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ABSTRACT 

 

Project scheduling plays a vital role in project management, and constitutes 

one of the most important directions in both research and practice in the 

Operational Research (OR) field. During the last decades, the Resource-

Constrained Project Scheduling Problem (RCPSP) has become the most 

challenging standard problem of project scheduling in the OR literature. The 

RCPSP involves the construction of a precedence and resource feasible time 

schedule which identifies the starting and completion times of activities, under 

a specific objective. Several variations of the RCPSP exist that represent 

different practical problems with different objectives, resource types, more 

than one way (mode) to execute an activity, generalised precedence relations 

for activities, etc. The RCPSP and its variants belong to the class of strongly 

NP-hard problems and a number of solution methods, both exact and 

approximate have been proposed in the literature.  

 

Scheduling is also a critical issue in process operations. The process 

scheduling problem consists of determining the most efficient way to produce 

a set of products in a time horizon given a set of processing recipes and 

limited resources. The activities to be scheduled usually take place in 

multiproduct and multipurpose plants, in which a wide variety of different 

products can be manufactured via the same recipe or different recipes by 

sharing limited resources, such as equipment, material, time, and utilities. 

The common problem features, such as required resource types, precedence 

relations and initial/target inventories, suggest that exchanging solution 

techniques between the two research fields is both possible and useful.  

 

The process scheduling industry is driven by the substantial advances of 

related modelling and solution techniques, as well as the rapidly growing 

computational power. On the other hand, project scheduling research effort 

has mostly focused on developing approximate solution techniques. However, 
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recent project scheduling research papers show a renewed interest for 

mathematical programming-based solution strategies. Moreover, the best 

lower bounds ever found on broadly-studied RCPSP test instances, were 

obtained by a hybrid method involving constraint propagation and a MILP 

formulation. Additionally, mathematical programming solvers are often the 

only software available to industrial practitioners. Therefore, the study of 

exact methods, and especially mathematical programming techniques, for 

solving the RCPSP is of particular theoretical and practical interest. The main 

objective of this work is to develop new optimal project scheduling techniques 

inspired by the process scheduling literature. 

 

This thesis consists of a literature review and state-of-the-art, three chapters 

with novel mathematical programming solution methods for the RCPSP and its 

variants under the objective of minimising the makespan and finally some 

concluding remarks. The first part presents new mixed-integer linear 

programming models for the deterministic single- and multi-mode RCPSP with 

renewable and non-renewable resources. The modelling approach relies on 

the Resource-Task Network (RTN) representation, a network representation 

technique used in process scheduling problems, based on continuous time 

models. Next, two new binary integer programming discrete-time models and 

two novel precedence-based mixed integer continuous-time formulations are 

developed. These four novel mathematical formulations are compared with 

four state-of-the-art models from the open literature using a total number of 

2760 well-known open-accessed benchmark problem instances. The 

computational comparison demonstrates that the proposed mathematical 

formulations feature the best overall performance. Finally, a new precedence-

based continuous-time formulation is proposed for a challenging extension of 

the standard single-mode resource-constrained project scheduling problem 

that also considers minimum and maximum time lags (RCPSP/max). The new 

formulation is then used to conduct an extensive computational study on a 

total of 2,250 benchmark problems, which illustrates its efficient performance. 
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ΠΕΡΙΛΗΨΗ 

 

Ο Υξνλνπξνγξνγξακκαηηζκόο Έξγσλ (ΥΕ) παίδεη δσηηθό ξόιν ζηε Δηαρείξηζε 

Έξγσλ (Project Management), θαη απνηειεί κία από ηηο πην ζεκαληηθέο 

θαηεπζύλζεηο ηόζν ζηελ έξεπλα όζν θαη ηελ πξαθηηθή ζην πεδίν ηεο 

Επηρεηξεζηαθήο Έξεπλαο (ΕΕ). Σηο ηειεπηαίεο δεθαεηίεο, ην Πξόβιεκα 

Υξνλνπξνγξακκαηηζκνύ Έξγσλ κε Πεξηνξηζκέλνπο Πόξνπο (Resource-

Constrained Project Scheduling Problem - RCPSP) έρεη ηππνπνηεζεί θαη 

απνηειεί κία από ηηο κεγαιύηεξεο πξνθιήζεηο ζηελ βηβιηνγξαθία ηεο ΕΕ. Σν 

RCPSP πεξηιακβάλεη ηε δεκηνπξγία ελόο ρξνλνπξνγξάκκαηνο πνπ ηθαλνπνηεί 

ηηο ζπλζήθεο πξνηεξαηόηεηαο θαη ηνπο πεξηνξηζκνύο πόξσλ θαη ππνινγίδεη 

ηνπο ρξόλνπο έλαξμεο θαη νινθιήξσζεο ησλ εξγαζηώλ, έρνληαο ζέζεη θάπνην 

ζπγθεθξηκέλν ζηόρν. Τπάξρνπλ αξθεηέο παξαιιαγέο ηνπ RCPSP νη νπνίεο 

αλαπαξηζηνύλ δηάθνξα πξαθηηθά πξνβιήκαηα κε δηαθνξεηηθνύο ζηόρνπο, 

ηύπνπο πόξσλ, πεξηζζόηεξνπο από έλαλ ηξόπν εθηέιεζεο κίαο εξγαζίαο 

(mode), γεληθεπκέλεο ζρέζεηο πξνηεξαηνηήησλ κεηαμύ ησλ εξγαζηώλ, θ.α. Σν 

RCPSP θαη νη παξαιιαγέο ηνπ αλήθνπλ ζηελ θαηεγνξία ησλ ηζρπξά NP-hard 

πξνβιεκάησλ θαη έρνπλ αλαπηπρζεί δηάθνξεο αθξηβείο θαη πξνζεγγηζηηθέο 

κεζνδνινγίεο επίιπζήο ηνπο ζηε βηβιηνγξαθία.  

 

Ο ρξνλνπξνγξακκαηηζκόο απνηειεί ζεκαληηθό πεδίν έξεπλαο θαη ζηνλ ηνκέα 

ιεηηνπξγηώλ δηεξγαζηώλ (process operations). Σν πξόβιεκα 

ρξνλνπξνγξακκαηηζκνύ δηεξγαζηώλ πεξηιακβάλεη ηνλ ππνινγηζκό ηνπ πην 

απνδνηηθνύ ηξόπνπ παξαγσγήο ελόο ζπλόινπ πξντόλησλ ζε ζπγθξηκέλν 

ρξνληθό νξίδνληα, δεδνκέλνπ ελόο ζπλόινπ ζπληαγώλ επεμεξγαζίαο θαη 

πεξηνξηζκέλνπο πόξνπο. Οη εξγαζίεο πξέπεη λα ρξνλνπξνγξακκαηηζηνύλ ζε 

έλα βηνκεραληθό πεξηβάιινλ, όπνπ κπνξεί λα παξαρζεί κία πιεζώξα 

δηαθνξεηηθώλ πξντόλησλ κε ηελ ίδηα ή δηαθνξεηηθέο ζπληαγέο, 

ρξεζηκνπνηώληαο θνηλόρξεζηνπο πεξηνξηζκέλνπο πόξνπο, όπσο εμνπιηζκό, 

πιηθά, ρξόλν θαη αλαιώζηκα. Σα θνηλά ραξαθηεξηζηηθά ησλ δύν πξνβιεκάησλ, 

όπσο νη απαηηνύκελνη ηύπνη πόξσλ, νη ζρέζεηο πξνηεξαηνηήησλ κεηαμύ 
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εξγαζηώλ, θαη ηα αξρηθά/ηειηθά απνζέκαηα, ππνδειώλνπλ όηη ε αληαιιαγή 

ηερληθώλ επίιπζεο κεηαμύ ησλ δύν εξεπλεηηθώλ πεδίσλ είλαη δπλαηή θαη 

ρξήζηκε.  

 

Η βηνκεραλία ρξνλνπξνγξακκαηηζκνύ δηεξγαζηώλ επσθειείηαη από ηε 

ζεκαληηθή πξόνδν ηερληθώλ κνληεινπνίεζεο θαη επίιπζεο, θαζώο θαη ηελ 

ηαρύηαηα απμαλόκελε ππνινγηζηηθή ηζρύ. Από ηελ άιιε, ε έξεπλα ζην ΥΕ έρεη 

εζηηάζεη θπξίσο ζηελ αλάπηπμε πξνζεγγηζηηθώλ ηερληθώλ επίιπζεο. Ωζηόζν, 

πξόζθαηεο εξεπλεηηθέο εξγαζίεο ζην ΥΕ δείρλνπλ όηη παξνπζηάδεηαη 

αλαλεσκέλν ελδηαθέξνλ γηα ζηξαηεγηθέο επίιπζεο πνπ βαζίδνληαη ζην 

καζεκαηηθό πξνγξακκαηηζκό. Επηπιένλ, ηα θαιύηεξα θαηώηαηα όξηα πνπ 

έρνπλ ππνινγηζηεί ζε επξέσο κειεηεκέλα ζηηγκηόηππα RCPSP, βξέζεθαλ κε 

κία πβξηδηθή κέζνδν πνπ ρξεζηκνπνηεί δηάδνζε πεξηνξηζκώλ (constraint 

propagation) θαη έλα καζεκαηηθό κνληέιν κηθηνύ-αθέξαηνπ γξακκηθνύ 

πξνγξακκαηηζκνύ. Επηπξόζζεηα, ην κόλν ινγηζκηθό πνπ είλαη ζπλήζσο 

δηαζέζηκν ζε βηνκεραληθό πεξηβάιινλ είλαη ινγηζκηθό επίιπζεο καζεκαηηθώλ 

πξνγξακκάησλ. ΢πλεπώο, ε κειέηε αθξηβώλ κεζόδσλ θαη εηδηθά ηερληθώλ 

καζεκαηηθνύ πξνγξακκαηηζκνύ, γηα ηελ επίιπζε RCPSP έρεη ηδηαίηεξν 

ζεσξεηηθό θαη πξαθηηθό ελδηαθέξνλ. Ο θύξηνο ζηόρνο απηήο ηεο εξγαζίαο 

είλαη ε αλάπηπμε λέσλ βέιηηζησλ κεζόδσλ ΥΕ, εκπλεπζκέλεο από ηελ 

βηβιηνγξαθία ηνπ ρξνλνπξνγξακκαηηζκνύ δηεξγαζηώλ. 

 

Ο θνξκόο απηήο ηεο δηαηξηβήο απνηειείηαη από ηελ αλαζθόπεζε ηεο 

βηβιηνγξαθίαο θαη ησλ έσο ζήκεξα εμειίμεσλ, ηξία θεθάιηα κε θαηλνηόκεο 

κεζόδνπο επίιπζεο καζεκαηηθνύ πξνγξακκαηηζκνύ γηα ην RCPSP θαη 

παξαιιαγέο ηνπ, ζέηνληαο σο ζηόρν ηελ ειαρηζηνπνίεζε ηνπ ρξόλνπ 

νινθιήξσζεο ηνπ έξγνπ θαη ηέινο, θάπνηα ζπκπεξάζκαηα. ΢ην πξώην κέξνο, 

παξνπζηάδνληαη λέα καζεκαηηθά κνληέια κηθηνύ-αθέξαηνπ γξακκηθνύ 

πξνγξακκαηηζκνύ γηα ην ληεηεξκηληζηηθό RCPSP κε έλαλ (single-mode) θαη 

πνιιαπινύο (multi-mode) ηξόπνπο εθηέιεζεο ησλ εξγαζηώλ, πνπ ρξεζηκνπνηεί 

αλαλεώζηκνπο θαη αλαιώζηκνπο πόξνπο. Η λέα πξνζέγγηζε ζηεξίδεηαη ζηελ 

αλαπαξάζηαζε Resource-Task Network (RTN), κία ηερληθή κνληεινπνίεζεο 
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πνπ ρξεζηκνπνηείηαη ζε πξνβιήκαηα ρξνλνπξνγξακκαηηζκνύ δηεξγαζηώλ θαη 

βαζίδεηαη ζε κνληέια ζπλερνύο-ρξόλνπ. ΢ην επόκελν θεθάιαην 

παξνπζηάδνληαη 2 λέα κνληέια δπαδηθνύ-αθέξαηνπ πξνγξακκαηηζκνύ 

δηαθξηηνύ-ρξόλνπ θαη 2 λέα κηθηνύ-αθέξαηνπ πξνγξακκαηηζκνύ ζπλερνύο-

ρξόλνπ, πνπ βαζίδνληαη ζηε δηαδνρή εξγαζηώλ. Απηά ηα ηέζζεξα κνληέια 

ζπγθξίλνληαη κε 4 από ηα θνξπθαία κνληέια πνπ παξνπζηάδνληαη ζηε 

βηβιηνγξαθία, ζε έλα ζύλνιν 2760 επξέσο ρξεζηκνπνηεκέλσλ πξνβιεκάησλ, 

πνπ είλαη δηαζέζηκα ζην δηαδίθηπν. Από ηελ ππνινγηζηηθή κειέηε 

απνδεηθλύεηαη όηη ην πξνηεηλόκελα κνληέια έρνπλ ζπλνιηθά ηελ θαιύηεξε 

απόδνζε. Σέινο, αλαπηύζζεηαη έλα λέν καζεκαηηθό κνληέιν ζπλερνύο-ρξόλνπ 

βαζηζκέλν ζηε δηαδνρή εξγαζηώλ, γηα κία δύζθνιε επέθηαζε ηνπ θιαζηθνύ 

RCPSP πνπ ζπκπεξηιακβάλεη ειάρηζηεο θαη κέγηζηεο ρξνληθέο πζηεξήζεηο 

κεηαμύ ησλ εξγαζηώλ (RCPSP/max). Η εθηελήο ππνινγηζηηθή κειέηε ζε 2250 

πξνβιήκαηα απνδεηθλύεη ηελ απνηειεζκαηηθόηεηα ηνπ λένπ κνληέινπ. 
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Chapter 1 

Introduction 

 

1.1 Project Scheduling and Management 

 

Project scheduling plays a vital role in project management, and constitutes 

one of the most important directions in both research and practice in the 

Operational Research (OR) field. The term project means different things to 

different people and according to ISO 10006 (2003) Guideline for Quality in 

Project Management (Section 3.5), it is used to describe a:   

 

Unique process, consisting of a set of co-ordinated and controlled activities 

with start and finish dates, undertaken to achieve an objective conforming to 

specific requirements including constraints of time, cost and resources. 

 

The same ISO, states some of the characteristics a project must have: 

1. Unique, non-repetitive phases consisting of processes and 

activities. 

2. Expected to deliver specified (minimum) quality results within pre-

determined parameters. 

3. Have planned start and finish dates, within clearly specified cost 

and resource constraints. 

 

A project is a one-time endeavour with a specific objective that must be 

achieved, under cost, resource and time constraints. The relationships 

between the various tasks that have to be performed to achieve the project’s 

objectives can be very complex. 

 

The process of project management involves three phases, planning, 

scheduling and controlling. In the planning phase we define the activities that 
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must be carried out to achieve the project objective and their characteristics 

(i.e., duration, resource requirements, relationships, constraints, etc). During 

the scheduling phase, the actual project schedule is produced, containing 

activity starting and/or finishing times. Finally, the control phase focuses on 

examining and determining solutions when variations from the original 

schedule occur. 

 

1.2 The Resource-Constrained Project Scheduling Problem 

 

Quantitative approaches to project management date back to the 1950s. 

Early solution procedures like the Critical Path Method (CPM) by Kelley and 

Walker (1959) and Project Evaluation and Review Technique (PERT) by 

Malcolm et al. (1959), only took into account activity durations (deterministic 

or probabilistic) and assumed resources to be available in unlimited 

quantities. However, in most practical situations this assumption is not 

realistic, since the required resources are limited and to produce a functional 

schedule the solution method should take them into account. The additional 

constraints imposed by the limited resources, significantly increase the 

problem hardness. According to Blazewicz et al. (1983) the Resource-

Constrained Project Scheduling Problem (RCPSP) belongs to the class of 

strongly NP-hard problems. 

 

During the last decades, the RCPSP has become a standard problem for 

project scheduling in the OR literature. The RCPSP involves the construction 

of a precedence and resource feasible time schedule which identifies the 

starting and completion times of activities, under a specific objective. A 

project consists of a set of interconnected activities and resources, logically 

linked. These activities usually have to be performed for a successful project 

completion. Several variations of the RCPSP exist that represent different 

practical problems with different objectives, resource types, more than one 

way (mode) to execute an activity, generalised precedence relations for 

activities, e.t.c.  
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1.3 Challenges and Motivation 

 

OR uses scientific techniques and tools from various disciplines such as 

informatics, mathematics, economics, chemistry, even biology to assist 

decision making or provide a solution to a given problem (preferably optimal). 

Over the years, the methodology of project scheduling has been developing 

constantly, trying, from one side to model adequately new practical problems, 

and, from the other side, to efficiently solve the resulting optimisation 

problems. The methodology benefited from the development of both: 

optimisation (especially combinatorial one) and computational possibilities.  

 

A number of solution methods for the RCPSP, both exact and approximate 

have been proposed in the OR literature. Exact techniques usually include 

mathematical programming formulations and specialised branch-and-bound 

algorithms. Due to the high degree of complexity of RCPSPs, an even larger 

number of approximate methods such as heuristics and metaheuristics have 

also been proposed. Roughly speaking, a heuristic is a technique designed to 

solve a problem, or find an approximate solution with low computational 

requirements, when classic methods fail to find any exact solution. By trading 

optimality, completeness, accuracy, and/or precision for speed, a heuristic 

can quickly produce a solution that is good enough for solving the problem at 

hand. 

 

Scheduling is a critical issue both in project management and process 

operations. Process and project scheduling problems, share common features 

such as required resource types, precedence relations and initial/target 

inventories. The process scheduling problem consists of determining the most 

efficient way to produce a set of products in a time horizon given a set of 

processing recipes and limited resources. The activities to be scheduled 

usually take place in multiproduct and multipurpose plants, in which a wide 

variety of different products can be manufactured via the same recipe or 

different recipes by sharing limited resources, such as equipment, material, 
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time, and utilities. The common problem features, such as required resource 

types, precedence relations and initial/target inventories, suggest that 

exchanging solution techniques between the two research fields is both 

possible and useful.  

 

The process scheduling industry is driven by the substantial advances of 

related modelling and solution techniques, as well as the rapidly growing 

computational power. Mathematical programming, especially Mixed Integer 

Linear Programming (MILP), because of its rigorousness, flexibility and 

extensive modelling capability, has become one of the most widely explored 

methods for process scheduling problems.  

 

On the other hand, project scheduling research effort has mostly focused on 

developing approximate solution techniques. However, recent project 

scheduling research papers (Koné et al. 2011, Bianco and Caramia 2012a, 

2012b and Rieck et al. 2012) show a renewed interest for mathematical 

programming-based solution strategies. The study of exact methods, and 

especially mathematical programming techniques, for solving the RCPSP is of 

particular theoretical and practical interest. Indeed, mathematical 

programming solvers are often the only software available to industrial 

practitioners. Moreover, the best lower bounds ever found on broadly-studied 

RCPSP test instances, were obtained by a hybrid method (Demassey et al., 

2005) involving constraint propagation and the MILP formulation of 

Christofides et al. (1987). Also, a branch-and-cut method based on the latter 

formulation was developed by Zhu et al. (2006), to solve the multimode 

RCPSP and yielded very competitive results on benchmark problems.  

