recently proposed by Wang et al.
(2018). They highlighted the benefits that can be achieved by optimizing
several design aspects of these supply chains. Wang et al. (2019) presented
a multiscale logistics simulation framework to address emergent challenges
of autologous cell therapies. They investigated two scenarios; the first, fo-
cused on the selection of a proper inventory policy, while the second one

5https://www.reuters.com/article/us-gilead-novartis-trials-focus/
gilead-novartis-cancer-therapies-losing-patients-to-experimental-treatments-idUSKCN1UP10O

https://www.reuters.com/article/us-gilead-novartis-trials-focus/gilead-novartis-cancer-therapies-losing-patients-to-experimental-treatments-idUSKCN1UP10O
https://www.reuters.com/article/us-gilead-novartis-trials-focus/gilead-novartis-cancer-therapies-losing-patients-to-experimental-treatments-idUSKCN1UP10O


1.3. Cell Therapies Supply Chain Optimization 25

evaluated the impact of a possible supplier disruption. Papathanasiou et al.
(2020) recently presented a review of the main challenges associated with
the CAR T-cell supply chains, such as the capacity bottleneck in hospitals.
They thoroughly highlighted several issues which affect the efficient design
and operation of the underlying supply chain network. Harrison et al. (2019)
used a process economics modelling and calculation tool to investigate the
impact of different factors on the production costs of CAR T-cell therapies
(donor cells, geographic dispersion of production and consumption points,
etc)

CAR T-cell supply chains share key characteristics with other process sup-
ply chains, such as the vaccine supply chain and the blood supply chain.
Some of these characteristics are as follows:

• management of medical-oriented systems,

• distribution of temperature-sensitive products,

• strict lead times,

• strict replenishment rates.

Healthcare & Pharmaceutical Supply Chains.

Liu et al. (2014) proposed a periodic vehicle routing problem for home
healthcare logistics in which deliveries, either of special drugs from hospi-
tals to patients or blood samples from patients to labs, were evaluated. They
developed a tabu search metaheuristic algorithm by incorporating feasible
and infeasible intra-route local search schemes for the solution of several
logistics problems. Zahiri et al. (2017) studied an integrated sustainable-
resilient pharmaceutical supply chain under uncertainty. They formulated
the problem as a multi-objective mixed-integer linear programming model
and proposed a possibilistic-stochastic programming approach to handle un-
certainty. Moreover, a game-based differential evolution-variable neighbor-
hood search metaheuristic algorithm was developed for the solution of large
problems. Savadkoohi et al. (2018) developed a possibilistic location-inventory
model to optimize a pharmaceutical supply chain by evaluating the supply
chain network design under perishability issues. Jankauskas et al. (2019) pre-
sented a genetic algorithm (GA) for solving the integrated problem of ca-
pacity planning and scheduling of a biopharmaceutical manufacture. They
also, developed a particle swarm optimization as a post-optimization pro-
cedure for fine tuning GA’s hyperparameters in an attempt to solve even
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larger problem cases than the developed GA. Kramer et al. (2019) addressed
a variant of vehicle routing problem for delivering pharmaceutical products
to healthcare facilities. They developed a multi-start iterated local search al-
gorithm solving of both realistic and artificial problem cases. Moussavi et
al. (2019) proposed a Gurobi-based matheuristic to solve integrated worker
assignment and vehicle routing problems of a home healthcare system.

Blood & Vaccine Supply Chains.

Sadjadi et al. (2019) studied a vaccine supply chain network design prob-
lem under uncertainty. They proposed a deterministic MILP and a robust
mathematical programming approach applied to a real-world case study, in
order to evaluate performance. Lin et al. (2020) focused on a vaccine supply
chain in which vaccines are delivered from a distributor to a hospital. They
examined the distributor’s decision-making on using or not temperature-
controlled transportation and the potential impact of the retailer’s inspection
policy on that decision. A reliable blood supply chain network design with
facility disruption was recently studied by Haghjoo et al. (2020). They pro-
posed a scenario-based robust approach to address uncertainty and devel-
oped two metaheuristic algorithms for the solution of large-sized problems.

1.4 Optimization Techniques

1.4.1 Optimization Problem

An optimization problem has potentially the following general form:

min{ f (x)|x ∈ X ⊆ S} (1.1)

where S denotes the solution space, X is the set of feasible solutions -solutions
which respect a number of given constraints, x represents an obtained feasi-
ble solution and f is an objective function.

A classification of optimization problems can be performed by consider-
ing the nature of elements in set S. More specifically, an optimization prob-
lem is characterized as continuous when S contains real values and as dis-
crete when S includes discrete values, such as integers (Baron et al., 2019;
Kidd et al., 2020).

Combinatorial Optimization (CO) refers to discrete optimization prob-
lems where the discrete set of solution space is finite, commonly huge and
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contains combinatorial structures, such as permutations or assignments (Go-
erigk et al., 2020). Typically, a CO problem is mathematically formulated as
an MILP model, which means that the model includes both variables receiv-
ing values in an integer and a continuous domain (Della Croce, 2014).

An alternative taxonomy classifies the optimization problems based on
their requirements on computational resources needed for their solution, known
as computational complexity. The computational time is one of the most crit-
ical computational resource (Hoos & Stützle, 2005). Therefore, following a
time complexity taxonomy, some crucial complexity classes are met:

• Complexity class P (Polynomial). This class includes problems which can
be solved in polynomial time.

• Complexity class NP (Non-deterministic Polynomial). It contains prob-
lems which requires commonly exponential time to be solved, but their solu-
tions can be verified in polynomial time.

• Complexity class NP− hard (Non-deterministic Polynomial-hard). Prob-
lems in this class are at least as difficult to be solved as the most difficult prob-
lems in NP, but they do not necessarily belong to NP.

It is obvious that class P is a subset of class NP, as each problem which can
be solved polynomially, its solution can also be verified in polynomial solu-
tion. Another significant subset of class NP is the class NP− complete (Non-
determinitistic Polynomial-complete). This class contains problems which
they belong both in NP and NP − hard. Consequently, those problems in-
cluded in NP− complete are the hardest problems in NP (Huang et al., 2009).

1.4.2 Solution Methods

An optimization method is a technique used for solving an optimization
problem (Zgaya & Hammadi, 2016). Optimization methods are divided into
four main categories:

• Exact algorithms.

• Approximation algorithms.

• Heuristic methods.

• Metaheuristic methods.
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Exact algorithms are pure mathematical techniques for solving optimiza-
tion problems with proved optimality. Some well-known exact methods are
Enumeration, Branch & Bound algorithm and Branch & Cut (Festa, 2014). Enu-
meration method investigates and compares all possible feasible solutions.
Branch & Bound methods examine all possible solutions by exploring the
solutions of relaxed subproblems in a tree structure. They are characterized
by two key processes, the branching which applied to generate subproblems
and bounding, which uses rules for pruning potential low quality branches.
Branch & Cut algorithms are a combination of Branch & Bound thechniques
with an iterative method which refines the search space, known as cutting-
planes method. This iterative use of cutting-planes aims to reduce the search
space. Approximation algorithms are solution methods which provide near
optimal solution with a guarantee of their performance e.g. a found solution
has a cost 1.5 times of the optimal one. Dynamic programming methods and
Relaxation methods are two of the most commonly used categories of approx-
imation solution methods (Williamson & Shmoys, 2011). Dynamic program-
ming technique divide a given problem into simpler subproblems. These
problems are solved in a bottom-up approach by combining their solutions.
Lagrangian relaxation is a well-known relaxation method in which complex
constraints can be removed by being transferred to the objective function,
weighted with a proper Lagrange multiplier. Despite exact methods guaran-
tee the optimality of best found solutions, limited problems can be tackled in
optimality in reasonable time. Therefore, the development of approximation
algorithms is an effort to manage intractable problems in accepting computa-
tional time, by sacrificing optimality. However, hard optimization problems,
such those in NP− hard complexity class, is quite challenging to be solved ei-
ther by exact or approximation algorithms. Particularly, the solution of large
scale instances of NP− hard problems requires the development of fast and
efficient computational methods.

Heuristics are solution approaches for obtaining good-quality solutions
in significantly short computational times without any optimality guarantee
(Zgaya & Hammadi, 2016). Heuristic solution methods are divided into two
categories:

• Construction heuristics, which build feasible solution for a specific op-
timization problem. These methods usually are quite fast and simple
procedures for the solution of a problem (Blocho, 2020).
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• Improvement heuristics are iterative procedures which receive an already
constructed solution and further improve it. Well-known local search
operators, such as 2-Opt or 1-1 node exchange, are considering as clas-
sic examples of improvement heuristics (Blocho, 2020).

Metaheuristics are general frameworks, which imply specific strategies
in order to perform a deeper exploration of the search space than simple
heuristics (Deroussi, 2016). The solutions achieved by using a metaheuristic
solution method are often better than those obtained by simple heuristics.
Furthermore, metaheuristics are classified into trajectory-based (also known
as individual-based) and population-based methods. The first category in-
cludes methods which tackle a single solution in each step of their solution
process, while the second one contains methods that they tackle a number of
solutions simultaneously (Deroussi, 2016). Typically, metaheuristics consist
of two main steps, the intensification and the diversification steps. Intensifica-
tion refers to the exploitation in specific locations in the search space which
seems to be quite promising. On the other hand, diversification is an ex-
ploration step in an effort to shift in new promising regions of search space
(Blocho, 2020). An appropriate balance between these two strategies is es-
sential, as it significantly affects the performance of a metaheuristic solution
method. To successfully structure an efficient metaheuristic scheme, a deep
knowledge of the tackled problem is required (Deroussi, 2016).

Hansen and Mladenović (2003) underlines that a metaheuristic algorithm
should be characterized by the following properties:

1. Simplicity. This feature refers to the idea behind the design of a meta-
heuristic algorithm, which should be simple and comprehensive.

2. Precision. A metaheuristic algorithm should be clearly defined in math-
ematical terms, which means that redundant details should be eschewed.

3. Coherence. The design of a problem-specific heuristic based on a meta-
heuristic framework should follow the principle of this framework in
each step.

4. Efficiency. A metaheuristic algorithm should be able to provide opti-
mal or near-optimal solutions for instances of a specific problem.

5. Effectiveness. A metaheuristic algorithm should provide a high-quality
solution in a reasonable computing time.
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6. Robustness. The performance of a metaheuristic solution method should
be stable solving different instances of a specific problem.

7. User-friendliness. The designed metaheuristic algorithms should be
intelligible and well-expressed.

8. Innovation. The principle of the metaheuristic algorithm should pro-
vide the chance of innovative applications.

1.4.3 Variable Neighborhood Search solution framework

VNS proposed by Mladenović and Hansen (1997), is a trajectory-based
metaheuristic which has all the desired properties mentioned in the previ-
ous section. Its main principle is the systematic change of predefined local
search operators (also known as neighborhood structures) during the search
for an optimal or approximately optimal solution (Hansen et al., 2010). This
systematic process is applied as a repeated execution of three basic search
ingredients, until a stopping criterion is met. These three search steps are
(Hansen et al., 2017):

• Shaking Procedure (as a diversification phase for escaping locally opti-
mal solutions).

• Neighborhood Change Step (for guiding purposes while VNS explores
the solution space).

• Improvement Procedure (as an intensification phase for improving the
incumbent solution).

Figure 1.14 provides an illustration which indicates how the use of dif-
ferent neighborhoods and their successive application lead to efficient explo-
ration of the search space.
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FIGURE 1.14: The application of VNS in the search space
(Hansen & Mladenović, 2018)

The most commonly used diversification method within VNS is the inten-
sified shaking, which randomly selects a shaking operator and applies it k
times, where k denotes the intense of diversification and it is 1 ≤ k ≤ kmax,
with kmax being the shaking strength (Papalitsas et al., 2019). According
to the neighborhood change step, several procedures have been proposed.
Their aim is the guidance of the VNS algorithm during the exploration in
the solution space (Hansen et al., 2010). Four of the most commonly used
neighborhood change procedures are the following (Hansen et al., 2017):

• Sequential neighborhood change step. The search continuous to the
next neighborhood when no improvements occurred within the current
neighborhood. In case of reaching an improved solution, the search
continues with the first neighborhood structure.

• Cyclic neighborhood change step. In this neighborhood change strat-
egy the search continues to the next neighborhood regardless of any
improvement.

• Pipe neighborhood change step. The search continues in the same
neighborhood, while it produces improvements.

• Skewed neighborhood change step. This neighborhood change step
aims to lead the search in distant locations in the search space regarding
the incumbent solution. To achieve that, they accept not only improv-
ing new solutions, but also solutions which are worse than the current
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one. This relaxed acceptance of solutions is denoted by a relative pa-
rameter.

The combination of simplicity and efficiency, which are characterized VNS,
has attracted the attention of researchers. Thus, several variants of this meta-
heuristic framework have been addressed in the literature. Three of the most
well-known VNS schemes are the Basic VNS (BVNS), the Variable Neighbor-
hood Descent (VND) and the General VNS (GVNS) (Brimberg et al., 2017;
Mladenović et al., 2020; Sánchez-Oro et al., 2017).

BVNS alternates a shaking procedure with a local search operator, until
a stopping criterion is met (Hansen et al., 2010). A commonly used termi-
nation criterion is an upper CPU time limit (Hansen et al., 2017). Several
interesting contributions using the BVNS have been proposed in the recent
literature (Costa et al., 2017). An illustration of BVNS is provided in Algo-
rithm 1. BVNS receives an initial feasible solution S, the strength of shaking
kmax, the upper CPU execution time limit max_time, the ordered set of local
search operators N and the set of shaking operators NShaking.

Algorithm 1 Basic VNS
1: procedure BVNS(S, kmax, max_time, N, NShaking)

2: l ← 1

3: while time ≤ max_time do
4: for each neighborhood structure l do
5: for k← 1, kmax do
6: S′ ← Shake(S, k, NShaking)

7: S′′ ← Local_Search(S′, l)
8: if f (S′′) < f (S) then
9: S← S′′

10: l ← 1

11: else
12: l ← l + 1

13: end if
14: if l > |N| then
15: l ← 1

16: end if
17: end for
18: end for
19: end while
20: Return S
21: end procedure
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VND is fully deterministic VNS variant in which a number of local search
operators are applied iteratively with respect to an adopted neighborhood
change strategy (Hansen et al., 2017; Mjirda et al., 2017). According to the
neighborhood change strategy, the following sequential VND schemes are
formed:

• Basic VND (bVND). Each time an improved solution is found, the
search continues with the first operator (Hansen et al., 2017).

• Pipe VND (pVND). If an improved solution is found within an opera-
tor, the search continues with that operator (Hansen et al., 2017).

• Cyclic VND (cVND). The search continues with the next operator re-
gardless the improvements (Hansen et al., 2017).

• Union VND (uVND). It is also known as Multiple neighborhood search.
The search is applied in the union of all neighborhood structures (Hansen
et al., 2017).

• Extended VND (eVND). This VND variant extends bVND by speci-
fying a parameter (m) which indicates the improvement depth. More
specifically, the search switches to the first operator either when m im-
provements are achieved by the current operator or exactly one im-
provement is made within the current operator (Lai & Hao, 2016).

• Adaptive VND (aVND). This variant uses one of the previous VND
schemes but in each iteration the order of the neighborhoods is changed
mainly according to their success in the previous iteration (Todosijević
et al., 2016).

VND has been successfully applied on many combinatorial optimization prob-
lems related to logistics activities (Larrain et al., 2017; Sifaleras & Konstan-
taras, 2017). A VND method receives an initial feasible solution S and an
ordered set of neighborhood structures N as inputs. The steps of a pVND
solution method are provided in Algorithm 2.
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Algorithm 2 pipe-VND
1: procedure PVND(S, N)

2: l = 1

3: while l ≤ lmax do
4: select case(l)
5: case(l)
6: S′ ← Nl(S)
7: end select
8: if f (S′) < f (S) then
9: S← S′

10: else
11: l = l + 1

12: end if
13: end while
14: Return S
15: end procedure

GVNS is a widely used VNS variant, which extends BVNS by using a
VND method as its main improvement phase (Hansen et al., 2017). GVNS
combines a deterministic with a stochastic phase. More specifically, it con-
sists of the stochastic shaking part of the BVNS and a deterministic VND
procedure. Therefore, GVNS constitutes a powerful solution scheme which
has been used to solve NP-hard problems (Derbel et al., 2019; Sifaleras &
Konstantaras, 2015, 2018; Smiti et al., 2020; Todosijević et al., 2017). The main
form of a GVNS solution method is provided in Algorithm 3. The inputs of
this method are an initial feasible solution S, the shaking strength kmax, an
upper CPU time limit max_time, the ordered set of local search operators N
and the set of shaking operators NShaking.
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Algorithm 3 General VNS
1: procedure GVNS(S, kmax, max_time, N, NShaking)

2: while time ≤ max_time do
3: for k← 1, kmax do
4: S∗ = Shake(S, NShaking)

5: S′ = pVND(S∗, N)

6: if f (S′) < f (S) then
7: S← S′

8: end if
9: end for

10: end while
11: return S

12: end procedure

1.5 Research Objectives and Thesis Outline

The main research objectives of this dissertation, which are summarized
as follows:

• Modeling extensions of integrated supply chain optimization problems,
by considering further realistic aspects, to address new problems of in-
dustrial and practical interest.

• The development of powerful metaheuristic algorithms for the efficient
solution of large-scale supply chain problems.

• To derive managerial insights based on the optimization of the under-
lying supply chain problems.

The rest of the thesis is structured as follows:

• Chapter 2: A new complex SCN optimization problem is addressed. It
extends the well-known LIRP by considering distribution outsourcing
decisions.

• Chapter 3: A green variant of the LIRP is introduced. A comprehen-
sive emission model is adopted to address fuel consumption and CO2

emissions in the operation of this supply chain problem.

• Chapter 4: A new LIRP variant is studied by considering further ad-
vanced strategic decisions, such as fleet composition and capacity plan-
ning. Moreover, the Just-in-Time replenishment policy is adopted as it
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is considered as the most appropriate approach for many emergency
SCN, such as the hSCN.

• Chapter 5: A new modelling framework and an efficient solution ap-
proach for the optimization of CAR T-cell therapies supply chain are
developed. A novel patient-centric supply chain structure is proposed,
as the administration of CAR T-cell therapies is performed in local treat-
ment facilities located close to patients’ sites.

• Chapter 6: This chapter encapsulates the key research findings of the
present dissertation and discusses potential future research directions.
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Chapter 2

Optimization of
Location-Inventory-Routing
Problems with Distribution
Outsourcing

2.1 Introduction

Several companies understood the importance of the strategic relation-
ships and started adopting logistics outsourcing as a key strategic compo-
nent, in order to increase their competitiveness (Hjaila et al., 2016; Turkay
et al., 2004). Cost reduction, decreased service times and improved customer
service are considered as the main advantages of logistics activities outsourc-
ing in the literature (Basligil et al., 2011; Zhu et al., 2017). Because of the
crucial effect of the decisions integration and activities outsourcing on the
performance of the supply chain, the combined study of these components
seems to be highly promising.

This work introduces the Location-Inventory-Routing Problem (LIRP) with
Distribution Outsourcing (LIRPDO) decisions. The underlying problem vari-
ant represents a more realistic situation, in which a company needs to out-
source its distribution operation, as it cannot afford vehicles acquisition or a
customer-specific fleet of vehicles is required. Then, more decisions should
be made, such as the selection of the proper vehicles providers and the most
efficient allocation of the company’s opened depots to the selected providers.
The proposed problem is NP-hard, which means that realistic large-sized
problem instances cannot be solved by exact methods. Therefore, a Sequen-
tial General Variable Neighborhood Search (GVNS) combined with an Inven-
tory Rescheduling Procedure (InvRP) for solving large instances of LIRPDO
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is proposed.

2.2 Problem statement

The LIRPDO is defined as a three echelon supply chain network with
multiple potential vehicles’ providers, multiple potential depots and a num-
ber of geographically dispersed customers. Each customer has a determinis-
tic period-variable demand of one type commodity. It is also assumed that
all potential vehicles’ providers own the same type capacitated vehicles, but
each of them has a different fixed-contract cost. A customer can be allocated
to exactly one opened depot, and each opened depot can be served by exactly
one vehicles’ provider over the planning horizon. A vehicle is be sent from
the location of its provider to the selected depot, in order to load the neces-
sary quantity of product and then will travel through the customers allocated
to its route. Finally, the vehicle will return to the location of its owner. There-
fore, the routes are formed as provider-depot-customer(s)-provider. The ob-
jective in this problem is to minimize the total cost including of location, in-
ventory, routing and outsourcing service costs.

2.3 Mathematical formulation

The proposed MIP extends the mathematical model proposed by Zhang
et al. (2014) by considering distribution outsourcing decisions. To address
those decisions, a new set of binary decision variables PDAb,j and a cost com-
ponent for selecting vehicle providers, ∑

b∈B
∑
j∈J

PDAbj ∗ f pb, are considered.

Also, new constraints 2.5-2.9 have been introduced in the original model.
For the sake of the reader clarity all model sets, parameters and variables

contained are summarized in Tables 2.1, 2.2, and 2.3, respectively.

TABLE 2.1: Sets of the mathematical model

Indices Explanation
V set of nodes
J set of candidate depots
I set of customers
K set of vehicles
H set of discrete and finite planning horizon
B set of vehicles’ providers
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TABLE 2.2: Parameters of the mathematical model

Parameter Explanation
f j fixed opening cost of depot j

f pb fixed-contract cost of selecting provider b
Cj storage capacity of depot j
hi unit inventory holding cost of customer i
Qk loading capacity of vehicle k
dit period variable demand of customer i
cij travelling cost of locations pair (i, j)

VAk the ownership of vehicle k

TABLE 2.3: Decision variables of the mathematical model

Variable Explanation
yj 1 if j is opened; 0 otherwise
zij 1 if customer i is assigned to depot j; 0 otherwise

xijkt 1 if node j is visited after i in period t by vehicle k
qikt product quantity delivered to customer i in period t by vehicle k
witp quantity delivered to customer i in period p to satisfy its demand in period t

PDAb,j 1 if depot j is served by provider b; 0 otherwise

min ∑
j∈J

f jyj + ∑
i∈I

hi ∑
t∈H

(
1
2 dit + ∑

p∈H,p<t
witp (t− p) + ∑

p∈H,p>t
witp (t− p + |H|)

)
+ ∑

i∈V
∑

j∈V
∑

t∈H
∑

k∈K
cijxijkt + ∑

b∈B
∑
j∈J

PDAbj ∗ f pb

(2.1)
Subject to

∑
j∈V

xijkt − ∑
j∈V

xjikt = 0 ∀i ∈ V, ∀k ∈ K, ∀t ∈ H (2.2)

∑
j∈V

∑
k∈K

xijkt ≤ 1 ∀t ∈ H, ∀i ∈ I (2.3)

∑
j∈V

∑
k∈K

xjikt ≤ 1 ∀t ∈ H, ∀i ∈ I (2.4)

∑
i∈I

xjikt ≥ xbjkt ∀j ∈ J, ∀b ∈ B, ∀k ∈ K, ∀t ∈ H (2.5)
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xbjkt ≤ PDAbj ∗VAkb ∀b ∈ B, ∀j ∈ J, ∀k ∈ K, ∀t ∈ H (2.6)

xbb1kt = 0 ∀b, b1 ∈ B, ∀k ∈ K, ∀t ∈ H (2.7)

xbikt = 0 ∀b ∈ B, ∀i ∈ I, ∀k ∈ K, ∀t ∈ H (2.8)

xjbkt = 0 ∀j ∈ J, ∀b ∈ B, ∀k ∈ K, ∀t ∈ H (2.9)

xijkt = 0 ∀i, j ∈ J, ∀k ∈ K, ∀t ∈ H, i 6= j (2.10)

∑
i∈I

∑
b∈B

xibkt ≤ 1 ∀k ∈ K, ∀t ∈ H (2.11)

∑
i∈I

qikt ≤ Qk ∀k ∈ K, ∀t ∈ H (2.12)

∑
i∈S

∑
j∈S

xijkt ≤ |S| − 1 ∀k ∈ K, ∀t ∈ H, ∀S ⊆ I (2.13)

xjikt ≤ zij ∀j ∈ J, ∀i ∈ I, ∀k ∈ K, ∀t ∈ H (2.14)

∑
j∈J

zij = 1 ∀i ∈ I (2.15)

zij ≤ yj ∀i ∈ I, ∀j ∈ J (2.16)

∑
i∈I

(
zij ∑

t∈H
dit

)
≤ Cj ∀j ∈ J (2.17)

∑
u∈I

xujkt + ∑
u∈V\{i}

xiukt ≤ 1 + zij ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀t ∈ H (2.18)

∑
i∈I

∑
k∈K

∑
t∈H

xjikt ≥ yj ∀j ∈ J (2.19)

∑
i∈I

xjikt ≤ yj ∀j ∈ J, ∀k ∈ K, ∀t ∈ H (2.20)
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∑
p∈H

witp = dit ∀i ∈ I, ∀t ∈ H (2.21)

∑
t∈H

witp = ∑
k∈K

qikp ∀i ∈ I, ∀p ∈ H (2.22)

qikt ≤ M ∑
j∈V

xijkt ∀i ∈ I, ∀t ∈ H, ∀k ∈ K (2.23)

∑
j∈V

xijkt ≤ Mqikt ∀i ∈ I, ∀t ∈ H, ∀k ∈ K (2.24)

xijkt ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀t ∈ H, ∀k ∈ K (2.25)

yj ∈ {0, 1} ∀j ∈ J (2.26)

zij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (2.27)

qikt ≤ min

{
Qk, ∑

p∈H
dip

}
∀i ∈ I, ∀j ∈ J ,∀k ∈ K (2.28)

witp ≤ dip ∀i ∈ I, ∀t, p ∈ H (2.29)

The above MIP model is an extension of the work of Zhang et al. (2014)
and considers distribution outsourcing additionally. The objective function
minimizes the total cost consisting of facilities opening cost, holding costs per
unit of product kept at customers, routing costs and outsourcing costs. How-
ever, a short description of them is also provided in this section. Constraints
2.2 guarantee the equilibrium between the interior and exterior vehicles’ flow
in each node. Constraints 2.3 and 2.4 guarantee that each customer is visited
by exactly one vehicle per period. Constraints 2.5 ensure that if a vehicle is
sent from a provider to a depot, it should also be sent from that depot to a
customer in a selected time period. Constraints 2.6, ensure that a vehicle will
be moved from a provider to, an allocated to him depot with a vehicle owned
by him. Constraints 2.7-2.10 forbid a vehicle to be moved from provider to
provider, from provider to customer, from depot to provider and from depot
to depot, respectively. Constraints 2.11 prevent a vehicle from performing
more than one route per period. Constraints 2.12 impose that the capacity
of each vehicle will not be exceeded. The subtour elimination requirements
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are given in constraints 2.13. Constraints 2.14 guarantee that a vehicle will be
travelled from a depot to a customer only if that customer is allocated to the
depot. Constraints 2.15 and 2.16 ensure that a customer must be allocated to
exact one depot over the time horizon. Constraints 2.18 respect the capacity
of each depot. Constraints 2.19 prevent the linking of a customer to a depot,
if the customer is not allocated to that depot. A vehicle can be moved from a
depot to a customer, only if that depot is opened as imposed by constraints
2.20 and 2.21. The total amount of deliveries must be equal to the demand of
each customer as it is stated in constraints 2.22. Constraints 2.23 guarantee
that, the total amount of scheduled deliveries for a customer must be equal to
the overall actual deliveries to that customer. If a customer receives a replen-
ishment on a specific time period by a specific vehicle, he should be visited
by that vehicle as imposed by constraints 2.24 and 2.25.

2.4 Solution approach

2.4.1 Initialization phase

In order to find a feasible initial solution, a two-phase constructive heuris-
tic has been implemented. Location and allocation decisions are made in the
first phase while, inventory-routing decisions are determined in the second
phase.

Location-allocation strategy

To determine the location and allocation decisions, a ratio-based depots’
selection procedure combined with a nearest customer allocation strategy
have been developed. In the depots’ selection method, the ratio f ixed_opening_cost

Capacity
is initially computed for each candidate depot and then, the depot with the
minimum ratio is chosen. In the case that two or more depots have the same
ratio, one of them is selected arbitrarily (commonly the first found). Then,
for each opened depot the nearest customers’ allocation strategy is applied.
More precisely, the nearest customer to the opened depot is chosen. If the to-
tal demand of this customer is less or equal to the remaining capacity of the
depot then, the selected customer is allocated to the depot. This first phase
of the constructive heuristic is executed until the allocation of all customers.
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Also, each opened depot is allocated to a vehicles’ provider based on a min-
imum cost criterion (fixed-contract cost plus the routing cost depicted as the
distance between the provider and the depot).

Inventory-routing construction

For each time period and each depot, a number of vehicles is selected in
order to guarantee demand satisfaction of customers allocated to the current
depot. For each selected vehicle an assignment of customers is done based on
the limited capacity of the vehicle. In order to build the route of each vehicle,
the Random Insertion move is applied (Glover et al., 2001). According to the
inventory decisions, the quantity scheduled to be sent to each customer in
each time period equals to its corresponding demand in that period.

2.4.2 Improvement Phase

Neighborhood structures

Six neighborhood structures are considered for guiding the search during
the improvement phase as follows:

Inter-route Relocate (N1): This local search operator removes customer i
from his current route Ri and re-inserts him in a new route Rb, after customer
b, in each period. A prerequisite for applying this move is, both customers i
and b to be visited by vehicles in the same periods. Routes Ri and Rb, could
be allocated either to the same depot or to different depots over the time
horizon. If the move violates the capacity of the vehicle in route Rb, a re-
plenishment shifting move is applied. Four possible cases are met for this
neighborhood:

• Case 1: Ri and Rb are assigned to the same depot and no violations
occur on vehicles capacities.

• Case 2: Ri and Rb are assigned to the same depot and vehicles capacity
violations occur.

• Case 3: Ri and Rb are assigned to different depots and no violations
occur on vehicles capacities.

• Case 4: Ri and Rb are assigned to different depots and vehicles capacity
violations occur.
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In case 1 only routing decisions are taken. In the second case, both routing
and inventory decisions are made, while in the third case routing and allo-
cation decisions are improved. Finally, in case 4 routing, inventory and allo-
cation decisions are simultaneously addressed. Figures 2.1 and 2.2 provide
an illustrative example of applying the inter-route relocation of customer C3
after customer C1 (customers are allocated to the same depot) in a three pe-
riods instance.

FIGURE 2.1: Routes from the same depot in each time period
before the application of the inter-route relocate move.

FIGURE 2.2: Routes from the same depot in each time period
after the application of the inter-route relocate move.

An illustration of the inter-route relocate move applied on customers al-
located to different depots, is shown in Figures 2.3 and 2.4. More specifically,
customer C2 is removed from his current position and is inserted in the po-
sition after customer C4.

FIGURE 2.3: Routes from different depots in each time period
before the application of the inter-route relocate move.
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FIGURE 2.4: Routes from different depots in each time period
after the application of the inter-route relocate move.

Inter-route Exchange (N2): This neighborhood consists of swapping the
positions of two customers (i and b) from different routes (Ri and Rb) over
the time horizon. Routes Ri and Rb could be allocated to the same depot
or to different depots. In the first case the move may not be applied to all
time periods, while in the second case the swapping will be considered as
applicable only if it is valid for all time periods. Three special cases could be
met by applying this move:

• Case 1: No vehicles’ capacity violations occurred.

• Case 2: The demand of customer i violates the capacity of the vehicle
servicing customer b in one or more time periods.

• Case 3: The demand of customer b causes violations of the capacity of
vehicle servicing customer i in one or more time periods.

In the above case 1 only routing decisions are made, while in cases 2 and 3
both routing and inventory decisions are tackled (inventory: forward/backward
shifting to the nearest time periods). If customers are allocated in different
depots, changes on allocation decisions are then applied. Figures 2.5 and
2.6 illustrate the application of the move in a three period instance. In the
first period, customers C2 and C3 are swapped, while in the periods two and
three, the pairs of exchanged customers are (C2, C3) and (C3, C4), respec-
tively.

period 1 period 2 period 3

D1

C1
C2

C3

C4

C5

D1

C1
C2

C3

C4

C5

D1

C1
C2

C3

C4

C5

FIGURE 2.5: Routes from the same depot in each time period
before the application of the inter-route exchange move.
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period 1 period 2 period 3
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C1 C2

C3

C4

C5

FIGURE 2.6: Routes from the same depot in each time period
after the application of the inter-route exchange move.

An example of the inter-route exchange move between customers C3 and
C4, allocated to different depots, is illustrated in Figures 2.7 and 2.8.

FIGURE 2.7: Routes from different depots in each time period
before the application of the inter-route exchange move.

FIGURE 2.8: Routes from different depots in each time period
after the application of the inter-route exchange move.

Exchange Opened-Closed Depots (N3): This neighborhood consists of
exchanging a closed depot i with a currently opened one j. The exchang-
ing cost is calculated for each closed depot, with all opened depots. Then,
the opened depot with the minimum exchanging cost is marked as closed
and the validation of the move is examined. In the case of a valid move,
a reordering of the routes allocated on depot j is calculated, based on the
minimum insertion cost criterion of depot i. If the overall cost (location and
routing costs) is decreased then, the move is marked as accepted and it is ap-
plied. The move is summarized in the following example in Figures 2.9 and
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2.10. As it can be seen, in the route of customers C3, C4 and C5, a routing
re-ordering has also been applied.

D1

C1

C2

C3

C4

D2
C5

C6

FIGURE 2.9: Routes allocation before the opened-closed ex-
change move.

D1

D2

C1

C2

C3

C4

C5

C6

FIGURE 2.10: Routes allocation after the opened-closed ex-
change move.

Intra-route Relocate (N4): The intra-route relocate operator removes a
customer from its current position in its route and re-inserts it in a different
position. This move handles only routing decisions. In Figures 2.11 and 2.12
the relocation of customer C2 after the customer C4 is illustrated.

D1

C1

C2

C3

C4

FIGURE 2.11: Routes from the same depot in each time period
before the application of the intra-route relocate move.
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D1

C1

C2

C3

C4

FIGURE 2.12: Routes from the same depot in each time period
after the application of the intra-route relocate move.

2-2 Replenishment Exchange (N5): This local search operator randomly
selects two time periods t1 and t2 and then finds the two most distant cus-
tomers i and b, both serviced in those two periods. Then, it computes the
cost changes of removing i and b from their routes in periods t1 and t2 re-
spectively and shifting their receiving deliveries from t1 to t2 for customer i
and from t2 to t1 for b. This move is applied only in case where an improve-
ment is produced and no vehicles’ capacities are violated. Figures 2.13 and
2.14 provide an illustrative example of this move, applied on customers C1
and C4, that are allocated in the same route.

FIGURE 2.13: Routes in the two selected time periods before the
application of the 2-2 replenishment exchange move.

FIGURE 2.14: Routes in the two selected time periods after the
application of the 2-2 replenishment exchange move.
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The 2-2 Replenishment Exchange can also be applied on customers allo-
cated to different routes. An example is presented in Figures 2.15 and 2.16,
in which the move is applied between customers C1 and C5.

FIGURE 2.15: Routes in the two selected time periods before the
application of the 2-2 replenishment exchange move.

FIGURE 2.16: Routes in the two selected time periods after the
application of the 2-2 replenishment exchange move.

Change Provider (N_6): This local search operator examines for each
opened depot if an improvement may be achieved by allocating it to an other
vehicles’ provider. In the following illustrated example (Figure 2.17), the de-
pot D1 which is allocated to provider P1, it will be allocated to provider P2.
The order of customers in the routes remains the same.

P1

P2

D1

C1

C2

C4
C3

C5

P1

P2

D1

C1

C2

C4
C3

C5

FIGURE 2.17: An example of the Change Provider operator
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In order to avoid vehicles’ capacity violations by applying the Inter-route
Relocate and Inter-route Exchange moves, shifting of surplus product quan-
tity may be needed to be also applied. An example of the application of
the shifting procedure is given in Figure 2.18. As it can be seen, the surplus
quantity in the second time period is equal to 15 for a selected customer. This
customer is also serviced in first and third time periods and the available free
space in the corresponding vehicles in these periods are 18 and five respec-
tively. So, five units of product are shifted forward to the third time period
and 10 units are shifted backward in the first time period.

FIGURE 2.18: Example of the quantity shifting procedure.

Shaking procedure

A shaking procedure is developed in order to escape from local optimum
solutions (Hansen et al., 2017). Thus, in each shaking phase a number of ran-
dom jumps are applied in a randomly selected neighborhood from a prede-
fined set of neighborhoods. The pseudo-code of this diversification method
is presented in Algorithm 4, with the incumbent solution S and the maximum
number of random jumps kmax = 12 (where kmax was experimentally set) as
input. The new solution S′ is obtained by applying k (where 1 < k < kmax)
times one randomly selected neighborhood (from the total lmax = 4 neighbor-
hoods) and it is then returned as output.
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Algorithm 4 Shaking Procedure

1: procedure SHAKE(S, k, lmax)
2: l = random_integer(1, lmax)

3: for i← 1, k do
4: select case(l)
5: case(1)
6: S′ ← Inter_Relocate(S)
7: case(2)
8: S′ ← Exchange_OpenedClosed_Depots(S)
9: case(3)

10: S′ ← Intra_Relocate(S)
11: case(4)
12: S′ ← Inter_Exchange(S)
13: end select
14: end for
15: Return S′

16: end procedure

General Variable Neighborhood Search (GVNS)

As it has already been mentioned, the GVNS variant is an extension of
the BVNS. Its main difference is the usage of a VND scheme as an improve-
ment strategy. In this chapter, GVNS-based solution methods using either the
cVND or the pVND as the intensification phase and both the first and best
improvement (FI and BI respectively) search strategy are examined. The
proposed GVNS algorithm is summarized in the following pseudo-code.
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Algorithm 5 General VNS

1: procedure GVNS(S, kmax, max_time, lmax)
2: while time ≤ max_time do
3: for k← 1, kmax do
4: S∗ = Shake(S,k, lmax)
5: S′ = pVND(S∗)
6: if f (S′) < f (S) then
7: S← S′

8: end if
9: end for

10: end while
11: return S
12: end procedure

Inventory Rescheduling Procedure

The Inventory Rescheduling Procedure (InvRP) functions as a post opti-
mization part of the proposed solution approach. In each iteration, the most
distant customer is selected and the total periods in which this customer is
visited by vehicles, in order to satisfy his demand, are kept. Then, an alterna-
tive replenishment scheme is examined, trying to reduce the periods needed
to visit the selected customer and as a result to reduce the routing costs. The
method is terminated either when all customers have been checked or a time
stopping criterion is met. An explanation of the variables and the parameters
presented in the pseudo-code of Inventory Rescheduling Procedure is firstly
given and then, the pseudo-code is provided in Algorithm 6.

• NPeriods : Keeps the total number of time periods.

• NumO f NeededPeriods : keeps the minimum number of periods needed
to satisfy the total demand of a selected customer.

• DemO f I : Keeps the total demand of a selected customer over the plan-
ning horizon.

• AvailableVehicles : a binary 2D array (NVehicles ∗NPeriods) which denotes
if a vehicle can visit a selected customer in a period (value equals 1, or
not (value equals 0).

• Veh2ServeI : Stores the vehicle scheduled to visit a selected customer in
a specific period.
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• Period2ServeI : Logical array which marks the selected periods in the
new replenishment plan as “True”.

Algorithm 6 Inventory Rescheduling Procedure

1: procedure INVRP(S)
2: while a stopping criterion is not met do
3: Find the most distant customer i of all opened depots
4: Mark customer i as “checked”
5: for t← 1, NPeriods do
6: Find all the available vehicles for visiting i in t
7: Store those vehicles in AvailableVehicles
8: end for
9: Compute the total periods in which i is currently serviced,

NPeriodsServedI
10: Compute the total demand of customer i, DemO f I
11: NumO f NeededPeriods = 0
12: while DemO f I > 0 do
13: Find an unselected vehicle k ∈ AvailableVehicles with maxCapacity
14: Keep the vehicle in Veh2ServeI and the period in Period2ServeI
15: NumO f NeededPeriods = NumO f NeededPeriods + 1
16: Recalculate DemO f I based on the partial new replenishment schedule
17: end while
18: if NumO f NeededPeriods < NPeriodsServedI then
19: for t← 1, NPeriods do
20: if Period2ServeI(t) then
21: Calculate changes on Inventory_Cost and Routing_Cost
22: Reschedule vehicle routes for i
23: end if
24: end for
25: if Improvement then
26: Renew Inventory and Routing Costs and Inventory_Levels
27: Apply the routes’ rescheduling
28: end if
29: end if
30: end while
31: return S
32: end procedure
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GVNS-InvRP

The pseudo-code of the GVNS-InvRP follows in Algorithm 7.

Algorithm 7 GVNS-InvRP

1: procedure GVNS-INVRP
2: S← TwoPhaseConstructionHeuristic
3: while time < max_time do
4: S′ ← GVNS(S)
5: end while
6: S← InventoryReschedulingProcedure(S′)
7: return S
8: end procedure

Figure 2.19 illustrates a flowchart of the proposed solution approach.
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Start GVNS-InvRP

Read the problem’s data

Build an initial feasible solution S
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k =1
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Apply the Inventory Rescheduling Procedure
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FIGURE 2.19: The flowchart of the proposed solution approach.

Initially, a feasible solution is obtained using the two-phase construction
heuristic. This is the initial solution of the proposed solution method. GVNS
is iteratively executed for 60s and alternates its shaking procedure, the pipe-
VND procedure and the solution update step. In each shaking iteration, one
of the shaking operators (see subsection 2.4.2) is randomly selected and ap-
plied k times (where the parameter k starts with the value one and increased
by one in each iteration until k = kmax. If k equals kmax and the stopping
criterion is not met, then the parameter k is set to one). Then, the pVND
is applied. In this improvement step, all the local search operators are se-
quentially applied with the predefined order (see subsection ??). The search
with each local search operator is continued until no more improvements
are obtained. After the completion of the pipe-VND, a solution update is
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performed, by checking if a better solution is available. Subsequently to the
GVNS, the Inventory Rescheduling procedure is applied for each customer,
starting from the most distant one. The goal of this post-optimization method
is to reduce total cost by rescheduling the replenishment plan mainly of the
most distant customers, in order to avoid frequent deliveries to them.

Furthermore, an auxiliary subroutine has been developed in order to en-
sure the feasibility of each solution. This subroutine examines whether the
new solution satisfies the constraints of the model and checks the validations
of cost renewals.

2.5 Computational analysis and results

In this section, a computational analysis is presented in order to evaluate
the performance of the proposed solution method. In subsection 4.5.1, the
necessary technical details (e.g., computing environment) are provided. Sub-
section 2.5.2 provides the results achieved by solving the LIRPDO while the
subsection 2.5.3 summarizes the results obtained by the proposed algorithm
on 20 LIRP benchmarks from the work of Zhang et al. (2014) and compared
with those achieved by the proposed methods presented in the same work.
In subsection 2.5.4 the results achieved by the GVNS-InvRP on 30 randomly
generated large-scale instances are presented.

2.5.1 Computing environment & parameter settings

The methods presented in this work were implemented in Fortran and
ran on a desktop PC running Windows 7 Professional 64-bit with an Intel
Core i7-4771 CPU at 3.5 GHz and 16 GB RAM. The compilation of codes was
done using Intel Fortran compiler 18.0 with optimization option /O3. Also,
the maximum execution time limit was set (max_time = 60s) for the GVNS
approach. The LIRPDO instances were modeled using GAMS (GAMS 24.9.1)
(Brooke et al., 1998) and solved using CPLEX 12.7.1.0 solver with specified
time limit (2h). CPLEX ran in the same computing environment with Intel
Fortran compiler.
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2.5.2 Computational results on LIRPDO instances

This is the first study introducing the LIRPDO, thus there are no previ-
ously published test instances in order to compare the efficiency of the pro-
posed solution method. Consequently, 20 new instances were randomly gen-
erated following the instructions described in subsection 5.3.1 in the work
of Zhang et al. (2014). The instances’ names are shaped as X-Y-Z-L, where
X is the number of potential depots, Y the number of potential vehicles’
providers, Z the number of customers and L the number of time periods.
These problem instances are available at: http://pse.cheng.auth.gr/index.
php/publications/benchmarks.

Figures 2.20 and 2.21 illustrates the performance of the proposed solu-
tion approaches using either the cVND and the pVND as the main improve-
ment phase and following both the first and best improvement search strate-
gies. It is obvious that the overall performance can be improved by adopting
an adaptive mixed search strategy. More specifically, the best improvement
search strategy will be applied for instances with up to 90 customers and the
first improvement search strategy for the cases with more than 90 customers.
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FIGURE 2.20: Performance of GVNS-InvRP with CVND using
FI and BI.

http://pse.cheng.auth.gr/index.php/publications/benchmarks
http://pse.cheng.auth.gr/index.php/publications/benchmarks
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FIGURE 2.21: Performance of GVNS-InvRP with PVND using
FI and BI.

Table 2.4 provides the results obtained by CPLEX, GVNS-InvRP with cVND
as improvement phase and GVNS-InvRP with pVND. The results of GVNS-
InvRP with cVND and GVNS-InvRP with pVND were achieved by the adap-
tive mixed search strategy. More specifically, in the first column the names of
the instances are provided. The second column presents the results achieved
by CPLEX, while the third, fourth, and sixth column provide the results
achieved by the construction heuristic, the GVNS-InvRP with cVND, and
the GVNS-InvRP with pVND, respectively. The fifth and the seventh col-
umn show the solution quality gaps of the two proposed methods with the
CPLEX. The results of GVNS-based schemes are the average values of five
runs per instance.
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TABLE 2.4: Computational results on 20 LIRPDO

Instance CPLEX (a) CH (b) GVNS− InvRPcVND (c) gap (a-c) % GVNS− InvRPpVND (d) gap (a-d) %
4-3-8-3 16,253.89 16,738.29 16,262.33 -0.05 16,235.09 0.12

4-3-10-3 31,509.82 32,125.66 32,073.5 -1.79 32,074.06 -1.79
4-5-10-3 15,727.25 19,409.16 15,724.75 0.02 15,650.88 0.49
4-5-15-5 35,379.9 20,592.56 18,230.54 48.47 18,447.7 47.86
5-7-20-3 - 18,738.69 16,713.07 - 16,611.04 -
5-7-32-5 - 20,475.58 18,299.22 - 18,282.23 -
5-8-45-3 - 21,996.29 18,607.6 - 18,556.2 -
6-8-50-3 - 22,910.67 20,253.66 - 20,235.43 -
6-8-52-5 - 26,446.71 22,348.18 - 22,164.47 -
6-10-60-5 - 42,149.89 32,261.79 - 31,480.11 -
7-10-90-5 - 23,385.28 20,559.74 - 20,336.99 -

7-10-100-5 - 28,507.57 23,036.91 - 23,267.29 -
8-12-102-5 - 25,672.16 22,742.8 - 22,908.09 -
8-12-105-7 - 34,655.32 26,642.79 - 26,560.92 -
8-12-110-7 - 29,469.44 25,236.26 - 24,858.34 -
9-13-110-5 - 24,167.27 22,668.91 - 22,658.02 -
9-14-115-5 - 31,685.59 25,162.47 - 25,271.55 -
9-15-120-7 - 31,560.26 25,156.09 - 25,385.52 -
9-15-125-7 - 71,088.4 59,797.43 - 56,382.8 -

10-20-130-7 - 55,651.04 43,396.27 - 43,584.51 -

Also, in Table 2.5 the number of the opened depots and selected providers
in the final solution of each solution method are provided.
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TABLE 2.5: The number of opened depots and selected
providers on 20 LIRPDO instances.

Instance CPLEX GVNS− InvRPcVND GVNS− InvRPpVND

Depots Providers Depots Providers Depots Providers

4-3-8-3 2 1 2 1 2 1
4-3-10-3 3 2 3 2 3 2
4-5-10-3 2 1 2 1 2 1
4-5-15-5 3 3 2 1 2 1
5-7-20-3 - - 2 1 2 1
5-7-32-5 - - 2 1 2 1
5-8-45-3 - - 2 1 2 1
6-8-50-3 - - 2 1 2 1
6-8-52-5 - - 2 1 2 1

6-10-60-5 - - 2 1 2 1
7-10-90-5 - - 2 1 2 1

7-10-100-5 - - 2 1 2 1
8-12-102-5 - - 2 1 2 1
8-12-105-7 - - 2 1 2 1
8-12-110-7 - - 2 1 2 1
9-13-110-5 - - 2 1 2 1
9-14-115-5 - - 2 1 2 1
9-15-120-7 - - 2 1 2 1
9-15-125-7 - - 2 2 2 2

10-20-130-7 - - 2 1 2 1

The CPLEX solver was able to provide an integer solution only for the
four small-sized instances (4-3-8-3 to 4-5-15-5). For the next six medium-
sized instances CPLEX cannot produce any feasible solution within a 2h time
limit, while for the last 10 large-sized problem instances an out of memory
error occurred during the execution. Both GVNS-based schemes were able
to provide even for the small-sized instances high quality solutions in no
more than 60 seconds. More specifically, for the case of the three small-sized
instances 4− 3− 8− 3, 4− 3− 10− 3 and 4− 5− 10− 3 the solutions obtained
by CPLEX solver in 2h are almost equal to those achieved by the proposed
methods in one minute. However, for the case of the instance 4− 5− 15−
5, both GVNS− InvRPcVND and GVNS− InvRPpVND produce 48.47% and
47.86% better solutions than CPLEX, respectively.

Table 2.6 reports the best found values of the 20 LIRPDO instances.
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TABLE 2.6: Best values found on 20 LIRPDO instances

Instance Best Instance Best
4-3-8-3 16,208.14 7-10-90-5 20,310.28

4-3-10-3 32,058.2 7-10-100-5 22,843.81
4-5-10-3 15,501.9 8-12-102-5 22,683
4-5-15-5 18,146.71 8-12-105-7 26,232.41
5-7-20-3 16,604.6 8-12-110-7 24,823.45
5-7-32-5 18,011 9-13-110-5 22,371.2
5-8-45-3 18,537.22 9-14-115-5 24,958.39
6-8-50-3 20,168.32 9-15-120-7 25,005.08
6-8-52-5 22,000.75 9-15-125-7 54,365.64

6-10-60-5 31,410.41 10-20-130-7 42,398.68

2.5.3 Computational results on LIRP instances (Zhang et al.,2014)

The proposed methods with minor modification (remove the Change Provider
local search operator and disable the provider selection in construction heuris-
tic) can also solve LIRP instances, following the approach of Zhang et al.
(2014). In this section a comparative analysis between the proposed GVNS-
InvRP method, the SA-Hyb-ILRP, and the Sequential heuristic presented by
Zhang et al. (2014) is provided. They divided the 20 LIRP instances into
small-sized and large-sized instances. The 20 LIRP instances were classified
according to their size, as presented in the literature (Mjirda et al., 2014) as
follows:

• 10 small sized instances (with less than 20 customers).

• 6 medium sized instances (with customers between 20 and 90).

• 4 large sized instances (with more than 90 customers).

Figure 2.22 illustrates the performance of the two GVNS-based schemes
using the adaptive mixed search strategy in all 20 LIRP instances. The results
of the two methods are close enough, except the cases of some instances in
which the GVNS-InvRP with the pVND as improvement method generates
better solutions. Therefore, the GVNS-InvRP using pVND is selected to be
compared with the solution approaches presented by Zhang et al. (2014).
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FIGURE 2.22: Performance of GVNS-InvRP with cVND and
pVND using the adaptive mixed search strategy.

Table 2.7 shows the results of all three methods. More specifically, in the
first column the names of instances are given. The name of each instance
formed as D − C − P, where D is the number of the potential locations of
depots, C is the number of customers and P represents the time periods. In
columns 2 and 3 the results of SA-Hyb-ILRP and Sequential heuristic (Zhang
et al., 2014) are provided, while the fourth column presents the average val-
ues of each instance (average of 5 runs) achieved by GVNS-InvRP method.
The last two columns report the solution quality gap between the proposed
method and the methods of Zhang et al. (2014).

The gaps are calculated as follows:

GapSA_Hyb_ILRP−Seq_GVNS_InvRP =
(SSA_Hyb_ILRP−SSeq_GVNS_InvRP)

SSA_Hyb_ILRP
∗ 100

and

GapSequentialheuristic−Seq_GVNS_InvRP =
(SSequentialheuristic−SSeq_GVNS_−InvRP)

SSequentialheuristic
∗ 100 .
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TABLE 2.7: Computational results on 20 LIRP benchmarks
(Zhang et al., 2014)

Instance SA-Hyb-ILRP (a) Sequential heuristic (b) GVNS-InvRP (c) gap (a-c) % gap (b-c) %

Objective Time Objective Time Objective Time

2-5-3 9,958.98 15.96 10,363.16 1.14 10,072.38 60 -1.14 2.81

3-8-3 6,774.87 46.8 6,799.58 5.1 7,176.86 60 -5.93 -5.55

3-8-5 17,654.66 74.21 19,458.83 6.52 18,407.34 60 -4.26 5.4

3-8-7 14,252.47 125.14 14,372.96 5.25 15,144.31 60 -6.26 -5.37

3-10-3 6,530.9 260.32 7,101.85 12.32 6,986.72 60 -6.98 1.62

3-15-7 15,220.19 485.68 17,980.15 18.65 16,199.62 60 -6.44 9.90

5-10-5 19,936.59 587.63 20,070.7 20.12 21,055.71 60 -5.61 -4.91

5-10-7 3,296.23 495.6 3,709.88 14.23 3,941.18 60 -19.57 -6.23

5-15-5 3,143.41 523.65 4,157.6 17.86 3,622.48 60 -15.24 12.87

5-15-7 18,531.83 547.21 18,820.99 19.85 19,444.16 60 -4.92 -3.31

5-30-3 8,343.27 587.6 8,402.36 18.52 9,043.30 90 -8.39 -7.63

5-40-5 13,507.89 698.52 13,919.62 26.5 14,731.14 90 -9.06 -5.83

5-120-5 28,938.4 1042.68 37,906.5 80.35 14,793.61 90 48.88 60.97

8-50-7 10,127.58 714.3 19,341.65 28.65 11,340.69 90 -11.98 41.37

8-70-5 12,391.97 498.63 12,794.09 16.5 14,284.63 90 -15.27 -11.65

8-80-5 9,520.99 785.6 11,030.4 29.85 10,928.24 90 -14.78 0.93

10-60-3 3,837.94 695.25 4,148.37 20.2 4,216.21 90 -9.86 -1.64

15-100-7 27,761.56 1236.21 37,728.64 30.98 9,947.47 90 64.17 73.63

20-150-7 46,148.96 1562.3 55,912.54 58.47 14,485.69 90 68.61 74.09

25-300-7 87,186.54 2365.87 88,003.22 205.85 30,094.08 90 65.48 65.8

Average 18,153.26 667.46 20,601.15 31.84 12,795.79 75 5.07 14.86

As it is shown in Table 2.7 the solutions obtained by the GVNS-InvRP
on the 20 large-sized instances (Zhang et al., 2014) are 5.07% better than the
SA-Hyb-ILRP and 14.86% better than the Sequential heuristic, while the cor-
responding improvements for the four large-scale instances are 61.9% and
68.63%, respectively. The proposed method is much faster than the SA-Hyb-
ILRP as it produces the solutions of all 20 LIRP instances in an average time of
75 s, while the SA-Hyb-ILRP needs 667.46 s. Focusing on the four large-scale
instances, the GVNS-InvRP solves them with an average time of 90 s, while
the SA-Hyb-ILRP needs an average of 1551.77 s. The Sequential Heuristic
functions faster than the GVNS-InvRP for all the 20 LIRP instances, but for
the four large-scale instances its average computational time is increased to
93.91 s.

It can be noticed that, the SA-Hyb-ILRP performs 7.64% better than the
GVNS-InvRP on small-sized instances and 11.56% on six medium-sized in-
stances. This preeminence of SA-Hyb-ILRP may be attributed to its hybridiza-
tion with exact methods. Sequential heuristic performs almost equivalently
to the GVNS-InvRP for the case of small-scaled instances, with the proposed
method to produce 0.72% better solutions and 2.59% better solutions for
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medium-sized problem instances. This inefficiency of the proposed solution
method may be attributed to the use of a predefined order of the local search
operators in the pVND, which can potentially limit the exploration perfor-
mance of the proposed solution method for small- and medium-sized prob-
lem instances. However, the main strength of the GVNS-InvRP is its ability
of opening the minimum required number of depots for satisfying the total
demand of all customers.

TABLE 2.8: Number of opened depots in four large-sized LIRP
instances (Zhang et al., 2014)

Instance CFLP GVNS-InvRP SA-Hyb-ILRP
5-120-5 2 2 4

15-100-7 2 2 6
20-150-7 2 2 7
25-300-7 2 2 14

Table 2.8 presents the number of the opened depots by each solution
method for the four large-sized instances. The second column provides the
number of opened depots in the optimal solution of the Capacitated Fixed-
charge Location problem presented by Zhang et al. (2014), and columns 3 and
4 provide the number of opened depots in the final solution of GVNS-InvRP
and SA-Hyb-ILRP, respectively. The first column contains the instances names.
As it can be observed, GVNS-InvRP focus on opening the minimum number
of the needed depots. The randomly opening of depots in Depot-Exchange
post optimization operator in SA-Hyb-ILRP might be attributed for opening
more depots and as a consequence for increasing the overall cost.

2.5.4 Computational results on randomly generated large-scale

instances

30 new large-scale instances (currently the largest available in the liter-
ature) were generated following the instructions described by Zhang et al.
(2014) in subsection 5.3.1. The smallest instance consists of 28 depot poten-
tial locations, 320 customers, and 7 time periods while the biggest one con-
sists of 120 depot potential locations, 680 customers, and 12 time periods.
These problem instances are available http://pse.cheng.auth.gr/index.php/
publications/benchmarks.

http://pse.cheng.auth.gr/index.php/publications/benchmarks
http://pse.cheng.auth.gr/index.php/publications/benchmarks
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In order to evaluate the performance of GVNS-InvRP on these large-scale
instances, a comparison between GVNS-InvRP and CPLEX is attempted, but
an out-of-memory error is occurred. Table 2.9 reports the average and the
best solutions achieved by GVNS-InvRP with either cyclic and pipe VND
as improvement method. Each solution reported in Table 2.9 is the average
value of five runs.