 

Taking advantage of the continuous commercial software and hardware 

advances, the size and difficulty of the combinatorial problems that can be 

solved are constantly growing. The main objective of this thesis is to develop 

new project scheduling techniques inspired by the process scheduling 

literature, similar to the paper of Koné et al (2011), which is based on the 
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work of Pinto and Grossmann on batch process problems (1995).  

 

1.4 Thesis Structure 

 

The rest of this thesis consists of a literature review and state-of-the-art, 

three novel research chapters and finally some concluding remarks. 

 

Chapter 2 is an introduction to state-of-the-art in RCPSP. We discuss the 

resource constrained project scheduling problem, its components, variants 

and network representation techniques. Afterwards, commonly used objective 

functions and a classification scheme are described. We then present the test 

instance sets available for benchmarking new solution techniques, followed 

by a discussion of mathematical programming concepts, which is the main 

optimisation method used in this thesis. Next a thorough literature review of 

both exact and approximate solution techniques is presented. Finally, we 

describe the commercial software used to solve RCPSP test problem instances 

and measure the performance of the proposed solution procedures. 

 

Chapter 3 presents new mixed-integer linear programming models for the 

deterministic single- and multi-mode resource constrained project scheduling 

problem with renewable and non-renewable resources. The modelling 

approach relies on the Resource-Task Network (RTN) representation, a 

network representation technique used in process scheduling problems, 

based on continuous-time models. First, we propose new RTN-based network 

representation methods, and then we efficiently transform them into 

mathematical formulations including a set of constraints describing 

precedence relations, different types of resources and multiple objectives. 

Finally, the applicability of the proposed formulations is illustrated using 

several example problems under the most commonly addressed objective, the 

makespan minimization. 
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Chapter 4 introduces two new binary integer programming discrete-time 

models and two novel precedence-based mixed integer continuous-time 

formulations for the solution of standard resource-constrained project 

scheduling problems. The proposed discrete-time models are based on the 

definition of binary variables that describe the processing state of every 

activity between two consecutive time points, while the proposed continuous-

time models are based on the concept of overlapping of activities, and the 

definition of a number of newly introduced sets. These four novel 

mathematical formulations are compared with four representative literature 

models using a total number of 2760 well-known open-accessed benchmark 

problem instances involving 30 and 60 activities. A detailed computational 

comparison study demonstrates the salient performance of the proposed 

mathematical formulations, that feature the best overall performance.  

 

Chapter 5 presents a new precedence-based continuous-time formulation for 

a challenging extension of the standard single-mode resource-constrained 

project scheduling problem that also considers minimum and maximum time 

lags (RCPSP/max), under the objective of minimizing the project makespan. 

The proposed linear mixed integer programming model is an extension of the 

continuous-time formulations proposed in Chapter 4 and is used to conduct 

an extensive computational study on a total of 2,250 well-known and open-

accessed benchmark problem instances from the literature. Various problem 

sizes are considered in the test sets involving 10, 20, 30, 50 and 100 

activities. Computational results illustrate the efficient performance of the 

proposed mathematical formulation.  

 

Finally, concluding remarks and future research directions are drawn in 

Chapter 6. 
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Chapter 2 

State-of-the-Art 

 

In this chapter we first discuss the resource constrained project scheduling 

problem, its components, variants and network representation techniques. 

Afterwards, commonly used objective functions and a classification scheme 

are described. We then present the test instance sets available for 

benchmarking new solution techniques, followed by a discussion of 

mathematical programming concepts, which is the main optimisation method 

used in this thesis. Next a thorough literature review of modelling and 

solution techniques is presented. Finally, we describe the commercial 

software used to solve RCPSP test problem instances and measure the 

performance of the proposed solution procedures. 

 

2.1 Resource-constrained project scheduling problem 
(RCPSP) 

 

A project has a finite number of activities with specific durations. Precedence 

relations between some activities are present and each activity requires 

certain amounts of resources with limited availability, to be processed. For 

modelling purposes, two dummy activities are added: (i) a start dummy 

activity to represent the beginning of the project, and (ii) an end dummy 

activity corresponding to the completion of the project. Dummy activities 

have zero duration and zero resource requirements. The typical objective of 

the RCPSP is to find an optimal (or at least feasible) schedule, while satisfying 

time, precedence and resource constraints, such that a specific objective is 

optimised (i.e., minimisation of the project makespan). An illustrative 

example of a simple RCPSP and a feasible solution are displayed in Fig. 2.1. 

In the standard RCPSP, all information data are deterministic. The resource 
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type is renewable (i.e., they are not consumed, instead after the completion 

of an activity, the bound quantities are released and become available again).  

 

 

Notation 

i number of activity  

pi duration of activity i  

ri1, ri2  requirement for 

resource 1, 2 

R1, R2 maximum capacity for 

resource 1, 2 

Cmax Project completion 

time 

 

 

Figure 2.1. Illustrative example of a simple RCPSP and a feasible solution 

 

The standard RCPSP is denoted by PS|prec|Cmax in accordance with the 

notation proposed by Brucker et al. (1999), which follows the well-known 

three-field notation for machine scheduling problems introduced by Graham 

et al. (1979). More specifically, PS|prec|Cmax notation specifies the single-mode 

project scheduling (PS) problem under precedence constraints between 

activities (prec) while minimizing the makespan of the project (Cmax). 
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2.2 Project Activities 

 

A project consists of activities, also known as jobs, operations, or tasks. In 

order to complete the project successfully, all or some of the activities have 

to be performed. Project activities have various characteristics, depending on 

the tasks involved. 

 

In some projects the processing of activities may be preempted (interrupted) 

and recommenced at a later time (preempt-resume). In other cases, stopping 

an activity is allowed, but resuming is not and it has to be restarted 

(preempt-repeat). Finally, for certain activities preemption is not allowed at 

all and once execution has started, it must be carried out to completion. 

 

Another characteristic regards the order and timing in which activities are 

executed. These precedence relations encountered in project scheduling 

problems are presented in detail in the following section. 

 

Activity ready times may need to be taken into account, durations can be 

integer or continuous and deadlines may be imposed on each one or the 

maximal project duration. The resource consumption can occur in constant or 

variable amounts over their periods of execution. 

 

Most problems assume a single execution mode per activity, while others 

assume time/cost, time/resource and/or resource/resource trade-offs and 

give rise to various possible execution modes. While the classical RCPSP is a 

popular model, it cannot cover all situations that occur in practice. Therefore, 

many researchers have developed more general project scheduling problems, 

often using the standard RCPSP as a starting point. Such an example is the 

Multi-mode Resource-Constrained Project Scheduling Problem (MRCPSP) or 

MPS|prec|Cmax according to the notation of Brucker et al. (1999). In this 

problem, the mode determines the duration of the activity and the 

requirements for resources of various categories. Another extension studied 
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by Salewski et al. (1997) are project scheduling problems which generalize 

multiple activity modes to so-called mode identity constraints in which the set 

of activities is partitioned into disjoint subsets. All activities in a subset must 

then be executed in the same mode. Both the time and cost incurred by 

processing a subset of activities depend on the resources assigned to it. 

 

Finally, activities may require changeover times. When these times are 

sequence-independent, we can include them in the activity durations. 

However, sometimes changeovers are sequence-dependent (e.g. equipping 

an excavator with different scoops and workers travelling between sites) and 

must be taken into account separately in project settings. 

 

2.3 Precedence Relations 

 

Project activities are usually subject to precedence relations. In the rare case 

where project activities can be performed in any order, no sophisticated 

project scheduling solution procedures are required. 

 

The traditional PERT/CPM methodology uses finish-start (FS) precedence 

relations with zero time-lag, that is an activity can only start as soon as all its 

predecessor activities have finished. 

 

Precedence relations with zero time-lag between two activities are not always 

enough. Elmaghraby and Kamburowski (1992) defined four types of 

Generalized Precedence Relations (GPR): start-start (SS), start-finish (SF), 

finish-start (FS) and finish-finish (FF) to model minimum and maximum time-

lags. 

 

The minimal time-lag (  xSSij
min ,  xSFij

min ,  xFFij
min ,  xFSij

min ) specifies that 

activity j can only start/finish when its predecessor i has already 

started/finished for a certain time period (x time units). A maximal time-lag 
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(  xSSij
max ,  xSFij

max ,  xFFij
max ,  xFS ij

max ) specifies that activity j should be 

started/finished at the latest x time periods after the start/finish of activity i. 

 

In the minimal Finish-Start relation  0min

ijFS , an activity j (for example the 

installation of a crane on a site) can start immediately after activity i (for 

example the preparation of the site) has been finished. This strict finish-start 

relation is the traditional PERT/CPM precedence relation mentioned before. If 

a certain number of time units must elapse between the end of activity i and 

the start of activity j (to allow for a lead time for example), the finish-start 

relation receives a positive lead-lag factor. As such,  6min

ijFS  means that the 

start of activity j cannot be sooner than 6 time units after activity i finishes. 

 

Minimal Start-Start relations denote that a certain time-lag must occur 

between the start of two activities. The relationship  2min

ijSS  for example, 

denotes that the start of activity j (for example place pipe) must lag 2 time 

units behind the start of activity i (level ground).  0min

ijSS  denotes that 

activity j (levelling concrete) can start as soon as activity i (pouring concrete) 

has started. Ready time for activity i can be modelled by imposing a minimal 

start-start relation between the start node in the project network and activity 

i. 

 

Minimal Finish-Finish relations are used quite often.  xFFij
min  represents the 

requirement that the finish of an activity j (for example finish walls) must lag 

the finish of activity i (for example install electricity) by x time units. 

 

Start-finish relations occur very rarely in practice. 

 

Combinations of the various types of generalized precedence relations can be 

used. Consider the example of activity i (erect wall frames) and activity j 

(install electricity). Both activities have a  xSSij
min  relationship (the 
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electricians can only start installing electricity when sufficient wall frame 

surface is in place), but since the electricians need some time to cope with 

the output of the carpenters who are responsible for erecting the walls, both 

activities also have a  xFFij
min  relation. 

 

Maximal time-lags respectively impose a maximum number of time units 

between the start/finish times of activities. An interesting usage of such time-

lags is a  xSFij
max  between the first and last activity in the project, which in 

effect sets an upper bound to the project completion time. 

 

The various types of GPRs can be represented in a standardized form by 

reducing them to minimum SS precedence relationships, through the 

transformations proposed by Bartusch et al. (1988). This extension of the 

RCPSP is denoted as RCPSP/max or PS | temp | Cmax, using the notation of 

Brucker et al. (1999). More specifically, PS | temp | Cmax notation specifies the 

single-mode project scheduling problem (PS) under general temporal 

constraints given by minimum and maximum start-start time lags between 

activities (temp) while minimizing the makespan of the project (Cmax).  

 

2.4 Resource Types 

 

Each project activity (besides dummy ones) requires some resources for its 

processing, that are available in limited amounts. Examples of resources are 

raw materials, intermediate products, tools, machinery, manpower, financial, 

energy, etc. Węglarz (1979) and Blazewicz et al. (1983) categorize resources 

used by project activities as renewable, non-renewable and doubly 

constrained.  

 

Renewable resources are periodically renewed, but their quantity is limited 

over each time period and may differ from one period to the next. Some 

examples are manpower, machines, equipment, power and fuel flow. 
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For non-renewable resources, constraints on availability only concern total 

consumption over the whole period of project duration and not each time 

period. Raw materials are a typical example of non-renewable resources, 

since they are available at a specific quantity for a project. 

 

Doubly constrained resource quantities are both per period and per project 

constrained. Money is an example of such resource, since there is usually a 

specific total budget for the entire project, as well as a limited cash flow per 

period, according to progress. As formally shown by Talbot (1982), each 

doubly constrained resource can be represented by one renewable and one 

non-renewable resource, respectively. 

 

Partially (non)renewable resources, introduced by Böttcher et al. (1996), 

Schirmer and Drexl (1996) and Drexl (1997) limit utilization of resources 

within a subset of the planning horizon. Essentially, partially (non)renewable 

resources can be viewed as a generic resource concept in project scheduling, 

as they include both renewable and non-renewable (and, hence doubly 

constrained) resources. An example is that of a planning horizon of a month 

with workers whose weekly working time, not the daily time, is limited by 

their working contract. 

 

It has been shown by Böttcher et al. (1999) both renewable and non-

renewable resource categories can be depicted by partially renewable 

resources. A partially renewable resource, with a specified availability for a 

time interval equal to a unit duration period, is essentially a renewable 

resource. A partially renewable resource, with a specified availability for a 

time interval equal to the project horizon, is essentially a non-renewable 

resource. Partially renewable resources with a specified availability on both a 

unit duration period and a total project horizon basis can be interpreted as 

doubly constrained resources.  
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2.5 Project Network Representations 

 

Two representations have been commonly used to capture project networks, 

the Activity-on-Arc (AoA) which is event-based and Activity-on-Node (AoN) 

which is activity based. The latter represents activity interdependencies in a 

more natural way, without the need for dummy activities. Understanding an 

AoN is easier, even for inexperienced users. Finally, reviewing an AoN is 

easier when a change occurs in the network. 

 

2.5.1 Activity-on-Arc (AoA) 

 

An Activity-on-Arc (AoA) diagram is based on the idea that each activity is a 

transition between two events, its start and its end. Each activity is 

represented as an arc, which starts and finishes at a node (drawn as a circle). 

Each node represents an event, a point of zero time duration, which signifies 

the completion of all the activities leading into it and the start of all activities 

pointing out. 

 

An AoA network can contain no cycles, because if it did, the transitivity 

property of precedence would lead to the conclusion that an activity would 

have to precede itself, which is impossible.   

 

In AoA networks we use two dummy nodes to represent the start and 

completion of the project. The initial event is the starting node of all activities 

and has no predecessor(s), while the terminal event is the ending node of all 

activities and has no successor(s). 

 

Any two nodes may be connected by only one activity. So, for several 

activities to be executed simultaneously, we need to introduce dummy 

activities. Dummy activities are drawn as dotted arcs, consume no resources 

and have zero time duration. An example of an AoA diagram is shown in Fig. 

2.2 below. 
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Figure 2.2. Example of an Activity on Arc network 

 

2.5.2 Activity-on-Node (AoN) 

 

Activity-on-Node (AoN) is a network representation for activity sequencing, 

also known as Precedence Diagramming Method (PDM). Activity sequence 

diagrams use boxes or rectangles to represent the activities which are called 

nodes. The nodes are connected with other nodes by arrows, which show the 

dependencies between the connected activities. To construct an AoN 

network, we must draw one node for each activity and an arrow from all 

nodes i to nodes j, if activity i precedes activity j. An example AoN network is 

shown in Fig. 2.3 below. 

 

 

Figure 2.3. Example of Activity on Node network 

 

Dummy activities (nodes) are only needed to satisfy the requirement that the 

network possesses only one initial and one terminal node.  
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The AoN has certain advantages over the AoA, since it represents activity 

interdependencies in a more natural way, it is easier to understand, even for 

inexperienced users, and easier to review when a change occurs in the 

network. A more thorough comparison of the two methods can be found in 

Kolisch and Padman (2001).  

 

2.6 Objectives of Project Scheduling 

 

Project scheduling objective functions can be can be regular or non-regular. A 

regular performance measure is a non-decreasing function of the activity 

completion times (in the case of a minimization problem), otherwise it is non-

regular. Regular objective functions have received much more attention in the 

literature than non-regular ones, especially the make span or project length. 

 

Each of the objectives for deterministic project scheduling, presented in the 

following sections can and has been examined for problems with a diversity 

of resource and activity characteristics. 

 

2.6.1 Time-based objectives 

 

Minimizing the project make span is undoubtedly the most popular time-

based objective function discussed in the project scheduling literature. Most 

often it is recognized as the most relevant objective in various review papers, 

Kolisch (1996b), Herroelen (2005), Hartmann et al. (2010). According to 

Kolisch (1996b):  

1. The majority of income payments of projects (e.g. in the 

construction industry) occur at the end of a project or at the end of 

predefined project phases. Finishing the project early reduces the 

amount of tied-up capital. 

2. The quality of forecasts tends to deteriorate with the distance into 

the future of the period for which they are made. Minimizing the 
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project duration reduces the planning horizon and, therefore, the 

uncertainty of data. 

3. Finishing products as early as possible lowers the probability of 

time-overruns of the project. 

4. By freeing resource capacity as early as possible the flexibility of 

the company can be raised in order to better cope with changes of 

the economic environment. 

5. Additionally, high resource utilization at the beginning of the 

planning horizon leads to a larger amount of free resources at the 

end of the planning horizon and, thus, raises the ability to accept 

and process new projects. 

 

Other time-based objectives based on project lateness, tardiness and 

earliness exist. The lateness iL  of an activity i  is the difference of its 

completion time and its due date. The lateness can be zero (if the task 

finishes on time), positive (if the task finishes later) or negative (if the task 

finishes earlier). The tardiness iT  is the same as lateness, but it cannot be 

negative (  max 0,i iT L ). Earliness iE  is defined as  max 0,i iE L  .  

 

In the literature, we encounter a number of objectives based on lateness, 

tardiness and earliness, such as minimization of the weighted tardiness  

(Kolisch, 2000), minimization of the maximum lateness and of the weighted 

total tardiness (Neumann, 2002), etc. 

 

2.6.2 Maximizing the Net Present Value 

 

The value of a certain amount of money is a function of the time of receipt or 

disbursement of the cash. Money received today is more valuable than money 

to be received in some future time period, because it can be invested to start 

earning interest immediately. The nature and timing of the cash flows in 

projects depend on the contract. The contractor would like to receive as 
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much as possible, as early as possible to initiate activities, while the client 

would like to delay payments for completion of parts of the project as long as 

possible, since progress payments represent expenses. 

 

To cope with such problems we need to set financial objectives related to 

incoming and outgoing cash flows, including discount rates. Such objectives 

are referred in literature as Maximizing the Net Present Value (NPV) of the 

project and were introduced by Russell (1970).  

 

In the unconstrained case, both the amount and timing of cash flows are 

known and we attempt to maximize their NPV. Cash flows can be associated 

with the completion of set of activities, occur at regular intervals (e.g. 

weekly) or compounded to a single cash flow at the beginning/end of an 

activity.  

 

When both the amount and timing of the cash flows must be determined, we 

have the payment scheduling problem. Finally, the resource-constrained case 

is more complex, since we need to additionally deal with limited resources. 

 

2.6.3 Other objectives 

 

A number of other objectives has been examined in the literature, such as 

minimizing resource availability costs (Demeulemeester 1995, Franck and 

Schwindt 1995, Kimms 1998, Möhring 1984, Zimmermann 1997), the discrete 

time/resource trade-off problem (Elmaghraby, 1977), minimizing the sum of 

costs (Möhring et al. 2003, Achuthan and Hardjawidjaja, 2001), etc. 

 

Finally, certain problems deal with multi-objective scheduling that requires 

the optimisation of more than one objective (Nabrzyski and Węglarz 1994, Al-

Fawzana and Haouari 2005, Bomsdorf and Derigs 2008).  
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2.7 A Classification Scheme 

 

The increasing research interest in the area of Project Scheduling from both 

science and practice has led to an ever growing number of problem types. 

Various acronyms, such as RCPSP, MRCPSP, RCPSP-GPR have been 

extensively used to describe the problem class. However, these abbreviations 

offer an inadequate description of the problem characteristics and may often 

lead to misconceptions.  