TABLE 2.9: Computational results on 30 large scale LIRP in-
stances (average & best solutions)

Instance GVNS− InvRPcVND GVNS− InvRPpVND Gap % BestKnownValue
28-320-7 19,335.81 19,431.41 -0.49 19,011.52
30-350-7 18,499.62 17,901.95 3.23 17,882.12
30-375-7 32,852.77 31,379.75 4.48 30,015.27
32-380-7 26,085.52 24,134.91 7.48 23,456.88
35-400-7 20,804.13 21,079.49 -1.32 20,658.84
37-415-7 26,222.85 26,210.01 0.05 25,746.4
40-420-7 21,438.87 21,472.92 -0.16 21,301
42-450-7 29,078.81 29,021.97 0.2 28,740.94
45-480-7 26,407.55 26,398.17 0.04 26,189.98
47-490-7 23,237.25 23,264.26 -0.12 23,015.13
50-490-9 41,778.62 41,851.58 -0.17 41,229
52-495-9 65,948.28 66,398.66 -0.68 65,335.34
55-500-9 31,431.10 31,817.83 -1.23 31,379.49
62-510-9 79,544.16 79,263.62 0.35 78,725.77
65-520-9 32,688.15 32,593.36 0.29 32,072.06
67-540-9 42,637.17 43,064.84 -1 41,954.39
70-550-9 48,195.86 48,273.41 -0.16 48,024
74-560-9 33,359.90 33,081.88 0.83 32,907.79
78-570-9 35,041.01 35,799.88 -2.17 34,862.95
80-580-9 61,245.09 62,322.33 -1.76 60,756.2

85-590-12 68,559.28 69,257.85 -1.02 68,367.91
90-595-12 104,381.54 104,045.38 0.32 103,671.9
92-600-12 78,181.17 78,074.18 0.14 77,596.09
95-610-12 78,976.95 80,957.60 -2.51 76,871.55
98-620-12 65,268.30 64,902.25 0.56 64,808.86

100-650-12 51,805.04 51,429.94 0.72 51,337.58
105-655-12 132,348.48 132,425.78 -0.06 131,798.1
110-660-12 54,551.25 54,447.37 0.19 54,005.45
115-670-12 53,860.97 53,653.04 0.39 52,836.14
120-680-12 61,965.16 61,839.74 0.2 60,905.86

Average 48,857.69 48,859.84 0.22 48,182.15
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TABLE 2.10: Heuristic vs metaheuristic performance on 30
large scale LIRP instances

Instance Two-phase heuristic GVNS− InvRPpVND Gap %
28-320-7 23,688.94 19,431.41 17.97
30-350-7 20,583.44 17,901.95 13.03
30-375-7 45,948.68 31,379.75 31.71
32-380-7 36,242.85 24,134.91 33.41
35-400-7 27,343.06 21,079.49 22.91
37-415-7 38,818.12 26,210.01 32.48
40-420-7 27,067.15 21,472.92 20.67
42-450-7 38,391.9 29,021.97 24.41
45-480-7 34,203.68 26,398.17 22.82
47-490-7 27,656.52 23,264.26 15.88
50-490-9 58,521.38 41,851.58 28.48
52-495-9 103,278.6 66,398.66 35.71
55-500-9 37,453.72 31,817.83 15.05
62-510-9 138,957.9 79,263.62 42.96
65-520-9 38,588.45 32,593.36 15.54
67-540-9 52,051.25 43,064.84 17.26
70-550-9 61,861.2 48,273.41 21.96
74-560-9 37,137.18 33,081.88 10.92
78-570-9 41,172.02 35,799.88 13.05
80-580-9 88,570.99 62,322.33 29.64

85-590-12 81,680.78 69,257.85 15.21
90-595-12 136,311 104,045.38 23.67
92-600-12 94,972.56 78,074.18 17.79
95-610-12 90,975.61 80,957.6 11.01
98-620-12 75,700.98 64,902.25 14.26
100-650-12 55,773.44 51,429.94 7.79
105-655-12 162,519 132,425.78 18.52
110-660-12 58,072.93 54,447.37 6.24
115-670-12 57,275.8 53,653.04 6.33
120-680-12 67,627.68 61,839.74 8.56

Average 61,948.23 48,859.84 19.84

Many companies face complex supply chain optimization problems, such
as the LIRP and the LIRPDO and they try to deal with them using simple
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heuristics, as the two-phase construction heuristic described in subsection
2.4.1. However, results reported in Table 2.10 illustrate clearly that, the use
of pure metaheuristic approaches can help companies to improve their cost
efficiency. For example, in the case of the large-sized LIRP instances, the
GVNS − InvRPpVND has resulted in approximately 20% better solutions
(in average) than a simple heuristic.

2.6 Concluding remarks

This chapter considers the optimization of a new complex supply chain
problem, the LIRPDO. This problem integrates strategic, tactical, and oper-
ational level decisions in order to explore simultaneously their synergistic
benefits. Due to its computational complexity, a new metaheuristic solution
approach was developed, based on the framework of GVNS. An extensive
computational analysis on several large-scale problem instances illustrates
the efficiency of the proposed approach in terms of solution quality, espe-
cially in large-scale problem instances with potential industrial relevance.
Two are the main strengths of the proposed solution approach. The first is
its ability to open the minimum required number of depots for satisfying the
customers demand (see Table 2.8) . The second one, is the adaptive search
strategy, which significantly enhances the performance of the improvement
phase in the GVNS component of the proposed solution method. However,
the proposed approach does not perform efficiently in small- and medium-
sized problem instances.
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Chapter 3

Optimization of Pollution-
Location-Inventory-Routing
Problems

3.1 Introduction

LIRP is a complex NP-hard combinatorial optimization problem, which
simultaneously tackles strategic (location/allocation), tactical (inventory lev-
els and replenishment rates) and operational (routing schedules) decisions
(Javid & Azad, 2010; Rayat et al., 2017b; Zhang et al., 2014). Its main goal is to
determine an optimal schedule for achieving economic benefits, such as total
cost minimization (Jabir et al., 2017). However, due to the fact that the supply
chain activities emit pollutants, like carbon dioxide (CO2), the environmen-
tal impact of logistics should also be considered (Cheng et al., 2017; Koç et al.,
2014). This chapter presents a Pollution-LIRP (PLIRP), which considers both
economic and environmental impacts of the main logistic activities, such as
facilities location, inventory control and vehicle routing.

3.2 Problem statement

The PLIRP is defined as a two-echelon SCN.
Given:

• a set of time periods,

• a set of potential capacitated depots,

• a set of geographically distributed customers,

• a set of homogeneous capacitated fleet of vehicles,
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• a single type of product,

• a period-variable demand of each customer

Determine:

• the number and location of depots to be established,

• the allocation of customers to the opened depots,

• the inventory levels at each customer,

• the replenishment quantities and rates for each customer,

• the routes of vehicles,

• the selection of a speed level for traveling each link of the scheduled
network.

In order to: minimize an objective function representing the total cost.

The key model assumption are as follows:

• each customer is serviced by one depot,

• each customer is serviced by at most one vehicle in each time period,

• a vehicle departs from and returns to the same depot after servicing one
or more customer(s),

• the total delivered quantity to each customer over the time horizon
must be equal to its total demand,

3.3 Mathematical formulation

The problem is formulated as a mixed integer programming model, by in-
tegrating an LIRP model (Zhang et al., 2014) with a Green Inventory-Routing
problem (G-IRP) model (Cheng et al., 2017). Its sets, parameters and vari-
ables are provided in Tables 3.1, 3.2, 3.3, and 3.4.
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TABLE 3.1: Sets of the mathematical model

Indices Explanation
V set of nodes
J set of candidate depots
I set of customers
K set of vehicles
H set of discrete and finite planning horizon
R set of speed levels

TABLE 3.2: Vehicles’ parameters

Parameter Explanation Value

ε fuel-to-air mass ratio 11

g gravitational constant (m/s2) 9.811

ρ air density (kg/m3) 1.20411

CR coefficient of rolling resistance 0.011

η efficiency parameter for diesel engines 0.451

fc unit fuel cost (Euros/L) 1.3

fe unit CO2 emission cost (Euros/kg) 0.27931

fd driver wage (Euros/s) 0.00251

σ CO2 emitted by unit fuel consumption (kg/L) 2.6691

HVDF heating value of a typical diesel fuel (kj/g) 441

ψ conversion factor (g/s to L/s) 7371

θ road angle 01

τ acceleration (m/s2) 01

CWk curb weight (kg) 35002

EFFk engine friction factor (kj/rev/L) 0.251

ESk engine speed (rev/s) 391

EDk engine displacement (L) 2.771

CADk coefficient of aerodynamics drag 0.61

FSAk frontal surface area (m2) 91

VDTEk vehicle drive train efficiency 0.41

1: (Cheng et al., 2017) 2: (Koç et al., 2014)

The value of the parameter fc is calculated as the average of the petrol
prices in 40 European countries taken from the site www.globalpetrolprices.
com in 26th of February in 2018. The value of parameters fe and fd are con-
verted into Euro currency (26th of February, 2018).

www.globalpetrolprices.com
www.globalpetrolprices.com
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TABLE 3.3: Rest PLIRP model parameters

Notation Explanation
f j fixed opening cost of depot j
Cj storage capacity of depot j
hi unit inventory holding cost of customer i
Qk loading capacity of vehicle k
dit period-variable demand of customer i
cij distance of locations pair (i, j)
sr the value of the speed level r

TABLE 3.4: PLIRP model variables

Notation Explanation
yj 1 if j is opened; 0 otherwise
zij 1 if customer i is assigned to depot j; 0 otherwise

xijkt 1 if node j is visited after i in period t by vehicle k
qikt product quantity delivered to customer i in period t by vehicle k
witp quantity delivered to customer i in period p to satisfy its demand in period t
avikt load weight by travelling from node v to the customer i with vehicle k in period t

zzv1v2ktr 1 if vehicle k travels from node v1 to v2 in period t with speed level r

The objective of the problem represents the minimization of total cost,
including the following cost components:

• Location Cost: ∑
j∈J

f jyj, which represents the cost of opening the needed

number of depots.

• Inventory Cost: ∑
i∈I

hi ∑
t∈H

(
1
2 dit + ∑

p∈H,p<t
witp (t− p) + ∑

p∈H,p>t
witp (t− p + |H|)

)
.

It consists of three cost components. The first component represents the
average inventory holding cost. The remaining terms impose penalty
costs for any early or late replenishment.

• Routing Cost: ∑
i∈V

∑
j∈V

∑
t∈H

∑
k∈K

cijxijkt. It represents general routing costs,

such as vehicles’ maintenance and/or insurance costs.

• Fuel Consumption Cost: ∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈H

{
λ ( fc + ( feσ))

(
∑

r∈R

(zzijktr EFFk ESk EDk cij)
sr

+

(
αγk

(
CWk xijkt + aijkt

)
cij

)
+

(
βk γk ∑

r∈R

(
sr zzijktr

)2
))}

. The Com-

prehensive Modal Emission Model (CMEM) is adopted (Barth et al.,
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2005). Thus, the fuel consumption is affected by vehicle specific char-
acteristics, such as the weight of the load, the vehicle’s speed and obvi-
ously the traveling distance. More specifically, the following formulas
are utilized.

– λ = ε
HVDF∗ψ

– γk =
1

1000 VDTE η

– α = τ + g CR sin θ + g CR cos θ

– βk = 0.5 CAD ρ FSAk

The first component is the fuel consumption based on the vehicles’ en-
gine function, while the second cost term represents the cost of con-
sumed fuel because of the total vehicles’ weight (curb weights plus load
weights). The third one represents the fuel consumption cost related to
the vehicles’ speed levels.

• Driver Wages Cost: ∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈H

∑
r∈R

fd
(zzijktr cij)

sr
, which represents the

cost of the drivers wages.

Thus, the total cost (TC) is calculated as: TC = Location Cost+ inventory Cost+
Routing Cost + Fuel Consumption Cost + Driver Wages Cost.
The mathematical formulation, of the problem under consideration, is as fol-
lows:

min TC (3.1)

Subject to

∑
r∈R

zzijktr = 1 ∀i, j ∈ V, ∀k ∈ K, ∀t ∈ H (3.2)

∑
i∈V

aijkt − ∑
i∈V

ajikt = qjktPW ∀j ∈ I, ∀k ∈ K, ∀t ∈ H (3.3)

∑
j∈V

xijkt − ∑
j∈V

xjikt = 0 ∀i ∈ V, ∀k ∈ K, ∀t ∈ H (3.4)

∑
j∈V

∑
k∈K

xijkt ≤ 1 ∀t ∈ H, ∀i ∈ I (3.5)



74 Chapter 3. Optimization of Pollution-Location-Inventory-Routing Problems

∑
j∈V

∑
k∈K

xjikt ≤ 1 ∀t ∈ H, ∀i ∈ I (3.6)

∑
i∈I

∑
j∈J

xijkt ≤1 ∀k ∈ K, ∀t ∈ H (3.7)

xijkt = 0 ∀i, j ∈ J, ∀k ∈ K, ∀t ∈ H, i 6= j (3.8)

∑
i∈I

qikt ≤ Qk ∀k ∈ K, ∀t ∈ H (3.9)

∑
j∈J

zij = 1 ∀i ∈ I (3.10)

zij ≤ yj ∀i ∈ I, ∀j ∈ J (3.11)

∑
i∈I

(
zij ∑

t∈H
dit

)
≤ Cj ∀j ∈ J (3.12)

∑
u∈I

xujkt + ∑
u∈V\{i}

xiukt ≤ 1 + zij ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀t ∈ H (3.13)

∑
i∈I

∑
k∈K

∑
t∈H

xjikt ≥ yj ∀j ∈ J (3.14)

∑
i∈I

xjikt ≤ yj ∀j ∈ J, ∀k ∈ K, ∀t ∈ H (3.15)

∑
p∈H

witp = dit ∀i ∈ I, ∀t ∈ H (3.16)

∑
t∈H

witp = ∑
k∈K

qikp ∀i ∈ I, ∀p ∈ H (3.17)

qikt ≤ M ∑
j∈V

xijkt ∀i ∈ I, ∀t ∈ H, ∀k ∈ K (3.18)

∑
j∈V

xijkt ≤ Mqikt ∀i ∈ I, ∀t ∈ H, ∀k ∈ K (3.19)

xijkt ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀t ∈ H, ∀k ∈ K (3.20)
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yj ∈ {0, 1} ∀j ∈ J (3.21)

zij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (3.22)

qikt ≤ min

{
Qk, ∑

p∈H
dip

}
∀i ∈ I, ∀j ∈ J ,∀k ∈ K (3.23)

witp ≤ dip ∀i ∈ I, ∀t, p ∈ H (3.24)

Constraints 4.4 impose that a vehicle travels between nodes with a specific
speed level in each time period. Constraints 4.5 act as subtour elimination
constraints, as they declare that the difference between the total weight of
the incoming flow of product to a selected customer and the total weight of
the outcoming product flow of that customer equals the product weight de-
livered to that customer in the selected time period with the selected vehicle.
The equilibrium between the interior and exterior flow of vehicles is guar-
anteed by Constraints 4.6. Constraints 4.7 and 4.8 ensure that exactly one
vehicle visits each customer at each time period. Constraints 4.9 guarantee
that a vehicle performs mostly one route at each time period. Constraints
4.10 forbid the movement of a vehicle between depots. Constraints 4.11 en-
sure that, the total amount of products sent by a vehicle at a specific period
does not exceed the capacity of that vehicle. Constraints 4.12 guarantee that
a vehicle will be travelled from a depot to a customer only if that customer
is allocated to the depot. Constraints 4.13 impose that a customer is assigned
to a depot only if that depot is selected to be opened. Constraints 4.14 re-
spect the capacity of depots. A customer is connected to a depot, only if that
customer is assigned to that depot, according to Constraints 4.15. A vehi-
cle departures from a depot only if that depot is opened according to Con-
straints 4.16 and 4.17. The delivered amount of product to each customer
at each time period satisfies the demand of that customer, as guaranteed by
Constraints 4.18. Constraints 3.17 ensure the equilibrium between scheduled
and actual deliveries. A customer is visited at a specific period, only if a re-
plenishment is scheduled for that period, according to Constraints 4.19. The
rest constraints of the model declare the nature of the decision variables.
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3.4 Solution approach

3.4.1 Construction heuristic

The scope of the constructive phase is the generation of a feasible ini-
tial solution. In this work, a three-phased construction heuristic has been
developed. In the first phase, location and allocation decisions are made.
Inventory-routing decisions are determined in the second phase, while the
speed levels for traveling through the network nodes are selected in the last
phase.

Initially, for taking the location and allocation decisions, a ratio-based se-
lection criterion is applied for opening the required depots while a nearest
customer allocation strategy has been employed for the assignment step. For
each one of the candidate depots, the ratio f ixed_opening_cost

Capacity is computed and
the depot with the minimum ratio is chosen. If two or more depots have
the same ratio, one of them is selected arbitrarily (commonly the first found).
According to the customers’ allocation process, the nearest, to the opened de-
pot, customer is chosen and in the case that its total demand does not violate
the remaining capacity of the depot, the customer is assigned to that depot.
This initial step of construction heuristic is completed when all customers
have been allocated to the opened depots.

According to the inventory-routing decisions, for each time period and
each selected vehicle, the Random Insertion method is applied, in order to
construct its route for visiting all the assigned, to that vehicle, customers once
(Glover et al., 2001). The delivered quantities are set equal to the correspond-
ing demand for each customer at each time period. Obviously, in this initial
phase if a customer does not require any quantity of the product in a selected
period, he will not be included in any route over that period. In the last
phase, the selection of the speed levels for traveling through the nodes of the
structured network are performed.

3.4.2 Neighborhood structures

Six local search operators are used in the improvement phase of each pro-
posed solution method. These neighborhood structures are the following:

Inter-route Relocate: In this neighborhood structure a selected customer
is removed from its route and moved in the next position of an other selected
customer, who is assigned to a different route. Those two customers can be
allocated to the same or different depots. Both of the selected customers must
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be visited by vehicles in the same time periods, in order this move to be appli-
cable. A replenishment shifting may be applied if a vehicle capacity violation
occurs. The following cases can be met by applying this neighborhood:

• Case 1: The two selected customers are allocated to the same depot and
no vehicle capacity violations occur.

• Case 2: The selected customers are assigned to the same depot and
vehicles capacity violations occur.

• Case 3: The two selected customers are assigned to different depots and
no vehicle capacity violations occur.

• Case 4: The two selected customers are allocated to different depots
and vehicles capacity violations occur.

In the first case only routing decisions are made. In the second case, both
routing and inventory decisions are taken, while routing and allocation de-
cisions are considered in the third case of this move. In the last case, routing,
inventory and allocation decisions are simultaneously made.

Inter-route Exchange: This neighborhood swaps two customers from dif-
ferent routes in the time horizon. The exchanged customers can be allocated
either to the same depot or different depots. If the customers are allocated to
the same depot, the swapping may not be applied in each time period. How-
ever, in the second case the exchanging must be valid for all time periods,
in order to be applicable. The special cases of this move are summarized as
follows:

• Case 1: Vehicle capacity violation does not occur.

• Case 2: The demand of a customer exceeds the capacity of the vehicle
servicing the other customer in one or more time periods.

The first case makes only routing decisions, while in the second case rout-
ing and inventory decisions are taken. Changes on allocation decisions will
take place only if the swapped customers are allocated to different depots.

Exchange Opened-Closed Depots: This neighborhood exchanges a closed
depot with an opened depot. For a selected closed depot, the cost change for
swapping it with each one of all opened depots, is calculated. Then, the pair
of the opened-closed depots with the minimum exchanging cost is selected.
Subsequently, it is examined if the scheduled swapping does not violate any
capacity constraint. After the validation checking step, the newly opened
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depot is inserted in the routes assigned to the currently opened depot via a
minimum insertion cost procedure. This insertion process may involve cus-
tomers re-ordering in the routes. Obviously, the move is applied only if the
overall cost decreases, which consists of location and routing costs.

Intra-route Relocate: In this move a selected customer is removed from
its current position in its route and moved in a different position in the same
route.

2-2 Replenishment Exchange: In this neighborhood structure, two time
periods t1 and t2 are randomly selected and the two most distant customers i
and b, both serviced in those two periods, are identified. The replenishment
of customer i in period t1 is moved to the period t2, and the replenishment
of customer b is moved from period t2 to period t1. Consequently, there is
no need to visit customers i and b in periods t1 and t2 respectively. If the
total cost decreases and there are no violations on the vehicles capacities, the
move is applied.

In order to avoid potential violation of vehicles capacities, while applying
the Inter-route Relocate and the Inter-route Exchange moves, a shifting of
surplus product quantity may be applied.

Speed Selection Procedure (SSP): Examines which speed level has the
highest fuel cost decrease for each depot-customer and customer-customer
pair in the current solution.

3.4.3 Shaking procedure

For escaping local optimum solutions, a shaking procedure with three
local search operators is proposed, including the following structures:

• Inter-route Exchange.

• Exchange Opened-Closed Depots.

• Intra-Route Relocate.

In each iteration of this diversification method, one of the proposed local
search operators is randomly selected and a predefined number of random
jumps are applied. Its pseudo-code is given in Algorithm 8.
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Algorithm 8 Shaking Procedure

procedure SHAKE(S, k, ShakingN)
l = random_integer(1, |ShakingN|)
for i← 1, k do

select case(l)
case(1)
S′ ← Inter− route_Exchange(S)
case(2)
S′ ← Exchange_OpenedClosed_Depots(S)
case(3)
S′ ← Intra_Relocate(S)
end select

end for
Return S′

end procedure

The shaking procedure receives an incumbent solution S, the maximum
number of iterations kmax executed in the perturbation phase and the set of
shaking neighborhood structures ShakingN as input. A new solution S′ is
obtained by applying k (where 1 < k < kmax) times one randomly selected
neighborhood of the above local search operators.

3.4.4 VNS algorithms

In this chapter, a BVNS, two GVNS (GVNS with cVND and GVNS with
pVND) solution methods and their corresponding adaptive variants, have
been developed. The proposed solution algorithms are provided in the fol-
lowing pseudo-codes.
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Algorithm 9 Basic VNS

procedure BVNS(kmax, max_time, lmax, ShakingN)
S← Construction_Heuristic
l ← 1
while time ≤ max_time do

for each neighborhood structure l do
for k← 1, kmax do

S′ ← Shake(S, k, ShakingN)
S′′ ← Local_Search(S′, l)
if f (S′′) < f (S) then

S← S′′

end if
l ← l + 1
if l > lmax then

l ← 1
end if

end for
end for

end while
Return S

end procedure

Algorithm 10 GVNSpVND

procedure GVNS(S, kmax, max_time, ShakingN)
S← Construction_Heuristic
while time ≤ max_time do

for k← 1, kmax do
S∗ = Shake(S, k, ShakingN)

S′ = pVND(S∗, lmax)

if f (S′) < f (S) then
S← S′

end if
end for

end while
return S

end procedure
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The pseudo-code of the GVNScVND algorithm is exactly the same with
the pseudo-code of the GVNSpVND algorithm with the only difference that
it uses the cVND instead of pVND. The adaptive variants of these meth-
ods uses an adaptive re-ordering mechanism of the local search operators.
This adaptive mechanism uses past experience, such the number of improve-
ments achieved by each operator and proceeds a different order. More specif-
ically, the array “Improvements_Counter” stores in its positions the improve-
ments achieved by each operator and then a descending sorting is applied on
this array. The pseudo-code of this mechanism is summarized in Algorithm
11.

Algorithm 11 Adaptive_Order

1: procedure ADAPTIVE_ORDER(N_Order, Improvements_Counter)
2: if no improvement is found in any neighborhood then
3: Keep the same order
4: end if
5: if an improvement is found then
6: New_N_Order ← Descending_Order(N_Order, Improvements_Counter)
7: end if
8: N_Order ← New_N_Order
9: return N_Order

10: end procedure

An example of the adaptive schemes is provided in the following pseudo-
code of the Adaptive GVNSpVND algorithm.

Algorithm 12 AGVNSpVND

1: procedure AGVNSpVND(S, kmax, lmax, max_time, N_Order, Improvements_Counter, ShakingN)
2: while time ≤ max_time do
3: S∗ = Shake(S, k, ShakingN)

4: N_Order ← Adaptive_Order(N_Order, Improvements_Counter)
5: S′ = pVND(S∗, lmax)

6: if f (S′) < f (S) then
7: S← S′

8: end if
9: end while

10: return S
11: end procedure
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3.5 Computational analysis and results

3.5.1 Computing environment & parameter settings

The proposed methods have been implemented in Fortran (Intel Fortran
compiler 18.0 with optimization option /O3) and ran on a desktop PC run-
ning Windows 7 Professional 64-bit with an Intel Core i7-4771 CPU at 3.5
GHz and 16 GB RAM. The execution time limit for the proposed algorithms
was set at 60s. The PLIRP was also modeled in GAMS (GAMS 24.9.1) (Brooke
et al.,1998) and its problem instances were solved using CPLEX 12.7.1.0 solver
with the time limit of 2h for the small-sized instances and 5h for medium and
large-sized instances. It should be mentioned that CPLEX ran in the same
computing environment with Intel Fortran compiler.

3.5.2 Computational results on PLIRP instances

In this chapter 30 new PLIRP instances have been created by following
the format of instances proposed in a previous work (Zhang et al., 2014).
They are reported in the form X-Y-Z, where X represents the number of po-
tential depots, Y the number of customers and Z is the number of time peri-
ods. These instances are available in: http://pse.cheng.auth.gr/index.php/
publications/benchmarks. Table 3.5 provides the average and the best found
total cost values of ten iterations for each one of the proposed solution meth-
ods for different values of the kmax parameter.

http://pse.cheng.auth.gr/index.php/publications/benchmarks
http://pse.cheng.auth.gr/index.php/publications/benchmarks
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TABLE 3.5: Shaking strength analysis on the performance of
proposed methods

Method kmax = 5 kmax = 10 kmax = 12

Avg. TC Best TC Avg. TC Best TC Avg. TC Best TC
BVNS 41,542.67 40,643.76 41,630.07 40,397.15 41,547.22 40,483.04

ABVNS 37,684.82 36,062.44 37,896.45 35,926.57 38,092.11 36,339.28
GVNSpVND 35,304.38 34,455.14 35,055.97 34,295.98 35,403.77 34,559.92

AGVNSpVND 35,735.40 34,426.16 36,031.34 34,625.69 36,012.60 34,674.18
GVNScVND 37,261.36 36,487.80 37,395.34 36,570.37 37,281.85 36,348.84

AGVNScVND 37,687.23 36,361.82 37,715.74 36,416.86 37,570.39 36,375.08
Method kmax = 15 kmax = 18 kmax = 20

Avg. TC Best TC Avg. TC Best TC Avg. TC Best TC
BVNS 41,549.48 40,407.81 41,495.84 40,681.73 41,724.02 40,557.38

ABVNS 38,227.76 36,312.05 38,184.58 36,627.57 38,504.86 37,158.58
GVNSpVND 35,473.07 34,574.27 35,310.72 34,520.85 35,684.59 34,572.27

AGVNSpVND 35,783.10 34,608.32 35,814.60 34,565.73 35,735.4 34,563.19
GVNScVND 37,373.07 36,510.59 37,283.29 36,549.10 37,431.34 36,474.75

AGVNScVND 37,522.14 36,331.10 37,784.85 36,233.78 37,717.24 36,290.09

According to the reported solutions, the parameter value kmax = 5 pro-
duces in average the best values for the proposed BVNS, ABVNS and GVNScVND

algorithms. The AGVNScVND algorithm performs better by using a shaking
strength of kmax = 15, while the AGVNSpVND algorithm produces better
solution using the parameter value kmax = 20. The results achieved using
the GVNSpVND with the parameter value kmax = 10 were the best found
solutions in average compared with either the same scheme but with dif-
ferent kmax values or the other schemes (18.5% from BVNS, 7.5% from AB-
VNS, and 6.3% from GVNScVND, 7% from AGVNScVND and 1.94% from
AGVNSpVND).

From a problem size perspective, the AGVNSpVND algorithm produces
better solutions for small-sized instances (using kmax = 20) and medium-
sized instances (using kmax = 5) than other approaches, while the GVNSpVND

algorithm using the shaking strength kmax = 10 is more efficient than other
methods for the solution of large problem cases.

From this analysis it is noticed that classic GVNS-based methods provide
better solutions than their corresponding adaptive variants. An explanation
of this conspicuous observation is that using the adaptive re-ordering mech-
anism leads to further time consumption. Thus, the number of iterations of
the improvement phase is significantly decreased for the case of large-sized
instances.
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The GVNSpVND uses the Speed Selection Procedure after each local search
operator. Table 3.6 illustrates potential difference between this GVNS scheme
and GVNSpVND which applies the SSP once after the completion of a pVND
iteration. The initial scheme is called GVNSpVND_1 and the second one,
GVNSpVND_2.

TABLE 3.6: Results achieved by the two GVNSpVND schemes
on the 30 PLIRP instances

Instance GVNSpVND_1_Avg GVNSpVND_1_Best GVNSpVND_2_Avg GVNSpVND_2_Best
4-9-3 25,336.12 25,131.71 25,142.51 24,932.36

4-10-3 20,776.21 20,649.12 20,780.24 20,709.14
4-10-5 17,503.66 17,481.13 17,491.73 17,445.33
4-12-5 27,127.71 27,069.97 27,133.89 26,958.58
4-15-3 16,174.14 16,116.6 16,182.92 16,070.26
5-12-3 25,571.71 25,514.4 25,619.41 25,437.45
5-15-3 16,430.51 16,389.54 16,501.02 16,418.06
5-15-5 20,186.32 20,058.49 20,348.43 20,164.08
5-18-3 22,202.75 22,109.4 22,216.44 22,041.49
5-20-3 20,023.01 19,845.57 20,078.84 19,989.58
6-40-5 24,561.19 24,116.99 24,575.04 24,341.58
7-52-5 21,218.05 20,950.23 21,270.73 21,159
7-55-7 26,922.81 26,574.72 26,677.95 26,287.57
8-60-5 31,514.82 31,076.11 31,428.91 30,732.43
8-65-7 48,265.4 47,764.15 48,251.36 47,599.15
9-70-5 30,936.66 30,665.22 31,419.68 30,691.73
9-75-7 29,260.28 28,588.11 30,856.81 29,836.59
9-85-5 28,994.05 26,784.22 30,735.91 26,815.18
9-88-7 32,165.91 31,768.12 32,015.68 31,844.08

10-90-7 27,532.91 26,879.52 27,924.18 27,274.21
15-100-7 15,320.21 15,080.38 15,211.79 14,990.04

15-100-10 39,134.05 38,666.61 39,425.27 38,661.29
15-120-10 38,945.91 37,473.08 41,930.15 40,152.04
20-150-10 41,981.88 40,608.95 41,535.43 40,381.66
20-180-12 74,109.8 73069.77 75,688.98 74,869.72
25-200-12 75,429.81 72,587.55 74,513.52 68,146.04
30-250-10 50,017.53 47,756.68 51,379.41 48,755.04
30-270-10 58,450.29 56,708.96 59,376.01 56,637.84
35-300-10 73,763.83 71,014.24 71,539.39 69,361.56
35-310-12 71,821.7 70,379.8 72,096.53 68,963.52
Average 35,055.97 34,295.98 35,311.61 34,255.55

Despite the fact that, the GVNSpVND_2 scheme produces more best val-
ues than the GVNSpVND_1, the GVNSpVND_1 is slightly better in terms of
average solution quality. The previous results demonstrate that a further
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improved solution method can be proposed by adopting a hybrid scheme.
More specifically, for the solution of small- and medium-sized instances the
AGVNSpVND method with a shaking strength of kmax = 20 will be applied,
while the GVNSpVND using kmax = 10 will be selected for larger problems.
The overall process of the solution method is illustrated in Algorithm 13.

Algorithm 13 Hybrid_GVNSpVND

procedure HYBRID ALGORITHM(max_time, lmax)
S← Construction_Heuristic
if small-sized instance then

kmax ← 20
S′ ← AGVNSpVND(S, kmax, max_time, lmax)

else if medium-sized instance then
kmax ← 5
S′ ← AGVNSpVND(S, kmax, max_time, lmax)

else
kmax ← 10
S′ ← GVNSpVND(S, kmax, max_time, lmax)

end if
return S′

The second column of Table 3.7 reports the results achieved by GAMS/CPLEX.
As it can be noticed, the CPLEX solver can solve only nine out of ten small-
sized instances within a time limit of (2h). No solution, using CPLEX, was
found for the rest of the problem instances. In the third column, the aver-
age objective values achieved by the Hybrid_GVNSpVND, while the fourth
column contains the best results achieved by the Hybrid_GVNSpVND algo-
rithm. The last two columns provide the solution gaps between CPLEX and
Hybrid_GVNSpVND. According to the reported results, the Hybrid_GVNSpVND

provides 2.4% better results than CPLEX (approximately 3% focused on the
best found solutions of the Hybrid_GVNSpVND algorithm). Based on the fact
that, the CPLEX solver cannot provide any feasible solution for medium- and
large-sized instances even within a time limit of 5h and its high computa-
tional time for finding the reported solutions in the case of the small-sized
instances it can be concluded that, the proposed Hybrid_GVNSpVND algo-
rithm is an efficient method for solving large-scale PLIRP instances.
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TABLE 3.7: Comparative analysis between CPLEX and
Hybrid_GVNSpVND on the small- and medium-sized instances

Instance CPLEX (a) Hybrid_GVNSpVND_Avg (b) Hybrid_GVNSpVND_Best (c) Gap(b− a)(%) Gap(c− a)(%)

4-9-3 25,182.74 25,065.69 24,775.13 0.46 1.62
4-10-3 19,908.16 20,787.31 20,619.48 -4.42 -3.52
4-10-5 17,786.65 17,502.38 17,457.5 1.6 1.85
4-12-5 26,741.55 27,053.31 26,958.67 -1.17 -0.81
4-15-3 15,370.4 16,125.36 15,968.86 -4.91 -3.89
5-12-3 25,353.81 25,517.97 25,451.99 -0.65 -0.39
5-15-3 18,670.19 16,422.19 16,406.91 12.04 12.12
5-15-5 N/A 18,224.79 18,084.47 - -
5-18-3 26,353.47 22,078 21,982.96 16.22 16.58
5-20-3 N/A 20,124.22 19,878.09 - -
6-40-5 N/A 24,872.74 24,090.17 - -
7-52-5 N/A 21,093.97 20,810.7 - -
7-55-7 N/A 26,702.27 26,470.52 - -
8-60-5 N/A 31,436.84 31,249.98 - -
8-65-7 N/A 47,497.09 46,207.73 - -
9-70-5 N/A 30,978.96 30,310.59 - -
9-75-7 N/A 29,266.82 28,533.75 - -
9-85-5 N/A 27,883.9 27,014.67 - -
9-88-7 N/A 31,860.02 31,750.8 - -

10-90-7 N/A 27,129.59 26,708.53 - -

Table 3.8 reports the best known solutions of the 30 PLIRP instances.

TABLE 3.8: Best known solutions for the 30 PLIRP instances

Instance BKS Instance BKS

4-9-3 24,775.13 9-70-5 30,310.59

4-10-3 20,619.48 9-75-7 28,533.75

4-10-5 17,457.5 9-85-5 27,014.67

4-12-5 26,958.67 9-88-7 31,750.8

4-15-3 15,968.86 10-90-7 26,708.53

5-12-3 25,451.99 15-100-7 15,080.38

5-15-3 16,406.91 15-100-10 38,666.61

5-15-5 20,012.77 15-120-10 37,473.08

5-18-3 21,982.96 20-150-10 40,608.95

5-20-3 19,878.09 20-180-12 73,069.77

6-40-5 24,090.17 25-200-12 72,587.55

7-52-5 20,810.7 30-250-10 47,756.68

7-55-7 26,470.52 30-270-10 56,708.96

8-60-5 31,249.98 35-300-10 71,014.24

8-65-7 46,207.73 35-310-12 70,379.8
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Table 3.9 summarizes the number of the vehicles used for each problem in-
stance using the Hybrid_GVNSpVND algorithm. According to the number of
opened depots, all the proposed methods open exactly two depots in each
problem instance. Based on the total demand of customers, two depots are
the minimum required for fulfilling customers demands per instance. A re-
plenishment policy highly impacts the produced solutions. Furthermore, a
flexible replenishment policy enables the building of cost efficient routing
patterns (Zachariadis et al., 2009; Zhang et al., 2014).

TABLE 3.9: Number of used vehicles per instance using
Hybrid_GVNSpVND

Instance #Vehicles Instance #Vehicles Instance #Vehicles

4-9-3 4 6-40-5 7 15-100-7 4

4-10-3 5 7-52-5 4 15-100-10 4

4-10-5 3 7-55-7 3 15-120-10 4

4-12-5 3 8-60-5 13 20-150-10 5

4-15-3 3 8-65-7 28 20-180-12 9

5-12-3 6 9-70-5 8 25-200-12 8

5-15-3 4 9-75-7 3 30-250-10 4

5-15-5 10 9-85-5 5 30-270-10 5

5-18-3 8 9-88-7 4 35-300-10 11

5-20-3 5 10-90-7 3 35-310-12 4

Figure 3.1 illustrates the effect of flexible replenishment policy on the
routing and the inventory costs. More specifically, the values of routing and
inventory costs reported in the successful iterations of the Hybrid_GVNSpVND

are depicted. Routing costs can be decreased by allowing flexible reorder
points and order quantities for the customers due to the reduction of deliv-
eries or the efficient clustering of customers into routes. For instance, the
deliveries to a distant customer can be reduced by replenishing it with more
product quantities in less time periods. Also, this shifting of product quan-
tities results on more available space in the vehicles, so more customers can
be serviced by the same vehicle. This can lead to cost efficient routing cir-
cuits. On the other hand, the deferred deliveries leads to an increase in the
inventory cost.
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FIGURE 3.1: Effect of flexible replenishment policy on the rela-
tionship between routing and inventory costs.

It should be mentioned that, the solutions obtained by the Hybrid_GVNSpVND

algorithm do not always follow the previous relation. In some cases, the algo-
rithm splits the routes in order to reduce the routing cost without increasing
the inventory cost. However, the splitting strategy leads to the usage of more
vehicles.

3.5.3 Sensitivity analysis

To further consider the significance of the flexible replenishment policy,
the effect of holding costs on the total cost is studied through a parametric
analysis. Holding costs are crucial for the performance of logistics design
and operation. In the literature, several works studied the effect of hold-
ing cost variations on the overall performance of logistic systems (Alfares &
Ghaithan, 2016; Hu et al., 2018). In this work, two testing scenarios are con-
sidered. In the first one, a holding cost increase by 10% is examined, while in
the second one the holding cost is increased by 15%. The Hybrid_GVNSpVND

algorithm, which marked as the most efficient between the proposed solution
methods, was used for solving the problem instances in these two scenarios.
Table 3.10 provides both the average and best found results per scenario.
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TABLE 3.10: The average and best found results in sensitivity
analysis scenarios

Instance OV_Avg_10% OV_Best_10% OV_Avg_15% OV_Best_15%

4-9-3 25,181.77 25,041.14 25,188.46 25,031.23

4-10-3 20,863.64 20,781.04 20,848.53 20,793.92

4-10-5 17,520.59 17,432.05 17,525.54 17,475.08

4-12-5 27,082.38 26,984.32 27,107.96 27,029.25

4-15-3 16,126.86 16,044.12 16,119.94 15,980.26

5-12-3 25,598.02 25,485.53 25,519.32 25,485.46

5-15-3 16,435.71 16,399.19 16,435.47 16,419.09

5-15-5 20,285.74 19,992.44 20,357.95 20,184.11

5-18-3 22,096.39 22,014.08 22,096.62 21,975.62

5-20-3 20,033.03 19,932.21 20,021.84 19,940.18

6-40-5 25,032.92 24,918.66 24,720.14 24,404.99

7-52-5 21,321.34 21,167.21 21,383.7 21,154.03

7-55-7 27,103.04 26,566.88 26,828.2 26,664.36

8-60-5 31,558.35 30,769.91 31,495.14 31,157.83

8-65-7 48,084.16 47,074.4 48,907.25 48,480.28

9-70-5 31,429 30,582.42 31,426.12 30,949.3

9-75-7 29,717.7 29,010.54 30,748.95 29,495.22

9-85-5 29,476.81 27,049.91 29,153.98 27,418.47

9-88-7 32,205.27 31,682.29 32,245.75 32,156.69

10-90-7 28,073.3 27,728.77 28,111.57 27,222.74

15-100-7 15,949.38 15,378.73 15,627.67 15,129.28

15-100-10 40,619.23 39,295.37 39,715.32 38,962.52

15-120-10 40,926.89 39,351.76 42,157.16 40,537.22

20-150-10 42,974.34 41,330.91 45,801.18 41,101.49

20-180-12 75,943.7 73,496.76 75,164.3 73,597.62

25-200-12 77,760.61 73,258.41 78,961.45 73,650.02

30-250-10 53,034.67 50,785.36 52,581.2 50,516.56

30-270-10 60,394.23 56,942.57 59,424.19 57,147.17

35-300-10 77,476.23 73,685.28 77,152.02 71,780.28

35-310-12 72,246.86 69,485.7 74,525.83 69,823.05

Average 35,751.74 34,655.6 35,911.76 34,722.11

The results indicate that, the second scenario produces 0.45% worse so-
lutions in average comparing to the first one. Moreover, the initial average
solutions of the instances are 1.98% and 2.44% better than those achieved in
the first and the second scenario respectively, which means that the objective
value seems to be sensitive on the changes of the holding costs. However,
the adoption of a flexible replenishment policy keeps the increase of the cost
in relatively low levels.
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Also, there are some instances in which better solutions were produced
by increasing the holding costs. This is justified as, an increase in the holding
costs, forces the usage of more vehicles (max two more than the reported
vehicles in Table 3.9) in order to form better routing patterns, thus leading to
further routing cost reduction.

3.6 Concluding remarks

This chapter presents a new green SCN optimization problem, which con-
siders both economic and environmental concerns. GVNS- and Adaptive
GVNS-based solution approaches have been developed for the efficient so-
lution of medium- and large-sized instances. A new set of 30 random gener-
ated instances is used in extended numerical analyses. A computational kmax

parameter analysis has been made. This analysis indicates that, the GVNS
scheme which uses the pVND (GVNSpVND) method in its improvement pro-
cess is proved to be the most efficient method. In addition, the effect of exe-
cuting the Speed Selection Procedure either after each local search operator
or in the end of each VND iteration is tested. The GVNS scheme which uses
the Speed Selection Procedure after each local search operator proved as the
most efficient solution method. However, from a problem size perspective,
a hybrid solution approach, which uses the Adaptive GVNS (AGVNSpVND)
algorithm with different kmax values for the solution of small- and medium-
sized instances and the GVNSpVND for solving large problem cases. This hy-
brid solution scheme is compared with the CPLEX solver in ten small-sized
instances. The proposed solution method produces approximately 3% better
solutions than CPLEX. Finally, a sensitivity analysis is performed to study
the effect of the variations of holding costs on the objective value. The results
illustrate that, any increase on the holding costs affects the objective value.
However, the use of the flexible replenishment policy keeps the increase of
total cost in relatively low levels. Some exceptions are noticed by using more
vehicles.
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Chapter 4

Optimization of Fleet Size & mix
Pollution-Location-Inventory-
Routing Problems with Just in
Time and Capacity Choices

4.1 Introduction

The importance of selecting an appropriate replenishment policy in the
green IRP problem has been clearly highlighted in previous studies. The
Just-in-Time (JiT) replenishment policy is a popular inventory management
strategy based on the lean management philosophy and the increased cus-
tomer satisfaction. Recent studies have shown that this policy positively af-
fects the sustainable performance of a company (Kong et al., 2018; Wang &
Ye, 2018). This is due to the elimination of storage activities and consequently
the relative waste. Moreover, the significance of facilities-related decisions
on a company’s sustainable performance is indisputable. That being said,
the capacity planning of facilities is also critical for achieving sustainability
due to its strategic nature (Aldis, 2017).

This work addresses a new variant of the LIRP, the Fleet-size and Mix
Pollution-LIRP with JiT replenishment policy and capacity planning (FSM-
PLIRP). This new NP-hard problem considers further strategic level deci-
sions, such as the capacity planning and fleet composition. The JiT replen-
ishment policy is the only appropriate in some emergency supply chain net-
works, such as the medical supply chains. However, it reduces the flexibility
on route scheduling and makes even harder the effort of building efficient
routes. For the efficient solution of the underlying problem, the develop-
ment of problem-specific solution methods is crucial. The capability of an
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algorithm to use past experience in order to improve its performance is a key
feature of intelligent optimization. Therefore, in this work we develop Gen-
eral Variable Neighborhood Search (GVNS) metaheuristic algorithms within
adaptive shaking mechanisms in an effort to improve their performance and
solve a supply chain problem of significant industrial interest. The proposed
modeling framework and solution approaches can provide the basis for the
development of an expert system that can assist decision makers to derive
rigorous and fast decisions related to the operation and design of such sup-
ply chains.

4.2 Problem statement

The FSMPLIRP is defined as a complete graph G = (V, E), where V de-
notes the set of nodes including both the set of customers I = {1, ..., NCustomers}
and the set of potential depots J = {1, ..., NDepots} and E = {(v, v1) : v, v1 ∈
V, v 6= v1} is the set of edges. Each customer has a period-dependent de-
mand for a single-type of product and it is served by a heterogeneous fleet
of vehicles. A vehicle has a fixed usage cost and a specific capacity level. A
mixed integer programming (MIP) model is proposed to describe this prob-
lem. The model is an extension of the previously proposed PLIRP formula-
tion and it tackles a more complex variant of the LIRP by considering facility
capacity planning, fleet composition and JiT replenishment policy. The use of
JiT replenishment policy means that the delivered and the demanded quan-
tity of product must be equal for each customer in each time period. Thus,
the formation of efficient routes gets even harder than the case of PLIRP.

4.3 Mathematical formulation

For clarity reason the model sets, parameters and variables are provided
in Tables 4.1, 4.2, 4.3 and 4.4.
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TABLE 4.1: Sets of the mathematical model

Indices Explanation
V set of nodes
J set of candidate depots
I set of customers
K set of vehicles
H set of discrete and finite planning horizon
R set of speed levels
L set of capacity levels

TABLE 4.2: Vehicles’ parameters.

Parameter Explanation Value (Cheng et al., 2017; Koç et al., 2014)

ε fuel-to-air mass ratio 1

g gravitational constant (m/s2) 9.81

ρ air density (kg/m3) 1.2041

CR coefficient of rolling resistance 0.01

η efficiency parameter for diesel engines 0.45

fc unit fuel cost (Euros/L) 0.7382

fe unit CO2 emission cost (Euros/kg) 0.2793

fd driver wage (Euros/s) 0.0025

σ CO2 emitted by unit fuel consumption (kg/L) 2.669

HVDF heating value of a typical diesel fuel (kj/g) 44

ψ conversion factor (g/s to L/s) 737

θ road angle 0

τ acceleration (m/s2) 0

CWk curb weight (kg) 3500 or 5500

EFFk engine friction factor (kj/rev/L) 0.25 or 0.2

ESk engine speed (rev/s) 39 or 33

EDk engine displacement (L) 2.77 or 5

CADk coefficient of aerodynamics drag 0.6

FSAk frontal surface area (m2) 9

VDTEk vehicle drive train efficiency 0.4 or 0.45

Qk loading capacity of vehicle k instance-dependent

VFCk usage cost of vehicle k 1200 or 1400

The value of parameters fe and fd are converted into Euro currency (26th
of February, 2018). The usage cost for light-duty vehicles taken as 1200 Euros
and for the case of medium-duty vehicles is 1400 Euros. Generally, if a cell
includes two values, the first refers to light-duty trucks and the second to
medium-duty trucks.
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TABLE 4.3: Non-vehicle related FSMPLIRP model parameters.

Notation Explanation
f jl fixed opening cost of depot j with capacity level l
Cjl storage capacity of depot j with capacity level l
hi unit inventory holding cost of customer i
dit period-variable demand of customer i
cij travelling cost of locations pair (i, j)
sr the value of the speed level r

TABLE 4.4: GLIRP model variables.

Notation Explanation
yjl 1 if depot j with capacity level l is opened; 0 otherwise
zij 1 if customer i is assigned to depot j; 0 otherwise

vskt 1 if vehicle k is selected in period t; 0 otherwise
xijkt 1 if node j is visited after i in period t by vehicle k
qikt product quantity delivered to customer i in period t by vehicle k
avikt load weight by travelling from node v to the customer i with vehicle k in period t

zzv1v2ktr 1 if vehicle k travels from node v1 to v2 in period t with speed level r

Also in this chapter, the comprehensive fuel consumption model is adopted
(Barth et al., 2005).

min ∑
j∈J

f jlyjl + ∑
i∈I

hi ∑
t∈H

1
2

dit + ∑
i∈V

∑
j∈V

∑
t∈H

∑
k∈K

cijxijkt

+ ∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈H

{
λ ( fc + ( feσ))

(
∑

r∈R

(zzijktr EFFk ESk EDk cij)
sr

+
(

αγk
(
CWk xijkt + aijkt

)
cij

)
+

(
βk γk ∑

r∈R

(
sr zzijktr

)2
))}

+ ∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

∑
r∈R

fd
(zzijktr cij)

sr
+ ∑

k∈K
∑

t∈H
vsktVFCk(4.1)

Subject to

vskt ≤ ∑
v∈V

∑
v1∈V

xvv1kt, ∀k ∈ K, ∀t ∈ H, v 6= v1 (4.2)

xvv1kt ≤ vskt ∀v, v1 ∈ V, v 6= v1, ∀k ∈ K, ∀t ∈ H (4.3)

∑
r∈R

zzijktr = 1 ∀i, j ∈ V, ∀k ∈ K, ∀t ∈ H (4.4)
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∑
i∈V

aijkt − ∑
i∈V

ajikt = qjktPW ∀j ∈ I, ∀k ∈ K, ∀t ∈ H (4.5)

∑
j∈V

xijkt − ∑
j∈V

xjikt = 0 ∀i ∈ V, ∀k ∈ K, ∀t ∈ H (4.6)

∑
j∈V

∑
k∈K

xijkt ≤ 1 ∀t ∈ H, ∀i ∈ I (4.7)

∑
j∈V

∑
k∈K

xjikt ≤ 1 ∀t ∈ H, ∀i ∈ I (4.8)

∑
i∈I

∑
j∈J

xijkt ≤1 ∀k ∈ K, ∀t ∈ H (4.9)

xijkt = 0 ∀i, j ∈ J, ∀k ∈ K, ∀t ∈ H, i 6= j (4.10)

∑
i∈I

qikt ≤ Qk ∀k ∈ K, ∀t ∈ H (4.11)

∑
j∈J

zij = 1 ∀i ∈ I (4.12)

zij ≤ yjl ∀i ∈ I, ∀j ∈ J (4.13)

∑
i∈I

(
zij ∑

t∈H
dit

)
≤ Cjl ∀j ∈ J, ∀l ∈ L (4.14)

∑
u∈I

xujkt + ∑
u∈V\{i}

xiukt ≤ 1 + zij ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀t ∈ H (4.15)

∑
i∈I

∑
k∈K

∑
t∈H

xjikt ≥ yjl ∀j ∈ J, ∀l ∈ L (4.16)

∑
i∈I

xjikt ≤ yjl ∀j ∈ J, ∀l ∈ L, ∀k ∈ K, ∀t ∈ H (4.17)

∑
k∈K

qikt = dit, ∀i ∈ I, ∀t ∈ H (4.18)

qikt ≤ M ∑
j∈V

xijkt ∀i ∈ I, ∀t ∈ H, ∀k ∈ K (4.19)
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∑
j∈V

xijkt ≤ Mqikt ∀i ∈ I, ∀t ∈ H, ∀k ∈ K (4.20)

xijkt ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀t ∈ H, ∀k ∈ K (4.21)

yjl ∈ {0, 1} ∀j ∈ J, ∀l ∈ L (4.22)

zij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (4.23)

qikt ≤ min {Qk, dit} ∀i ∈ I, ∀k ∈ K ,∀t ∈ H (4.24)

The objective criterion of this model is the minimization of the total cost
which consists of the facilities’ opening costs, the average inventory holding
costs, general routing costs, fuel and CO2 emissions costs, driver wages and
vehicle usage costs. Constraints 4.2 ensure that a vehicle is selected in a pe-
riod only if a route has been scheduled for it in that period. Constraints 4.3
guarantee that a vehicle will move through a pair of nodes in a period, only if
it is selected in that period. Constraints 4.4 impose the selection of a specific
speed level for traveling through two nodes in each time period. Constraints
4.5 satisfy the product flow balance and simultaneously act as subtour elim-
ination constraints. Constraints 4.6 guarantee the equilibrium between the
interior and exterior flow of vehicles. A customer will be serviced by one ve-
hicle at most in each time period, as it is imposed by Constraints 4.7 and 4.8.
Constraints 4.9 force a vehicle to not perform more than one route per time
period. Constraints 4.10 ensure that a vehicle will not move through two de-
pot locations. The product quantity delivered with a vehicle must not exceed
its capacity, as it is imposed by Constraints 4.11. According to Constraints
4.12 a vehicle will move from a depot to a customer, only if that customer
is assigned to the depot. A customer can be assigned only to an open depot
based on Constraints 4.13. Constraints 4.14 ensure the observance of depots’
capacities. Constraints 4.15 impose a customer to connect with a depot, only
if that customer is allocated to that depot. A vehicle departures from a depot
only if that depot is opened according to Constraints 4.16 and 4.17. ?? guar-
antee that the demand of each customer will be satisfied in each period. A
customer is visited at a specific period, only if a replenishment is scheduled
for that period, according to Constraints 4.19. The last four set of constraints
declare the nature of the decision variables.
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4.4 Solution approach

4.4.1 Initial solution

To build an initial feasible solution, a three-phase construction method is
proposed. Location, capacity planning and allocation decisions are made in
its first phase. In an effort to find the minimum required number of depots,
a ratio-based depots’ selection method is applied, as presented in the previ-
ous chapter. If more than one depots are needed for servicing the given cus-
tomers, then a nearest customer allocation procedure is used for each opened
depot. In the next phase, the deliveries are set equal to their corresponding
demands for each customer in each time period and the routes are built by
applying a modified Nearest Neighbor heuristic (Flood, 1956). Finally, the
speed levels for traveling through the links of the designed network are ran-
domly set.

4.4.2 Local search operators & pVND

This section describes eight local search operators which are designed to
explore the solutions of the corresponding neighborhood structures. These
operators are the following:

Inter-route Relocate (N1). This operator selects two customers assigned
to different routes. Then, it removes the first selected customer from its cur-
rent position and relocates it to the next position of the second selected cus-
tomer. The initial routes of the two selected customers can either be assigned
to the same depot or different depots.

Opened-Closed Depots Exchange (N2). In this operator for each closed
depot the maximum capacity level is selected and examined if that depot
can replace one of the currently opened depots. It is mainly examined if
the capacity of the closed depot is enough to deal with the total demand of
customers allocated to the, potentially to be exchanged, opened depot.

Intra-route Relocate (N3). This operator selects two customers allocated
to the same depot and moves the first selected customer from its current po-
sition to the next position of the second selected customer.

Inter-route Exchange (N4). This operator swaps two selected customers
which they are assigned to different routes. Similarly to the Inter-route Relo-
cate, the routes can be allocated to the same depot or not.
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Intra-route 2-Opt (N5). It selects two pairs of successive customers, as-
signed to the same route, (i, j) and (k, l). Next, it breaks them and reconnects
them differently, such as (i, k) and (j, l).

One Medium-Two Light Vehicles Exchange (N6). This operator selects
two currently used light-duty vehicles and examines if the serviced, by those
vehicles, customers can be serviced by one unselected medium-duty vehicle.

Select Depot Capacity Level (N7). In this operator the most cost-efficient
capacity level is selected for each opened depot with respect to the total de-
mand of its customers.

Medium-To-Light Vehicles Exchange (N8). This operator selects a used
medium-duty vehicle and examines if the total demand of its customers can
be serviced by a light-duty vehicle, in order to perform an exchange between
those two vehicles.

These local search operators are included in two pVND methods. The
first method contains operators N1 − N5, while the second one contains op-
erators N1 − N6. The pVND is selected due to its efficiency in solving hard
optimization problems, as it is highlighted in previous chapters. An adap-
tive search strategy is also adopted (Best improvement is applied on small-
and medium-sized problem instances, while first improvement is used for
the case of large-sized instances). The pseudocodes of the proposed pVND
schemes are summarized in Algorithms 14 and 15.
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Algorithm 14 pVND 1

1: procedure PVND_1(S, lmax)
2: l = 1
3: while l ≤ lmax do
4: select case(l)
5: case(1)
6: S′ ← N1(S)
7: case(2)
8: S′ ← N2(S)
9: case(3)

10: S′ ← N3(S)
11: case(4)
12: S′ ← N4(S)
13: case(5)
14: S′ ← N5(S)
15: end select
16: if f (S′) < f (S) then
17: S← S′

18: else
19: l = l + 1
20: end if
21: end while
22: Return S
23: end procedure=0
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Algorithm 15 pVND 2

1: procedure PVND_2(S, lmax)
2: l = 1
3: while l ≤ lmax do
4: select case(l)
5: case(1)
6: S′ ← N1(S)
7: case(2)
8: S′ ← N2(S)
9: case(3)

10: S′ ← N3(S)
11: case(4)
12: S′ ← N4(S)
13: case(5)
14: S′ ← N5(S)
15: case(6)
16: S′ ← N6(S)
17: end select
18: if f (S′) < f (S) then
19: S← S′

20: else
21: l = l + 1
22: end if
23: end while
24: Return S
25: end procedure

Operators N7 and N8 are applied within the pVND methods as an inte-
grated improvement phase.

4.4.3 Shaking procedures

Diversification methods are critical components of metaheuristic algo-
rithms (Xu & Cai, 2018). They are strategies for escaping from local opti-
mum solutions by using properly modified local search operators. Here, five
shaking operators are designed:

• Inter-route Exchange Shaking (S1). It works as the local search opera-
tor N4 with the difference that the two customers are selected randomly.
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• Opened-Closed Depots Exchange (S2). This shaking operator func-
tions similar to N2. The main difference is that the closed depot is se-
lected randomly.

• Intra-route Relocate (S3). In this operator two customers are randomly
selected in each time period. Then, this shaking operator performs like
as N3.

• Select Depot Capacity Level Shaking (S4). This operator selects ran-
domly an opened depot and changes the capacity level of that depot,
with respect to the total demand of the customers serviced by it.

• Light2Medium Vehicles Exchange Shaking (S5). Initially, a time pe-
riod is randomly selected and then a selected light-duty vehicle is ex-
changed with a medium-duty vehicle.

The above operators are embedded in two shaking procedures (the first
does not include the S5). Their pseudocodes are provided in Algorithms 16
and 17.

Algorithm 16 Shaking procedure 1
1: procedure SHAKE_1(S, l)
2: select case(l)
3: case(1)
4: S′ ← S1(S)
5: case(2)
6: S′ ← S2(S)
7: case(3)
8: S′ ← S3(S)
9: case(4)

10: S′ ← S4(S)
11: end select
12: Return S′

13: end procedure
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Algorithm 17 Shaking procedure 2
1: procedure SHAKE_2(S, l)
2: select case(l)
3: case(1)
4: S′ ← S1(S)
5: case(2)
6: S′ ← S2(S)
7: case(3)
8: S′ ← S3(S)
9: case(4)

10: S′ ← S4(S)
11: case(5)
12: S′ ← S5(S)
13: end select

Return S′

14: end procedure

The most commonly used diversification method within VNS is the in-
tensified shaking, which randomly selects a shaking operator and applies it
k times, where k denotes the intense of diversification and it is 1 ≤ k ≤ kmax,
with kmax being the shaking strength. Additional to the intensified shaking,
this work proposes two adaptive shaking procedures. Initially, the five shak-
ing operators are ordered in a set. According to that initial order, two adap-
tive shaking procedures are formed. In the first procedure the initial order
of operators is based on their computational complexity, while in the second
one their ordering is performed randomly. However, both of them are exe-
cuted similarly. More specifically, in each GVNS iteration and for a specific
k value, the shaking operators are executed sequentially (shaking operator
- pVND - solution renewal check). A five positions array is used to count
the improvements, achieved by using each shaking operator. Each position
is matched with one shaking operator and in case of finding a new best so-
lution, the value in this position is increased by one. In the next iteration of
GVNS, the sequence of shaking operators is re-ordered according to the num-
ber of improvements recorded in the previous iteration. If no improvements
or the same number of improvements are achieved during an iteration, the
initial order is adopted for the next iteration. Essentially, the core difference
between the adaptive shaking schemes and the intensified shaking lies in the
manner the shaking operators are handled.