 

Herroelen et al. (1998) proposed a classification system compatible with what 

is generally accepted in machine scheduling (Graham et al., 1979) and 

resource-constrained machine scheduling (Blazewicz et al., 1983), because 

machine scheduling models are special cases of project scheduling models. 

The proposed scheme resembles machine scheduling problems in that it is 

also composed of three fields α | β | γ, but the composition of the fields and 

the precise meaning of the various parameters are mostly new and specific to 

the area of project scheduling. The meaning of each field is described below: 

1. Field α – Represents resource characteristics and contains up 

to three elements, 

2. Field β – Represents activity characteristics and contains up to 

nine fields and 

3. Field γ – Contains one element and represents the 

performance measures. 

 

Brucker et al. (1999) provided their own classification scheme, but Herroelen 

et al. (2000) revealed serious shortcomings and turned their own original 

scheme into a unified classification scheme for resource scheduling 

(Demeulemeester and Herroelen, 2002). 

 

In the next sections, we cover the characteristic values of the three fields in 

the original classification scheme (Herroelen, 1998) that apply to 

deterministic project scheduling problems. 
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2.7.1 Field α – Resource Characteristics 

 

Field α, is a set describing the resource characteristics and consists of at most 

three elements 1 , 2  and 3 . The symbol   denotes an empty field and will 

be used when a field is omitted. 

 

Parameter  m,1,1   represents the number of resource types used in the 

problem: 

 

1  no resource types are considered in the scheduling 

problem 

11   one resource type is considered 

m1  the number of resource types is equal to m 

 

The second parameter, 2 , describes the resource types used. As mentioned 

in Section 2.4, in the project scheduling literature a common distinction is 

made between various types of resources: 

 

2  absence of any resource type specification 

12   renewable resources, the availability of which is 

specified for the unit duration period 

T2  non-renewable resources, the availability of which 

is specified for the entire project horizon T 

T12   both renewable and nonrenewable resources 

(including also doubly constrained resources, the 

availability of which is specified on both a unit 

duration period and a total project horizon basis) 

v2  partially (non-)renewable resources the availability 

of which is renewed in specific time periods 
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Finally, parameter 3  describes the resource availability characteristics of the 

problem.  

 

3  (partially) renewable resources are available in 

constant amounts 

 v3  (partially) renewable resources are available in 

variable amounts 

 

2.7.2 Field β – Activity Characteristics 

 

The second field describes the activity characteristics of the problem, using 

nine parameters. The first parameter 1  indicates the possibility of activity 

preemption: 

 

1  no activity preemption is allowed 

pmtn1  Activity preemption of type preempt-resume is 

allowed 

reppmtn1  Activity preemption of type preempt-repeat is 

allowed 

 

Parameter 2  describes the activity precedence relations: 

 

2  no precedence constraints exist (activities can be 

executed at any order) 

cpm2  only Finish-to-Start relationships with zero time lag 

are used, as in the PERT/CPM model 

min2   precedence diagramming relations with minimal 

time lags are used 

gpr2  the activities are subject to generalized precedence 

relationships with minimal and maximal time lags 
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The third parameter 3 , denotes the ready times for activities: 

 

3  
all ready times are zero 

j 3  
ready times vary per activity 

 

Parameter 4   describes the duration of project activities: 

 

4  arbitrary integer durations 

cont4  arbitrary continuous durations 

)(4 dd j   all activities have a duration equal to d units 

 

The fifth parameter 5   describes the project deadlines: 

 

5  no deadlines 

jd5  deadlines are imposed on individual project 

activities 

n 5  a deadline is imposed on the project 

 

The next parameter 6   expresses the nature of resource requirements for 

project activities: 

 

6  constant discrete resource requirements (e.g. a 

number of units for every time period of activity 

execution) 

vr6  variable discrete resource requirements (e.g. a 

number of units which varies over the periods of 

activity execution) 
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If the activity durations have to be determined by the solution procedure on 

the basis of a resource requirement function, then the following settings are 

used: 

 

disc6  The resource requirements are a discrete function 

of the activity duration 

cont6  The resource requirements are a continuous 

function of the activity duration 

int6   the activity resource requirements are expressed as 

an intensity or rate function 

 

If needed, the user can be more specific on the type of resource requirement 

function (e.g. concave, convex, linear, e.t.c.) 

 

The type and number of possible execution modes of project activities is 

described by parameter 7 .  

 

7  activities are performed in a single execution mode 

mu7  activities have multiple preset execution modes 

id7  Activities are subject to mode identity constraints 

 

The next parameter 8  is used to address financial issues of the project 

activities. Most models with cash flows, assume the cash flow amounts to be 

known. Other models assume that the cash flows are periodic in that they 

occur at regular time intervals or with a known frequency. Still other models 

assume that both the amount and the timing of the cash flows have to be 

determined. 

 

8  no cash flows are specified 

jc8  activities have associated cash flows 
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 jc8  activities have an associated positive cash flow 

per8  periodic cash flows are specified 

sched8  both the amount and timing of the cash flows have 

to be determined 

 

Finally parameter 9  denotes the changeover times. Changeover times are 

usually sequence-independent, so we include them in the activity durations. 

However, sometimes changeovers are sequence-dependent (e.g. equipping 

an excavator with different scoops and workers travelling between sites) and 

must be taken into account in project settings: 

 

9  no changeover times 

jks9  Sequence-dependent changeover times 

 

2.7.3 Field γ – Performance Measures 

 

The last field is used to define the performance measures: 

 

reg  the performance measure is any regular measure 

nonreg  the performance measure is any nonregular 

measure 

 

Obviously, the list of performance measures is practically endless. Some 

examples of such measures are: 

 

maxC  minimize the project makespan 

npv  maximize the net present value of the project 

F  minimize the average flow time over all subprojects 

or activities 

curve  determine the time vs cost trade-off curve 
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rac  minimize the resource availability costs 

maxL  minimize the project lateness 

maxT  minimize the project tardiness 

av  minimize the resource allocations whilst meeting 

the project deadlines 

multi  multiple objectives 

 

2.8 Test Instance Sets 

 

When testing exact or heuristic methods for project scheduling, test instances 

are necessary for evaluation and comparison reasons. Although the first 

problem test sets were usually a collection of solved instances in the 

literature, several parameter-driven instance generators have been developed 

for the RCPSP its extensions. A summary of online available test sets and 

their characteristics is provided in Table 1.1.  

 

Table 1.1. Test set characteristics and available instances 

Test Set 
Problem 

Types 
Number of 
Instances 

Number of 
Activities 

Number 
of 

Modes 

Number 
of Resources 

Patterson RCPSP 110 7-50 1 1-3 Renewable 

ProGen 

RCPSP 2040 30,60,90,120 1 4 Renewable 

MRCPSP 11182 
10,12,14,16,18, 

20,30 
1,2,3,4,5 

1-3 Renewable 
1-5 Non-Renewable 

ProGen/max 

RCPSP/max 2520 
10,20,30,50,100, 

200,500,1000 
1 5 Renewable 

RIP/max 810 10,20,30 1 1,3,5 Renewable 

RCPSP/RLP 1890 
10,15,20,30,50, 

100,200,500,1000 
1 1,3,5 Renewable 

MRCPSP/max 1620 10,20,30,50,100 2,3,4,5 
3,5 Renewable 

2,3 Non-Renewable 

RanGen2 RCPSP 1800 30 1 4 Renewable 
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2.8.1 Patterson test set  

 

Patterson (1984) was the first to assemble a set of 110 test problems (with 7 

up to 50 activities and 1 to 3 renewable resource types) which over the years 

became a standard for validating optimal and suboptimal procedures for the 

RCPSP. But Herroellen et al. (1998) pointed out that test sets should span the 

full range of complexity, from very easy to very hard problem instances 

generated by using a controlled design of specified problem parameters. The 

generation of easy and hard problem instances, however, appears to be a 

very difficult task which heavily depends on the possibility to isolate the 

factors that precisely determine the computing effort required by the solution 

procedure used to solve a problem, and the calibration of the scale that 

characterizes such effort. Such problem sets are generated by ProGen 

proposed by Kolisch et al. (1995) that quickly replaced the Patterson test 

problem set.  

 

2.8.2 ProGen and ProGen/max 

 

ProGen was developed by Kolisch et al. (1995), as a network instance 

generator for the classical RCPSP as well as the multi-mode extension. A 

number of instances, systematically generated by ProGen, are available for 

researchers in PSPLIB (Kolisch and Sprecher, 1996), an online scheduling 

library (http://129.187.106.231/psplib/). PSPLIB test sets have been used as 

a benchmark in a large number of studies. According to the review papers by 

Herroelen (2005), Lancaster and Ozbayrak (2007) and Hartmann and 

Briskorn (2010), it is the most widely used test bed for the RCPSP and its 

variations. 

 

The library contains data sets that can be used for the evaluation of solution 

procedures for single- and multi-mode resource-constrained project 

scheduling problems, as well as reported optimal and heuristic solutions. 

Researchers can download the benchmark sets to evaluate their algorithms, 

http://129.187.106.231/psplib/
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and send their results to be added to the library, or generate their own test-

data. 

 

Schwindt (1996) developed a version called ProGen/max in order to include 

minimal and maximal time lags. This generator can also produce activities 

with multiple modes as well as instances for the resource levelling and the 

resource investment problem. 

 

2.8.3 RanGen and RanGen2 

 

The generators presented in the previous sections do not generate strongly 

random networks because they do not allow selection from the full space of 

feasible networks. Hence, Demeulemeester et al. (2003) developed RanGen, 

which claims to generate strongly random networks that conform to desired 

values of complexity measures. RanGen produces single- and multi-mode 

project instances based on different control parameters than ProGen. 

Vanhoucke et al. (2008) enhanced RanGen to RanGen2, by incorporating 

further topological network measures.  

 

2.8.4 Other test instance generators 

 

A test set generator for AOA project networks was proposed by Agrawal et al. 

(1996). In this generator, named DAGEN, the user can specify the level of a 

summary measure of network complexity. Browning and Yassine (2010) 

presented a generator for problems consisting of multiple projects with 

controlled resource distributions and amounts of resource contention. They 

also generated 12,320 test problems for a full-factorial experiment and used 

analysis of means to conclude that the generator produces “near-strongly 

random” problems. 
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2.9 Mathematical Programming 

 

Mathematical Programming is the use of mathematical models, particularly 

optimising models, to assist in taking decisions. It is very different and should 

not be confused with computer programming, even though solving most 

practical problems requires the use of computer calculating power. 

 

The term programming is actually used in the sense of planning/scheduling. 

The goal of mathematical programming is to optimise (minimise or maximise) 

a quantity. This quantity is known as the objective function. 

 

2.9.1 Mathematical Modelling 

 

Many scientific applications utilise models as a structure to present features 

and characteristics of an “object”. Sometimes models are physical, such as a 

model aircraft used in wind tunnels to test its aerodynamics. However, the 

models examined in operational research are abstract. These abstract models 

are usually mathematical and involve a set of mathematical relationships 

involving equations, inequalities and logical dependencies to describe real-

world relationships and constraints. 

 

Building a mathematical model gives us greater insight and understanding of 

the “object” being modelled. A number of not so obvious aspects are revealed 

and further mathematical analysis can lead to different courses of action. 

Finally, it is easier to implement various “scenarios”, however radical, and 

harmlessly observe their outcome. 

 

It is important to understand that a model is actually defined by its 

relationships and constraints. These are, to a large extent, independent of the 

data in the model. This means that a model can be used in a variety of 

similar situations, that differ in the data involved (i.e., costs, resource 

availabilities, activity durations, etc). 
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According to Yang (2008), whatever the real-world problem is, it is usually 

possible to formulate the optimization problem in a generic form. All 

optimization problems with explicit objectives can in general be expressed as 

nonlinearly constrained optimization problems in the following generic form: 

 

minimise
nx 
/ maximise  xf  

subject to 

   

   Kkx

Mmx

k

m

,...,10

,...,10








 

where   nT

nxxxx  ,...,, 21   

(1.1) 

 

where  xf ,  xm , and  xk  are scalar functions of the real column vector 

x . The function  xf  is called objective function, and is a quantitative 

measure of the performance of the system in question. The components ix  of 

vector x  are called decision variables, or simply variables, and they can be 

either continuous, discrete or a mix of these two. The variables are the 

unknowns whose values are to be determined such that the objective 

function is optimized. Additionally,  xm  are constraints in terms of M 

equalities, and  xk  are constraints written as K inequalities. Therefore, 

there are M+K constraints in total. Constraints represent any restrictions that 

the decision variables must satisfy. 

 

According to Nemhauser and Wolsey (1999), in mathematical programming 

(especially when integer decisions are involved) formulating a "good" model 

is of crucial importance to solving the problem. Indeed, the quality of a 

mathematical formulation strongly depends on the choice of decision 

variables and the constraints formulated. At this point it should be 

emphasized that it is instinctive to believe that the computational time 

increases and computational feasibility decreases as the number of 

constraints increases, however, trying to find a formulation with a small 
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number of constraints is often a very bad strategy (Nemhauser and Wolsey, 

1999). 

 

The procedure of identifying the decision variables, constraints and objective 

function is known as modelling. Depending on the properties of the functions 

f ,  , and   and the vector x , the mathematical program (1.1) is called: 

 Linear: If x  is continuous and the functions f ,  , and   are all 

linear. 

 Nonlinear: If x  is continuous and at least one of the functions f ,  , 

and   is nonlinear. 

 Mixed integer linear: If x  requires at least some of the variables ix  to 

take integer (or binary) values only; and the functions f ,  , and   

are linear. 

 Mixed integer nonlinear: If x  requires at least some of the variables ix  

to take integer (or binary) values only; and at least one of the 

functions f ,  , and   is nonlinear. 

 

2.9.2 Types of optimal solutions 

 

The feasible region contains the set of feasible solutions to the problem, 

    0,0|  xxxF km

n  . A feasible solution *x  that optimises the 

objective function is called optimal,     FxxforxfFx  ,: ** . The 

value of the objective function for the optimal solution  *xf  should be less 

or equal ( ) to every other value, with Fx , when we have a minimisation 

problem and greater or equal ( ) for a maximisation problem. 

 

If for a minimisation problem, the property    xfxf *  is satisfied for all 

Fx , then *x  is a global minimum. If this condition is satisfied for all x  in a 

neighbourhood of *x , then it is a local minimum, as shown in Fig. 2.4. Finally, 
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if the inequality holds strictly, *x  is a strong minimum, while it is called weak 

minimum otherwise. 

 

 

 

Figure 2.4. Types of minima 

 

2.9.3 Linear Programming (LP) 

 

Linear Programming (LP) is a mathematical method for determining a way to 

achieve the best outcome (such as maximum profit or lowest cost) in a 

given mathematical model for some list of requirements represented as linear 

relationships.  

 

More formally, linear programming is a technique for the optimization of a 

linear objective function, subject to linear equality and linear 

inequality constraints. Its feasible region is a convex polyhedron, which is a 

set defined as the intersection of finitely many half spaces, each of which is 

defined by a linear inequality. Its objective function is a real-valued affine 

function defined on this polyhedron. A linear programming algorithm finds a 

point in the polyhedron where this function has the smallest (or largest) value 

if such a point exists. 
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Linear programs are problems that can be expressed in canonical form: 

 

maximise xcT  

subject to bAx   

and 0x  

 

(1.2) 

 

where x  represents the vector of variables (to be determined), c  and b  are 

vectors of (known) coefficients, A  is a (known) matrix of coefficients, and 

 T  is the matrix transpose. The expression to be maximized or minimized is 

called the objective function ( xcT  in this case). The inequalities bAx   are 

the constraints which specify a convex polytope over which the objective 

function is to be optimised. In this context, two vectors are comparable when 

they have the same dimensions. If every entry in the first is less-than or 

equal-to the corresponding entry in the second then we can say the first 

vector is less-than or equal-to the second vector. 

 

Two well-known solution procedures for LP problems are the Simplex 

algorithm and the interior points method. 

 

Simplex Algorithm 

 

The Simplex Algorithm, developed by George Dantzig in 1947, solves LP 

problems by starting with an initial Basic Feasible Solution (BFS) and testing 

its optimality. If the optimality condition is verified, then the algorithm 

terminates. Otherwise, the algorithm identifies an adjacent BFS, with a better 

objective value. The optimality of this new solution is tested again, and the 

entire scheme is repeated, until an optimal BFS is found. Since every time a 

new BFS is identified the objective value is improved (except from a certain 

pathological case that we shall see later), and the set of BFS’s is finite, it 

follows that the algorithm will terminate in a finite number of steps 

(iterations). 
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It is also interesting to examine the geometrical interpretation of the 

behaviour of Simplex algorithm. Given the above description of the algorithm 

and the correspondence of BFS's to extreme points, it follows that Simplex 

essentially starts from some initial extreme point, and follows a path along 

the edges of the feasible region towards an optimal extreme point, such that 

all the intermediate extreme points visited are improving (more accurately, 

not worsening) the objective function (see Fig. 2.5). 

 

 

Figure 2.5. Graphical interpretation of the Simplex method 

 

It is worth mentioning that in 1953 Dantzig and Orchard-Hays proposed the 

Revised Simplex method, which actually is not a different method but is a 

different (more efficient) way to carry out each computational step of the 

Simplex method. 

 

Interior Point Method 

 

An interior point method is one that improves a feasible interior point of the 

linear program by steps through the interior (see Fig. 2.6), rather than 
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around the boundary of the feasible region, as in the Simplex algorithm. 

 

 

Figure 2.6. Graphical interpretation of the Interior-point method 

 

A polynomial time linear programming algorithm using an interior point 

method was found by Karmarkar (1984). Arguably, interior point methods 

were known as early as the 1960s in the form of the barrier function 

methods, but the media hype accompanying Karmarkar's announcement led 

to these methods receiving a great deal of attention. Karmarkar's 

breakthrough revitalized the study of interior point methods and barrier 

problems, showing that it was possible to create an algorithm for linear 

programming characterized by polynomial complexity and, moreover, that 

was competitive with the simplex method. Already Khachiyan's ellipsoid 

method was a polynomial time algorithm; however, in practice it was too slow 

to be of practical interest. 

 

The key idea behind interior-point methods are as follows, assuming an initial 

feasible interior point is available and that all moves satisfy bAx  : 
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1. Try to move through the interior in directions that show promise of 

moving quickly to the optimal solution. 

2. Recognize that if we move in a direction that sets the new point too 

"close" to the boundary, this will be an obstacle that will impede our 

moving quickly to an optimal solution. One way around this is to 

transform the feasible region so that the current feasible interior point 

is at the center of the transformed feasible region. Once a movement 

has been made, the new interior point is transformed back to the 

original space, and the whole process is repeated with the new point 

as the center. 

3. The simple stopping rule typically followed is to stop with an 

approximate optimal solution when the difference between iterates 

"deemed" sufficiently small in the original space. 

 

2.9.4 Mixed Integer Programming (MIP) 

 

A Mixed-Integer Programming (MIP) problem results when some of the 

variables in your model are real-valued and some of the variables are integer 

and/or binary. The model is therefore “mixed”. Integer variables appear when 

modelling indivisible entities, while a very common use of binary (0–1) 

variables is to represent binary choice. Consider an event that may or may 

not occur, and suppose that it is part of the problem to decide between these 

possibilities. In order to model such a choice, a binary variable, which 

typically equals 1 if the event occurs otherwise is set to zero, can be used. 

Depending on the specific problem the event may represent yes/no decisions, 

logical conditions, fixed costs or piecewise linear functions. 

 

Mixed Integer Programming (MIP) problems can be expressed in standard 

form, as follows: 
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maximise hyxcT   

subject to bGyAx   

0x  and  

0y  is integer or binary 

 

(1.3) 

 

where x  represents the vector of non-negative variables, y  represents the 

vector of integer and/or binary variables, c  and b  are vectors of coefficients, 

and A  and G  are matrices of coefficients. In this case the objective function 

is hyxcT  . 

 

For further reading on MIP optimisation, we refer to the excellent books of 

Floudas (1995) and Nemhauser and Wolsey (1999). MIP problems are usually 

solved using branch-and-bound, cutting planes or branch-and-cut methods. 

 

Branch-and-Bound Techniques 

 

Branch and Bound (B&B) is by far the most widely used tool for solving large 

scale NP-hard combinatorial optimization problems (Floudas, 1995). The 

method was first proposed by Land and Doig (1960) for discrete 

programming. The Branch and Bound technique consists of a systematic 

enumeration of all candidate solutions, where large subsets of fruitless 

candidates are discarded en masse, by using upper and lower estimated 

bounds of the quantity being optimized.  

 

The method is based on the observation that the enumeration of integer 

solutions has a tree structure. For example, consider the complete 

enumeration of a model having one general integer variable 1x , and two 

binary variables 2x  and 3x , whose ranges are 31 1  x , 10 2  x , and 

10 3  x . Fig. 2.7 shows the complete enumeration of all of the solutions for 

these variables, even those which might be infeasible due to other constraints 
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on the model. The structure in Fig. 2.7 looks like a tree lying on its side with 

the root (or root node) on the left, labelled “all solutions”, and the leaves (or 

leaf nodes) on the right. The leaf nodes represent the actual enumerated 

solutions, so there are 12 of them: (3 possible values of 1x ) × (2 possible 

values of 2x ) × (2 possible values of 3x ). For example, the node at the upper 

right represents the solution in which 11 x , 02 x , and 03 x . The other 

nodes can be thought of as representing sets of possible solutions. For 

example, the root node represents all solutions that can be generated by 

growing the tree. Another intermediate node, e.g. the first node directly to 

the right of the root node, represents another subset of all of the possible 

solutions, in this case, all of the solutions in which 21 x  and the other two 

variables can take on any of their possible values. For any two directly 

connected nodes in the tree, the parent node is the one closer to the root, 

and the child node is the one closer to the leaves.  

 

 

Figure 2.7. A full enumeration tree 
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Now the main idea in branch and bound is to avoid growing the whole tree as 

much as possible, because the entire tree is just too big in any real problem. 

Instead branch and bound grows the tree in stages, and grows only the most 

promising nodes at any stage. It determines which node is the most 

promising by estimating a bound on the best value of the objective function 

that can be obtained by growing that node to later stages. The name of the 

method comes from the branching that happens when a node is selected for 

further growth and the next generation of children of that node is created. 

The bounding comes in when the bound on the best value attained by 

growing a node is estimated. We hope that in the end we will have grown 

only a very small fraction of the full enumeration tree. 

 

Another important aspect of the method is pruning, in which you cut off and 

permanently discard nodes when you can show that it, or any its 

descendents, will never be either feasible or optimal. The name derives from 

gardening, in which pruning means to clip off branches on a tree, exactly 

what we will do in this case. Pruning is one of the most important aspects of 

branch and bound since it is precisely what prevents the search tree from 

growing too much.  

 

To describe branch and bound in detail, we first need to introduce some 

terminology: 

 Node: any partial or complete solution. For example, a node that is two 

levels down in a 5-variable problem might represent the partial solution 3-

17-?-?-?, in which the first variable has a value of 3 and the second 

variable has a value of 17. The values of the last three variables are not 

yet set. 

 Leaf (leaf node): a complete solution in which all of the variable values 

are known. 

 Bud (bud node): a partial solution, either feasible or infeasible. Think of 

it as a node that might yet grow further, just as on a real tree. 
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Branch and bound is a very general framework. To completely specify how 

the process is to proceed, you also need to define policies concerning 

selection of the next node, selection of the next variable, how to prune, and 

when to stop.  

 

At any intermediate point in the algorithm, we have the current version of the 

branch and bound tree, which consists of bud nodes labelled with their 

bounding function values and other nodes labelled in various ways. The node 

selection policy governs how to choose the next bud node for expansion. 

There are three popular policies for node selection best-first or global-best 

node selection, depth-first and breadth-first.  

 

Once a bud node has been chosen for expansion, the variable selection policy 

governs which variable to use in creating the child nodes of the bud node. 

There are few standard policies for variable selection. The variables are often 

selected just in their natural order, though a good variable selection policy 

can improve efficiency greatly.  

 

We also need to establish policies and rules for pruning bud nodes. As 

mentioned above, there are two main reasons to prune a bud node: you can 

show that no descendent will be feasible, or you can show that no 

descendent will be optimal. 

 

Finally, we need a terminating rule to tell us when to stop expanding the 

branch and bound tree. To guarantee that we have reached optimality, we 

stop when the incumbent solution’s objective function value is better than or 

equal to the bounding function value associated with all of the bud nodes. 

This means that none of the bud nodes could possibly develop into a better 

solution than the complete feasible solution we already have in hand, so 

there is no point in expanding the tree any further. Of course, according to 

our policies for pruning, all bud nodes in this condition will already have been 

pruned, so this terminating rule amounts to saying that we stop when there 
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are no more bud nodes left to consider for further growth. This also proves 

that the incumbent solution is optimum. 

 

Cutting Plane Methods 

 

The term cutting-plane method is an umbrella term for optimization 

methods which iteratively refine a feasible set or objective function by means 

of linear inequalities, termed cuts. Such procedures are popularly used to 

find integer solutions to  integer programming and MIP problems, as well as 

to solve general, not necessarily differentiable convex optimization problems. 

The use of cutting planes to solve MIP was introduced by Gomory (1958, 

1960). However most experts, including Gomory himself, considered them to 

be impractical due to numerical instability, as well as ineffective because 

many rounds of cuts were needed to make progress towards the solution. 

Things turned around when in the mid-1990s Cornuejols and co-workers 

showed them to be very effective in combination with branch-and-cut and 

ways to overcome numerical instabilities. Nowadays, all commercial MILP 

solvers use Gomory cuts in one way or another. Gomory cuts, however, are 

very efficiently generated from a simplex tableau, whereas many other types 

of cuts are either expensive or even NP-hard to separate. Among other 

general cuts for MILP, most notably lift-and-project dominates Gomory cuts. 

Cutting-plane methods for general convex continuous optimization and 

variants are known under various names: Kelley's method, Kelley-Cheney-

Goldstein method, and bundle methods. 

 

Cutting plane methods for MIP work by solving a non-integer linear program, 

the linear relaxation of the given integer program. The theory of Linear 

Programming dictates that under mild assumptions (if the linear program has 

an optimal solution, and if the feasible region does not contain a line), one 

can always find an extreme point or a corner point that is optimal. The 

obtained optimum is tested for being an integer solution. If it is not, there is 

guaranteed to exist a linear inequality that separates the optimum from 
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the convex hull of the true feasible set. Finding such an inequality is 

the separation problem, and such an inequality is a cut. A cut can be added 

to the relaxed linear program. Then, the current non-integer solution is no 

longer feasible to the relaxation. This process is repeated until an optimal 

integer solution is found. 

 

Branch-and-Cut Techniques 

 

Branch-and-cut (B&C) is a hybrid of branch and bound and cutting 

plane methods. It has proven to be effective in solving different combinatorial 

optimization problems, especially the traveling-salesman problem (TSP) and 

its variants (Bard et al. 2002). B&C methods have also been used to solve 

other combinatorial optimization problems. Problems addressed recently with 

cutting plane or branch-and-cut methods include the linear ordering problem, 

maximum cut problems, scheduling problems, network design problems, 

packing problems, the maximum satisfiability problem, biological and medical 

applications, and finding maximum planar subgraphs (Mitchell, 2001).  

 

The linear program is solved without the integer constraint using the 

regular simplex algorithm. When an optimal solution is obtained, and this 

solution has a non-integer value for a variable that is supposed to be integer, 

a cutting plane algorithm is used to find further linear constraints which are 

satisfied by all feasible integer points but violated by the current fractional 

solution. If such an inequality is found, it is added to the linear program, such 

that resolving it will yield a different solution which is hopefully "less 

fractional". This process is repeated until either an integer solution is found 

(which is then known to be optimal) or until no more cutting planes are 

found. 

 

At this point, the branch and bound part of the algorithm is started. The 

problem is split into two versions, one with the additional constraint that the 

variable is greater than or equal to the next integer greater than the 
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intermediate result, and one where this variable is less than or equal to the 

next lesser integer. In this way new variables are introduced in the basis 

according to the number of basic variables that are non-integers in the 

intermediate solution but which are integers according to the original 

constraints. The new linear programs are then solved using the simplex 

method and the process repeats until a solution satisfying all the integer 

constraints is found. During the branch and bound process, further cutting 

planes can be separated, which may be either global cuts, i.e., valid for all 

feasible integer solutions, or local cuts, meaning that they are satisfied by all 

solutions fulfilling the side constraints from the currently considered branch 

and bound subtree. 

 

2.9.5 Preprocessing 

 

Given a mathematical formulation, preprocessing refers to elementary 

operations that can be performed to enhance or simplify the formulation. The 

preprocessing phase often involves at least one of the following actions: (i) 

development of tightening constraints, (ii) addition of logical inequalities, (iii) 

fixing of variables, and (iv) removing redundant constraints. Actually, 

preprocessing can be considered as a phase between formulation and 

solution, and it can significantly improve the speed of a sophisticated 

mathematical framework that might, for instance, be unable to recognize the 

fact that some variables can be fixed and then be eliminated from the model 

(Nemhauser and Wolsey, 1999). 

 

The most common preprocessing performed in mathematical models for the 

RCPSP is the definition of earliest and latest starting times (ESi and LSi, 

respectively) and earliest and latest finishing times (EFi and LFi, respectively) 

(i.e., time-indexed discrete-time models) for the RCPSP are highly sensitive to 

time horizon. The time-window preprocessing reduces: (i) the number of the 

time-indexed decision variables, and (ii) the total number of constraints 

needed. 
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2.10 Time representation 

 

In all mathematical formulations, the representation of time is an important 

issue. Two main approaches are used: discrete-time and continuous-time, 

depending on whether the events of the schedule can only take place at 

some predefined time points , or can occur at any moment during the time 

horizon of interest, respectively.  

 

Discrete-time models are based on: (i) dividing the scheduling horizon into a 

finite number of time intervals with predefined duration and, (ii) allowing the 

events such as the beginning or ending of tasks to happen only at the 

boundaries of these time periods (see Fig. 2.8a). Therefore, scheduling 

constraints have only to be monitored at specific and known time points, 

which reduces the problem complexity and makes the model structure 

simpler and easier to solve, particularly when resource limitations are taken 

into account. On the other hand, this type of problem simplification has two 

major disadvantages. First, the size of the mathematical model as well as its 

computational efficiency strongly depend on the number of time intervals 

postulated, which is defined as a function of the problem data and the 

desired accuracy of the solution. Note that a dense discretisation of the time 

horizon would increase the number of decision variables and lead to large 

combinatorial problems, which are hard to solve (or even intractable). 

Second, sub-optimal or even infeasible schedules may be generated because 

of the reduction of the domain of timing decisions. This time representation is 

an approximation of time, with the length of each interval usually set to be 

equal to the greatest common factor of activity processing times. Despite 

being a simplified version of the original scheduling problem, discrete 

formulations have proven to be very efficient, adaptable and convenient for a 

wide variety of industrial applications, especially in those cases where a 

reasonable number of intervals is sufficient to obtain the desired problem 

representation. 
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In order to overcome the previous limitations and generate data-independent 

models, a wide variety of optimisation approaches employ a continuous-time 

representation (see Fig. 2.8b). In these formulations, timing decisions are 

explicitly represented as a set of continuous variables defining the exact times 

at which the events take place. In the general case, a variable time handling 

allows obtaining a significant reduction in the number of variables of the 

model and at the same time, more flexible solutions in terms of time can be 

generated. Also, problems with non-integer activity durations could be 

modelled more accurately. This is of great importance for real-life problems, 

wherein processing times rarely have integer values. However, because of 

the modelling of variable processing times, resource limitations usually needs 

the definition of more complicated constraints involving many big-M terms, 

which tends to increase the model complexity and the integrality gap and 

may negatively impact on the capabilities of the method.  

 

 

 

Figure 2.8. Time representations 

 

2.11 Modelling and Solution Techniques 

 

In this section we will review modelling and solution techniques for the 

Resource-Constrained Project Scheduling Problem and its variants. Blazewicz 

et al. (1983) have shown that solving the RCPSP is a hard NP-hard problem 

and for some variants, such as the RCPSP/max, even the theoretically easier 

problem of checking its feasibility is NP-complete (Hartmann and Briskorn, 

2010).  
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A number of solution methods, both exact and approximate have been 

proposed in the literature so far. Exact techniques found in the literature rely 

usually on mathematical programming formulations and specialised branch-

and-bound algorithms. Due to the high degree of complexity of RCPSPs, a 

number of approximate methods such as heuristics and metaheuristics have 

also been proposed in the literature.  

 

Roughly speaking, a heuristic is a technique designed to solve a problem, or 

find an approximate solution with few computational requirements, when 

classic methods fail to find any exact solution. By trading optimality, 

completeness, accuracy, and/or precision for speed, a heuristic can quickly 

produce a solution that is good enough for solving the problem at hand. The 

heuristic procedures broadly fall into two categories, namely constructive 

heuristics and improvement heuristics (Demeulemeester and Herroelen, 

2002). Constructive heuristics start from an empty schedule and add activities 

one by one until one feasible schedule is obtained. To that purpose, the 

activities are typically ranked by using priority rules which determine the 

order in which the activities are added to the schedule. Improvement 

heuristics, on the other hand, start from a feasible schedule that was 

obtained by some constructive heuristic. Operations are performed on a 

schedule which transform a solution into an improved one. These operations 

are repeated until a locally optimal solution is obtained. Steepest descent, 

fastest descent and iterated descent are various way of arriving in locally 

optimal solutions. Some improvement heuristics try to avoid getting stuck in a 

locally optimal solution by allowing an intermediate deterioration of the 

project makespan. In those cases, one has to avoid the phenomenon of 

cycling, i.e. repeatedly considering the same sequence of schedules. To that 

purpose, several metaheuristics like tabu search, simulated annealing and 

genetic algorithms have been proposed. A metaheuristic optimises a problem 

by iteratively trying to improve a candidate solution with regard to a given 

measure of quality. Metaheuristics make few or no assumptions about the 

problem being optimized and can search very large spaces of candidate 
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solutions. However, similar to heuristics, there is no guarantee on the quality 

of the solution obtained, and it is often impossible to tell how far the current 

solution is from optimality.  

 

Finally, hybrid methods combine more than solution technique, e.g. exact and 

heuristic, heuristic and metaheuristic, e.t.c. 

 

We focus our review to solution procedures that aim at minimising the project 

makespan, which (as pointed out in section 2.6.1) is the most popular and 

important objective. For a thorough state-of-the-art the interested reader is 

referred to the excellent works of Kolisch (1996a), Hartmann and Kolisch 

(2000), Demeulemeester and Herroelen (2002), Kolisch and Hartmann 

(2006), Hartmann and Briskorn (2010) and Węglarz et al. (2011).  

 

2.11.1 RCPSP 

 

The classical RCPSP belongs to the class of problems that are strongly NP- 

hard, as demonstrated by Blazewicz et al. (1983), and since the late 1950s 

most of the work in project scheduling has focused on developing solution 

techniques for it. Due to its generality the classical RCPSP, has attracted most 

of the project scheduling research effort. Our review, will focus on the most 

important solution methods proposed in the literature. 

 

Exact methods 

 

Starting with exact methods for the RCPSP, a very early discrete-time 

mathematical model for the RCPSP was presented by Pritsker et al. (1969). 

This Binary Integer Programming (BIP) formulation was designed for multi-

project scheduling, but can also be used for the single-project case. It is 

based on the definition of binary variables, which specify if an activity starts 

processing at a specific time point or not. Activities have a resource demand 

at the time point that they start processing, and no resource demand at the 
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time point of their completion. The MILP model accommodated a wide range 

of conditions and supported objectives for minimizing the makespan and 

minimizing the total lateness. No computational results are available for this 

early study.  

 

Christofides et al. (1987) developed a formulation similar to Pritsker et al., 

which mainly differs in how they formulate the precedence constraints with 

the new precedence constraints being disaggregated expressions of 

Pritsker’s. They introduced CAT, a depth-first branch-and-bound procedure 

that generates a branch-and-bound tree, whose nodes correspond to semi-

active feasible partial schedules. The procedure only branches to resolve a 

resource conflict. The reported computational results are on randomly 

generated problems involving up to 25 activities and 3 resources.  

 

Kaplan (1988) developed a different time-indexed discrete-time BIP 

formulation for the preemptive version of the RCPSP, which can easily be 

adopted to the standard RCPSP. It is based on defining a single type of binary 

variables that specify if activities are in process in each time period, thus 

allowing a much simpler definition of the resource constraints. In this 

formulation, the dummy start and end activities are assigned durations equal 

to 1 which have to be considered when performing the forward and the 

backward pass, respectively. Moreover, transitive precedence relationships 

are introduced between activities.  

 

The very efficient algorithm, presented by Demeulemeester and Herroelen 

(1992, 1997a) is an extension of the depth-first branch and bound approach 

of Christofides et al. (1987). The new nodes in the enumeration tree are 

created by considering sets of activities which are delayed. Two dominance 

rules are used to prune the enumeration tree. The first one is a variation of 

the left-shift dominance rule. The second one makes use of a “cutest”, i.e. 

unscheduled activities for which all predecessors belong to the partial 

schedule. Bounding is performed with the precedence-based and the critical-
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sequence-based lower bound used by Stinson et al. (1978), and the 

weighted-node-packing-bound of Mingozzi et al. (1998).  

 

Two formulations with an exponential number of variables are those of 

Alvarez-Valdés and Tamarit (1993) and Mingozzi et al. (1998), making them 

more useful when calculating lower bounds. The first one proposes a 

continuous-time formulation based on the definition of a set IS of all minimal 

resource incompatible sets S. A resource incompatible set is a set of activities 

between which no precedence relation exists, but which would violate the 

resource constraints, if performed in parallel. Their model is based on the 

definition of sequencing binary variables which define the sequencing of 

activities. The second one by Mingozzi et al. (1998), is a discrete-time BIP 

formulation based on feasible subsets, that is activities that can be 

simultaneously executed without violating resource or precedence 

constraints.  

 

Klein (2000) proposed a discrete-time BIP model with precedence and 

resource constraints similar to those presented by Kaplan (1988). A single 

type of binary variables is used, specifying if an activity starts at the 

beginning of time point t or earlier.  