Focused on the adaptive shaking strategies, a reduced scheme is also ex-
amined. In particular, in each GVNS iteration, different shaking operators
are applied for different k values. For instance, for k = 1, the first shaking
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operator is applied, for k = 2, the next operator and so on. If all operators
are applied and variable k has not reached the kmax value, the diversification
process will continue from the first operator. In each next GVNS iteration,
the re-ordering step is applied such as in the previously discussed adaptive
shaking strategies.

4.4.4 GVNS schemes

The use of different components leads to different GVNS schemes. More-
over, the structure of numerical analyses may impose the formation of further
GVNS schemes. From a problem solution perspective, two cases of GVNS
schemes are met:

• Case_1: GVNS schemes for solving the homogeneous case of the prob-
lem.

• Case_2: GVNS schemes for solving the heterogeneous case of the prob-
lem.

From a shaking strategy perspective, three cases of GVNS schemes are
investigated:

• Case_1: GVNS schemes which use the intensified shaking.

• Case_2: GVNS schemes which use the adaptive shaking method with
complexity-based initialization.

• Case_3: GVNS schemes that they use the adaptive shaking method
with random initial order.

Therefore, the following main GVNS are defined:

• GVNS_1: This heuristic is proposed for solving the homogeneous case
of the problem and uses the intensified shaking as its diversification
strategy.

• GVNS_2: This GVNS scheme solves the same problem case as the GVNS_1,
but it uses the adaptive shaking with complexity-based initialization.

• GVNS_3: An other heuristic for solving the homogeneous case of the
problem which uses the adaptive shaking with random initial order.

• GVNS_4: This GVNS scheme is proposed for solving the heteroge-
neous case of the problem. The intensified shaking is used.
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• GVNS_5: This heuristic solves the heterogeneous case of the problem
and uses the adaptive shaking with complexity-based initialization.

• GVNS_6: This GVNS heuristic solves the heterogeneous case of the
problem and the adaptive shaking with random-based initialization is
used.

The pseudocodes of the first three GVNS schemes are provided in Algo-
rithms 19, 20 and 21. However, before the presentation of these pseudocodes,
the re-ordering mechanism of shaking operators is provided in Algorithm 18.
The ShakingOrder is the ordered set of shaking operators, InitialOrder keeps
the initial order of the shaking operators and ShakingOperatorsChecked is a
logical array which indicates if a shaking operator is selected during the re-
ordering phase.

Algorithm 18 Re-ordering mechanism

1: procedure ADAPTIVE_ORDER(ShakingOrder, InitialOrder)
2: if no improvement is found in any neighborhood then
3: ShakingOrder = InitialOrder
4: end if
5: if an improvement is found then
6: for i← 1, 5 do
7: l = Operator with maximum number of improvements
8: ShakingOperatorChecked(l) = .true.
9: ShakingOrder(i) = l

10: end for
11: end if
12: return ShakingOrder
13: end procedure



4.4. Solution approach 105

Algorithm 19 GVNS 1

1: procedure GVNS_1(S, kmax, max_time, lmax)
2: while time ≤ max_time do
3: for k← 1, kmax do
4: S∗ = Shake_1(S, l)
5: S′ = pVND_1(S∗, lmax)

6: S∗ = N7(S′)
7: if f (S∗) < f (S) then
8: S← S∗

9: end if
10: end for
11: end while
12: return S
13: end procedure

Algorithm 20 GVNS 2

1: procedure GVNS_2(S, kmax, max_time, lmax)
2: while time ≤ max_time do
3: ShakingOrder = Adaptive_Order(ShakingOrder, InitialOrder)
4: for k← 1, kmax do
5: for i← 1, 5 do
6: l = ShakingOrder(i)
7: S∗ = Shake_1(S, l)
8: S′ = pVND_1(S∗, lmax)

9: S∗ = N7(S′)
10: if f (S∗) < f (S) then
11: S← S∗

12: end if
13: end for
14: end for
15: end while
16: return S
17: end procedure
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Algorithm 21 GVNS 3

1: procedure GVNS_3(S, kmax, max_time, lmax)
2: for i← 1, 5 do
3: InitialOrder(i) = i
4: end for
5: ShakingOrder = Shu f f le(InitialOrder)
6: while time ≤ max_time do
7: ShakingOrder = Adaptive_Order(ShakingOrder, InitialOrder)
8: for k← 1, kmax do
9: for i← 1, 5 do

10: l = ShakingOrder(i)
11: S∗ = Shake_1(S, l)
12: S′ = pVND_1(S∗, lmax)

13: S∗ = N7(S′)
14: if f (S∗) < f (S) then
15: S← S∗

16: end if
17: end for
18: end for
19: end while
20: return S
21: end procedure

The pseudocodes of GVNS_4, GVNS_5 and GVNS_6 are omitted, as they
are similar to the previously provided GVNS schemes. Their differences are
the use of pVND_2 and operator N8, which is executed exactly after opera-
tor N7. More specifically, to solve the heterogeneous problem case efficiently,
further local search and shaking operators are required. These operators per-
form proper changes in order to improve the fleet composition.

Due to the fact that the reduced adaptive shaking strategy is a special case
of the adaptive shaking strategy, each GVNS scheme, which uses this shak-
ing approach, is defined as GVNS_XR, where GVNS_X is the corresponding
GVNS scheme with no-reduced adaptive shaking. For instance, the reduced
variant of GVNS_3 is the GVNS_3R and its pseudocode is provided in Algo-
rithm 22 .
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Algorithm 22 GVNS 3 with reduced adaptive shaking

1: procedure GVNS_3R(S, kmax, max_time, lmax)
2: for i← 1, 5 do
3: InitialOrder(i) = i
4: end for
5: ShakingOrder = Shu f f le(InitialOrder)
6: while time ≤ max_time do
7: ShakingOrder = Adaptive_Order(ShakingOrder, InitialOrder)
8: i = 1
9: for k← 1, kmax do

10: l = ShakingOrder(i)
11: S∗ = Shake_1(S, l)
12: S′ = pVND_1(S∗, lmax)

13: S∗ = N7(S′)
14: if f (S∗) < f (S) then
15: S← S∗

16: end if
17: i = i + 1
18: if i > 5 then
19: i = 1
20: end if
21: end for
22: end while
23: return S
24: end procedure

The results of computational experiments on the heterogeneous case of
the problem, show a potential benefit with increasing fleet diversity (for fur-
ther details see Subsection 4.5.3 ). Those GVNS schemes use the Shake_2
instead of Shake_1.

Finally, it should be mentioned that several auxiliary methods have been
developed to guarantee the feasibility of the obtained solutions. For instance,
a method which examines the existence of sub-routes in a selected route.
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4.5 Computational analysis and results

4.5.1 Computing environment

The MIP formulation of the studied problem was implemented in GAMS
(GAMS 24.9.1) (Brooke et al., 1998) and its instances were solved by CPLEX
12.7.1.0 solver. The time limit for solving small-sized instances was set at
two hours, while for the medium- and large-sized instances the time limit
was increased to up to three hours. The proposed algorithms were coded
in Fortran and they were executed by Intel Fortran compiler 18.0 using the
optimization option /O3. Both CPLEX and Intel Fortran compiler ran on
a laptop PC running Windows 10 Home 64-bit with an Intel Core i7-6700
CPU at 2.6 GHz and 16 GB RAM. The execution time limit for the designed
heuristic algorithms was set at 60s.

4.5.2 Problem instances

Due to the fact that the FSMPLIRP is introduced in this work, there is
no available test instances in the literature. Thus, 30 new problem instances
were randomly generated, using the instructions given by Zhang et al. (2014).
The vehicle fixed cost of light-duty vehicles is randomly generated with a
Normal distribution with parameters µ = 1000 and σ = 500, while the cost of
medium-duty vehicles is calculated as f loor((light_cost+(light_cost ∗ (20%+

rand(0.5, 5))))). Each problem instance has a name formed as X-Y-Z, where X
denotes the number of potential depots, Y the number of customers and Z the
number of time periods. The set of generated problem instances are available
in http://pse.cheng.auth.gr/index.php/publications/benchmarks/.

4.5.3 Parameter setting & computational results

Before the presentation of the experimental study, an overview of the pro-
posed solution method is provided in Figure 4.1.

http://pse.cheng.auth.gr/index.php/publications/benchmarks/
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General Variable Neighborhood Search
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Post-optimization search operators

Report Final Solution

End Solution Method

True False

Continue with the previous best solutionContinue with the new solution

FIGURE 4.1: Flowchart of the proposed solution method.

A critical parameter of a VNS-based heuristic algorithm is kmax. In this
regard, a parameter estimation is performed in order to select the most effi-
cient value of this parameter. The examined values of kmax are 10, 12, 15, 20
and 25. For this estimation process, the GVNS_1 is used (light-duty vehicles
case). Table 4.5 summarizes the total cost achieved for each problem instance
and different values of kmax. It should be mentioned that in all presented
results, the reported value of each instance is the average solution of 10 runs.
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TABLE 4.5: kmax analysis on the GVNS_1 performance on 30
GLIRP

Instance kmax = 10 kmax = 12 kmax = 15 kmax = 20 kmax = 25

4-9-3 19,950.64 19,950.64 20,025.74 19,965.42 20,001.45

4-10-3 20,776.81 20,401.16 20,323.12 20,442.53 20,484.32

4-10-5 16,890 16,757.12 16,639.51 16,994.84 16,773.05

4-12-5 20,745.54 21,537.64 19,257.65 19,241.52 19,298.63

4-15-3 10,205.15 10,202.94 10,202.69 10,202.63 10,207.29

5-12-3 12,966.13 12,966 12,966.47 12,966.83 12,982.32

5-15-3 15,980.28 15,973.33 15,979.88 15,970.49 15,979.27

5-15-5 21,963.65 22,156.5 21,973 21,984.31 22,028.07

5-18-3 23,382.51 22,843.35 22,989.54 23,503.2 22,795.83

5-20-3 19,082.94 19,080.76 19,145.74 19,095.92 19,083.83

6-40-5 22,053.01 22,116.36 22,086.75 22,166.08 22,051.46

7-52-5 16,565.59 16,459.8 16,475.07 16,449.83 16,602.87

7-55-7 20,640.6 20,740.16 20,680.7 20,734.96 20,680.7

8-60-5 25,158.09 25,270.78 24,917.71 25,192.96 25,094.77

8-65-7 45,432.84 46,333.11 46,389.98 46,813.38 46,404.39

9-70-5 27,257.63 27,257.63 27,257.63 26,954.93 26,422.93

9-75-7 29,229.05 29,235.23 29,256.86 29,229.98 29,234.61

9-85-5 23,312.07 23,113.37 23,355.22 23,346.96 23,307.15

9-88-7 28,413.28 28,298.62 28,497.24 28,622.26 28,606.53

10-90-7 25,664.05 25,744.83 25,744.83 25,651.54 25,744.6

15-100-7 21,079.91 21,175.92 20,676.81 21,168.42 21,061.69

15-100-10 32,776.21 33,164.21 32,454.69 33,162.97 33,162.97

15-120-10 32,001.47 31,998.65 31,712.23 31,869.61 31,866.53

20-150-10 27,251.23 27,247.53 27,011.78 27,251.23 27,242.03

20-180-12 56,623.45 56,001.89 55,474.01 56,363.05 56,779.96

25-200-12 53,858.84 55,481.55 53,660.57 55,448.09 55,502.41

30-250-10 40,514.82 40,608.62 40,608.62 40,621.34 40,339.15

30-270-10 40,604.43 40,001.64 39,793.64 39,817.2 39,804.99

35-300-10 69,917.79 71,524.05 70,530.91 70,429.36 70,638.92

35-310-12 70,241.78 69,334.98 70,366.98 69,721.21 70,114.25

Average 29,684.66 29,765.95 29,350.96 29,022.74 29,676.57

In accordance with the average values of the previously reported results,
it is obvious that kmax = 15 produces slightly better solutions than the other
tested values. This minor improvement is mainly based on the results achieved
on ten small-sized and ten large-sized instances. The selected strength of
shaking presumably permits more iterations of the improvement phase than
the more intense shaking options and better exploration than the limited kmax

choices.
To fairly compare the intensified shaking with the two proposed adaptive

shaking methods (actually their corresponding GVNS schemes), the same
kmax value is also used in the adaptive cases. Table 4.6 provides the average
and best results obtained by GVNS_1, GVNS_2 and GVNS_3.
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TABLE 4.6: Average and best values of GVNS_1, GVNS_2 and
GVNS_3

Instance GVNS1_Avg GVNS1_Best GVNS2_Avg GVNS2_Best GVNS3_Avg GVNS3_Best

4-9-3 20,025.74 19,893.35 19,965.42 19,893.35 19,965.42 19,893.35

4-10-3 20,323.12 20,211.22 20,388.18 20,386.88 20,477.19 20,236.63

4-10-5 16,639.51 16,639.47 16,654.57 16,639.49 16,668.95 16,639.52

4-12-5 19,257.65 19,218.74 19,330 19,218.7 19,999.71 19,232.61

4-15-3 10,202.69 10,197.83 10,204.27 10,199.25 10,206.14 10,197.82

5-12-3 12,966.47 12,965.52 12,977.22 12,965.53 12,966.05 12,965.53

5-15-3 15,979.88 15,968.03 15,978.63 15,967.97 15,982.42 15,968.01

5-15-5 22,040.32 21,811.93 21,973.37 21,829.92 22,097.31 22,061.04

5-18-3 22,989.54 22,034.8 22,393.16 22,044.37 22,769.88 22,048.34

5-20-3 19,145.74 19,072.08 19,097.41 18,970.59 19,109.76 18,969.02

6-40-5 22,086.75 21,869.92 22,033.75 21,955.77 22,113.73 21,864.69

7-52-5 16,475.07 16,346.4 16,492.06 16,338.96 16,523.26 16,357.35

7-55-7 20,680.7 20,483.23 20,289.07 20,133.6 20,617.13 20,220.49

8-60-5 25,209.82 24,851.46 24,917.71 24,366.79 25,008.58 24,745.05

8-65-7 46,389.98 45,296.65 46,216.56 45,553.83 46,749.3 46,256.98

9-70-5 27,257.63 25,545.31 25,532.28 25,277.36 25,450.91 25,224.12

9-75-7 29,256.86 29,142.09 29,272.45 29,137.69 29,205.54 29,107.46

9-85-5 23,355.22 23,022.43 22,858.58 22,608.26 23,240.07 22,985.04

9-88-7 28,497.24 28,392.9 28,615.11 28,451.68 28,676.73 28,392.88

10-90-7 25,744.83 25,484.67 25,438.81 25,245.69 25,437.12 25,021.07

15-100-7 20,676.81 18,625.63 20,581.55 20,285.07 20,507.03 20,234.9

15-100-10 32,742.03 31,188.25 32,454.69 31,394.29 32,586.89 31,942.82

15-120-10 31,712.23 30,893.46 32,617.02 32,180.6 32,171.38 31,680.79

20-150-10 27,011.78 26,103.88 26,916.86 26,619.65 26,723.04 26,606.19

20-180-12 55,894.64 55,090.93 55,474.01 55,074.75 56,836.62 56,310.66

25-200-12 53,660.57 52,278.51 52,938.72 52,275.73 52,322.95 51,564.92

30-250-10 40,608.62 39,350.63 40,342.18 39,633.71 40,846.64 39,432.27

30-270-10 39,793.64 37,218.66 38,271.97 37,788.59 37,477.92 36,481.77

35-300-10 70,530.91 67,347.98 69,935.89 69,155.16 69,935.89 69,155.16

35-310-12 70,366.98 67,722.48 69,916.42 69,088.91 69,916.42 69,088.91

Average 29,584.1 28,808.95 29,335.93 29,022.74 29,419.67 29,029.51

The above results illustrate that both GVNS schemes using adaptive shak-
ing perform better than the GVNS scheme using the classic intensified shak-
ing. More specifically, both of the adaptive shaking methods are more ef-
fective than the classic one. This effectiveness may depend on the reduced
randomness in the selection of shaking operators.The adaptive shaking with
a complexity-based initial order is a pure deterministic method, while the
second one confines randomness in the initial order of its operators. In the
classical shaking method, each shaking operator has the same probability to
be selected. It has been observed that in some problem instances one or more
shaking operators cannot lead to efficient search, they keep being selected
iteratively, though. Moreover, the GVNS_2 produces better quality solutions
than the GVNS_3. Further, the GVNS_2 is compared with its corresponding
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reduced scheme, GVNS_2R. Their numerical results are reported in Table
4.7.

TABLE 4.7: GVNS_2 vs GVNS_2R

Instance GVNS_2_Avg GVNS_2_Best GVNS_2R_Avg GVNS_2R_Best

4-9-3 19,965.42 19,893.35 20,001.45 19,893.35

4-10-3 20,388.18 20,386.88 20,371.25 20,306.64

4-10-5 16,654.57 16,639.49 16,670.78 16,639.5

4-12-5 19,330 19,218.7 19,408.15 19,363.85

4-15-3 10,204.27 10,199.25 10,202.1 10,197.66

5-12-3 12,977.22 12,965.53 12,965.53 12,965.52

5-15-3 15,978.63 15,967.97 15,975.89 15,966.53

5-15-5 21,973.37 21,829.92 21,973.37 21,829.92

5-18-3 22,393.16 22,044.37 22,912.03 22,393.16

5-20-3 19,097.41 18,970.59 19,060.16 19,013.63

6-40-5 22,033.75 21,955.77 22,054.8 21,930.66

7-52-5 16,492.06 16,338.96 16,431.74 16,213.8

7-55-7 20,289.07 20,133.6 20,263.26 20,188.2

8-60-5 24,917.71 24,366.79 24,917.71 24,366.79

8-65-7 46,216.56 45,553.83 46,550.04 45,434.11

9-70-5 25,532.28 25,277.36 25,260.02 25,095.64

9-75-7 29,272.45 29,137.69 29,229.07 29,051.29

9-85-5 22,858.58 22,608.26 22,977.73 22,777.82

9-88-7 28,615.11 28,451.68 28,594.76 28,410.18

10-90-7 25,438.81 25,245.69 25,599.85 25,336.84

15-100-7 20,581.55 20,285.07 20,670.1 20,333.84

15-100-10 32,454.69 31,394.29 32,454.69 31,394.29

15-120-10 32,617.02 32,180.6 32,303.52 31,684.38

20-150-10 26,916.86 26,619.65 26,928.55 26,681.24

20-180-12 55,474.01 55,074.75 55,474.01 55,074.75

25-200-12 52,938.72 52,275.73 52,965.83 52,275.73

30-250-10 40,342.18 39,633.71 40,497.02 39,821.39

30-270-10 38,271.97 37,788.59 38,190.2 37,634.62

35-300-10 69,935.89 69,155.16 70,789.39 69,969.02

35-310-12 69,916.42 69,088.91 71,584.55 68,786.73

Average 29,335.93 29,022.74 29,442.59 29,034.37

The results indicate that the GVNS_2 is a more suitable scheme for solv-
ing the homogeneous case of the problem than its reduced version. Thus, the
GVNS_2 is compared with the results obtained by the CPLEX solver, in or-
der to further evaluate its efficiency. This comparison is summarized in Table
4.8. “OM” indicates the out-of-memory error occurred by solving large-sized
instances.
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TABLE 4.8: Compare the results achieved by GVNS_2 and
CPLEX (using light-duty vehicles)

Instance CPLEX (a) GVNS_2_Avg (b) GVNS_2_Best (c) Gap a-b % Gap a-c %

4-9-3 19,261.33 19,965.42 19,893.35 - 3.66 - 3.28

4-10-3 20,022.66 20,388.18 20,306.64 - 1.83 - 1.82

4-10-5 16,690.5 16,654.57 16,639.5 0.22 0.31

4-12-5 19,551.98 19,330 19,218.7 1.14 1.7

4-15-3 10,412.98 10,204.27 10,199.25 2 2.05

5-12-3 13,146.48 12,977.22 12,965.53 1.29 1.38

5-15-3 15,715.24 15,978.63 15,965.53 - 1.68 - 1.61

5-15-5 23,045.4 21,973.37 21,829.92 4.65 5.27

5-18-3 22,572.41 22,393.16 22,044.37 0.79 2.34

5-20-3 23,873.07 19,097.41 18,970.59 20 20.54

6-40-5 N/A 22,033.75 21,955.77 - -

7-52-5 N/A 16,492.06 16,338.96 - -

7-55-7 N/A 20,289.07 20,133.6 - -

8-60-5 N/A 24,917.71 24,366.79 - -

8-65-7 N/A 46,216.56 45,553.83 - -

9-70-5 N/A 25,532.28 25,277.36 - -

9-75-7 N/A 29,272.45 29,137.69 - -

9-85-5 N/A 22,858.58 22,608.26 - -

9-88-7 N/A 28,615.11 28,594.76 - -

10-90-7 OM 25,438.81 25,245.69 - -

15-100-7 OM 20,581.55 20,285.07 - -

15-100-10 OM 32,454.69 31,394.29 - -

15-120-10 OM 32,617.02 32,180.6 - -

20-150-10 OM 26,916.86 26,619.65 - -

20-180-12 OM 55,474.01 55,074.75 - -

25-200-12 OM 52,938.72 52,275.73 - -

30-250-10 OM 40,342.18 39,633.71 - -

30-270-10 OM 38,271.97 37,788.59 - -

35-300-10 OM 69,935.89 69,155.16 - -

35-310-12 OM 69,916.42 69,088.91 - -

The GVNS_2 produces almost 3% better solutions than CPLEX in average
for the case of the small-sized instances. Focused on the best found solutions
of the GVNS_2, this gap is increased approximately to 3.4%. As it can be
noticed, the CPLEX solver cannot provide feasible solutions for the medium-
sized instances under the specified time limit. Moreover, an out-of-memory
error occurred during the solution of the medium-sized instance “10-90-7”
and all large-sized instances. As the GVNS_2 proved to be efficient in solv-
ing problem instances of the studied problem, it is also used to solve these
instances under the usage of medium-duty trucks. The achieved results are
compared with those produced by CPLEX solver and they are reported in
Table 4.9.
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TABLE 4.9: Compare the results achieved by GVNS_2 and
CPLEX (using medium-duty vehicles)

Instance CPLEX (a) GVNS_2_Avg (b) GVNS_2_Best (c) Gap a-b % Gap a-c %

4-9-3 19,161.21 19,907.18 19,867.3 - 3.89 - 3.68

4-10-3 19,871.37 20,025.72 19,984.59 - 0.78 - 0.57

4-10-5 16,641.27 16,481.28 16,478.75 0.96 0.98

4-12-5 20,477.68 19,135.32 19,125.16 6.56 6.6

4-15-3 10,296.25 10,178.69 10,176.11 1.14 1.17

5-12-3 13,038.15 12,858.72 12,854.84 1.38 1.41

5-15-3 15,633.85 15,801.46 15,787.22 - 1.07 - 0.98

5-15-5 23,523.54 21,838.86 20,449.79 7.16 13.07

5-18-3 22,345.25 21,816.29 20,858.26 2.37 6.65

5-20-3 20,379.37 18,857 18,784.91 7.47 7.82

6-40-5 N/A 21,401.83 21,069.95 - -

7-52-5 N/A 16,370.36 16,202.46 - -

7-55-7 N/A 20,684.1 20,289.71 - -

8-60-5 N/A 23,977.64 23,607.5 - -

8-65-7 N/A 42,803.82 41,951.12 - -

9-70-5 N/A 25,551.22 24,409.88 - -

9-75-7 N/A 28,340.91 28,310.15 - -

9-85-5 N/A 23,452.48 23,050.71 - -

9-88-7 N/A 29,048.78 28,817.38 - -

10-90-7 OM 25,876.82 25,483.62 - -

15-100-7 OM 15,211.71 13,986.74 - -

15-100-10 OM 32,413.15 32,058.96 - -

15-120-10 OM 33,093.59 32,846.37 - -

20-150-10 OM 27,227.04 26,836.73 - -

20-180-12 OM 58,273.09 57,768.52 - -

25-200-12 OM 53,710.14 52,649.32 - -

30-250-10 OM 46,402.38 45,561.52 - -

30-270-10 OM 39,775.43 39,323.89 - -

35-300-10 OM 65,889.8 64,470.15 - -

35-310-12 OM 73,180.99 72,344.19 - -

The proposed GVNS algorithm performs approximately 2.5% better than
CPLEX in solving the homogeneous case of the problem using medium-duty
vehicles (approximately up to 4% focused on best found solutions of GVNS).
Moreover, the commercial solver cannot provide feasible solutions even for
some small-sized instances.

The impact of using different type of vehicles on fuel consumption, its
cost and CO2 emissions is illustrated in Figures 4.2, 4.3 and 4.4 respectively.
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FIGURE 4.2: The average fuel consumption cost in cases of
light- and medium-duty vehicles.
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FIGURE 4.3: The average fuel consumption (L) in cases of light-
and medium-duty vehicles.
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FIGURE 4.4: The average CO2 emissions (kg) in cases of light-
and medium-duty vehicles.

It is important to highlight that the use of medium-duty vehicles leads to
significant increase on fuel consumption and CO2 emissions. More specif-
ically, the fuel consumption, the CO2 levels and their corresponding costs
are increased by approximately 10% (9.66%). Nonetheless, the solutions ob-
tained by using a fleet of medium-duty vehicles are slightly better than those
achieved using light-duty vehicles.

However, a mixed-fleet is commonly adopted in real-life applications.
Thus, further examination is made in this direction. GVNS_4, GVNS_5 and
GVNS_6 are initially tested on the 30 random generated instances. Their
results are provided in Table 4.10.
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TABLE 4.10: Average and best values of GVNS_4, GVNS_5 and
GVNS_6

Instance GVNS4_Avg GVNS4_Best GVNS5_Avg GVNS5_Best GVNS6_Avg GVNS6_Best
4-9-3 30,520.18 29,647.29 30,765.42 30,693.35 30,829.18 30,799.61
4-10-3 35,995.16 34,513.94 34,548.23 34,513.94 36,137.61 34,513.95
4-10-5 28,832 28,832 28,736.49 28,714.56 28,719.87 28,714.62
4-12-5 37,984.05 37,211.55 37,084.53 36,260.56 39,506.74 37,204
4-15-3 17,403.02 17,397.8 17,404.49 17,397.68 17,406.42 17,397.69
5-12-3 27,441.68 27,423.38 27,440.32 27,422.85 27,427.79 27,422.85
5-15-3 30,375.2 30,368.01 30,373.36 30,366.56 30,374.89 30,368.03
5-15-5 69,067.65 67,497.91 68,913.66 66,977.66 69,133.17 68,662.37
5-18-3 46,657.86 46,390.79 46,656.1 46,390.98 46,917.01 46,406.27
5-20-3 33,527.63 33,475.16 33,526.97 33,470.58 33,485.1 33,402.98
6-40-5 61,421.62 59,524.58 62,042.52 61,639.27 61,680.45 61,591.17
7-52-5 40,447.48 40,391.73 40,481.73 40,448.62 40,492.68 40,428.09
7-55-7 45,860.46 45,718.6 45,621.25 45,421.78 45,926.44 45,722.02
8-60-5 94,385.55 93,461.52 93,143.03 92,208.35 93,827.05 92,065.25
8-65-7 253,406.5 251,405.2 253,101.7 251,508.6 252,217.1 249,853.3
9-70-5 73,244.6 68,938.83 72,703.7 68,663.82 72,474.47 69,907.24
9-75-7 58,312.67 58,174.97 58,347.14 58,260.16 58,187.53 57,971.01
9-85-5 47,269.27 46,890.23 47,061.94 46,992.61 47,293.92 47,010.44
9-88-7 62,355.02 62,181.18 62,376.73 62,196.86 62,315.84 62,242.41

10-90-7 45,197.7 43,846.87 43,894.43 43,761.46 43,860.43 43,517.92
15-100-7 50,805.08 48,844.84 50,482.09 48,101.82 48,846.77 48,371.12
15-100-10 71,896.95 69,419.84 71,738.12 70,931.28 71,147.65 70,017.36
15-120-10 78,304.45 76,205.23 76,163.42 74,377.12 78,649.79 77,165.66
20-150-10 87,011.1 86,023.12 86,066.52 83,902.64 86,030.11 83,007.77
20-180-12 187,639.4 186,855.5 187,120.5 186,712.4 186,053.3 184,981.3
25-200-12 165,293 163,618.9 164,964.5 161,578.4 164,715.2 162,377.6
30-250-10 76,810.38 75,669.81 76,497.02 75,821.38 77,208.77 76,601.8
30-270-10 88,248.25 85,529.95 86,804.2 86,043.47 86,473.67 85,925.92
35-300-10 196,312 194,688.7 196,371.9 194,698.6 194,955.3 194,174.2
35-310-12 133,082 131,259.6 133,164.1 132,237.7 133,164.1 132,237.7
Average 75836.93 74713.57 75453.2 74590.5 75515.28 74668.72

Similar to the homogeneous case of the problem, the GVNS scheme which
uses the adaptive shaking mechanism with a complexity-based initial order
is proved the most efficient method. Furthermore, it is interesting to exam-
ine the reduced case of GVNS_5. Table 4.11 contains the average and the
best found solutions of GVNS_5R and their gap (%) from the corresponding
GVNS_5 solutions.
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TABLE 4.11: The results achieved by GVNS_5R and their gap
from the results of GVNS_5

Instance GVNS_5R_Avg GVNS_5R_Best Gap Avg. Solutions % Gap Best Solutions %

4-9-3 30,786.67 30,693.35 -0.07 0

4-10-3 34,487.43 34,381.39 0.18 0.38

4-10-5 28,776.89 28,731.59 -0.14 -0.06

4-12-5 37,093.05 36,277.87 -0.02 -0.05

4-15-3 17,405.14 17,399.35 0 -0.01

5-12-3 27,432.32 27,422.85 0.03 0

5-15-3 30,379.59 30,368.05 -0.02 0

5-15-5 69,218.02 67,989.64 -0.44 -1.51

5-18-3 46,775.61 46,390.61 -0.26 0

5-20-3 33,520.76 33,481.52 0.02 -0.03

6-40-5 61,423.02 60,347.19 1 2.1

7-52-5 40,679.31 40,458.96 -0.49 -0.03

7-55-7 45,511.59 45,452.61 0.24 -0.07

8-60-5 93,115.1 92,390.42 0.03 -0.2

8-65-7 251,383.6 249,532.1 0.68 0.79

9-70-5 72,597.73 69,526.91 0.15 -1.26

9-75-7 58,223.48 58,030.34 0.21 0.39

9-85-5 47,107.16 46,879.55 -0.1 0.24

9-88-7 62,397.38 62,219.98 -0.03 -0.04

10-90-7 43,938.91 43,811.77 -0.1 -0.11

15-100-7 45,505.46 41,004.02 9.86 14.76

15-100-10 72,098.84 71,548.5 -0.5 -0.87

15-120-10 76,792.02 76,115.48 -0.83 -2.34

20-150-10 86,059.3 84,094.49 0.01 -0.23

20-180-12 186,510 185,948.6 0.33 0.41

25-200-12 163,087.7 159,319.8 1.14 1.4

30-250-10 76,439.84 75,821.38 0.07 0

30-270-10 86,554.11 85,849.48 0.29 0.23

35-300-10 195,684.7 194,490.1 0.35 0.11

35-310-12 133,164.1 132,237.7 0 0

Despite the results clearly indicate that both GVNS_5 and GVNS_5R per-
form almost equivalently, it seems that the GVNS with the reduced adaptive
shaking scheme can produce slightly better solutions than the initial scheme,
especially on large problem instances. This may be occurred by the signifi-
cant reduction of shaking iterations which enables the improvement phase to
be executed more times. Furthermore, during the experiments with GVNS_5
and GVNS_5R, it is noticed that the solutions with an increase in vehicle mix-
ing, are found to be the best. In this direction, an alternative of the GVNS_5
and GVNS_5R schemes (GVNS_5∗ and GVNS_5∗R respectively), which use
the Shake2 instead of Shake1, are tested. Due to the fact that a local search
operator is more complex than a shaking operator, the shaking operator S5 is
selected to be used as the expedient on increasing the fleet diversity. How-
ever, in order to control this diversity, operator N8 is also used. The numerical
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results of GVNS_5∗ and GVNS_5∗R are given in Table 4.12.