 

Artigues et al. (2003) proposed a continuous MIP formulation based on 

sequencing and resource flow variables. Starting time continuous variables 

are defined for each activity. In addition, sequencing binary variables are 

introduced to define the sequence between any pair of activities. Finally, 

resource flow continuous variables are defined to denote the quantity of 

resource directly transferred from one activity (at its completion) to another 

(at the beginning of its processing). Notice that in this mathematical 

formulation the resource requirements of the dummy activities are equal to 

the maximum available capacity, instead of setting them to zero. That way, 

the start dummy activity acts as a resource source while the end dummy 

activity plays the role of a resource sink. 
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Schmidt and Grossmann (1996) proposed a single mode, slot-based 

continuous-time formulation with no resource constraints for the optimal 

scheduling of testing tasks in the new product development process of an 

agricultural chemical or pharmaceutical company. In subsequent work, the 

focus changed to the development of realistic models that could be solved for 

large-scale problems. Jain and Grossmann (1999) extended Schmidt’s work 

by including resource constraints, and Maravelias and Grossmann (2004) 

further extended that model by allowing the allocation of different levels of 

resources and capacity expansion. On the same problem of scheduling of 

clinical trials in the pharmaceutical research and development pipeline, Colvin 

and Maravelias (2008) developed a basic resource-constrained multi-stage 

stochastic programming formulation (MSSP) model which was extended in 

Colvin and Maravelias (2009) to account for outlicensing and resource 

planning including outsourcing. In their recent work, Colvin and Maravelias 

(2010) focused on the development of new results that lead to smaller MSSP 

mixed-integer programming (MIP) formulations and the development of a 

solution algorithm to address problems that cannot be generated using 

commercial tools. Papageorgiou, Rotstein, and Shah (2001) proposed a MILP 

model assuming that enough resources are always available. The formulation 

integrates the selection of both a product development and introduction 

strategy and a capacity planning and investment strategy. Levis and 

Papageorgiou (2004) proposed a mathematical model, which is an extension 

of the previous work, determining both the product portfolio and the multi-

site capacity planning in the face of uncertain clinical trials outcomes while 

taking into account the trading structure of the company.  

 

Recently, Koné et al. (2011) introduced two different event-based 

continuous-time MIP formulations wherein the decision variables are indexed 

using event points instead of time points, that correspond to start or end 

times of activities. The Start/End Event-based (SEE) formulation, which is a 

variant of the event-based formulation proposed in Zapata et al. (2008), and 

the On/Off Event-based (OOE) formulation. The variables in such 
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formulations are fewer than in time-indexed ones, since they are not a 

function of the time horizon. They compared the event-based formulations 

with three other formulations issued from the literature, two of which 

(Pritsker et. al., 1969 and Christofides et al., 1987) use time-indexed 

variables, and a third formulation (Artigues et al., 2003) that uses sequential 

variables. The computational results proved that the formulation proposed by 

Christofides et al. (1987) yields better results for exact solving on traditional 

test instances. The event-based formulations (more particularly the OOE) and 

the one by Artigues et al. (2003), have the advantage of solving more easily 

the instances involving very large scheduling horizons. Finally, their OOE 

formulation consistently outperformed the SEE on all tested instance sets. 

 

Approximate methods 

 

A number of different approximate procedures have been developed for the 

RCPSP. Priority-rule-based scheduling is made up of two components: A 

schedule generation scheme (SGS) and a priority rule. Two different schemes 

for the generation of feasible schedules can be distinguished (see Kolisch, 

1996a): the serial and the parallel method, respectively. Both generate a 

feasible schedule by extending a partial schedule in a stage-wise fashion. In 

each stage the generation scheme forms the set of all schedulable activities, 

called the decision set. A specific priority rule is then employed in order to 

choose one activity from the decision set which will be scheduled. While the 

decision set of the serial method is made up of all currently unscheduled 

activities whose predecessors have already been scheduled, the parallel 

method defines the set by including all the precedence- and resource-feasible 

unscheduled activities which can be started at the schedule time. Depending 

on the number of passes performed, and hence the number of schedules 

generated, single- and multi-pass approaches can be distinguished. A number 

of such heuristics along with a computational study are reported by Kolisch 

(1996a). 
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Truncated branch-and-bound methods do not explore the entire enumeration 

tree, instead only a partial exploration is performed. An example of such a 

method is the work of Alvarez-Valdes and Tamarit (1989) that makes use of 

the enumeration tree as presented in Christofides et al. (1987), i.e., nodes 

consist of sets of activities which have to be delayed. Instead of enumerating 

all offspring nodes, the heuristic implicitly or explicitly chooses one node.  

 

Kochetov and Stolyar (2003) devised an evolutionary algorithm which 

combines genetic algorithm, path relinking, and tabu search. Solutions are 

evolved and diversified in a genetic way. Evolution is done by choosing two 

solutions from the pool and constructing the path of solutions linking the 

selected solutions (path relinking). The best solution from the path is chosen 

and improved via tabu search. The latter employs a neighborhood where the 

activity list is divided in three parts. For the first and the last part the serial 

SGS is employed while for the mid part the parallel SGS is used. The best 

solution from the tabu search is added to the population and the worst 

solution is removed from the population.  

 

Debels et al. (2006) proposed a new metaheuristic that combines elements 

from scatter search, a generic population-based evolutionary search method, 

and from a recently introduced heuristic method for the optimisation of 

unconstrained continuous functions based on an analogy with 

electromagnetism theory. The computational experiments show that the 

procedure is capable of producing consistently good results for challenging 

instances of the resource-constrained project scheduling problem and that 

the algorithm outperforms previous state-of-the-art existing heuristics.  

 

Debels and Vanhoucke (2008) presented a new genetic algorithm (GA) that is 

able to provide near-optimal heuristic solutions. This GA procedure is also 

extended by a so-called decomposition-based genetic algorithm (DBGA) that 

iteratively solves subparts of the project. They present computational 

experiments on two data sets. The first benchmark set is used to illustrate 
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the performance of both the GA and the DBGA. The second set is used to 

compare the results with current state-of-the-art heuristics and to show that 

the procedure is capable of producing consistently good results for 

challenging problem instances. The GA outperforms all state-of-the-art 

heuristics and the DBGA further improves the performance of the GA. 

 

Paraskevopoulos et al. (2012) proposed a new solution representation and an 

evolutionary algorithm for solving the RCPSP. The representation scheme is 

based on an ordered list of events, that are sets of activities that start (or 

finish) at the same time. The proposed solution methodology, namely SAILS, 

operates on the event list and relies on a scatter search framework. The 

latter incorporates an Adaptive Iterated Local Search (AILS), as an 

improvement method, and integrates an event-list based solution 

combination method. AILS utilizes new enriched neighborhoods, guides the 

search via a long term memory and applies an efficient perturbation strategy. 

Computational results on benchmark instances of the literature indicate that 

both AILS and SAILS produce consistently high quality solutions, while the 

best results are derived for most problem data sets. 

 

2.11.2  Multi-mode Resource Constrained Project Scheduling 

Problem (MRCPSP) 

 

When the solution has to additionally determine the assignment of modes 

(MRCPSP), further complexity is added since the solution search space is 

enlarged. The MRCPSP is NP-hard in the strong sense being a generalization 

of the RCPSP. Moreover, for more than one non-renewable resources the 

problem of finding a feasible solution is already NP-complete (Kolisch, 1995). 

 

Exact methods  

 

Exact methods for the MRCPSP include the formulation of Talbot (1982), 

which considers the objective of minimizing the makespan under a given 
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budget, and minimizing the total non-renewable resource consumption under 

the presence of a project due date.  

 

Sprecher et al. (1997) extended the enumeration scheme of Demeulemeester 

and Herroelen (1992) for the single-mode to the multi-mode RCPSP. 

Hartmann and Drexl (1998) generalised the exact procedure of Stinson et al. 

(1978) to the multi-mode context. 

 

Zhu et al. (2006) proposed a branch-and-cut method based on Christofides et 

al. formulation (1987) for the MRCPSP. The primary contribution of their 

research aimed at the development of several techniques for accelerating the 

solution process, including variable reduction, cut generation, and bound 

tightening. In addition, a high-level search strategy referred to as local 

branching was applied to find good feasible solutions in the early stages of 

the computations.  Their work gave very competitive results on benchmark 

problems and remains the best-performing exact method to date.  

 

Sabzehparvar et al. (2008) presented a continuous-time formulation for the 

MRCPSP with Generalized Precedence Relations (MRCPSP-GPR) with mode-

dependent minimal or maximal time lags. The proposed model has been 

inspired by the rectangle packing problems, but it has no need for a feasible 

solution to start. Their computational study consisted of a set of 60 test 

problems.  

 

In a recent paper from the process systems industry, Zapata et al. (2008) 

developed 3 different MILP models to address large-scale Multi-mode 

Resource Constrained Multi-Project Scheduling Problems (multi-mode 

RCMPSP), using continuous divisible resources and continuous time. The 

“curse” of dimensionality of the problem (indexing of task execution modes, 

indexing of time periods, and the discrete character of the resources), limits 

the exact solution of the formulations to very small systems. Each of the 3 

proposed models handles the time domain in a different way, but the 
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computational results show that hat despite the theoretical advantages of the 

strategies used they are limited to problems in the same range of applicability 

of conventional multi-mode formulations. 

 

Approximate methods  

 

Starting with approximate solution procedures, Hartmann (2001) presented 

an efficient genetic algorithm, with the genetic encoding based on a 

precedence feasible list of activities and a mode assignment. After defining 

the related crossover, mutation, and selection operators, they use a local 

search extension to improve the schedules found by the basic genetic 

algorithm.  

 

Alcaraz et al. (2003) proposed another genetic algorithm with slightly worse 

performance than that of Hartmann, but with a better fitness function.  

 

Jarboui et al. (2008) propose a combinatorial Particle Swarm Optimisation 

(CPSO) algorithm that first generates an assignment of modes to activities 

which is called particle and then uses a local search to optimize the 

sequences when a new assignment is made.  

 

Van Peteghem and Vanhoucke (2010) designed a genetic algorithm which 

uses two populations, one with left-justified schedules and one with right-

justified schedules. They also introduced an extended serial schedule 

generation scheme, which improves the mode selection by choosing that 

feasible mode of a certain activity that minimises the finish time of that 

activity. According to their computational results, their algorithm outperforms 

all prior algorithms in literature, within reasonable computation times.  

 

Coelho and Vanhoucke (2011) developed a new algorithm that splits the 

problem type into a mode assignment and a single mode project scheduling 

step. The mode assignment step is solved by a satisfiability (SAT) problem 
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solver and returns a feasible mode selection to the project scheduling step. 

The project scheduling step is solved using an efficient meta-heuristic 

procedure from literature to solve the RCPSP. Computational results show 

that the procedure can report similar or sometimes even better solutions than 

the algorithm of Van Peteghem and Vanhoucke (2010), although it often 

requires a higher CPU time. This makes the considered genetic algorithm 

approach the most powerful heuristic developed up to now. 

 

2.11.3 RCPSP/max 

 

The addition of maximal time lags to the classical RCPSP, significantly 

increases the complexity of the problem. Moreover, the generation of 

problem instances could be problematic because infeasible problems might be 

generated. The RCPSP/max is an NP-hard problem and even the theoretically 

easier problem of checking its feasibility is NP-complete (Hartmann and 

Briskorn, 2010).  

 

The RCPSP/max has been mostly studied under the objective of minimising 

the project makespan. Non-regular objectives functions, such as resource 

levelling and net present value problems, are also considered in various 

works (Neumann and Zimmermann 1999, 2000 and Rieck et al., 2012).  For 

an extensive review of project scheduling problems with time windows the 

interested reader is referred to Neumann, Schwindt and Zimmermann (2002, 

2003). 

 

Exact methods  

 

Most exact solution procedures for the RCPSP/max in the literature are 

usually branch-and-bound algorithms.  

 

The early work of Bartusch et al. (1988), mainly aimed at the mathematical 

properties of the problem, but also proposed a B&B procedure that extends 
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the set of precedence relations to eliminate all reduced forbidden sets in an 

initial time-feasible solution. The computational results are limited to a single 

bridge construction project.  

 

Demeulemeester and Herroelen (1997b) extend their DH-procedure to the 

Generalized Resource-Constrained Project Scheduling Problem (GRCPSP), 

which only deals with minimal time lags.  

 

De Reyck and Herroelen (1998) proposed a hybrid depth-first/laser beam 

search B&B algorithm. Schwindt (1998a) delayed activities by adding special 

precedence constraints (i.e., disjunctive precedence constraints) between 

sets of activities, unlike the previous two methods which used activity pairs.  

 

Fest et al. (1998) proposed a similar approach, but instead of introducing 

precedence constraints, the resource conflicts were resolved only locally by a 

dynamic update of job release dates.  

 

Dorndorf et al. (2000) presented a time-oriented B&B algorithm that uses 

constraint-propagation techniques which actively exploit the temporal and 

resource constraints of the problem in order to reduce the search space.  

 

Recently, Bianco and Caramia (2012b) proposed a B&B algorithm that utilises 

a new mathematical formulation. The mathematical uses a discrete-time 

approach with one continuous and two binary variables. Continuous variable 

xit represents the percentage of activity i executed till the end of time period 

t. Binary variables itit fs /  assume value 1 for every t , where τ is the time 

activity i started/finished, and value 0 otherwise. Lower bounds are calculated 

through a Langrangian relaxation of the former model. Their extensive 

computational comparison with known lower bounds and exact methods, 

displays the efficiency of their algorithm in the calculation of bounds and 

solutions.  
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Approximate methods  

 

Some representative approximate approaches are mentioned below. Franck 

and Neumann (1998) proposed a two step method: (a) a sophisticated 

decomposition analysis is performed to identify critical sub-components which 

can be scheduled independently, and (b) the scheduled sub-components 

(partial schedules) are integrated into one using a set of priority rules.  

 

Cesta et al. (2002) presented an algorithm based on a constraint satisfaction 

problem solving search procedure. Cicirello and Smith (2004) described a 

framework for integrating multiple heuristics within a stochastic sampling 

search algorithm, and validated it on the RCPSP/max. Smith (2004) 

developed a non-systematic hybrid that combines squeaky wheel optimisation 

with an effective window-based conflict resolution mechanism.  

 

Finally, Ballestin et al. (2011) proposed an evolutionary algorithm that utilises 

the double justification technique of Valls et al. (2005) to improve solutions 

generated in the evolutionary process.  

 

2.12 Modelling and Optimisation Software 

 

Solving mathematical programming problems without the use of a computer 

is extremely hard even for small cases. Available commercial software and 

hardware have evolved greatly the last few years, reducing running times, 

computational costs and solving larger problems. Examples of commercial 

modelling and optimisation software with common features are GAMS, 

AIMMS, AMPL, Gurobi and ILOG. GAMS is the most commonly used tool in 

the Process Systems Engineering community, with which we attempt to 

exchange methods in this thesis. The rest of this section presents the GAMS 

system and CPLEX solver that were selected to solve the optimisation 

problems developed. 
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2.12.1 General Algebraic Modelling System (GAMS) 

 

The General Algebraic Modelling System (GAMS) is a high-level 

modelling system for mathematical optimisation. It is designed for modelling 

and solving linear, nonlinear, and mixed-integer optimisation problems. GAMS 

was the first algebraic modelling language (AML) and is formally similar to 

commonly used fourth-generation programming languages. It is available for 

use on various computer platforms and the models are portable from one 

platform to another. 

 

GAMS allows the users to implement a sort of hybrid algorithms combining 

different solvers in a seamless way. Models are described in concise algebraic 

statements which are easy to read, both for humans and machines. Although 

initially designed for applications related to economics and management 

science, it has a large community of users from various backgrounds of 

engineering and science. 

 

GAMS contains an integrated development environment (IDE) which is 

connected to a group of third-party optimisation solvers, such as BARON, 

COIN solvers, CONOPT, CPLEX, DICOPT, GUROBI, MOSEK, SNOPT, and 

XPRESS. The GAMS system is tailored for complex, large-scale modelling 

applications and allows the user to build large maintainable models that can 

be adapted to new situations.  

 

According to Rosenthal (2012) and Castillo, Conejo, Pedregal, García, and 

Alguaci (2001), some of the more remarkable features of GAMS algebraic 

modelling language are: 

 The model representation is analogous to the mathematical description 

of the problem. Therefore, learning GAMS programming language is 

almost natural for those working in the optimisation field. Additionally, 

GAMS is formally similar to commonly used programming languages. 
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 Models are described in compact and concise algebraic statements 

which are easy for both humans and machines to read. 

 The modelling task is completely apart from the solving procedure. 

Once the model of the system in question has been built, one can 

choose among the diverse solvers available to optimise the problem. 

 Allows changes to be made in model specifications simply and safely. 

 Allows unambiguous statements of algebraic relationships. 

 Permits model descriptions that are independent of solution 

algorithms. 

 All data transformations are specified concisely and algebraically. This 

means that all data can be entered in their most elemental form and 

that all transformations made in constructing the model and in 

reporting are available for inspection. 

 The ability to model small size problems and afterwards transform 

them into large-scale problems without significantly varying the code. 

 Decomposition algorithms can be programmed in GAMS by using 

specific commands, thus not requiring additional software. 

 GAMS imports/exports data from/to Microsoft EXCEL. Additionally, 

GAMS can be easily linked with MATLAB (The Mathworks, 1998) using 

the matgams library (Ferris, 1999) if some special data manipulation is 

needed. 

 

2.12.2 CPLEX Solver 

 

IBM ILOG CPLEX, which is often informally referred to simply as CPLEX, is an 

optimisation solver package. The CPLEX Optimiser was named after the C 

programming language in which it was implemented and the Simplex 

method. However, today it provides additional methods for mathematical 

programming and offers interfaces other languages such as C++, C#, and 

Java, Python (through the C interface). Additional connectors to Microsoft 

Excel and MATLAB are also provided. The CPLEX Optimiser is accessible 

through independent modelling systems such as AIMMS, AMPL, GAMS, MPL, 
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OpenOpt, OptimJ and TOMLAB. Specifically for GAMS, GAMS/CPLEX is a 

solver that allows users to combine the high level modelling capabilities of 

GAMS with the power of CPLEX optimisers. 

 

The CPLEX Optimiser is designed to solve large, difficult problems quickly and 

with minimal user intervention. Access is provided (subject to proper 

licensing) to solution algorithms for linear, integer, quadratically constrained 

and mixed integer programming problems.  

 

While numerous solving options are available, GAMS/CPLEX automatically 

calculates and sets most options at the best values for specific problems. It is 

worth mentioning that for problems with integer variables CPLEX uses a 

branch-and-cut algorithm which solves a series of LP subproblems. Because a 

single mixed integer problem generates many subproblems, even small MIP 

problems can be very computationally intensive and require significant 

amounts of physical memory. 

 

2.13 Concluding Remarks 

 

In this chapter, various aspects of the RCPSP and its variants have been 

reviewed, along with test instances commonly used by researchers for 

benchmarking. Also, major optimisation techniques and tools used 

throughout this thesis have been presented. The main concepts beneath each 

method have been briefly described in order to provide the reader with a 

general understanding of the theory involved into the solution approaches. 

Finally, exact and approximate solution procedures for the RCPSP, from the 

literature have been thoroughly reviewed. 

 

At this point, it is worth noticing that the process of building a mathematical 

model is often considered to be as important as solving it because this 

process provides insight about how the system works and helps organise 

essential information about it. Models of the real world are not always easy to 
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formulate because of the richness, variety, and ambiguity that exists in the 

real world or because of our ambiguous understanding of it. As a result, 

building up concise, useful and efficient mathematical models/approaches is a 

very difficult and challenging task and this thesis has placed particular 

attention towards this direction. 
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Chapter 3 

RTN-based MILP Formulations for Single- and 

Multi-Mode Resource-Constrained Project 

Scheduling Problems 

 

This chapter presents new mixed-integer linear programming models for the 

deterministic single- and multi-mode resource-constrained project scheduling 

problem with renewable and non-renewable resources. The modelling 

approach relies on the Resource-Task Network (RTN) representation, a 

network representation technique used in process scheduling problems, 

based on continuous time models. First, we propose new RTN-based network 

representation methods, and then we efficiently transform them into 

mathematical formulations including a set of constraints describing 

precedence relations, different types of resources and multiple objectives. 

Finally, the applicability of the proposed formulations is illustrated using 

several example problems under the most commonly addressed objective, the 

makespan minimization. 

 

3.1 Introduction 

 
The main scope of this chapter is to extend and therefore apply modelling 

and network representation techniques used in the process industry to RCPSP 

and MRCPSP problems.  

 

A general project consists of a set of interconnected activities and resources, 

logically linked. These activities usually have to be performed for a successful 

project completion. However, there may exist alternatives for some activities, 

which vary in aspects such as duration, cost and required sets of resources. 

Since resources impose restrictions to project scheduling, they must be 



 
RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs 

76 

included in the general project description. Logical links and precedence 

constraints for activities must also be incorporated. 

 
Traditional networks included only two different types of nodes for the 

description of the logic links and dependencies: activities and decision boxes 

(Eisner 1962, Minieka 1978). For generalised projects, resources should be 

included as an additional element. The overall structural components of a 

general project that must be described before a feasible schedule is 

computed are: 

1. Activity: A project comprises of several activities. Each activity is 

typically described by its duration and a set of resources. These 

resources can be used throughout the entire activity, consumed at the 

beginning of the activity or produced at its end. Each activity is 

considered non-preemptive (once started, it must be performed to 

completion). 

2. Resource: Each resource is defined by its initial amount and its 

maximum availability throughout the entire project. 

3. Decision box: A decision box is characterised by the conditions 

placed on the activities entering it and by the conditions on the 

activities emanating from it. A decision box provides logical links 

between project activities. Assuming inI  to be the number of input 

activities of such a decision box, the following different cases exist: 

 all activities ( inI ) entering the decision box must be performed, 

 exactly x activities entering the decision box must be 

performed, with inIx 1 ,  

 at least x activities entering the decision box must be 

performed, with inIx 1 . 

The first is a special case of the second, since exactly all input 

activities must be performed is the same with exactly inI  activities 
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must be performed. This enables us to group the all input condition 

with the exactly x, by allowing x to take the value inI . 

The input condition must be satisfied for some of the activities 

emanating from the decision box to be performed. A decision box may 

have two different output logics: 

 at least one activity emanating from the decision box can be 

performed, 

 exactly one activity emanating from the decision box can be 

performed. 

4. Project end: The simplest way of describing the project end is as a 

special decision box with one or more activities entering it. 

 

The chapter is organised as follows. In section 3.2, a new network 

representation of project scheduling problems based on the RTN concept is 

presented. In sections 3.3 and 3.4 we propose new MILP formulations for 

RCPSPs and MRCPSPs, including precedence relations, different types of 

resources, time, and other constraints. Afterwards, the applicability of the 

proposed formulations on several project scheduling problems is 

demonstrated in section 3.5. Finally, concluding remarks are drawn in section 

3.6. 

 

3.2 A new network representation for the RCPSP 

 
The RTN process representation although simple, can describe a very wide 

variety of process scheduling problems (Pantelides, 1994). Indeed, it has 

been extensively used in the process scheduling literature (e.g. Castro et al. 

2001, 2004). Its bipartite directed graph for general processes consists of 

resources, represented as circles and tasks/activities, represented as 

rectangles. A task/activity consumes and/or produces a set of resources that 

can be anything from raw materials, intermediate and final products to 

manpower and processing equipment. A new network representation method 
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is proposed, based on the RTN, that can express more complex activity 

precedence relations, than the AoN and AoA representations. 

 

3.2.1 Conversion of General Projects to RTN form 

 
Creating a mathematical formulation based on the RTN, requires the 

definition of a framework that converts the general project characteristics 

aforementioned to their equivalent RTN components. Some conventions are 

easier than others, for example Activities correspond to Tasks and Project 

Resources to RTN Resources. On the other hand, Decision Boxes are more 

complex and they will be modelled as Resources, with specific values on their 

following parameters: 

1. the activity consumption and production coefficients ( ri  and ri ) and 

2. the minimum and maximum excess levels ( min

rR  and max

rR )  

Special consideration will be given to Project End translation. The Project End 

is treated as a special Decision Box, which in turn is converted to an RTN 

Resource. 

 

Precedence Constraints 

 

Projects consist of coordinated and controlled activities with start and finish 

times. To achieve the required execution sequence, precedence constraints 

on each activity are imposed. These constraints will be modelled indirectly, in 

the proposed representation, by adding a new type of resource, called Logical 

and adjusting the quantities consumed and produced by each activity. 

 

So, besides the physical resource requirements, each activity requires one 

unit of the logical resource assigned to it. This unit is produced by the 

activity’s immediate predecessor(s) in equal quantities and is addressed by 

properly adjusting the production coefficients ( ri ) for the preceding activities 
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and the consumption coefficient ( ri ) for the succeeding activity, as shown in 

Figure 3.1. 

 

 

 
Figure 3.1. Example of the use of Logical Resources 

 

General Resource Management 

 

Resource limitations can extend the project execution time, as they often 

restrict parallel execution for activities that require the same resource(s). 

Different activities may require the same resource, so we must define a 

minimum and maximum resource quantity available throughout the duration 

of the project, as well as the initial amount.  

 

Let’s consider the example in Figure 3.2, the number of tasks that can be 

executed simultaneously depends on the number of available Operators. If 

only one operator is available, then: 

1initial

OPR  

0min OPR  

1max OPR  

and only one task can be active at any given time. On the other hand, if two 

operators were present, Cleaning and Settling could have been performed at 

the same time, making the Blender available for use sooner. 
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Figure 3.2. Graphic Representation of a Resource Task Network 

 

Converting Decision Boxes to Resources 

 

A decision box is used to represent complex interactions among activities. For 

example, activities having more than one immediate predecessors or 

alternate activities, that must be modelled properly to create a feasible 

schedule. The RTN formulation equips tasks and resources to model 

processes. Project activities and resources are easily represented as tasks and 

resources, respectively. Decision boxes though, are more complex, as they 

are logical components of a project. 

 

Decision boxes will be represented as a special type of resources, called 

logical resources, with specific modifications to some of their coefficients. 

Before moving on, we must define a number of sets: 

rI  the set of all activities interacting with logical resource r 

in

rI  the set of input activities of logical resource r 

out

rI  the set of output activities of logical resource r 

with in

rI  and out

rI  being disjoint sets, as an activity cannot be both input and 

output to a decision box: 
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Let 
rIN  and rOUT  be the number of input and output activities, respectively, 

to logical resource r. The minimum excess resource min

rR  for logical resources 

is set to zero 0min rR , as they are initially not available in any amount and 

we can assume that they may or may not be produced throughout the 

duration of the project. 

 

On the other hand, the maximum excess resource max

rR  and the activity 

consumption and production coefficients ( ri  and ri ) values, depend on the 

type of decision box they represent.  

Starting from the input conditions, we distinguish two cases: 

 Exactly x inputs. 

We set 1max rR  and in

rri Iix  ,1 . The first constraint, limits 

the excess resource of r to 1.  

The second one, defines that each input activity ( in

rIi ) produces 

exactly x1  quantity of logical resource r, so that when all x 

activities are performed, one unit of r will be produced. 

 At least x inputs. 

We set xINR rr max  and in

rri Iix  ,1 , allowing any number 

of activities to start, but at least x of them must be completed, 

before one unit of logical resource r is produced. 

Consider the example in Figure 3.3, where a decision box/logical resource has 

five activities entering, and exactly 3 of them must be performed. The values 

of the coefficients for resource r would be 1max rR  and in

rri Ii ,31 . So, 

when three activities have completed, the amount of resource r, produced 

would be 1313131  . And due to the restriction 1max rR , no other 

activity would be allowed to execute. 

Similarly, if the condition was at least 3, then 35max rR  and 

in

rri Ii ,31 , then to produce one unit of resource r, at least three 
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activities would have to complete. The maximum quantity 35max rR , would 

be achieved, if all activities were executed. 

 

 

 

Figure 3.3. Production of Logical Resource 

 

As far as the output conditions are concerned, if we allow only one output 

activity of out

rI  to start after reaching the necessary amount max

rR  (case 

exactly 1), we specify the consumption value of the output activities to 

1ri . For the previous example in Figure 3.3, the highest possible value 

for the excess resource r is 35 . We have two possible output activities, 6 and 

7, but only one of them is allowed to start. The start limit is 1, but as soon as 

6 or 7 start, it is reduced by 1 and no second start is possible.  

For a possible start of several output tasks, we have to define one logical 

resource for each output task, as in Figure 3.4. The production of each of 

these resources is similar to what was described previously. 

 

 

 

Figure 3.4. Production of Logical Resources for several output activities 
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After the input conditions are satisfied, resources r1 and r2 are available in 

their necessary amounts and the output tasks can be performed. 

The possible combinations for input and output conditions are: 

 Exactly x – exactly one 

 At least x – exactly one 

 Exactly one – at least one 

 Exactly x – at least one 

 At least x – at least one 

These possible combinations can be described by the two networks of Figures 

3.5 and 3.6. 

 

 
 

Figure 3.5. Conditions Exactly x/At least x - Exactly one and Exactly one - At least 

one 

 

A decision box with output condition Exactly 1, is represented using one only 

one new logical resource. This case corresponds to Figure 3.5. A decision box 

with input condition Exactly 1, can also be represented as depicted in Figure 

3.5, but we have to distinguish among different output conditions. If the 

output condition is also Exactly 1, we set the consumption value to 1ri , 

to allow only one output activity to start. If the output condition is At least 1, 

we set the consumption value to rri OUT1  so that every output activity 

receives part of the available amount 1. 
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Figure 3.6. Conditions Exactly x/At least x - At least one 

 

For the other cases we define OUTr logical resources, as in Figure 3.6. Each 

input activity contributes equally to the production of every logical resource. 

Since the output condition is at least 1, we have to allow the start of every 

output activity after the satisfaction of the input condition. To model this, 

each output activity has its own logical input resource, which it can consume 

entirely. So, we set the consumption value of all output activities to 1ri . 

 

Another case is to allow some activities to start immediately after their 

predecessors without any delay. This is possible only between tasks whose 

interaction is known in advance (case All/Exactly 1). It can be achieved by 

not allowing the excess resource of r to reach values greater or equal to 1 

  
rr

INR 11max  . This forces the consumption of the logical resource to take 

place at the same time as the production of the last amount rIN1 . 

A summary of the parameter values for the various conditions of decision 

boxes is given in Table 3.1. 

 

Table 3.1 Parameter values for decision boxes 

Input Condition 
Output 

Condition 
in

rri Ii  
out

rri Ii  
max

rR  Representation 

Exactly x, rINx 1  Exactly 1 x1  -1 1 Figure 3.5 

At least x, rINx 1  Exactly 1 x1  -1 xIN r  Figure 3.5 

Exactly 1 At least 1 1 rOUT1  1 Figure 3.5 

All 1 Immediate rIN1  -1  
r

IN11  Figure 3.5 

Exactly x, rINx 1  At least 1 x1  -1 1 Figure 3.6 

At least x, rINx 1  At least 1 x1  -1 xIN r  Figure 3.6 
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There are two special subcases that require additional mechanisms to enforce 

the required logical dependencies. The first such case occurs when rINx  . 

The value 1max rR  is used to ensure that no more than x input activities are 

performed. And it does so until an output activity consumes a certain quantity 

of r and the excess resource becomes less than 1. This will allow another 

input activity to execute, violating the Exactly x, condition. 

To resolve this problem, a new resource r΄ is introduced as input to each 

input activity in

rIi  with  

1ir  

Hence, in order for one of the input tasks to execute, a unit amount of 

resource r΄ is required. If the available quantity of this resource is limited to 

x, no more than x activities are allowed to start. This can be done by setting: 

xR initial

r   

 

 

Figure 3.7. Special case 1 example Exactly x with rINx   

 

An example of this case for 3 activities entering a decision box with an 

Exactly 2 – Exactly 1 condition is depicted in Figure 3.7. 

The second special condition occurs for decision boxes with input logic At 

least x and output logic Exactly one. An example for this case is given in 

Figure 3.8, with logic At least 2 – Exactly 1. 
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Figure 3.8. Special case 2 example At least x-Exactly 1 with xINr 2  

 

The problem arises when xIN r 2 . If more than 2x input activities do take 

place, then they will produce 2 or more units of excess resource. This, in 

turn, will allow more than one output activity to be executed, which is 

contrary to the intention of the decision box. This problem can easily be 

overcome by making each output activity out

rIi  produce a unit amount of a 

new resource r΄ (i.e. out

rir Ii ,1 ) and setting:  

1max

,  FinalrR  

Since the new resource r΄ is not consumed by any activity in the project RTN, 

this immediately implies that no more than one activity out

rIi  may be 

executed. 

 

3.2.2 Project End Formulation 

 
Projects are completed successfully, after all required activities have been 

performed and all constraints satisfied. A project may end in several ways: 

 One activity must be performed. 

 More than one activities must be performed. 

 Alternative final activities exist. 

 More complex logical conditions. 
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The project end is modelled as a decision box/logical resource with no output 

activities. This resource can only be produced and not consumed. Completion 

of the project, calls for the production of this logical resource in the required 

quantities. 

 

To make sure that the project end resource is produced, lower and upper 

bounds are imposed on its initial, overall and final excess quantities initial

rR , 

min

rR , max

rR , min

,FinalrR  and max

,FinalrR . For intermediate resources, the overall and final 

values are identical. Figure 3.9 depicts an example of the simple case where 

the project end requires the execution of a single final activity. 

 

 

Figure 3.9. An example of an RTN representation of a project 

 

The successful completion of the project in the example requires the 

execution of activity D. It can be modelled by setting a lower bound of 1 on 

the final excess quantity of PE. The complete set of data values is: 

0initial

PER  

1,0 maxmin  PEPE RR  

1max

,

min

,  FinalPEFinalPE RR  

1, DPE  

 

Project End with more than one final activity 

 

Usually, projects require the completion of more than one activity. In such 

cases, we consider the Project End (PE) resource to be a decision box with 

input logic All. Suppose the set of activities to be performed is F and it 

contains NF activities.  
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Each activity contributes an amount of NF1  of PE: 

FiNFiPE  ,1,  

By demanding the minimum and maximum final excess resources of PE to be 

1, all input activities are enforced to be executed. The rest of data values are 

the same as the case with one activity: 

0initial

PER  

0min PER  

1max PER  

1min

, FinalPER  

1max

, FinalPER  

FiNFiPE  ,1,  

An example of modelling the project end in a project with 4 final activities is 

illustrated in Fig. 3.10. 

 

 

Figure 3.10. Project End with 4 activities 

 

Project End with alternative final activities 

 

Having examined the case of multiple required final activities, we move on to 

another one. It is possible to have alternatives among final activities, 

meaning that project completion can be achieved by performing only one of 

them. This is equivalent to the input condition Exactly 1 in a decision box.  
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Therefore, a logical final resource PE, with no output conditions is introduced. 

Each alternate input activity i is set to produce 1, iPE  quantity of PE, and 

the maximum final excess resource is set to 1, 1max

, FinalPER . This allows only one 

activity to produce this resource, but by itself is not enough. To ensure that 

Exactly 1 of PE, and no less, is produced, we also require that 1min

, FinalPER . For 

an illustrative example see Figure 3.11. 

 

 

 

Figure 3.11. Example of Project End with 4 alternate activities 

 

Project End with general conditions 

 

To provide a complete formulation of projects using the RTN, more complex 

conditions that identify project completion must be considered. These could 

involve a combination of disjunctions (logic exclusive OR - XOR) and/or 

conjunctions (logic AND). 

 

We can initially try to represent such formulations as a logical tree with circles 

corresponding to operators and rectangles to activities. The root node, which 

is also modelled as a circle, is the condition for project completion. An 

example of such a tree is shown in Figure 3.12.  
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Figure 3.12. Example of logical tree 

 

The example corresponds to the condition, that the project will be completed 

when all of the following are satisfied: 

 complete either A and B, and 

 complete C, and 

 complete either D or E, and 

 complete either F and G, or H 

We can write this succinctly as:  

( A XOR B ) AND C AND ( D XOR E ) AND ( ( F AND G ) XOR H ) 

It is relatively easy to transform the logical tree into an RTN. Conjunctions of 

activities can be translated by creating a new output logical resource for each 

activity with an Exactly 1 – Exactly 1 logic. These resources are required by a 

conjunction activity in equal unit amounts, to produce the final logical 

resource. The translation process for the F AND G conjunction of Figure 3.12 

is depicted in Figure 3.13. 
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Figure 3.13. Transformation of conjunctions to RTN 

 

Let’s examine the complete data set per activity, for the previous example: 

 For activity F: 

1, FRF  

0initial

RFR  

0min RFR  

1max RFR  

 For activity G: 

1, GRG  

0initial

RGR  

0min RGR  

1max RGR  

 For activity FandG: 

1, FandGRF  

1, FandGRG  

1, FandGR  

0initial

RR  

1min

, FinalRR  

1max

, FinalRR  

F 
 

G 
 

AND 

FandG 
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RF RG 
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1 1 

1 1 
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Disjunctions are much easier to represent, as they are, essentially, a decision 

box with an Exactly 1 input logic. Figure 3.14, illustrates an example of such 

a disjunction of two activities. 

 

 

 

Figure 3.14. Transformation of disjunctions to RTN 

 

The data set for this transformation is: 

1, RA  

1, RB  

0initial

RR  

0min RR  

1max RR  

1min

, FinalRR  

1max

, FinalRR  

Using these transformations we can convert the logical tree of Figure 3.12, to 

its equivalent RTN of Figure 3.15, with all arrows corresponding to unit 

consumption/production of resource. 
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B 
 

XOR R 

B 
 

A 
 

1 1 
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Figure 3.15. Equivalent RTN for logical tree in Figure 3.12 

 

3.3 MILP Formulation for the Single-Mode RCPSP 

 
The Single-mode RCPSP consists of scheduling the project activities under 

specific precedence and resource constraints, while minimizing the project 

makespan. The mathematical model, proposed in this section, is based on the 

time-slot synchronised formulation introduced by Schilling and Pantelides 

(1996), where the variable time horizon H, is divided into T slots with variable 

time duration. Although, the RTN representation is simple and elegant for 

process scheduling, it can become even more simplified when employed for 

project scheduling. 

 

It should be emphasised, that the underlying formulation of Schilling and 

Pantelidis (1996) is not the best performing RTN-based formulation in the 

literature, but it has been merely chosen to illustrate the applicability and 

potential of the proposed RCPSPs representation. More efficient formulations 

include the improved continuous-time RTN formulation of Castro et al. 

(2001), that relaxes the non-linear timing constraint producing an easier to 
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solve, pure MILP problem and also the work of Castro et al. (2004), where a 

new set of timing constraints further reduces the computational cost. The 

main objective of this section is to establish a new modelling framework for 

RCPSPs utilising techniques from the process scheduling area. The 

representation of RCPSPs could provide the basis for translations into more 

efficient RTN formulations than the original work of Schilling and Pantelidis 

(1996). 