TABLE 4.12: The average and best found results of GVNS_5∗

and GVNS_5∗R

Instance GVNS_5∗_Avg (b) GVNS_5∗_Best (c) GVNS_5∗R_Avg GVNS_5∗R_Best

4-9-3 30,556.21 29,647.29 30,828.79 30,723.82

4-10-3 34,302.87 33,435.3 34,759.74 34,383.76

4-10-5 29,062.39 28,716.11 29,091.07 28,713.12

4-12-5 33,141.53 31,853.81 33,695.88 31,857.18

4-15-3 17,402.1 17,397.66 17,405.18 17,402.33

5-12-3 27,633.45 27,423.38 27,390.11 27,136.26

5-15-3 29,351.3 28,505.29 29,388.97 28,782.4

5-15-5 67,118.98 65,760.69 68,626.54 65,987.51

5-18-3 44,665.75 43,821.99 45,368.95 44,717.53

5-20-3 33,515.91 33,409.03 33,578.46 33,375.17

6-40-5 62,363.02 60,861.09 61,515.82 59,792.91

7-52-5 40,515.12 40,408.63 40,571.34 40,364.73

7-55-7 45,617.8 45,369.76 45,614.4 45,435.75

8-60-5 93,676.57 92,339.34 93,438.79 92,419.65

8-65-7 252,522.6 251,273.5 253,098.5 251,052.1

9-70-5 74,397.69 71,337.26 72,309.77 68,820.45

9-75-7 58,347.14 58,260.16 58,187.02 57,950.38

9-85-5 47,023.98 46,917.3 47,088.62 46,879.55

9-88-7 62,373.95 62,196.86 62,389.43 62,233.86

10-90-7 44,038.39 43,900.62 43,981.29 43,738.73

15-100-7 49,374.27 48,124.49 49,237.94 48,022.45

15-100-10 71,331.44 70,797.74 71,560.47 71,225.41

15-120-10 76,893.95 74,216.33 77,064.65 75,899.13

20-150-10 85,949.9 83,769.98 86,057.27 83,902.64

20-180-12 187,129.2 186,536.6 187,238.5 186,772.4

25-200-12 162,581 159,529 165,767.3 164,258.2

30-250-10 76,497.02 75,821.38 76,439.84 75,821.38

30-270-10 86,813.8 85,990.55 86,723.59 86,022.63

35-300-10 195,334.7 194,490.1 196,106.5 194,698.6

35-310-12 132,730.1 131,412.7 132,730.1 131,412.7

Average 75,075.4 74,117.46 75,241.83 74,326.76

From the reported results in Table 4.12, it is observed that the strategy of
increasing fleet diversity leads to further improvements, as the fleet mixing
can potentially lead to better formation of routes and lower vehicles usage
costs. Also, following this approach, the GVNS_5∗ performs slightly better
than its reduced variant both in terms of average and best found solutions.

To further evaluate, the performance of GVNS_5∗, a comparison with
CPLEX is attempted and results are provided in Table 4.13.
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TABLE 4.13: Compare the results achieved by GVNS_5∗ and
CPLEX

Instance CPLEX (a) GVNS_5∗_Avg (b) GVNS_5∗_Best (c) Gap a-b % Gap a-c %

4-9-3 30,303 30,556.21 29,647.29 - 0.84 2.16

4-10-3 33,457.4 34,302.84 33,435.3 - 2.53 0.07

4-10-5 32,475.16 29,062.39 28,716.11 10.51 11.58

4-12-5 38,363.81 33,141.53 31,853.81 13.61 16.97

4-15-3 18,356.11 17,402.1 17,397.66 5.2 5.22

5-12-3 28,593.7 27,633.45 27,423.38 3.36 4.09

5-15-3 N/A 29,351.3 28,505.29 - -

5-15-5 N/A 67,118.98 65,760.69 - -

5-18-3 N/A 44,665.75 43,821.99 - -

5-20-3 N/A 33,515.91 33,409.03 - -

6-40-5 N/A 62,363.02 60,861.09 - -

7-52-5 N/A 40,515.12 40,408.63 - -

7-55-7 N/A 45,617.8 45,369.76 - -

8-60-5 N/A 93,676.57 92,339.34 - -

8-65-7 N/A 252,522.6 251,273.5 - -

9-70-5 N/A 74,397.69 71,337.26 - -

9-75-7 N/A 58,347.14 58,260.16 - -

9-85-5 N/A 47,023.98 46,917.3 - -

9-88-7 N/A 62,373.95 62,196.86 - -

10-90-7 OM 44,038.39 43,900.62 - -

15-100-7 OM 49,374.27 48,124.49 - -

15-100-10 OM 71,331.44 70,797.74 - -

15-120-10 OM 76,893.95 74,216.33 - -

20-150-10 OM 85,949.9 83,769.98 - -

20-180-12 OM 187,129.2 186,536.6 - -

25-200-12 OM 162,581 159,529 - -

30-250-10 OM 76,497.02 75,821.38 - -

30-270-10 OM 86,813.8 85,990.55 - -

35-300-10 OM 195,334.7 194,490.1 - -

35-310-12 OM 132,730.1 131,412.7 - -

As shown in Table 4.13, CPLEX can produce feasible solutions only for the
six out of ten small-sized instances. The GVNS_5∗ performs approximately
5.21% better than CPLEX, and their difference is increased up to around 7.2%
in the case of best found solutions by GVNS_5∗. Considering the high com-
plexity of the studied problem, the achieved quality difference and the sig-
nificant difference on execution time limits, it can be highlighted that the
proposed GVNS scheme is quite efficient for solving the FSMPLIRP. Despite
CPLEX is a state-of-the-art optimization solver, setting a strict time limit for
the solution of NP-hard problems leads to the production of solutions with
high optimality gap (gap between the best integer and the relaxed LP solu-
tion). Thus, the solutions obtained by our proposed solution approach are
better even for small-sized instances.
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4.5.4 Medium-duty vehicles vs mixed-fleet

It has been shown that the use of medium-duty only vehicles performs
much better than using only light-duty vehicles mainly in terms of fuel con-
sumption and CO2 emissions. Therefore, it is interesting to examine how a
homogeneous fleet of medium-duty vehicles and a mixed-fleet affect the fuel
consumption (L), the corresponding cost and the CO2 emissions (kg). Figures
4.5, 4.6 and 4.7 illustrate the discussed impacts for various problem instances.
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FIGURE 4.5: The average fuel consumption cost in cases of
medium-duty vehicles and mixed-fleet.
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FIGURE 4.6: The average fuel consumption (L) in cases of
medium-duty vehicles and mixed-fleet.



122
Chapter 4. Optimization of Fleet Size & mix Pollution-Location-Inventory-Routing

Problems with Just in Time and Capacity Choices

4-9
-3

4-1
0-3

4-1
0-5

4-1
2-5

4-1
5-3

5-1
2-3

5-1
5-3

5-1
5-5

5-1
8-3

5-2
0-3

6-4
0-5

7-5
2-5

7-5
5-7

8-6
0-5

8-6
5-7

9-7
0-5

9-7
5-7

9-8
5-5

9-8
8-7

10-
90-

7

15-
100

-7

15-
100

-10

15-
120

-10

20-
150

-10

20-
180

-12

25-
200

-12

30-
250

-10

30-
270

-10

35-
300

-10

30-
310

-12

Problem Instances

0

5000

10000

15000

20000
Av

g.
 C

O2
 e

m
iss

io
ns

Medium
Mix-fleet_Init1

FIGURE 4.7: The average CO2 emissions (kg) in cases of
medium-duty vehicles and mixed-fleet.

The selection of a mixed-fleet significantly decreases the fuel consump-
tion, the CO2 emissions and their corresponding cost, especially for the case
of large problem cases. However, an other critical decision parameter is the
vehicle usage cost. Figure 4.8 illustrates the different vehicle usage cost levels
for each fleet case.
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FIGURE 4.8: The vehicles usage costs in cases of medium-duty
vehicles and mixed-fleet.

It is clear that the mixed-fleet is more cost effective than the case of using
a homogeneous fleet of medium-duty vehicles (approximately 10%). There-
fore, the use of a mixed-fleet is a sustainable strategic decision.

The impact of initialization. The use of different initialization rules has a
potential effect on the solution of a GVNS heuristic (Hansen & Mladenović,
2014). Therefore, it is examined whether an alternative customers’ allocation
rule has a considerable effect on the final solution of the GVNS_5∗ (which has
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been proved the best scheme for solving the FSMPLIRP) or not. More specif-
ically, the alternative allocation is also a nearest allocation method, which
is applied by considering all the opened depots. The new GVNS scheme
is mentioned as GVNS_5∗Init2. Table 4.14 provides the results obtained by
GVNS_5∗Init2 and the comparison of them with the solutions produced by
CPLEX.

TABLE 4.14: Compare the results achieved by GVNS_5∗ using
different initialization methods

Instance GVNS_5∗Init2_Avg GVNS_5∗Init2_Best Gap a % Gap b %

4-9-3 29,992.57 29,257.67 1.84 1.31

4-10-3 34,727.45 34,366.66 -1.24 -2.79

4-10-5 28,928.39 29,822.83 0.46 -0.72

4-12-5 33,404.32 32,841.5 -0.79 -3.1

4-15-3 17,406.08 17,400.79 -0.02 -0.02

5-12-3 27,428.02 27,423.36 0.74 0

5-15-3 29,628.76 28,672.01 -0.95 -0.58

5-15-5 70,556.1 69,437.41 -5.12 -5.59

5-18-3 47,051.2 46,479.4 -5.34 -6.06

5-20-3 33,640.74 33,528.41 -0.37 -0.36

6-40-5 63,186.84 63,129.26 -1.32 -3.73

7-52-5 39,992.37 39,828.16 1.29 1.44

7-55-7 45,121.02 45,020.08 1.09 0.77

8-60-5 94,286.66 92,886.35 -0.65 -0.59

8-65-7 249,722.7 248,333.5 1.11 1.17

9-70-5 72,037.95 71,681.4 3.17 -0.48

9-75-7 51,536.19 51,314.25 11.67 11.92

9-85-5 46,006.43 45,953.77 2.16 2.05

9-88-7 64,279.82 63,211.97 -3.06 -1.63

10-90-7 44,038.39 43,900.62 0 0

15-100-7 36,894.5 32,459.81 25.28 32.55

15-100-10 68,180.36 67,422.41 4.42 4.77

15-120-10 82,139.7 81,899.34 -6.82 -10.35

20-150-10 85,949.9 83,769.98 0 0

20-180-12 187,034.1 186,467.2 -0.05 0.04

25-200-12 148,209 147,419.9 8.84 7.59

30-250-10 78,958.62 78,463.9 -3.22 -3.49

30-270-10 89,426.97 88,609.33 -3.01 -3.05

35-300-10 182,873.9 181,887.7 6.38 6.48

35-310-12 115,865 115,465 12.71 12.14

The obtained results accentuate the impact of using different initializa-
tion rules. Focused on the large-sized instances the quality gap between
GVNS_5∗ and GVNS_5∗Init2 is approximately 5%. It has been observed that,
by applying this alternative initialization rule, better routes can be built. The
potential efficient geographic segmentation of customers can be a reasonable
justification of the reported improvements. It is also interesting to focus on
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the potential effect of different initialization methods on fuel- and emissions-
based details. Figures 4.9, 4.11 and 4.12 illustrate the observed differences.
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FIGURE 4.9: The average fuel consumption cost using different
initialization rules.

Figure 4.9 cannot provide a clear view on fuel cost changes for the case of
the ten small-sized instances. Thus, a more focused view on these instances
is given in Figure 4.10.

4-9-3
4-10-3

4-10-5
4-12-5

4-15-3
5-12-3

5-15-3
5-15-5

5-18-3
5-20-3

Problem Instances

−5

0

5

10

15

Av
g.
 F
 e
l C

os
t

Mix-fleet_Init1
Mix-fleet_Init2

FIGURE 4.10: The average fuel consumption cost of ten small-
sized instances using different initialization rules.
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FIGURE 4.11: The average fuel consumption (L) using different
initialization rules.
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FIGURE 4.12: The average CO2 emissions (kg) using different
initialization rules.

It is noted that the GVNS_5∗Init2 mainly leads to more environmentally
efficient solutions.

4.5.5 Opened depots and fleet composition

This section summarizes the number of opened depots, the capacity levels
and the number (and type) of vehicles as they reported in the best found
solutions for each problem instance. Thus, Table 4.15 provide the number
of opened depots for each case of the studied problem and each solution
method (CPLEX & GVNS).
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TABLE 4.15: Number of opened depots per instance.

Instance CPLEX_Light GVNS_2 (Light) CPLEX_Medium GVNS_2 (Medium) CPLEX_MixedFleet GVNS_5∗Init2

4-9-3 2 2 2 2 2 2
4-10-3 2 2 2 2 2 2
4-10-5 2 2 2 2 2 2
4-12-5 3 2 2 2 2 2
4-15-3 1 1 1 1 2 1
5-12-3 1 1 1 1 1 1
5-15-3 1 1 1 1 - 1
5-15-5 2 2 2 2 - 2
5-18-3 2 2 2 2 - 2
5-20-3 3 2 - 2 - 2
6-40-5 - 2 - 2 - 2
7-52-5 - 2 - 2 - 2
7-55-7 - 2 - 2 - 2
8-60-5 - 2 - 2 - 2
8-65-7 - 2 - 2 - 2
9-70-5 - 2 - 2 - 2
9-75-7 - 2 - 2 - 2
9-85-5 - 2 - 2 - 2
9-88-7 - 2 - 2 - 2
10-90-7 - 2 - 2 - 2

15-100-7 - 2 - 2 - 2
15-100-10 - 2 - 2 - 2
15-120-10 - 2 - 2 - 2
20-150-10 - 2 - 2 - 2
20-180-12 - 1 - 1 - 1
25-200-12 - 2 - 2 - 2
30-250-10 - 2 - 2 - 2
30-270-10 - 2 - 2 - 2
35-300-10 - 2 - 2 - 2
35-310-12 - 2 - 2 - 2

Solution by the proposed GVNS-based heuristic algorithms lead to open-
ing the minimum required number of depots. As shown in Table 4.15, the
proposed GVNS algorithms managed to open equal or less depots than the
CPLEX solver for the case of small-sized instances. In all problem cases the
same depots are selected to be opened. The reason behind this fact, is that
in all these cases the structure of locations are kept unmodified. A more de-
tailed information about the opened depots and their planned capacity levels
is given in Table 4.16.
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TABLE 4.16: The opened depots and their capacity levels.

Instance Decisions Values Instance Decisions Values

4-9-3
depots

cap. level

depot_2 depot_3

level_2 level_3
9-70-5

depots

cap. level

depot_4 depot_5

level_3 level_3

4-10-3
depots

cap. level

depot_3 depot_4

level_2 level_1
9-75-7

depots

cap. level

depot_3 depot_9

level_2 level_3

4-10-5
depots

cap. level

depot_1 depot_3

level_2 level_2
9-85-5

depots

cap. level

depot_3 depot_9

level_4 level_4

4-12-5
depots

cap. level

depot_1 depot_4

level_1 level_2
9-88-7

depots

cap. level

depot_1 depot_2

level_3 level_2

4-15-3
depots

cap. level

depot_4

level_2
10-90-7

depots

cap. level

depot_2 depot_4

level_1 level_3

5-12-3
depots

cap. level

depot_1

level_3
15-100-7

depots

cap. level

depot_8 depot_9

level_2 level_4

5-15-3
depots

cap. level

depot_5

level_2
15-100-10

depots

cap. level

depot_7 depot_14

level_2 level_4

5-15-5
depots

cap. level

depot_4 depot_5

level_1 level_1
15-120-10

depots

cap. level

depot_9 depot_15

level_3 level_4

5-18-3
depots

cap. level

depot_1 depot_3

level_3 level_2
20-150-10

depots

cap. level

depot_1 depot_11

level_3 level_5

5-20-3
depots

cap. level

depot_1 depot_4

level_1 level_2
20-180-12

depots

cap. level

depot_14

level_2

6-40-5
depots

cap. level

depot_3 depot_6

level_2 level_1
25-200-12

depots

cap. level

depot_11 depot_13

level_5 level_5

7-52-5
depots

cap. level

depot_4 depot_6

level_3 level_2
30-250-10

depots

cap. level

depot_4 depot_20

level_3 level_3

7-55-7
depots

cap. level

depot_3 depot_7

level_2 level_4
30-270-10

depots

cap. level

depot_13 depot_27

level_2 level_2

8-60-5
depots

cap. level

depot_3 depot_6

level_2 level_2
35-300-10

depots

cap. level

depot_16 depot_24

level_1 level_4

8-65-7
depots

cap. level

depot_2 depot_5

level_3 level_3
35-310-12

depots

cap. level

depot_26 depot_29

level_4 level_3

Table 4.17 provides the fleet composition for the mixed-fleet problem case
as it has been obtained by CPLEX solver for some of the small-sized instances
and the GVNS_5∗Init2 for all problem instances. The fleet composition de-
cided by GVNS_5∗Init2, corresponds to the best found solution for each prob-
lem instance. The letter “L” means light-duty vehicle and the letter “M” is
used for medium-duty vehicles.
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TABLE 4.17: The fleet composition by each method.

Instance CPLEX GVNS_5∗Init2 Instance CPLEX GVNS_5∗Init2

4-9-3 3 L & 1 M 2 L & 2 M 9-70-5 - 8 L

4-10-3 3 L & 3 M 4 L & 4 M 9-75-7 - 3 L

4-10-5 2 L & 1 M 2 L & 1 M 9-85-5 - 4 L

4-12-5 3 L & 1 M 2 L & 2 M 9-88-7 - 5 L

4-15-3 2 L & 1 M 2 L 10-90-7 - 1 L & 1 M

5-12-3 4 L & 1 M 5 L 15-100-7 - 2 L & 1 M

5-15-3 - 4 L & 3 M 15-100-10 - 2 L & 1 M

5-15-5 - 10 L 15-120-10 - 4 L & 1 M

5-18-3 - 8 L 20-150-10 - 5 L & 1 M

5-20-3 - 4 L & 1 M 20-180-12 - 9 L & 1 M

6-40-5 - 7 L 25-200-12 - 8 L & 1 M

7-52-5 - 4 L 30-250-10 - 4 L & 1 M

7-55-7 - 3 L 30-270-10 - 3 L & 1 M

8-60-5 - 13 L & 2 M 35-300-10 - 10 L

8-65-7 - 28 L 35-310-12 - 4 L & 1 M

Despite the efficiency of the proposed solution methods, a few limita-
tions of this work should be mentioned. First, an alternative initial order of
shaking operators in the adaptive shaking mechanisms may lead to further
improvements. Moreover, focused on the strength of the shaking, five differ-
ent values were examined. Further improvements can potentially achieved
by investigating other values. Finally it is not possible to formally assess the
quality of the obtained solution with respect to the truly optimal.

4.6 Concluding remarks

Sustainability is a crucial factor of a company’s growth. In this regard,
this work studies a new complex supply chain network optimization prob-
lem, which integrates both economic and environmental decisions. As com-
mercial solvers cannot solve realistic cases of such complex problems, GVNS-
based heuristic algorithms were developed for solving medium- and large-
sized instances. The shaking mechanism in a VNS-based heuristic has a sig-
nificant role in its performance. Thus, new adaptive shaking techniques are
proposed, as a crucial intelligent learning component of the proposed solu-
tion method. This intelligent mechanism uses past experience in order to
improve the performance of the algorithm. In these shaking methods, the
shaking operators are ordered following two different rules. According to
the first one, the operators set in an order, based on their complexity, while in
the second one their ordering is performed randomly. During the execution
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of the algorithms, the shaking operators are re-ordered in accordance with
the number of improvements achieved by using each of them in the previous
iteration. The GVNS schemes using the proposed adaptive shaking mech-
anisms are proved more efficient on the solution of such complex supply
chain network optimization problems than the GVNS using the classic inten-
sified shaking. Furthermore, the impact of using homogeneous fleet (either
light- or medium-duty vehicles) and mixed-fleet is examined not only from
an economic perspective, but also from an environmentally point of view. A
computational analysis illustrates that by using a mixed-fleet both econom-
ical and environmental benefits can be achieved. The impact of using an
alternative initialization rule is also investigated and the obtained solutions,
especially on ten large-sized instances, were further improved by 5%. The
results from the extended numerical analysis illustrate the integration of the
proposed models and solution techniques in an intelligent tool which can
assist decision makers to derive fast and reliable decisions for the optimal
design and operation of complex supply chains.
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Chapter 5

Optimization of CAR T-cell
therapies Supply Chains

5.1 Introduction

CAR T-cell therapies are novel cancer immunotherapies where cells are
removed from patients and delivered to specialized manufacturing facilities
to be properly re-engineered. Then, the therapies are delivered back to spe-
cialized hospitals and are administered to patients by infusion. Due to the
personalised and sensitive nature of such therapies, several challenges are
involved in their supply chain. One major CAR T-cell therapies supply chain
challenge is the potential bottleneck of the administration process in the ca-
pacitated specialized hospitals, as the demand increases. This requires an in-
tervention in the administration process of CAR T-therapies through a new
network structure. Herein, we consider an integrated CART T-cell thera-
pies supply chain network involving both design and operational decisions.
This approach exploits similar characteristics with the manufacturing sup-
ply chain networks (Barbosa-Póvoa et al., 2018; Drexl & Schneider, 2015). The
strategic planning problem is related mainly with design decision such as the
opening of manufacturing centres and the selection of specialized hospitals
as well as the fleet composition of mobile medical units and transportation
vehicles. In contrast, operative planning decisions are mainly related with
vehicle routing, which cannot be underestimated in the efficient operation of
the underlying supply chain network. Integration of such decisions into a
single MIP model results in a computationally intractable problem even for
small size problems of limited practical interest. For example, the number of
patients and local treatment facilities in such a supply chain network may be
hundreds or even thousands, and in addition to other type of decisions, the
resulting MIP model is typically characterized by thousands of binary vari-
ables. We will show later, that only very small problems can be solved by
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using state-of-the-art MILP solvers. Consequently, this requires special solu-
tions techniques which can systematically generate quick solutions of good
quality by sacrificing part of the optimality.

5.2 Problem statement

A new decentralized process of CAR T-cell therapies’ administration is
proposed in this work to address among others, the need to debottleneck
the specialized hospitals due to their limited capacities, as the demand for
such therapies increases rapidly. Furthermore, this decentralized approach
can also increase the overall efficiency and service quality of the underlying
supply chain network, by simultaneously optimizing key design and oper-
ational decisions as highlighted in Wang et al. (2019) and Papathanasiou et
al. (2020). It should be noted that today the network representation is still
an open research and medical challenge. Currently, very limited attention
has been placed on the design and operation of CAR T-cell therapies supply
chains, while the network representation is still an open research challenge.
The overall process of CAR T-cell therapies relies on four main entities (Boyi-
adzis et al., 2018). A cancer patient visits a specialized treatment facility and
a blood sample is collected. Then, the collected blood is sent to the manufac-
turing centre where the therapy is produced. Finally, the patient revisits the
treatment facility to receive the required bridge chemotherapy (a chemother-
apy administered in the time between collection of autologous T-cells and
the infusion of CAR T-cell therapy) and the cell therapy is delivered to the
treatment facility in order to be administered to the patient.

This work proposes a decentralized administration process of CAR T-cell
therapies, which can be practically implemented by a new supply chain net-
work structure consisting of five main entities: (i) manufacturing centres, (ii)
central specialized hospitals, (iii) patients, (iv) transportation vehicles of pa-
tient samples, (v) mobile medical units and local treatment facilities. More
specifically, a specialized hospital operates as a coordinator of the therapy
process. A cancer patient visits a specialized hospital and a blood sample
is collected. A transportation vehicle, owned by this hospital, delivers the
collected samples to a manufacturing centre where production occurs. Then,
the patient visits the local treatment facility, close to his site (home, nursing
home etc.), in order to receive a bridge chemotherapy. The patient-specific
CAR T-cell therapy is delivered to the mobile medical unit, which visits the
local treatment facilities that have been assigned to it. The administration of
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the therapy is performed in the mobile medical unit for each patient in each
local treatment facility by two specialized medical practitioners. Following
the administration of the therapy, the patient remains at the local treatment
facility to monitor his response to the treatment and address possible side
effects. The proposed network structure is illustrated in Figure 5.1.
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FIGURE 5.1: The proposed CAR T-cell supply chain therapies
structure

The network representation in Figure 5.1 illustrates the information flow
and the main design decisions to be made. For instance, a strategic-level de-
sign decision is the assignment of patients to specialized hospitals through
their local treatment facilities. This allocation is indicated by the dotted arcs.
Detailed operational decisions related to inner specialized hospitals actions,
such as the scheduling of patients visits are not considered in this study.
Thus, this information is not shown in the proposed network representation.
The problem addressed in this work as formally stated as follows:
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Given:

• A set of local treatment facilities, I, which service a set of patients.

• A set of capacitated hospitals, H.

• A set of potential capacitated manufacturing centres, J.

• A set of time periods, T.

• A period-variable demand of treatment dosage for each patient.

• A set of homogeneous capacitated fleet of mobile medical units, K.

• A set of homogeneous capacitated fleet of transport vehicles, M.

Determine:

• how many and which of the potential manufacturing centres should
be active (an already operational manufacturing centre can either be
selected to be utilized or a new manufacturing centre to be opened),

• the assignment of local treatment facilities to hospitals,

• the connection of local treatment facilities with the selected manufac-
turing centres,

• the number of mobile medical units which are needed to service the
demand of patients,

• the allocation of local treatment facilities to the selected mobile medical
units in each time period,

• the number of samples’ transport vehicles for each hospital,

• the routes of mobile medical units,

• the shipping of the blood samples from hospitals to the selected manu-
facturing centres.

The main assumptions of the proposed model are:

• Detailed scheduling aspects in the manufacturing centres are not con-
sidered.

• It is considered that T-cell therapies make use of fresh patients’ blood
samples (leukapheresis product) and CAR T-cells.
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• The management of potential serious side effects, such as cytokine re-
lease syndrome or neurotoxicity, is not considered at this stage.

• CAR-T cell chemotherapy will be administered in the mobile medical
units.

• A local treatment facility will be serviced by exactly one hospital and
one manufacturing centre in the time horizon.

• Mobile medical units will be routed from manufacturing centres to the
local treatment facilities.

• A mobile medical unit will depart and return to the same manufactur-
ing centre.

• A local treatment facility will be serviced by at most one mobile medical
unit in each time period.

• Patients’ blood samples will be shipped directly from hospitals to man-
ufacturing centres.