 
The complete list of the notation used throughout this chapter is given in 

Section 3.7. We set the number of time slots T equal to the number of 

activities, in case the worst scenario is realised, with only one activity 

executed at each slot. We assume that no more than one instance of an 

activity can be executed at any time point. This assumption converts the 

original RTN variable Nit, representing the number of activity instances 

starting at time t, from integer to binary, since the only possible values are 0 

and 1, depending on whether none or one instance of the activity is being 

executed. 

 
Additionally, resource consumption and production does not depend on the 

size of the activity, so the corresponding size-dependent coefficients’ values 

are 0, 0 riri vv . 

 
Activities can be executed only once over the duration of the project. If an 

activity is to be executed again, we represent it as a new one. This is because 

it is bound to have different constraints, or else it would be included in the 

first one, requiring double input and producing double output resources. 

 

3.3.1 Constraints 

 
Schilling and Pantelides (1996) distinguish four types of constraints: timing, 

slot, excess resource balances and excess resource capacity constraints. We 

will adapt these constraints to project scheduling problems.  
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Two binary variables ity  and 
ity  are defined to express starting time and 

spanning over consecutive time slots. The first set of binary variables ity , 

replace the RTN variable Nit and take a value of 1 if activity i starts at t or 0 

otherwise. The second new variable 
ity , takes a value of 1 if activity i is 

active over both t and t-1 or 0 otherwise. The model can be simplified by 

setting 0
1,


i
y , since no task can be active over t = 0, as it is out of the 

scheduling horizon. Using the 
ity  variable (activity spanning over two 

adjacent slots), instead of tity   (activity spanning over multiple slots) used in 

the original RTN, results in a simpler mathematical model with far fewer 

binary variables than the original one. 

 

Timing Constraints 

 

The total duration of all time slots t  must be equal to the time horizon H: 

 



T

t

t H
1

  (1) 

A project activity i may extend over one or more consecutive time slots and 

the sum of the durations of these slots must be equal to the duration θi of the 

activity. Using the new variables ity  and 
ity , instead of itN  and tity   the 

timing constraints of the general RTN formulation (Schilling and Pantelides, 

1996) are transformed to: 

   iyyy
T

t

it

T

t

ititit  


,
11

  (2) 

We note that constraint (2) involves nonlinearities since both the binary 

variables ity  and 
ity  and the slot durations t  are variables. These 

nonlinearities can be removed using standard techniques (Glover, 1975). 

Considering that at most one instance of task i  can be active at any time, we 
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define the new variables   tititit yylin   . This definition can be effected 

using the following linear constraints: 

      tiyylinyy
ititiititit ,,,min maxmin    (3) 

   tilinyy titititt ,,1max    (4) 

where min  and max  are the minimum and maximum slot durations, 

respectively. We can set the maximum slot duration to be equal to the value 

of the greatest activity duration max

i  and the minimum duration equal to 1. 

After applying this linearization technique, constraint (2) becomes linear: 

 iylin
T

t

it

T

t

iit  


,
11

  (5) 

 

Slot Constraints 

 

Variable 1, tiy  can take a value of 1 only if activity i started at an earlier time 

slot ( 1 t ) and is still active over 1t . For an activity to start at an earlier 

time one of the variables ity  or 
ity  must take a value of 1. To ensure proper 

activity execution over multiple time slots we now need both new variables 

ity  and 
ity , instead of tity   and this is expressed as: 

  1,1,,
1,




Ttiyyy
tiitit  (6) 

If activity i has not been active over slot t, the value of all three variables 

must be 0. The inequality is necessary for the case that activity i is actually 

completed at the end of slot t. The possible combinations for the values of 

the previous variables are shown on Table 3.2.  
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Table 3.2. Combination of values for ittiti
yyy   1,1,  

1, ti
y  1, tiy  

ity  ittiti yyy   1,1,  Production 

0 0 0 0 
No amount of r is produced, since activity i 

is not executed 

0 1 0 1 
An amount of r is produced, since activity i 

started and completed execution over t-1 

0 1 1 0 
No amount of r is produced, since activity i 

started at t-1, but is still active. 

1 0 0 1 
An amount of r is produced, since activity i 

finished at t-1 

1 0 1 0 
No amount of r is produced, since activity i 

is active from at least t-2 and is still active 

 

Another important constraint expresses that an activity can be executed at 

most once over the time horizon H: 

 iy
T

t

it 


,1
1

 (7) 

 

Excess Resource Balances 

 
The balance for every resource r at slot boundary t considers all starting and 

ending tasks rI  interacting with the resource r. It adds the changes at time 

point t to the excess amount 1, trR  over the previous slot 1t  in order to 

obtain the amount of excess resource over the new slot t:  

     1,1,,1,1,1,,  


 TtryyyyRR
rIi

ittitiriitritrtr   (8) 

The first term itri y  in the summation represents the amount of resource r 

consumed by starting activities, while the second one corresponds to the 

amount produced. For 0t , 0,rR  is the quantity of resource r initially 

available initial

rR . To deal with renewable resources, we set the production 

coefficient of all activities requiring it, equal to the consumption coefficient. 

Thus we express that the amount of renewable resources consumed (used) 

by an activity, is released upon its completion. 
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Excess Resource Capacity Constraints 

 

Since resources are limited in their availability, we have to introduce an upper 

and lower bound on their capacity. During the whole time horizon H, the 

actual excess amount of any resource r has to lie between these boundaries: 

 trRRR rrtr ,,maxmin    (9) 

Additionally, we introduce similar boundaries for the excess amount of each 

resource r at the end of the project: 

 rRRR FinalrTrFinalr   ,max

,1,

min

,  (10) 

 

Objective Function 

 
The objective function for the proposed formulation aims at minimizing the 

project duration and is expressed as: 

 HMinimize  

 

3.3.2 Improvement to the formulation 

 
The proposed mathematical model although it is simple and compact, can be 

improved to achieve better computational performance. Considering the 

various aspects of project scheduling, we can set tighter bounds to variables 

and reduce the number of elements for sets that participate in constraints. 

 

Slot bounds for activities 

 
The initial model, assumes that all activities can be executed over any time 

slot. Given the existence of precedence constraints, this is not a realistic 

approach. Consider the example displayed in Figure 3.16. Activity C is 
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preceded by A and cannot be executed before A finishes. This sets a lower 

slot bound to C’s starting time slot to 2.  

 

 

 

Figure 3.16. Slot boundaries example 

 

We can set proper lower and upper bounds for the starting time slots of 

activities that allow successful project completion and at the same time 

improve the computational performance of our model. These bounds for an 

activity i, can be calculated using the number of maximum preceding iPA  

and succeeding iSA  decision boxes: 

 iPAtl ii  ,1  

 iSATtu ii  ,  

We always consider the worst case for these bounds, to avoid eliminating a 

feasible solution. This means that in our example 4Ftl  and not 3, since the 

worst case requires that activities A, C and D are performed and not A, B 

(activity E can be executed in parallel with D, so it does not count).  

 

Let assume that the number of time slots, for the example in Figure 3.16 is 

T=5. Table 3.3 contains the appropriate lower and upper bounds for this 

case. 

 

This improvement reduces the number of ity , 
ity  and it  variables, as well as 

the related constraints. Without slot bounds one would have to define a 

number of ity  and it  variables equal to Number of Activities x T. This number 
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of variables (6x5 = 30 for this example) could be reduced to 14, as given in 

Table 3.3, which is 46,66% of the original figure. Similarly for the binary 

variable 
ity , the initial number of variables is equal to Number of Activities x (T-

1) = 6x4 =24, as it is defined per pair of time slots (t and t-1) for each activity. 

Therefore, the total number of 
ity  variables after applying the improvement 

is   
i

ii tltu 8 . 

Table 3.3. Improved time slot bounds 

Activity i  A B C D E F 

iPA  0 1 1 2 2 3 

iSA  3 1 2 1 0 0 

itl  1 2 2 3 3 4 

itu  2 4 3 4 5 5 

1 ii tltu  2 3 2 2 3 2 

  
i

ii tltu 1  14 

 

 
In the case of alternative preceding activities or complex project completion 

conditions, this procedure becomes more complicated. 

 

Mandatory Activities 

 

Projects contain various activities that may or may not be performed. For 

mandatory activities sureI , such as end-activities, we can further tighten the 

formulation, by replacing constraint (7) by: 

 sure

T

t

it Iiy 


,1
1

 (11) 

Exploiting, constraint (11), we can also transform (2) to: 

   sure

T

t

ititit Iiyy 


,
1

  (12) 
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Alternative Activities 

 

Further improvements can be achieved in case alternative activities exist. 

Assume a set 
XALTI  with only one of its alternatives being performed through 

the entire project. For these activities, the slot constraint (7) can be 

transformed to: 

 xy

xALTI t

it  ,1  (13) 

This results in a reduction of   TN
xALT 1  for the constraint, with 

xALTN  

denoting the number of activities in set xALT . In the given example, this is a 

reduction of     55121  TN
xALT

 with only one alternative and its two 

members D, E. 

 

The proposed model for RCPSPs, which is named SMRTN, consists of 

constraints (1), (3) – (13) and the objective function represents the total 

project duration. 

 

3.3.3 Using the RCPSP formulation in MRCPSPs 

 
The formulation for RCPSPs (SMRTN model) introduced in this section can 

also be used for MRCPSPs by disaggregating the multi-mode activities into 

different activities. The activity modes are modelled using decision boxes with 

multiple inputs, exactly one of which is to be executed. An example of how 

activities with multiple modes are modelled is shown in Figure 3.17. 

 

Activity A can be performed in 3 modes which we represent as different 

activities called A1, A2 and A3. Aside from physical resources, the activity 

requires 1 unit of logical resource LRA ( 13,2,1,  ALRAALRAALRA  ). To 

ensure that only 1 mode is executed, the initial quantity of LRA is limited to 1 

( 1initial

LRAR ).  
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Figure 3.17. Modelling activities with multiple modes 

 

Upon completion, activity A produces 1 unit of LRB 

( 13,2,1,  ALRBALRBALRB  ). Similarly, by properly adjusting the 

consumption coefficients of activity B, to 12,1,  BLRBBLRB   we allow only 

one of its modes to perform. 

 
This extension for MRCPSPs, which is named MMRTN1, consists of 

constraints (1), (3) – (13) and the objective function represents the total 

project duration. 

 

3.4 MILP Formulation for the MRCPSP 

 
The standard Multi-Mode RCPSP requires sequencing the project activities, so 

that the precedence constraints are met, determining the execution mode for 

each activity, meeting the resource constraints and minimizing the project 

duration. 

 
In this section we propose a MILP formulation for the MRCPSP. The 

formulation is an extension of the RCPSP introduced in the previous section 

and is also based on the RTN.  

 

3.4.1 Constraints 

 
The formulation consists of five types of constraints, Timing, Slot, Excess 

Resource Balances, Excess Resource Capacity and Task Operation 
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constraints. As in the RCPSP formulation, we can simplify the model, by 

setting 0
1,


i
y , since no task can be active over 0t .  

 

Timing Constraints 

 

The total duration of all time slots must be equal to the time horizon: 

 



T

t

t H
1

  (14) 

A project activity i may extend over one or more consecutive time slots and 

the sum of the durations of these slots must be equal to the duration mi  of 

activity i in mode m: 

   izyy
m

mimi

T

t

titit  


,
1

  (15) 

Where miz  is a binary variable that expresses whether alternate mode m of 

activity i is chosen (1) or not (0). 

 

The linearization of the left of constraint (15) can be performed as described 

in Section 3.3.1 We define new variables   tititit yylin   , through the 

linear constraints: 

      tiyylinyy
ititmiititit ,,)max(,min maxmin    (16) 

   tilinyy titititt ,,1max    (17) 

where τ
min and τ

max are the minimum and maximum slot durations, 

respectively. We can set the maximum slot duration to be equal to the value 

of the greatest activity duration max

mi . After applying this linearization 

technique, constraint (15) becomes linear: 



 
RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs 

104 

 izlin
T

t m

mimiit  


,
1

  (18) 

 

Slot Constraints 

 

As in the RCPSP formulation, variable 1, ti
y  can take a value of 1 only if 

activity i started at an earlier time slot ( 1 t ) and is still active over 1t . 

For an activity to start at an earlier time one of the variables ity  or 
it
y  must 

take a value of 1. These constraints can be combined to the following 

inequality: 

  1,1,,
1,




Ttiyyy
tiitit  (19) 

If activity i has not been active over slot t, the value of all three variables 

must be 0. The inequality is necessary for the case that activity i is actually 

completed at the end of slot t.  

 

An activity can be executed at most once over the time horizon H: 

 iy
T

t

it 


,1
1

 (20) 

and if so, only one activity mode is performed: 

 iyz
T

t

it

m

mi 


,
1

 (21) 

 

Excess Resource Balances 

 
The balance of a resource r at slot boundary t is given by: 

       tryyySSySSRR
rIi

ittitiri

L

riitri

L

ritrtr ,,1,1,1,,  


  (22) 
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The ri  and ri  coefficients of the RCPSP formulation, are now replaced by 

the minimum resource consumption and production values L

riS  and 
L

riS  plus 

their surplus variables riS  and riS  respectively.  

 

The values of U

ri

L

ri SS  coefficients representing the minimum/maximum 

quantities of resource r required by the various modes m at the beginning of 

activity i, are given by: 

  imr

L

ri aS min  and  imr

U

ri aS max  

Similarly, the values of the minimum/maximum quantities of resource r 

produced by the various modes m at the end of activity i, 
U

ri

L

ri SS  are given 

by: 

  imr

L

ri aS min  and  imr

U

ri aS max  

Surplus variables riS  and riS  depend on the selected mode m, are bounded 

by constraints (30) and (31) and calculated through (32) and (33), as 

presented in the Task Operation Constraints section below. 

 

The excess resource balance contains a type of nonlinearities similar to 

constraint (15), which can be removed by introducing two new variables: 

riitrit SyS   and   riittitirit SyyyS   1,1,  

 

The first variable ritS  is defined: 

   )(,,0 ritySSS it

L

ri

U

ririt   (23) 

 )(, riSS ri

t

rit   (24) 

Similarly for the second variable ritS : 
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    )(,,0 1,1,
rityyySSS

ittiti

L

ri

U

ririt  
 (25) 

 )(, riSS ri

t

rit   (26) 

Now we can replace (22) with: 

    trSyyySSySRR
rIi

ritittiti

L

riritit

L

ritrtr ,,1,1,1,,  


  (27) 

 

Excess Resource Capacity Constraints 

 
Since resources are limited in their availability, we have to introduce an upper 

and lower bound on their capacity. During the whole time horizon H, the 

actual excess amount of any resource r has to lie between these boundaries: 

 trRRR rrtr ,,maxmin   (28) 

Additionally, we introduce similar boundaries for the excess amount of each 

resource r at the end of the project: 

 rRRR FinalrTrFinalr   ,max

,1,

min

,  (29) 

 

Task Operation Constraints 

 
The surpluses of resource r consumed and produced by activity i are bound 

to: 

 ),(,0 irSSS L

ri

U

riri   (30) 

 ),(,0 irSSS
L

ri

U

riri   (31) 

For logical resources L

riS  and 
L

riS  are equal to 0. 
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The surpluses riS  and riS  consumed and produced, depending on the 

selected mode, are calculated by: 

   irSzSa rimi

m

L

riimr ,,  (32) 

   irSzSa rimi

m

L

riimr ,,  (33) 

Due to constraints (32) and (33), variables miz  are not required in the Excess 

Resource Balances constraint (22), thus reducing the number of binary 

variables involved. 

 

Objective Function 

 
The minimization of the project duration is the optimisation goal similar to the 

previous model. 

 

3.4.2 Improvement to the formulation 

 
The extended formulation proposed in this section can achieve better 

computational performance, using the improvement techniques in Section 

3.3.2. To account for the new variables introduced, we need to clarify a few 

points, regarding each constraint. 

 

Slot bounds for activities 

 

Multi-mode problems include activities that can be executed in various 

modes, possibly with different durations. The slot bounds improvement is 

used to define lower and upper slot bounds on activity starting and finishing 

time slots, respectively. These bounds are calculated using precedence 

relations between activities and not their durations. Therefore, the 

improvement can also be applied to the multi-mode case, as it is not affected 
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by the varying activity duration caused by the multiple modes. As a result, we 

achieve a reduction in the number of ity , 
ity , it , ritS , ritS  variables and 

related constraints. 

 

Mandatory Activities 

 

This improvement is used for project activities that must be performed. For 

such activities, in the multi-mode case, we can replace constraint (20) with 

constraint (11), as in the single-mode case: 

 sure

T

t

it Iiy 


,1
1

 (11) 

However, in contrast to the single-mode case, we can not exploit constraint 

(11) to transform timing constraint (19), due to the introduction of variable 

miz . Instead, we can use it to replace constraint (21) for mandatory activities, 

with: 

 sure

m

mi
Iiz  ,1  (34) 

 

Alternative Activities 

 

An MRCPSP can contain sets ALTxI  of activities with only one of their 

alternatives being executed. For these activities, we can transform slot 

constraint (20) to constraint (13), similarly to the single-mode case: 

 iy

XALT t

it  ,1
I

 (13) 

This model for MRCPSPs, which is named MMRTN2, consists of constraints 

(11), (13), (14), (16) – (21), (23) – (34), and the objective function 

represents the total project duration. 
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3.5 Computational Results 

 
In this section, we consider a typical MRCPSP with all typical modelling 

aspects and then solve a number of RCPSP and MRCPSP problems using the 

proposed formulations to illustrate their applicability. The following notation is 

used for a consistent reference to the proposed formulations:   

 SMRTN – the formulation used for RCPSPs, presented in Section 3.3 

 MMRTN1 – the RCPSP formulation with the modifications in 

Subsection 3.3.3 used for MRCPSPs, and 

 MMRTN2 – the formulation used for MRCPSPs, presented in Section 

3.4. 

All formulations were solved on an Intel Core 2 Quad Q8300 @ 2.5GHz and 

4GB RAM using CPLEX 11.1.1 (GAMS Development Corporation, 2007) via a 

GAMS 22.8.1 (Rosenthal, 2012) WIN 6007.6015 VIS interface. 

 

3.5.1 Example problem 

 
In this section, we consider a typical MRCPSP from PSPLIB (Kolisch et al., 

1996). The test instance used is j10 2_2 with 10 activities, each having 3 

possible execution modes. Table 3.4 displays the number of modes, the 

number of successors and precedence relations between activities. Activities 

1 and 12 are dummy activities representing the start and end of the project. 

 
Table 3.4. Precedence Relations for test instance j10 2_2 

Activity 
Number 

Nr. of 
modes 

Nr. of 
successors 

Successors 

1 1 3 2   3    4 

2 3 2 5    6 

3 3 2 10  11 

4 3 1 9 

5 3 2 7    8 

6 3 2 10  11 

7 3 2 9  10 

8 3 1 9 

9 3 1 12 

10 3 1 12 

11 3 1 12 

12 1 0 - 
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Activity durations and resource requests for each mode are provided in Table 

3.5. The maximum project duration is 86, and we calculate it by summing the 

maximum mode duration per activity. 