• The demand associated to a local treatment facility, indicates the num-
ber of patients serviced by this treatment facility in each time period.

• Two parts of patient samples are required to produce a CAR T-cell ther-
apy.

A salient feature of the proposed modeling and optimization framework
is the integration of both design (e.g. selection of manufacturing centres,
number of mobile medical units etc) and operational decisions (routes, ship-
ping quantities over time etc), thus exploring the synergistic benefit between
the two decisions.

It is worth mentioning that the proposed network representation is not
limited to a specific geographic area/location. It can properly describe net-
works in wider areas, such as states or countries. In this context the decisions
such as the selection of the optimal number of manufacturing centres and
their capacity are important.
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5.3 Mathematical formulation

The model sets, parameters and variables are summarized in Tables 5.1 ,
5.2, 5.3 and 5.4.

TABLE 5.1: Sets of the mathematical model

Indices Explanation
N Set of nodes
H Set of specialized hospitals
J Set of potential manufacturing centres (MF)
I Set of local treatment facilities (LTF)
Z set of MF and LTF, (J ∩ I)
K Set of mobile medical units
M Set of blood samples’ transport vehicles
V Set of vehicles (K ∩M)
T Set of time periods

TABLE 5.2: Vehicles’ parameters

Parameter Explanation Value

f dk driver wage (Euros/h) 11

f dm driver wage (Euros/h) 9

Qv loading capacity of vehicle v instance-dependent

VFCv usage cost of vehicle v 30300 or 22000

speed speed level of vehicles (km/h) 55

The hourly wage of drivers of transport vehicles is set equal to the lowest
wage reported by U.S. Bureau of Labor Statistics as the wage of ambulance
drivers and the hourly wage of drivers of mobile medical units are set equal
to the median hourly wage provided in this report 1. The cost of using a
mobile medical unit is set to 30300 Euros, while the acquisition of a blood
samples’ transport vehicle is charged with 22000 Euros.

The current literature does not provide any information about the acqui-
sition and utilization costs of mobile medical units. Therefore, the value of
VFCv, for the case of mobile medical units, was decided based on informa-
tion from online sources, such as websites of mobile medical unit manufac-
turers or websites of medical-based news. It is obvious that the final price
is determined by several case specific facts. An average annual value is up

1https://www.bls.gov/oes/current/oes533011.htm

https://www.bls.gov/oes/current/oes533011.htm
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to 472437 euros 2 3. By excluding staffing costs and considering a sufficient
amount for medical expendables the total operational cost of 30300 euros is
reached.

A transport vehicle of blood samples is usually a transport van. The av-
erage cost of a transport van is 20.000 euros (based on the latest prices of VW
(VW Cuddy), Ford (Ford Limited) and Citroen (Citroen Jumpy) - three of the
most preferred manufacturers in transport industry). According to the World
Health Organization (WHO), a transport vehicle of blood samples must be
equipped with specific cold chain equipment 4, such as cold boxes and tem-
perature monitoring devices. The average price of a cold box is 250 euros and
of a temperature monitoring device is 100 euros, based on the prices reported
in the supply catalogue of Unicef 5. It is assumed that four cold boxes are a
sufficient amount for each transport vehicle (due to their limited capacity),
while each cold box needs a temperature monitoring device. Consequently,
the acquisition cost for each transport vehicle is up to 22000 Euros.

While an attempt has been made to use approximate cost data, it is clear
that in a realistic CAR T-cell supply chain these values will be provided more
accurately.

TABLE 5.3: Model parameters

Notation Explanation
f j Fixed opening cost of manufacturing center j

Capj Storage capacity of manufacturing center j
HCaph Service capacity of hospitals h

dit period-variable treatment demand of local treatment facility i
cnn1 travelling distance between the pair of locations (n, n1)

pj procurement cost in manufacturing centre j for each local treatment facility
HPSCh service cost per local treatment facility assigned to hospital h

TAT treatment’s administration time
TTD treatment time durability
STD specimens time durability

f p medical practitioner’s wage
samples blood samples required to produce a CAR T-cell therapy (= 2)

Mega a very big number (= 100000)

The infusion time of a CAR T-cell therapy takes in average one hour 6.

2https://www.laboit.com/health-dental/health-faq.html
3https://www.healthcarefinancenews.com/news/mobile-health-vans-value-proposition
4https://www.who.int/bloodsafety/processing/cold_chain/en/
5https://supply.unicef.org/all-materials/cold-chain-equipment.html
6https://www.mayoclinic.org/departments-centers/car-t-cell-therapy-program/

sections/gnc-20405547

https://www.laboit.com/health-dental/health-faq.html
https://www.healthcarefinancenews.com/news/mobile-health-vans-value-proposition
https://www.who.int/bloodsafety/processing/cold_chain/en/
https://supply.unicef.org/all-materials/cold-chain-equipment.html
https://www.mayoclinic.org/departments-centers/car-t-cell-therapy-program/sections/gnc-20405547
https://www.mayoclinic.org/departments-centers/car-t-cell-therapy-program/sections/gnc-20405547
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According to the values of the treatment and specimens time durability, a
detailed explanation is provided in section 5.5.3. The value of medical prac-
titioner’s hourly wage was set equal to the average of the lowest and the
highest wage of a registered nurse in European Union according to the wages
reported by Economic Research Institute (University of California, Irvine) 7.

TABLE 5.4: Decision variables

Notation Explanation
yj 1 if manufacturing centre j is opened; 0 otherwise

psaihj 1 if local treatment facility i is allocated from hospital h to manufacturing centre j; 0 otherwise
vskt 1 if mobile medical unit k is selected in period t; 0 otherwise

vhahm 1 if blood samples’ transportation vehicle m is owned by hospital h; 0 otherwise
xnn1vt 1 if node n1 is visited after n in period t by vehicle v; 0 otherwise
TDikt the total dosage of treatment delivered to patient i in period t by mobile medical unit k

SQhjmt blood samples’ quantity delivered from hospital h to the manufacturing centre j with vehicle m in period t
ttnn1t the travel time between nodes n and n1 in time period t

Additionally, a positive variable Uikt (0 ≤ Uikt ≤ |I| − 1) is used to implement
the classic subtour elimination constraint of Miller-Tucker-Zemlin (Bektaş &
Gouveia, 2014).
The objective of the problem is to minimize the total cost of the underlying
supply chain network:

min ∑
j∈J

f jyj + ∑
h∈H

∑
j∈J

∑
i∈I

∑
t∈T

psaihj ·
(

pj + HPSCh
)

+ ∑
n∈N

∑
n1∈V

∑
t∈H

∑
v∈V

cnn1 · xnn1vt +

∑
k∈K

∑
t∈T

vskt ·VFCk + ∑
h∈H

∑
m∈M

vhahm ·VFCm + ∑
h∈H

∑
j∈J

∑
m∈M

∑
t∈T

(chj·xhjmt· f dm)
speed +

∑
z∈Z

∑
z1∈Z

∑
k∈K

∑
t∈T

(czz1 ·xzz1kt·( f dk+2· f p))
speed

(5.1)

The first term of the objective function represents the location cost of opening
manufacturing centers. The second term quantifies the allocation-based costs
of the local treatment facilities, such as procurement and servicing costs. The
third term represents the general routing costs, such as insurance and mainte-
nance costs. The following two terms represent the costs of vehicles selection
in each period for mobile medical units and blood samples’ transport vehi-
cles, respectively. The subsequent term provides the cost of wages of blood
samples’ transport vehicles’ drivers, while the last term represents the cost
of wages both of drivers of mobile medical units and medical staff.

7https://www.salaryexpert.com/

https://www.salaryexpert.com/
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Model constraints:
The balance between interior and exterior flow of vehicles is guaranteed by
the following constraints:

∑
n1∈N

xnn1vt − ∑
n1∈N

xn1nvt = 0, ∀ n ∈ N, v ∈ V, t ∈ T (5.2)

A local treatment facility will be served by at most one mobile medical unit
in each time period:

∑
z∈Z

∑
k∈K

xizkt ≤ 1, ∀ i ∈ I, t ∈ T (5.3)

∑
z∈Z

∑
k∈K

xzikt ≤ 1, ∀ i ∈ I, t ∈ T (5.4)

A mobile medical unit will be moved between two nodes, only if it is selected:

xzz1kt ≤ vskt, ∀ z, z1 ∈ Z, k ∈ K, t ∈ T (5.5)

A mobile medical unit will be selected only if it is scheduled to perform a
route in a specific time period:

vskt ≤ ∑
z∈Z

∑
z1∈Z

xzz1kt, ∀ k ∈ K, t ∈ T (5.6)

A mobile medical unit will perform at most one route in each period:

∑
i∈I

∑
j∈J

xijkt ≤ 1, ∀ k ∈ K, t ∈ T (5.7)

A blood samples’ transport vehicle will be owned by at most one hospital:

∑
h∈H

vhahm = 1, ∀ m ∈ M (5.8)

A blood samples’ transport vehicle will be moved from a hospital to a man-
ufacturing centre, only if it is owned by that hospital:

∑
j∈J

xhjmt ≤ vhahm, ∀ h ∈ H, m ∈ M, t ∈ T (5.9)
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A blood samples’ transport vehicle will be owned by a hospital only if it is
scheduled to be used:

vhahm ≤∑
j∈J

∑
t∈T

xhjmt, ∀ h ∈ H, m ∈ M (5.10)

A hospital will be linked with a manufacturing centre only if there are blood
samples to be delivered to that manufacturing centre:

xhjmt ≤ SQhjmt, ∀ h ∈ H, j ∈ J, m ∈ M, t ∈ T (5.11)

Blood samples will be delivered from a hospital to a manufacturing centre,
only if there is an active link between them in a time period:

SQhjmt ≤ Mega · xhjmt, ∀ h ∈ H, j ∈ J, m ∈ M, t ∈ T (5.12)

A mobile medical unit will depart only from an opened manufacturing cen-
tre:

∑
i∈I

∑
k∈K

∑
t∈T

xjikt ≥ yj, ∀ j ∈ J (5.13)

∑
i∈I

xjikt ≤ yj, ∀ j ∈ J, ∀ k ∈ K, t ∈ T (5.14)

A local treatment facility will be allocated to exactly one hospital and one
manufacturing centre:

∑
j∈J

∑
h∈H

psaihj = 1, ∀ i ∈ I (5.15)

A local treatment facility will be served by a manufacturing centre, if it is
assigned to that manufacturing centre:

∑
b∈I

xbjkt + ∑
z∈Z\{i}

xizkt ≤ 1 + ∑
h∈H

psaihj ∀ i ∈ I, j ∈ J, k ∈ K, t ∈ T (5.16)

A manufacturing centre will service a local treatment facility, only if it is
opened:

∑
h∈H

psaihj ≤ yj, ∀ i ∈ I, j ∈ J (5.17)

The patients’ blood samples’ delivered from a hospital to a manufacturing
centre must be equal to the required blood samples, in order to produce the
corresponding demand of patients in local treatment facilities allocated both
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to that hospital and the corresponding manufacturing centre:

∑
i∈I

psaihj · dit · samples = ∑
m∈M

SQhjmt, ∀ h ∈ H, j ∈ J, t ∈ T (5.18)

The blood sample delivered by a transport vehicle must not exceed its capac-
ity:

∑
h∈H

∑
j∈J

SQhjmt ≤ QCapm, ∀ m ∈ M, t ∈ T (5.19)

The total amount of treatments delivered by a mobile medical unit must not
exceed its capacity:

∑
i∈I

TQikt ≤ QCapk, ∀ k ∈ K, t ∈ T (5.20)

The local treatment facility allocated to a hospital must not exceed its service
limit:

∑
i∈I

∑
j∈J

psaihj ≤ HCaph, ∀ h ∈ H (5.21)

The demand of patients in a local treatment facility allocated to a manufac-
turing centre must not exceed its capacity:

∑
i∈I

∑
h∈H

psaihj · ∑
t∈T

dit ≤ Capj, ∀ j ∈ J (5.22)

Treatment quantities will be delivered to a patient in a local treatment facility,
only if that local treatment facility is visited by a mobile medical unit:

TQikt ≤ Mega · ∑
z∈Z

xixkt, ∀ i ∈ I, k ∈ K, t ∈ T (5.23)

∑
z∈Z

xizkt ≤ Mega · TQikt, ∀ i ∈ I, k ∈ K, t ∈ T (5.24)

Treatment quantities delivered by a mobile medical unit to a local treatment
facility must not exceed the capacity of this mobile medical unit:

TQikt ≤ QCapk, ∀ i ∈ I, k ∈ K, t ∈ T (5.25)

The quantity of treatment delivered to a local treatment facility must be equal
to the demand of patients in this local treatment facility:

∑
k∈K

TQikt = dit, ∀ i ∈ I, t ∈ T (5.26)
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The time needed to move between two nodes is related to their distance and
the speed of the moving vehicle:

ttnn1t =

(
cnn1 · ∑

v∈V
xnn1vt

)
/speed, ∀ n, n1 ∈ N, n 6= n1, t ∈ T (5.27)

The time needed to a mobile medical unit to perform its route must not ex-
ceed the upper time limit:

∑
z∈Z

∑
z1∈Z

ttzz1t ≤ TTD, ∀ k ∈ K, t ∈ T (5.28)

The traveling time and treatment administration time must not exceed a
given upper time limit:

∑
z∈Z

∑
i∈I

(
ttzit + ((TAT · dit) · xzikt)

)
≤ TTD, ∀ k ∈ K, t ∈ T (5.29)

The time needed to a blood samples’ transport vehicle to move from a hos-
pital to a manufacturing centre must not exceed a specified upper time limit:

tthjt ≤ STD, ∀ h ∈ H, j ∈ J, t ∈ T (5.30)

The following routing-related constraints impose forbidden routes. No
vehicle movements are allowed between two manufacturing centres in each
time period:

xjj1vt = 0, ∀ j, j1 ∈ J, v ∈ V, t ∈ T (5.31)

A mobile medical unit cannot move between a hospital and a manufacturing
centre in each time period:

xjhkt = 0, ∀ j ∈ J, h ∈ H, k ∈ K, t ∈ T (5.32)

xhjkt = 0, ∀ j ∈ J, h ∈ H, k ∈ K, t ∈ T (5.33)

No vehicle movements are allowed between a local treatment facility and a
hospital in each time period:

xihvt = 0, ∀ i ∈ I, h ∈ H, v ∈ V, t ∈ T (5.34)

xhivt = 0, ∀ h ∈ H, i ∈ I, v ∈ V, t ∈ T (5.35)

A blood samples’ transport vehicle cannot move between a manufacturing
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center and a local treatment facility, neither between two local treatment fa-
cilities:

xijmt = 0, ∀ i ∈ I, j ∈ J, m ∈ M, t ∈ T (5.36)

xjimt = 0, ∀ j ∈ J, i ∈ I, m ∈ M, t ∈ T (5.37)

xibmt = 0, ∀ i, b ∈ I, m ∈ M, t ∈ T (5.38)

The Miller-Tucker-Zemlin subtour elimination constraints take the following
form:

Uikt −Ubkt + (|I| · xibkt) ≤ |I| − 1, ∀ i, b ∈ I, k ∈ K, t ∈ T (5.39)

If a local treatment facility has no patient with a non-zero demand in a time
period, then no vehicles’ movements are allowed through it:

xzikt = 0, ∀ z ∈ Z, i ∈ I, k ∈ K, t ∈ T, dit = 0 (5.40)

xizkt = 0, ∀ i ∈ I, z ∈ Z, k ∈ K, t ∈ T, dit = 0 (5.41)

The above problem is a large-scale MILP model.

5.4 Solution Approach

Despite the significant progress that has been made in the past 20 years
for the develop of efficient MIP solvers, the underlying NP-hard combina-
torial optimization problem is computationally intractable. Even for small-
sized problem instances, current state-of-the-art MIP solvers usually require
several hours to report even a feasible solution. Therefore, the development
of fast and efficient metaheuristic algorithms is essential for the solution of
complex supply chain problems of practical interest often involving simulta-
neous location, routing and inventory decisions. A metaheuristic algorithm
starts with an initial feasible solution and improves it iteratively until a ter-
mination criterion is met.

5.4.1 Initial Solution

To build an initial feasible solution, a fast construction heuristic is pro-
posed. The developed heuristic consists of four main stages. In the first stage,
the opening of the needed manufacturing centres is decided, by applying a
minimum opening cost criterion. This stage is completed when the capacity
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of opened manufacturing centres is greater or at least equal to the overall de-
mand of patients in the local treatment facilities. The next stage refers to the
allocation of local treatment facilities to the opened manufacturing centres
following a nearest distance allocation strategy. More specifically, each local
treatment facility is allocated to its nearest manufacturing centre if the total
demand of the patients in this treatment facility does not exceed the capacity
of the selected manufacturing centre and their distance does not lead to any
time restrictions’ violation. This stage is fully accomplished when all local
treatment facilities are assigned to the opened manufacturing centres.

After the execution of the first two stages, the selection of specialized hos-
pitals and the allocation of local treatment facilities to them is decided in the
third stage. To this end, the manufacturing centre, which services most of the
local treatment facilities, is initially selected and the nearest specialized hos-
pital to that manufacturing centre is chosen. Next, the local treatment facili-
ties of the currently selected manufacturing centre, are sequentially allocated
to the closest hospital until either no more treatment facilities are unallocated
or the capacity of the hospital is exceeded. This stage is executed iteratively
in order to allocate all the local treatment facilities to specialized hospitals. In
the final stage, the fleet selection and routing decisions are made. The fleet
selection both of blood samples’ transportation vehicles and mobile medical
units is performed sequentially by considering the given demand and ve-
hicles’ capacities. The blood samples’ transportation vehicles are owned by
selected hospitals, while mobile medical units are used by manufacturing
centres. Finally, the route of each mobile medical unit in each time period is
scheduled.

5.4.2 General Variable Neighborhood Search

Shaking method. The intensified shaking method is used as the shaking
step of the proposed algorithm. It relies on two shaking search operators,
the Inter-route Swap, which randomly selects two local treatment facilities
allocated to different routes and swaps them, and the Intra-route Relocate,
which is applied in a randomly selected single route in a time period and
then removes a randomly selected local treatment facility from its position
in this route and re-inserts it in a different position in the same route. This
method make use of a parameter, which indicates in each algorithm iteration
how many times the randomly selected shaking operator is applied. The
pseudocode of the developed shaking procedure is provided in Algorithms
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23. S is the incumbent solution, k is the parameter of shaking iterations and
lmax is the number of shaking operators.

Algorithm 23 Shaking Procedure

1: procedure SHAKE(S, k, lmax)
2: l = random_integer(1, lmax)

3: for i← 1, k do
4: select case(l)
5: case(1)
6: S′ ← Inter− route_Exchange(S)
7: case(2)
8: S′ ← Intra_Relocate(S)
9: end select

10: end for
11: Return S′

12: end procedure

Improvement method. As it has already been highlighted, GVNS uses
VND schemes as its main improvement step. In a VND method, local search
operators are applied sequentially. The move to the next operator is per-
formed according to a specific criterion. One the most efficient VND scheme
proved to be the pVND, in which the search is performed by the same local
search operator, as improvements achieved (Hansen et al., 2017). The pro-
posed GVNS uses a pVND as its improvement step. The developed pVND
contains the following well-known local search operators:

• Inter-route Relocate. Two local treatment facilities allocated to differ-
ent routes are selected. The first of them is removed from its current
position and it is placed exactly after the position of the second selected
local treatment facility.

• Inter-route Exchange. This operator swaps two local treatment facili-
ties allocated to different routes.

• Manufacturing centres’ Exchange. A currently selected manufacturing
centre is swapped with a currently closed one.

• Intra-route Relocate. A local treatment facility is removed from its cur-
rent position and it relocates to an other position in the same route.
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• Intra-route 2-Opt. The links between two different pairs of local treat-
ment facilities are broken and reconnected differently.

The pseudocode of the proposed pVND is provided in Algorithm 24.

Algorithm 24 pVND

1: procedure PVND(S, lmax)
2: l = 1
3: while l ≤ lmax do
4: select case(l)
5: case(1)
6: S′ ← Inter− route_Relocate(S)
7: case(2)
8: S′ ← Inter− route_Exchange(S)
9: case(3)

10: S′ ← Manu f acturingCentresSwap(S)
11: case(4)
12: S′ ← Intra− route_Relocate(S)
13: case(5)
14: S′ ← Intra− route_2−Opt(S)
15: end select
16: if f (S′) < f (S) then
17: S← S′

18: else
19: l = l + 1
20: end if
21: end while
22: Return S
23: end procedure

The proposed GVNS algorithm is shaped as shown in Algorithm 25.
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Algorithm 25 GVNS

1: procedure GVNS(S, kmax, max_time, lmax)
2: while time ≤ max_time do
3: for k← 1, kmax do
4: S∗ = Shake(S, l)
5: S′ = pVND(S∗, lmax)

6: if f (S∗) < f (S) then
7: S← S∗

8: end if
9: end for

10: end while
11: return S
12: end procedure

The execution of the GVNS algorithm depends on a given stopping time
criterion which is indicated by the parameter max_time. Other parameters
that must be provided to the GVNS are the incumbent solution S, the number
of the predefined local search operators lmax and the strength of the shaking
procedure, kmax which denotes the maximum number of a shaking operator’s
application per iteration.

A graphical illustration of the proposed algorithm is shown in Figure 5.2.
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FIGURE 5.2: The flowchart of the proposed GVNS algorithm.

5.5 Computational analysis and applications

The proposed solution method has been implemented in Fortran. The
computational experiments were performed on a laptop PC running Win-
dows 10 Home 64-bit with an Intel Core i7-6700HQ CPU at 2.6 GHz and
16 GB RAM and using the Intel Fortran compiler 18.0. The time stopping
criterion was set at 30s. The proposed MIP model was also implemented
in GAMS (GAMS 24.9.1) (Brooke et al., 1998) and solved using the CPLEX
12.7.1.0 solver. The execution time of CPLEX was initially set at two hours.
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The reported solution values is the average values of 10 algorithm runs for
each problem instance.

5.5.1 Problem instances & parameter setting

To validate the proposed model and evaluate the performance of the de-
veloped solution method, 20 problem instances were randomly generated
following specific guidelines (Zhang et al., 2014). Moreover, procurement
and service costs has been randomly generated in the intervals [10, 50] and
[30, 100] respectively. The names of the generated instances have the form
X-Y-Z-K, where X denotes the number of available hospitals (to be selected),
Y is the number of potential manufacturing centers (to be selected), Z is the
number of local treatment facilities and finally, K denotes the number of time
periods. All problem data are provided at http://pse.cheng.auth.gr/index.
php/publications/benchmarks/.

The shaking procedure is a crucial part of any VNS-based metaheuristic
algorithm, as it is the main mechanism for escaping from local optimum solu-
tions. The shaking strength, denoted by the parameter kmax, critically affects
the performance of the shaking procedure and consequently the performance
of the algorithm. Thus, a kmax analysis was performed by examining the im-
pact of three commonly used and well-performed values (10, 15, 20) in the
final solution of the algorithm. Table 5.5 presents the total cost obtained by
using each of these values for each problem case.

http://pse.cheng.auth.gr/index.php/publications/benchmarks/
http://pse.cheng.auth.gr/index.php/publications/benchmarks/
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TABLE 5.5: kmax analysis on the GVNS performance

Instance kmax = 10 kmax = 15 kmax = 20

3-3-12-3 195,804.2 195,792.1 195,841

2-3-11-4 302,897.5 305,890.4 302,893

2-3-12-4 237,184.7 237,244.3 237,176.4

2-3-10-5 367,296.7 367,296.7 367,296.7

3-4-18-4 474,588.1 474,615.6 474,609.3

3-4-20-5 516,962.4 516,949.3 516,952.9

4-5-60-5 1,303,514 1,303,518 1,303,503

5-8-80-5 1,689,163 1,689,169 1,689,169

5-8-90-5 2,208,740 2,208,746 2,208,730

5-10-95-5 1,961,402 1,961,402 1,961,402

5-10-100-5 2,239,688 2,239,688 2,239,688

5-10-105-7 3,085,174 3,085,174 3,085,174

5-10-110-7 3,153,722 3,153,720 3,153,718

6-15-120-7 3,438,138 3,438,138 3,438,140

6-15-125-7 3,543,181 3,543,181 3,543,166

6-15-130-7 3,657,759 3,657,760 3,657,760

6-15-135-7 3,937,670 3,937,667 3,937,669

7-20-140-7 3,944,267 3,944,270 3,944,280

10-20-200-7 5,386,204 5,386,203 5,386,204

10-20-250-7 6,641,862 6,641,853 6,641,834

Average 2,414,260.88 2,414,414 2,414,260.32

All three kmax choices provide almost equal values, especially the choices
of kmax = 10 and kmax = 20. However, the choice kmax = 20 provides slightly
better results and therefore it is the one selected for the rest of the study.

5.5.2 Results

This section presents in details the results of GVNS on the solution of
the 20 random generated instances. Table 5.6 summarizes the best objective
function found.
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TABLE 5.6: Total cost of best found solution of each instance.

Instance TCbest

3-3-12-3 195,778.3

2-3-11-4 302,882.6

2-3-12-4 237,159.9

2-3-10-5 367,296.7

3-4-18-4 474,583

3-4-20-5 516,936.8

4-5-60-5 1,303,458

5-8-80-5 1,689,169

5-8-90-5 2,208,696

5-10-95-5 1,961,400

5-10-100-5 2,239,688

5-10-105-7 3,085,174

5-10-110-7 3,153,712

6-15-120-7 3,438,138

6-15-125-7 3,543,164

6-15-130-7 3,657,759

6-15-135-7 3,937,667

7-20-140-7 3,944,271

10-20-200-7 5,386,204

10-20-250-7 6,641,762

Table 5.7 illustrates the number of the opened manufacturing centres (first
column), the number of used hospitals (second column), the number of se-
lected transport vehicles of blood samples (third column) and the number of
used mobile medical units in its last column.
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TABLE 5.7: The number of manufacturing centres, hospitals,
transportation vehicles and mobile medical units in the best

found solutions

Instance Manufacturing centres Hospitals Transportation vehicles of samples Mobile medical units
3-3-12-3 1 2 3 2
2-3-11-4 2 2 2 2
2-3-12-4 1 2 2 3
2-3-10-5 2 2 2 2
3-4-18-4 2 3 4 4
3-4-20-5 2 2 3 3
4-5-60-5 2 3 3 9
5-8-80-5 2 2 2 12
5-8-90-5 3 3 10 15

5-10-95-5 3 3 3 13
5-10-100-5 3 4 4 16
5-10-105-7 2 2 3 16
5-10-110-7 2 2 2 17
6-15-120-7 2 2 2 23
6-15-125-7 2 2 2 19
6-15-130-7 2 2 3 19
6-15-135-7 3 3 6 20
7-20-140-7 2 2 2 21

10-20-200-7 2 2 2 34
10-20-250-7 2 3 3 36

In order to evaluate the performance of the proposed GVNS algorithm, a
comparison with solutions obtained using CPLEX is made. The results are
summarized in Table 5.8.

TABLE 5.8: Compare the results achieved by CPLEX and GVNS
on 10 small-sized problem instances

Instance GAMS/CPLEX GVNS

3-3-12-3 173,997.74 195,841

2-3-11-4 305,207.27 302,893

2-3-12-4 237,620.38 237,176.4

2-3-10-5 368,281.35 367,296.7

3-4-18-4 N/A 474,609.3

3-4-20-5 N/A 516,952.9

4-5-60-5 N/A 1,303,503

5-8-80-5 N/A 1,689,169

5-8-90-5 N/A 2,208,730

5-10-95-5 N/A 1,961,402

CPLEX can provide near-optimal solution for the smallest problem in-
stance of Table 5.6 within a CPU time limit of two hours. However, it cannot
provide any feasible solution for any of the other small-sized instances. Fo-
cusing on the smallest instance, CPLEX generates a solution with a total cost
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of 173, 997.74 euros (integrality gap = 0.01%), which is 12.55% better than
the solution produced by GVNS algorithm (195, 841 euros). By increasing
the time limit to three hours, the CPLEX provides a feasible solution only
for instance “2-3-12-4” (237, 620.38 euros) with an integrality gap of 20.3%,
while with a time limit of six hours, feasible solutions of instances “2-3-11-
4” and “2-3-10-5” are found (305, 207.27 euros and 368, 281.35 euros corre-
spondingly). The integrality gaps for these two problem instances are 36.62%
and 38.33% respectively. The proposed GVNS algorithm produces slightly
better solutions than the CPLEX solver as the size of problem instances in-
creases. Furthermore, for larger problem instances CPLEX does not gener-
ate even a feasible solution, while GVNS leads to solution within 30 CPU
secs. Thus, the GVNS algorithm can be considered as an efficient solution
method for the problem under consideration. More importantly, considering
the time-sensitive nature of the specific supply chain problem, it is obvious
that the high execution times of CPLEX illustrates the importance for the de-
velopment of fast and efficient computational methods, such as the proposed
GVNS algorithm.

It should be noted that, the reported positive performance of the CPLEX
solver on the smallest problem instance may be attributed to a possible better
allocation of local treatment facilities to the central specialized hospitals, as
this decision affects the selection of blood samples’ transportation vehicles.
More specifically, the main difference of solutions using CPLEX and GVNS
are related to the selection of an extra blood samples’ transportation which is
decided by GVNS.

5.5.3 Sensitivity Analysis

A sensitivity analysis is performed to reveal the effect of key model pa-
rameters on the structure and cost of the underlying network. Eight different
scenarios are studied. The effect of changes in the treatment time durability
(TTD) and specimen time durability (STD) is investigated. Furthermore, the
effect of vehicles and facilities capacity and costs is also considered.

Changes on TTD and STD parameters

A fresh CAR T-cell therapy must be administered within 24 hours either
from its production or its remove from the deep cryo-preservation. However,
considering seven hours as the average sleeping time needed for an adult to
be well-operational (Bener et al., 2017; Kalsi et al., 2018) and one hour for
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preparation purposes, TTD was set at 16 hours in the basic scenario. Due
to the fact that transport vehicles may need to cover longer distances than
mobile medical units, STD was set at 18 hours.

According to the European Union rules 8 concerning the maximum driv-
ing hours, three different cases are defined. In the first case, a 9 hours time
limit is set for daily driving, in the second case a 10 hours time limit is set
for driving twice a week and in the final one, the case of emergency-aid vehi-
cles, which are exempt of the previous rules, is considered. Therefore, three
scenarios are studied in this subsection.

Scenario_1 (S1). Here, TTD and STD follow the first case of driving hours
EU rule and they are set at 9 hours. For this analysis, problem instances “3-3-
12-3”, “2-3-11-4”, “2-3-10-5”, “3-4-10-5”, “3-4-18-4”, “3-4-20-5” and “4-5-60-
5” are selected for comparison purpose. Table 5.9 provides the best found
total cost and the number of mobile medical units, for each one of problem
instances in the basic scenario and S1.

TABLE 5.9: Changes on the total costs and the number of mobile
medical units in basic scenario and S1.

Instance BestTCbasic |MMU|basic BestTCS1 |MMU|S1

3-3-12-3 195778.3 2 317644.6 4

2-3-11-4 237159.9 2 364245 3

2-3-10-5 367296.7 2 488994.8 4

3-4-18-4 474583 4 626892.7 6

3-4-20-5 516936.8 3 760605.1 6

4-5-60-5 1303458 9 2185467 19

It is observed that in most cases additional mobile medical units are se-
lected in the new scenario in order to satisfy the stricter upper time limits
comparing the basic scenario. These changes lead to an increase in the total
cost of 50%. Figures 5.3, 5.4 and 5.5 illustrate the impact of TTD on routing,
staff wages and mobile medical units usage costs, correspondingly.

8https://www.gov.uk/drivers-hours/eu-rules

https://www.gov.uk/drivers-hours/eu-rules
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FIGURE 5.3: Changes on routing costs in the basic and S1 sce-
nario
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FIGURE 5.4: Changes on staff wages costs in the basic and S1
scenario
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FIGURE 5.5: Changes on mobile medical units usage costs in
the basic and S1 scenario

By setting TTD and STD at 9 hours, no changes are observed on the de-
cisions related to the allocation to hospitals or the transportation of blood
samples. However, a significant cost increase is reported on routing- and mo-
bile medical units’ usage-based decisions. Also, by imposing a stricter upper
time limit, the selection of more and possible not such cost-efficient routes is
decided comparing to the basic scenario. For example, the routes of problem
instance “3-3-12-3” in both scenarios are (a route has the form manufacturing
centre-local treatment facility/facilities-manufacturing centre):
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Routes in the basic scenario for each time period:

• Period 1:

– Route_1: M f 3 → 1 → 5 → 3 → 7 → 10 → M f 3 (Routing Time:
14h 4m 22s)

– Route_2: M f 3 → 9 → 11 → 2 → 8 → 12 → 6 → M f 3 (Routing
Time: 14h 5m 27s)

• Period 2:

– Route_1: M f 3 → 11 → 2 → 4 → 8 → 6 → 7 → 5 → M f 3
(Routing Time: 13h 44m 44s)

• Period 3:

– Route_1: M f 3 → 10 → 7 → 6 → 12 → 8 → 4 → 2 → M f 3
(Routing Time: 14h 33m 49s)

Routes in S1 for each time period:

• Period 1:

– Route_1: M f 3→ 5→ 3→ 1→ M f 3 (Routing Time: 7h 48m)

– Route_2: M f 3→ 2→ 11→ 9→ M f 3 (Routing Time: 6h 32m 44s)

– Route_3: M f 3→ 8→ 12→ 6→ M f 3 (Routing Time: 8h 7m 38s)

– Route_4: M f 3→ 7→ 10→ M f 3 (Routing Time: 5h 25m 5s)

• Period 2:

– Route_1: M f 3→ 2→ 4→ 11→ M f 3 (Routing Time: 5h 44m 44s)

– Route_2: M f 3→ 8→ 6→ 7→ 5→ M f 3 (Routing Time: 8h)

• Period 3:

– Route_1: M f 3→ 10→ 4→ 2→ M f 3 (Routing Time: 5h 49m 5s)

– Route_2: M f 3 → 8 → 12 → 6 → 7 → M f 3 (Routing Time:
8h 57m 49s)

It is clear that the timing-related parameters significantly affects the num-
ber of routes as well as the selected mobile medical units.

Scenario_2 (S2). In this scenario both TTD and STD are set at 10 hours.
Table 5.10 presents the differences between the best found total costs and the
number of mobile medical units comparing with the basic scenario.
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TABLE 5.10: Changes on the total costs and the number of mo-
bile medical units in basic scenario and S2.

Instance BestTCbasic |MMU|basic BestTCS2 |MMU|S2

3-3-12-3 195,778.3 2 287,252.4 3

2-3-11-4 237,159.9 2 333,573.2 3

2-3-10-5 367,296.7 2 397,736.6 3

3-4-18-4 474,583 4 626,265.4 6

3-4-20-5 516,936.8 3 729,874.4 5

4-5-60-5 1,303,458 9 1,942,218 15

The results indicate that by imposing stricter time limits, more routes are
selected thus resulting in the usage of more vehicles comparing to the basic
scenario. Therefore, the total cost of the supply chain is increased. Figure 5.6
illustrates the differences of mobile medical units usage cost for the basic and
S2 scenario.
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FIGURE 5.6: Changes on mobile medical units usage costs in S2

The routing cost is increased by 11.72%, while the staff wages’ cost is
32.32% higher than the basic scenario.

Scenario_3 (S3). Here time limits are ignored. Table 5.11 summarizes
the cost differences between S3 and the basic scenario. It also provides the
number of selected mobile medical units in both cases.
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TABLE 5.11: Changes on the total costs and the number of mo-
bile medical units in basic scenario and S3.

Instance BestTCbasic |MMU|basic BestTCS3 |MMU|S3

3-3-12-3 195,778.3 2 195,788.3 2

2-3-11-4 237,159.9 2 302,868 2

2-3-10-5 367,296.7 2 367,296.7 2

3-4-18-4 474,583 4 352,306.6 2

3-4-20-5 516,936.8 3 395,415.3 2

4-5-60-5 1,303,458 9 421,924.2 2

The results indicate a significant reduction in the total cost compared to
the basic scenario. More specifically, routing-related costs are approximately
11.3% lower than the basic scenario while a similar trend is noted for the staff
wage cost. Furthermore, the mobile medical units usage cost is reduced by
42.5%.

Changes on the capacities and selection/usage cost of vehicles

The previous studies reveal the strong impact of key timing-related pa-
rameters on the fleet size and the selection of routes. Two other interdepen-
dent factors, that can potential affect the fleet size and routes, are the capacity
and the cost of vehicles. The analysis is performed on the same problem in-
stances used in S1, S2 and S3. Three scenarios are studied:

• Scenario_4: Both the capacity and cost are decreased by 10% and 15%
correspondingly.

• Scenario_5: Both the capacity and cost are decreased by 25% and 50%
correspondingly.

• Scenario_6: Both the capacity and cost are increased by 15% and 5%
correspondingly.

It should be mentioned that the acquisition cost of a vehicle does not de-
pend only on its capacity (Letmathe & Suares, 2017). There are additional fac-
tors, which can significantly affect the acquisition cost of a transport vehicle,
such as exterior, interior and mechanical upgrades. For instance, a medium-
roof transport van is more inexpensive than a high-roof vehicle. Also, a vehi-
cle produced by a European manufacturer seems to be more expensive than
a vehicle produced by an Asian manufacturer. Moreover, in our case the ca-
pacity does not refer to the actual capacity of the vehicle, but refers to the
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capacity of cold boxes in the case of transport vehicles and the capacity of re-
frigerator in the mobile units. Therefore, taking the Scenario_5 as an example,
it can represent a situation where smaller, but more efficient and expensive,
cold boxes and refrigerators are supplied to the transport vehicles and the
mobile medical units, respectively. Thus, the capacity of both vehicle types
is significantly decreased. Also, the acquisition of the standard version of
vehicles from an Asian supplier can lead to a major price decrease.

Scenario_4 (S4). In this scenario the capacity of vehicles is decreased by
10% while the cost is decreased by 15%. Table 5.12 presents the best found
total costs and the number of mobile medical units in both scenarios.

TABLE 5.12: Changes on the total costs and the number of mo-
bile medical units in basic scenario and S4.

Instance BestTCbasic |MMU|basic BestTCS4 |MMU|S4

3-3-12-3 195,778.3 2 193,533.7 3

2-3-11-4 237,159.9 2 259,922.6 2

2-3-10-5 367,296.7 2 315,246.7 2

3-4-18-4 474,583 4 380,998 3

3-4-20-5 516,936.8 3 443,517.8 3

4-5-60-5 1,303,458 9 1,142,201 10

This scenario leads to a reduction in the total costs compared to the basic
scenario. It is interesting to note that the number of the mobile medical units
are almost the same in both scenarios. Routing and staff wages’ costs do not
illustrate any significant improvement, as they are decreased by 0.85% and
1.9% respectively.

Scenario_5 (S5). This scenario studies the effects of decreasing both the
capacity and cost of vehicles by 25% and 50% respectively. The total costs
and number of selected mobile medical units are summarized in Table 5.13.

TABLE 5.13: Changes on the total costs and the number of mo-
bile medical units in basic scenario and S5.

Instance BestTCbasic |MMU|basic BestTCS5 |MMU|S5

3-3-12-3 195,778.3 2 132,655.7 3

2-3-11-4 237,159.9 2 159,668 2

2-3-10-5 367,296.7 2 193,796.7 2

3-4-18-4 474,583 4 233,537.3 3

3-4-20-5 516,936.8 3 271,970.6 3

4-5-60-5 1,303,458 9 694,970.6 10

Results indicate a significant reduction of approximately 47% to the total
cost compared to the basic scenario. However, the total cost is not a proper
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evaluation metric in this scenario, as it is obviously affected by the major
vehicles usage cost decrease. Therefore, the potential impact of this scenario
on routing and staff wages’ costs should be also investigated. It is observed
that both cost terms are slightly decreased compared to the basic scenario.
To clarify these improvements, we focus on the routes built in the first period
of problem instance “3-3-12-3” under the consideration of the basic and the
current scenario.

Routes in the first period in the basic scenario.

• Route_1: M f 3 → 1 → 5 → 3 → 7 → 10 → M f 3 (Routing Time:
14h 4m 22s)

• Route_2: M f 3 → 9 → 11 → 2 → 8 → 12 → M f 3 (Routing Time:
14h 5m 27s)

Routes in the first period in S5.

• Route_1: M f 3→ 7→ 3→ 5→ 1→ M f 3 (Routing Time: 9h 53m 27s)

• Route_2: M f 3 → 10 → 6 → 12 → 8 → 2 → 6 → M f 3 (Routing Time:
12h 24m)

• Route_3: M f 3→ 11→ 9→ M f 3 (Routing Time: 4h 43m 38s)

The routing time is related to the distance, as the speed is assumed con-
stant in the proposed approach. It is clear that the decreased capacity of
vehicles force the algorithm to construct more and shorter routes comparing
to the basic scenario. For example, the total routing time in the first period is
decreased by almost one hour.

Scenario_6 (S6). The impact, of increasing the capacity of vehicles by 15%
and the cost of vehicles by 5% on costs, is investigated in this scenario. Table
5.14 provides the best total costs and the number of mobile medical units, as
reported for each problem instance under the basic and the current scenarios.

TABLE 5.14: Changes on the total costs and the number of mo-
bile medical units in basic scenario and S6.

Instance BestTCbasic |MMU|basic BestTCS6 |MMU|S6

3-3-12-3 195,778.3 2 205,141.3 2

2-3-11-4 237,159.9 2 317,192.6 2

2-3-10-5 367,296.7 2 384,634.7 2

3-4-18-4 474,583 4 465,237.3 3

3-4-20-5 516,936.8 3 541,493.4 3

4-5-60-5 1,303,458 9 1,397,790 9
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Solutions under S6 lead to a 4.76% increase of the total cost compared to
the basic scenario. This is due to increases in the vehicles usage cost. How-
ever, this may be attributed to the simultaneous increase of vehicles’ capacity.
This increase provides the opportunity to build less routes and to potentially
achieve some cost savings. For instance, in problem case “3-4-18-4” the four
routes in the first period of the basic scenario are combined into three routes
in the same period of the current scenario. More specifically:

Routes in the first period in the basic scenario.

• Route_1: M f 3→ 17→ 18→ 15→ M f 3 (Routing Time: 10h 49m 5s)

• Route_2: M f 3 → 5 → 8 → 10 → 4 → 7 → 1 → M f 3 (Routing Time:
14h 26m 11s)

• Route_3: M f 3→ 16→ 9→ 11→ M f 3 (Routing Time: 5h 51m 16s)

• Route_4: M f 3→ 2→ 6→ 12→ 13→ M f 3 (Routing Time: 9h 18m 33s)

Routes in the first period in the current scenario.

• Route_1: M f 3→ 17→ 18→ 15→ M f 3 (Routing Time: 10h 49m 5s)

• Route_2: M f 3 → 5 → 8 → 10 → 4 → 7 → 1 → M f 3 (Routing Time:
14h 26m 11s)

• Route_3: M f 3→ 16→ 9→ 13→ 12→ 2→ 6→ 11→ M f 3 (Routing
Time: 14h 54m 33s)

Changes on the capacities and opening cost of facilities

The capacity and cost of facilities significantly affect the structure of the
supply chain network. Moreover, these two parameters often illustrate sig-
nificant fluctuations (Govindan et al., 2017). Two scenarios are considered
here. In Scenario_7 (S7) both the capacity and cost are decreased by 20% and
15% correspondingly, while in Scenario_8 (S8) the capacity and cost are de-
creased by 25% and 5% correspondingly. A potential reason of imposing such
simultaneous reductions is the decision to build smaller facilities in order to
reduce their costs. For existing facilities this can be attributed to the con-
cept of shared facilities (Assid et al., 2019). For these scenarios, the following
seven problem instances are considered: “3-3-12-3”, “2-3-10-5”, “3-4-18-4”,
“3-4-20-5”, “4-5-60-5”, “6-15-130-7” and “10-20-200-7”. Table 5.15 provides
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the best found total cost and the number of opened manufacturing centres
for S7, S8 and the basic scenario.

TABLE 5.15: Total costs and the number of manufacturing cen-
tres in the basic scenario, S7 and S8.

Instance BestTCbasic |J|basic BestTCS7 |J|S7 BestTCS8 |J|S8

3-3-12-3 195,778.3 1 237,549.5 2 238,235.5 2

2-3-10-5 367,296.7 2 365,710.4 2 366,857.8 2

3-4-18-4 474,583 2 411,695.6 2 443,175.6 2

3-4-20-5 516,936.8 2 605,260.1 3 599,140.5 3

4-5-60-5 1,303,458 2 1,303,435 2 1,334,836 2

6-15-130-7 3,657,759 2 3,806,458 3 3,717,070 3

10-20-200-7 5,386,204 2 5,349,408 2 5,424,733 3

The opened manufacturing centres and the selected specialized hospitals
are summarized in Table 5.16.

TABLE 5.16: Opened manufacturing centres and selected hos-
pitals in the basic scenario, Scenario_7 and Scenario_8.

Instance MFbasic Hbasic M fS7 HS7 M fS8 HS8

3-3-12-3 3 1, 3 2, 3 2, 3 2, 3 2, 3

2-3-10-5 1, 3 1, 2 1, 3 1, 2 1, 3 1, 2

3-4-18-4 3, 4 1, 2, 3 3, 4 1, 2, 3 3, 4 1, 2, 3

3-4-20-5 2, 4 2, 3 2, 3, 4 1, 2, 3 2, 3, 4 1, 2, 3

4-5-60-5 1, 3 2, 3, 4 1, 3 2, 3, 4 1, 3 2, 3, 4

6-15-130-7 1, 14 4, 6 1, 4, 15 2, 4, 6 1, 4, 15 2, 4, 6

10-20-200-7 5, 17 2, 5 5, 17 2, 5, 7 5, 14, 17 2, 5, 6

The imposed changes on the capacity do not seem to affect the number of
opened hospitals. However, significant changes are observed on the number
of selected manufacturing centres, especially when the problem size is in-
creased and the capacity of manufacturing centres is decreased enough (more
than 20%). Furthermore, minor changes are reported between S7 and S8 re-
garding the opened manufacturing centres and selected hospitals. Problem
instance “10-20-200-7” is the only exception.

The decrease of facilities capacity leads to opening more manufacturing
centres and an associated increase to the location-related costs. However, the
total cost does not significantly change. This is mainly due to a balancing be-
tween location and routing costs. More specifically, the inescapable opening
of more manufacturing centres provides the opportunity for the selection of
more efficient routes, which lead to a significant routing cost reduction. This
can be clearly observed in Figure 5.7 for problem instance “6-15-130-7”.
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FIGURE 5.7: Differences on location and routing costs between
the basic scenario and S7

5.6 Concluding remarks

This chapter presents a new decentralized CAR T-cell therapies’ admin-
istration process, which addressed by a specific supply chain network repre-
sentation to tackle the rising challenges associate with the design and oper-
ation of CAR T-cell therapies supply chains. This is one of the first attempts
to introduce a novel network structure that takes into account key design
and operational decisions of this new supply chain problem. The key point
of the proposed network structure is that the administration of therapies is
performed not in specialized hospitals but in local treatment facilities, which
are located close to the patients’ sites. More specifically, this representation
considers the selection of the optimal number of specialized hospitals and ca-
pacitated manufacturing centres. Each local treatment facility is assigned to a
specific hospital and a selected manufacturing centre. Therefore, proper fleet
size of transport vehicles is decided to guarantee the transportation of the re-
quired samples from specialized hospitals to selected manufacturing centres,
where the final therapies are produced. To this end, mobile medical units are
selected in order to deliver therapies and transport specialized medical staff
to the local treatment facilities. The time needed for completing a scheduled
route must not exceed a specified time limit defined by the time-sensitive na-
ture of the cellular therapy. A new MILP model is presented along with a
metaheuristic VNS-based method for the efficient solution of large problem
instances of practical interest. Extensive numerical analyses provide useful
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insights into the key factors affecting the design and operational planning of
these supply chains.
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Chapter 6

Conclusions & future directions

6.1 Overview

This thesis focuses on the modeling and optimization of complex and
large-scale SCN problems using efficient metaheuristic solution techniques.
Problems addressed via the proposed approach consider simultaneously strate-
gic, tactical and operational decisions. This chapter summarizes the key con-
tributions of the thesis and identifies potential future research directions.

6.2 Summary of key scientific contributions

This thesis has studied four new complex SCN optimization problems
and introduces efficient VNS-based solution techniques.

In Chapter 2, a generalization of the well-known LIRP has been addressed.
The new problem variant, called LIRPDO, considers further strategic deci-
sions such as the selection of the proper vehicles’ provider. An MIP has
been developed to model the problem. Due to the high computational com-
plexity of the introduced problem, a hybrid GVNS-based solution method
is proposed. More specifically, a GVNS algorithm using the pVND as its
core improvement method, combined with an inventory rescheduling post-
optimization procedure has been developed. Extensive numerical analyses
on newly proposed benchmark instances indicate the efficiency of the pro-
posed solution approach. Several LIRP benchmarks from the open literature
have been solved and extensively analysed. The proposed algorithm out-
performs the state-of-the-art method, known as SA-Hyb-ILRP (Zhang et al.,
2014). Its predominance is especially evident on the solution of large-sized
problem instances. The key strength of the GVNS-InvRP algorithm is its abil-
ity to open the minimum required number of depots. The main features of
this chapter are summarized as follows:
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� An MIP model for the underlying supply chain network problem.

� A ratio-based locations’ selection strategy introduced in the first phase
of a two phase construction heuristic.

� Application of a GVNS-based solution approach on 20 random gener-
ated LIRPDO instances and comparison with the CPLEX solver. The
proposed method is also applied on 20 LIRP benchmark instances from
the literature.

� The proposed approach is a self-contained solver.

� A new benchmark set with the current largest instances of LIRP in the
open literature have been generated and made publicly available.

The PLIRP, a green variant of the LIRP, has been introduced in the third
chapter of this dissertation. PLIRP considers not only economic aspects of
supply chain activities, but also their environmental dimension. One of the
most accurate fuel consumption models was adopted from the literature in
order to compute both the fuel consumption and the CO2 emissions. An
MIP formulation of the problem has been proposed along with three VNS-
based heuristic algorithms and their corresponding adaptive variants. The
effects of using different shaking strength parameter values on the efficiency
of the proposed algorithms have been thoroughly investigated. Furthermore,
computational analysis on the impact of using the SSP either after each lo-
cal search operator or in the end of each VND iteration is conducted. The
solution schemes using the SPP after each local search operator have been
proved as the most efficient ones. A hybridization of the AGVNSpVND for
the solution of both small and medium problem cases and the GVNSpVND

for solving large problem cases has increased the computational efficiency.
As holding costs are critical, a sensitivity analysis has also been performed
to assess the potential impact of the variations of holding costs on the total
cost. Despite the fact that holding costs significantly affect the total cost of
the supply chain system, the use of the flexible replenishment policy keeps
this cost increase in relatively low levels. Some exceptions have been noticed
by using more vehicles. The main contributions highlighted in this chapter
are briefly summarized as follows:

� A new complex logistics optimization problem with environmental con-
siderations.



6.2. Summary of key scientific contributions 169

� An MIP model by integrating and extending two models from the lit-
erature.

� Three VNS-based solution algorithms.

� A new benchmark set with the current largest instances of the Pollution
LIRP (PLIRP) reported in the open literature have been generated and
made publicly available.

� The impact of the flexible replenishment policy on building better rout-
ing patterns is illustrated.

� A sensitivity analysis is performed to illustrate the effect of holding
costs on the total supply chain cost for several problem instances.

In Chapter 4, a new integrated supply chain problem is studied. This
new variant of the LIRP, called FSMPLIRP, considers fleet composition and
capacity planning decisions while adopting the well-known JiT replenish-
ment policy. For the efficient solution of this problem, GVNS-based solu-
tion methods have been investigated. A critical performance component of
a VNS-based algorithm is the shaking mechanism. Herein, new adaptive
shaking strategies have been proposed as essential intelligent learning com-
ponents of the solution methods. The main difference between the proposed
shaking schemes and the commonly used shaking method is that the new
methods rely on past experience to guide the search in more promising di-
rections into the search space. The shaking operators are initially ordered ei-
ther based on their complexity or in a random fashion. In each next iteration
the shaking operators are re-ordered according to the number of achieved
improvements by using each of them in the previous iteration. Extensive
computational tests conducted on a new set of benchmark instances, indicate
the efficiency of the GVNS schemes using the new adaptive shaking strate-
gies. Results demonstrate the economic and environmental benefits of using
a mixed fleet. Furthermore, the application of an alternative initialization
rule has been investigated. It was observed that further improvements can
be achieved, especially on the solution of large problem cases. A synopsis of
the key contributions, included in this chapter, is following:

� An MIP formulation for the new complex SCN optimization problem.

� New adaptive shaking methods, as intelligent components in the devel-
oped GVNS-based algorithms for the solution of the above problem.
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� Investigation of different variants of the solution approaches.

� Development of a self-contained solver for the problem under consid-
eration.

� Useful managerial insights are derived for a number of complex prob-
lem instances.

An integrated CAR T-cell SCN optimization problem has been studied
in Chapter 5. A novel SCN representation is proposed in an effort to ef-
ficiently manage the increased demand and avoid potential bottlenecks in
the therapy manufacturing and distribution processes. To this end, special-
ized practitioners-manned mobile medical units are considered to visit local
treatment facilities, located close to patients’ sites. The administration of the
therapy is performed in these mobile clinics. After the administration, pa-
tients will remain in the local treatment facility to be monitored for potential
adverse reactions. To model this problem, a new MILP model has been de-
veloped. However, the solution of problems with potential practical interest
cannot be solved with exact algorithms. Therefore, a VNS-based heuristic
solution method has been developed for solving large problem cases effi-
ciently. Several problems have been solved and the effect of key parameters
on strategic and operational decisions has been studied. The key contribu-
tions presented in this chapter are the following:

� A new MIP formulation.

� A novel SCN representation.

� The consideration of mobile medical units.

� Development of a self-contained GVNS-based solver for the problem
under consideration.

� Extended computational and sensitivity analysis.
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6.3 Future research directions

A range of issues requiring further investigation have been revealed in
the course of this work. These issues are divided into two main classes. In
particular,

• Solution methods:

– Improvements. Due to the high computational complexity of the
underlying problems, heuristic solution methods have been devel-
oped for their efficient solution. However, these techniques can-
not guarantee optimality of the reported solutions. Therefore, the
development of new local search operators, both in the improve-
ment and shaking phases, may lead to improved solutions. More-
over, the combined use of adaptive improvements and shaking
mechanisms can positively affect the exploration of the research
space. A parallel implementation of the proposed algorithms can
be adopted to accelerate the overall solution process (Antoniadis
& Sifaleras, 2017). Furthermore, the development of hybrid ap-
proaches which combine direct solution approaches (e.g. branch
and bound) with the proposed metaheuristics can potentially lead
to better solutions.

– Evaluation. The design and development of new effective approx-
imate solution algorithms, such as Lagrangian relaxation methods,
will provide better lower bounds. Thus, a more accurate perfor-
mance evaluation over the proposed heuristic solution methods
can be achieved.

• Problem extensions. Several generalizations of the proposed problems
can be addressed by considering additional realistic features. More
specifically:

– Multiple products (Zhalechian et al., 2016). This feature denotes
a supply chain system which handles multiple types of commodi-
ties.

– Stochastic demand (Nenes et al., 2010; Rafie-Majd et al., 2018).
In the SCN problems the demand of customers/patients is time-
varying but deterministic. A more realistic approach should con-
sider stochastic product demands.
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– Closed-loop SCN (Panagiotidou et al., 2017; Zikopoulos & Tagaras,
2015). A key sustainable supply chain approach is the considera-
tion of closed-loop supply chains, which combine traditional or
forward logistics with the reverse flow of no functional or needed
products, due to limited resources.

– Intermediate stops for refueling or charging purposes (Hof et al.,
2017),

– Time windows (Marinakis et al., 2019). A time range is defined for
each customer in which he must be served. Time windows are di-
vided into soft, strict or hard and mixed. Soft time windows can be
violated by considering penalty costs, while hard time windows
must be respected.

– Alternative shipping strategies (Nikolopoulou et al., 2017). These
strategies includes direct shipment, cross-docking and transload-
ing. More specifically, direct shipment refers to the delivery of
products from a source node to a consumer directly. In cross-
docking shipment, products are unloaded from inbound delivery
trucks and they are directly loaded onto outbound trucks. Transload-
ing refers to en route uploading and re-loading of products be-
tween different modes of transportation.

– Detailed scheduling decisions in the manufacturing centres in CAR
T-cell therapies SCN, such as capacity and resource planning deci-
sions (Papathanasiou et al., 2020).
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Appendix A

Research Outputs

Herein, an overview of the research outputs of this dissertation is pro-
vided.

Peer-reviewed journal publications:

1. Karakostas, P., Sifaleras, A. and Georgiadis, M.C. 2019. A general vari-
able neighborhood search-based solution approach for the location-inventory-
routing problem with distribution outsourcing, Computers & Chemical En-
gineering, 126, pp. 263-279, doi: 10.1016/j.compchemeng.2019.04.015
(Karakostas et al., 2019b)

2. Karakostas, P., Sifaleras, A. and Georgiadis, M.C. 2020. Adaptive vari-
able neighborhood search solution methods for the fleet size and mix pollution
location-inventory-routing problem, Expert Systems with Applications, 153,
113444, doi: 10.1016/j.eswa.2020.113444 (Karakostas et al., 2020c)

3. Karakostas, P., Panoskaltsis, N., Mantalaris, A. and Georgiadis, M.C.,
2020. Optimization of CAR T-cell therapies Supply Chains, Computers &
Chemical Engineering, 139, 106913, doi: 10.1016/j.compchemeng.2020.106913
(Karakostas et al., 2020a)

4. Karakostas, P., Sifaleras, A. and Georgiadis, M.C. 2020. Variable neigh-
borhood search-based solution methods for the pollution location-inventory-
routing problem. Submitted to Optimization Letters on March, 23.

International conference proceedings:

1. Karakostas P., Sifaleras A., Georgiadis M.C. (2019) Basic VNS Algo-
rithms for Solving the Pollution Location Inventory Routing Problem.
In: Sifaleras A., Salhi S., Brimberg J. (eds) Variable Neighborhood Search.
ICVNS 2018. Lecture Notes in Computer Science, vol 11328. Springer,
Cham (Karakostas et al., 2019a)
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2. Karakostas P., Sifaleras A., Georgiadis M.C. (2020) Adaptive GVNS Heuris-
tics for Solving the Pollution Location Inventory Routing Problem. In:
Matsatsinis N., Marinakis Y., Pardalos P. (eds) Learning and Intelligent
Optimization. LION 2019. Lecture Notes in Computer Science, vol
11968. Springer, Cham (Karakostas et al., 2020b)

National conferences:

• Karakostas P., Sifaleras A., Georgiadis M.C. (2017) General Variable
Neighborhood Search for the Efficient Solution of Location Inventory
Routing Problems. OR in the digital era - ICT challenges, 6th Interna-
tional Symposium and 28th National Conference on Operational Re-
search, Thessaloniki, Greece, June 8-10.
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