 
Table 3.5. Project Mode Requests/Durations 

Activity Mode Duration 
Resource 

R1 R2 N1 N2 

1 1 0 0 0 0 0 

2 

1 3 6 0 9 0 

2 9 5 0 0 8 

3 10 0 6 0 6 

3 

1 1 0 4 0 8 

2 1 7 0 0 8 

3 5 0 4 0 5 

4 

1 3 10 0 0 7 

2 5 7 0 2 0 

3 8 6 0 0 7 

5 

1 4 0 9 8 0 

2 6 2 0 0 7 

3 10 0 5 0 5 

6 

1 2 2 0 8 0 

2 4 0 8 5 0 

3 6 2 0 0 1 

7 

1 3 5 0 10 0 

2 6 0 7 10 0 

3 8 5 0 0 10 

8 

1 4 6 0 0 1 

2 10 3 0 10 0 

3 10 4 0 0 1 

9 

1 2 2 0 6 0 

2 7 1 0 0 8 

3 10 1 0 0 7 

10 

1 1 4 0 4 0 

2 1 0 2 0 8 

3 9 4 0 0 5 

11 

1 6 0 2 0 10 

2 9 0 1 0 9 

3 10 0 1 0 7 

12 1 0 0 0 0 0 

 

This project uses 2 renewable (R1, R2) and 2 non-renewable resources (N1, 

N2) and their availabilities are displayed on Table 3.6. For the renewable 

resources, the availabilities are per period. 
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Table 3.6. Resource Availabilities 

R1 R2 N1 N2 

9 4 29 40 

 

The activities network and coefficients using our representation is shown in 

Figure 3.18. The resources L2-L12 are logical resources. 

 

 

 
Figure 3.18. Activity network for example problem 

 

Each activity is performed in one out of three modes. When using the 

MMRTN1 formulation for the MRCPSP case, we use activity alternatives to 

represent modes. The activity modes are modelled using decision boxes with 

multiple inputs, exactly one of which is to be executed, as in Figure 3.19: 

 

 

Figure 3.19. Modelling activities with multiple modes 

 

Activity A can be performed in 3 modes which are represented as different 

activities called A1, A2 and A3. Aside from physical resources, the activity 

requires 1 unit of logical resource L1 ( 13,12,11,1  ALALAL  ). To ensure 
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that only 1 mode is executed, the initial quantity of L1 is limited to 1 

( 11 initial

LR ). Upon completion, activity A produces 1 unit of L2 

( 13,22,21,2  ALALAL  ).  

 

The L

riS , 
L

riS , U

riS  and 
U

riS  parameter values when using the MMRTN2 

formulation, are shown on Table 3.7. 

 

Table 3.7. 
L

riS , 
L

riS , U

riS  and 
U

riS  parameter values 

L

riS  
U

riS  

Resource 
Activity 

R1 R2 N1 N2 
Resource 

Activity 
R1 R2 N1 N2 

1 - - - - 1 - - - - 

2 - - - - 2 6 6 9 8 

3 - - - 5 3 7 4 - 8 

4 6 - - - 4 10 - 2 7 

5 - - - - 5 2 9 8 7 

6 - - - - 6 2 8 8 1 

7 - - - - 7 5 7 10 10 

8 3 - - - 8 6 - 10 1 

9 1 - - - 9 2 - 6 8 

10 - - - - 10 4 2 4 8 

11 - 1 - 7 11 - 2 - 10 

12 - - - - 12 - - - - 

 

L

riS  
U

riS  

Resource 
Activity 

R1 R2 
Resource 

Activity 
R1 R2 

1 - -  - - 

2 - -  6 6 

3 - -  7 4 

4 6 -  10 - 

5 - -  2 9 

6 - -  2 8 

7 - -  5 7 

8 3 -  6 - 

9 1 -  2 - 

10 - -  4 2 

11 - 1  - 2 

12 - -  - - 
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The MMRTN1 formulation obtained the optimal makespan (20 time units) in 

239.12 CPU s (see Table 3.9) and the optimal project schedule is shown in 

Figure 3.20. Activities 1 and 12 are not included in the GANTT chart since 

they are dummy and have zero duration. 

 

Activity 1 2 3 4 5 6 7 8

2 m1

3 m3

4 m2

5

6

7 m1

8 m1

9 m1

10 m2

11

Time (h) 3 8 9 13 14 17 19 20

Slot 

duration
3 5 1 4 1 3 2 1

m2

m3

m1

 

 
Figure 3.20. GANTT Chart of optimal solution for the example problem 

 

3.5.2 Results for various problem instances 

 
The SMRTN formulation was used to solve a number of single-mode RCPSPs, 

with 12, 16 and 20 activities, utilizing up to 4 renewable resources. The 

computational results are presented in Table 3.8. 

 

The formulation managed to find the optimal solution for each instance, and 

as expected the CPU time required increases with the number of activities.  
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Table 3.8. Computational Results for various Single-mode RCPSP test instances 

Activities 
Renewable 
Resources 

Resource 
Complexity 

CPU 
Time 

Number of 
Equations 

Binary 
Variables 

Cont. 
Variables 

Nr. of 
Nodes 

Time 
Horizon 

12 

0 - 0.36 761 287 350 257 44 

1 
Required by 
all activities 

0.50 774 288 363 157 47 

2 
Required by 
all activities 

0.50 787 287 376 141 54 

4 
1 Resource 

by each 
activity 

0.57 813 287 402 183 45 

4 
Required by 
all activities 

0.36 813 287 402 162 51 

16 

0 - 6.60 1286 511 577 2816 73 

3 
1 Resource 

by each 
activity 

9.57 1337 512 628 2509 73 

4 
1 Resource 

by each 
activity 

8.10 1354 512 645 1949 73 

4 
Required by 
all activities 

2.71 1354 512 645 852 97 

20 

0 - 9.12 1926 799 881 2840 92 

1 
Required by 
all activities 

17.40 1947 800 902 6142 93 

4 
1 Resource 

by each 
activity 

11.07 2010 800 965 2488 92 

4 
Required by 
all activities 

4.46 2010 800 965 1362 116 

 

For the MRCPSP case a set of multi-mode test instances from PSPLIB was 

used. The multi-mode problem sets were selected from instances j10, j12, 

j14, c15, c21. For problem sets j and c each activity may be performed in 1 

out of 3 modes and requires 2 renewable and 2 non-renewable resources. 

The duration of a mode varies between 1 and 10 periods. The problems from 

sets j10, j12 and j14 include 10, 12 and 14 activities respectively, while the 

problems from c15 and c21 have 16 activities.  

 

The sets were solved using both the MMRTN1 and MMRTN2 formulations with 

the improvements and the computational results are displayed in Table 3.9. 

The optimal solutions reported in Table 3.9, are taken from the website of 

PSPLIB (http://129.187.106.231/psplib/). 

http://129.187.106.231/psplib/


 
Chapter 3 

115 

Notice that the MMRTN1 formulation performs better on smaller problem 

instances with 10 and 12 activities. As the number increases, the MMRTN2 

model provides better results, due to the smaller number of binary variables. 

 

Table 3.9. Computational Results for Multi-mode RCPSP test instances from 

PSPLIB  

Instance Model 
CPU 
Time 

Equations 
Binary 

Variables 
Continuous 
Variables 

Nodes 

Solution 

Integrality 
Gap (%) 

Final Optimal 

j10 2_2 
MMRTN1 239.12 1583 600 536 59423 0 20 

20 
MMRTN2 1000+ 4555 225 3890 118685 5.97 20 

j12 2_8 
MMRTN1 146.14 2205 864 738 16925 0 49 

49 
MMRTN2 1000+ 7023 318 6104 147486 12.24 49 

j14 1_8 
MMRTN1 1000+ 2967 1176 972 33931 31.63 34 

34 
MMRTN2 1000+ 10247 427 9027 51586 2.94 34 

c15 4_3 
MMRTN1 1000+ 3935 1536 1238 14420 44.44 36 

34 
MMRTN2 1000+ 14345 553 12746 11137 35.13 37 

c21 4_6 
MMRTN1 1000+ 3899 1536 1238 9058 50.00 38 

36 
MMRTN2 1000+ 14333 552 12754 7995 36.82 37 

 

3.6 Conclusions 

 
New MILP models for the RCPSP and the MRCPSP are proposed, and used to 

solve various project scheduling problems found in the literature.  

 

In the MMRTN2 formulation, the number of integer variables is reduced due 

to less defined binary variables ity  and 
it
y  for less tasks. Meanwhile, the 

number of continuous variables and constraints are higher. Overall, the 

MMRTN1 formulation performs better on smaller test instances, while the 

MMRTN2 model requires less computational effort for larger problems, due to 

its reduced number of computationally expensive binary variables. Extensive 

tests indicate that for large-scale problems (e.g. more than 30 activities) the 

proposed MILP models cannot lead to a global optimal solution in reasonable 

computational times.  

 
In summary the main objective of this chapter is to establish a new 

framework for RCPSPs utilising techniques from the process scheduling area. 
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As such, the proposed models are suitable to be integrated with challenging 

process scheduling problems where project scheduling decisions are also 

important (e.g. pharmaceutical product design and scheduling process). In 

general the computational results and the similarities between process and 

project scheduling problems, such as initial and target inventories, required 

resource types and precedence relations, suggest that exchanging solution 

techniques between the two research fields is both possible and useful. 

 

3.7 Nomenclature 

 

Indices/ Sets 

Ii  activities 

Rr  resources 

 Tt ,...,1  time slots 

 
Subsets 

XALTI  x
th set of alternative activities, 1 of which is to be executed, 

II
XALT   

rI  activities interacting with resource r, II r   

sureI  activities that must be executed, II sure   

 
Parameters 

initial

rR  initial available quantity of resource r  

maxmin

rr RR  minimum/maximum possible quantities for resource r  

max

,

min

, FinalrFinalr RR minimum/maximum excess of resource r  at the end of the 

project 

U

ri

L

ri SS  lower/upper bounds on the amount of resource r required at 

the beginning of activity i 

U

ri

L

ri SS  lower/upper bounds on the amount of resource r produced at 

the end of activity i 
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aimr/ imra  the quantities of resource r consumed/produced respectively, 

when activity i is performed in mode m. 

i  duration of activity i  

mi  duration of activity i  when executed in mode m 

ririv /  size dependent/independent coefficient of resource r  

consumption at the beginning of activity i   

ririv /  size dependent/independent coefficient of resource r  

production at the end of activity i  

T  number of time slots 

maxmin /  minimum/maximum slot duration 

 
Binary Variables 

ity  1 if activity i  starts at t  or 0 otherwise 

it
y  1 if activity i  is active over both t and 1t  or 0 otherwise 

miz  1 if activity i  is executed in mode m or 0 otherwise 

 
Continuous Variables 

H  time horizon 

itN  number of instances of activity i  for time slot t 

rtR  excess quantity of resource r  at the start of time slot t 

Sri surplus of resource r consumed at the beginning of activity i 

(above basic consumption level) 

riS  surplus of resource r produced at the end of activity i (above 

basic production level) 

ritrit SS /  linearised surplus terms 

t  duration of time slot t 

itlin  linearised duration term 
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Chapter 4 

Four new Continuous-time and Discrete-time 

Mathematical Formulations for Resource-

constrained Project Scheduling Problems 

 

Two new binary integer programming discrete-time models and two novel 

precedence-based mixed integer continuous-time formulations are developed 

for the solution of resource-constrained project scheduling problems. The 

proposed discrete-time models are based on the definition of binary variables 

that describe the processing state of every activity between two consecutive 

time points, while the proposed continuous-time models are based on the 

concept of overlapping of activities, and the definition of a number of newly 

introduced sets. The four novel mathematical formulations are compared with 

four representative literature models using a total number of 2760 well-

known open-accessed benchmark problem instances (j30 and j60 from the 

PSPLIB and 1800 problems generated by RanGen2). A detailed computational 

comparison study demonstrates the salient performance of the proposed 

mathematical models. The new continuous-time formulations feature the best 

overall performance. Finally, interesting observations are made through the 

computational study and future research lines are revealed. 

 

4.1 Introduction 

 

The study of exact methods, and especially mathematical programming 

techniques, for solving the RCPSP is of particular theoretical and practical 

interest. Indeed, mathematical programming solvers are often the only 

software available to industrial practitioners. Moreover, the best lower bounds 

ever found on broadly-studied problem test instances, were obtained by 
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hybrid methods involving constraint propagation and mathematical 

programming models (Demassey et al., 2005). 

 

There is a plethora of mathematical programming formulations for the RCPSP 

in the OR literature. Typically, the standard RCPSP can be formulated as: a 

Binary Integer Programming (BIP), involving only binary decision variables, or 

a linear Mixed Integer Programming (MIP) model, involving both binary and 

continuous decision variables. Discrete-time models use time-indexed binary 

decision variables, while continuous-time models usually rely on precedence-

based or event-based decision variables. Also, time-indexed continuous-time 

models can be derived, if a variable time grid is applied. It should be noted 

that time-indexed BIP discrete-time models divide the scheduling horizon into 

equal-size time intervals, while precedence-based MIP continuous-time 

formulations are based on sequencing binary variables that indicate the 

processing priority between pairs of activities.  

 

New contributions on the project scheduling field are usually evaluated and 

compared in benchmark problem test instances derived by using random data 

generators. These generators produce a large number of different problems 

with various parameter settings. ProGen (Kolisch et al., 1995), RanGen 

(Demeulemeester et al., 2003), and RanGen2 (Vanhoucke et al., 2008) are 

the most important generators for benchmark RCPSP test instances. For the 

classical RCPSP, the most commonly used test instances in the literature can 

be found in PSPLIB <http://129.187.106.231/psplib/library.html> (Kolisch 

and Sprecher, 1996), which is an the internet-based library with various test 

problems involving different number of total activities (from 30 to 120), 

derived by the ProGen generator. Additionally, a total number of 1,800 

problem instances for the RCPSP have been generated using RanGen2 

generator, and they can be found in 

<http://www.projectmanagement.ugent.be/rangen.html>. These open-

accessed test instances have been considered in this chapter in an attempt to 

http://129.187.106.231/psplib/library.html
http://www.projectmanagement.ugent.be/rangen.html
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evaluate the performance of the newly proposed mathematical formulations 

and compare them with previous models in the literature. 

 

The rest of the chapter is organised as follows. In Section 4.2, the classical 

RCPSCP is formally stated along with some remarks on formulating 

mathematical models. Section 4.3 describes the preprocessing phase 

employed in this chapter followed by Section 4.4 which presents four 

representative mathematical models in the OR literature. In Section 4.5, two 

new discrete-time BIP and two new precedence-based continuous-time MIP 

formulations are described in detail. A brief description of the problem 

instance sets considered is presented in Section 4.6. Then, in Section 4.7 a 

comprehensive computational comparison study is realised, while final 

conclusions are drawn in Section 4.8. 

 

4.2 Problem Statement 

 

The standard RCPSP considers a project with a finite number of activities 

 nVi ,...,1:  with durations ip . Preemption of activities is not allowed (i.e., 

the processing of activities cannot be interrupted). Precedence relations 

between some activities are present. These relations are given by defining 

sets of immediate predecessors E with pairs of activities  ji, , indicating that 

activity j cannot start before the completion of all its predecessor activities i. 

Additionally, each activity requires certain amounts ikr  of renewable 

resources  mk ,...,1: , with specific maximum capacities kR , to be 

processed. Renewable resources fully retrieve the occupied resource amount 

after the completion of each activity. In other words, the temporary 

availability of the renewable resources at every time is constrained. Moreover, 

usually for modelling purposes, two dummy activities are added: (i) a start 

dummy activity 0 to represent the beginning of the project, and (ii) an end 

dummy activity n +1 corresponding to the completion of the project. Dummy 

activities have zero duration and zero resource requirements. Along with the 
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real activities they consist set  1,...,0  nA . The typical objective of the 

RCPSP is to find an optimal (or at least feasible) schedule, satisfying 

precedence and resource constraints, such that the total duration of the 

project (i.e., the makespan Cmax) is minimised. In the standard RCPSP, all 

activities and renewable resources are available at the beginning of the 

project. Also, all information data are deterministic. 

 

The standard RCPSP is denoted by PS|prec|Cmax in accordance with the 

notation proposed by Brucker et al. (1999), which follows the well-known 

three-field notation for machine scheduling problems introduced by Graham 

et al. (1979). More specifically, PS|prec|Cmax notation specifies the single-mode 

project scheduling (PS) problem under precedence constraints between 

activities (prec) while minimizing the makespan of the project (Cmax). 

 

The classical RCPSP can be formulated as a mathematical programming 

model in several modelling ways, regarding the definition of decision variables 

and the construction of necessary constraints.  

 

4.3 Preprocessing Phase 

 

In this chapter, the critical-path method (Kelley, Jr and Walker, 1959) is 

employed to estimate iES  and iEF  for each activity i. Additionally, we use 

the Parallel Scheduling Scheme (PSS) of Brooks, as presented by Kolisch 

(1996a), under two different rules: the minimum latest finishing time rule, 

and the minimum latest starting time rule, so as to find an upper bound to 

the time horizon.  

 

The parallel method consists of a number stages that are at most equal to 

A , the number of all project activities (including dummy). In each stage a 

set of activities (which might be empty) is scheduled. A unique feature of the 

parallel method is that each stage x  is associated with a schedule time xt , 
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where xy tt  , for xy   holds. On account of this schedule time, the set of 

scheduled activities is now divided into the following two subsets: Activities 

which were scheduled and are completed up to the schedule time are in the 

complete set xCOMP , while activities which were scheduled, but which are at 

the schedule time still active, are in the active set xACT . Finally, we have the 

decision set xDEC , which contains all yet unscheduled activities that are 

available for scheduling w.r.t. precedence and resource constraints. The 

partial schedule of each stage is made up by the activities in the complete set 

and the active set. The schedule time of a stage equals the earliest 

completion time of activities in the active set of the ancestral stage. Each 

stage is made up of two steps:  

(1) The new schedule time is determined and activities with a finish time 

equal to the (new) schedule time are removed from the active set 

and put into the complete set. This, in turn, may place a number of 

activities into the decision set.  

(2) One activity from the decision set is selected with a priority rule 

(again, in case of ties the activity with the smallest label is chosen) 

and scheduled to start at the current schedule time. Afterwards, this 

activity is removed from the decision set and put into the active set.  

 

Step (2) is repeated until the decision set is empty, i.e. activities were 

scheduled or are not longer available for scheduling w.r.t, resource 

constraints. The parallel method terminates when all activities are in the 

complete or active set. 

 

Given xACT , the active set, and xCOMP , the complete set, respectively, kK , 

the left over period capacity of the renewable resource k at the schedule 

time, and xDEC , the decision set, are defined as follows: 





xACTj

jkkk rRR : , 

   kRrCOMPPACTCOMPjjDEC kjkxjxxx ,,|:  



 
Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP 

124 

 

A formal description of the parallel scheduling scheme (PSS), given  jv  a 

priority value of activity j , xDECj  representing the priority rule, is given 

below: 

 

Initialisation: 1:n , 0:xt ,  1:xDEC , 0::  xx COMPACT , 

 kRR kk : , GOTO Step (1) 

WHILE  ACOMPACT xx    DO  Stage x; 

BEGIN 

(1)  1|min:  xjx ACTjFTt ; 

  
xjxxx tFTACTjjACTACT   ,|\: 11

; 

  
xjxxx tFTACTjjCOMPCOMP   ,|: 11

; 

 COMPUTE  xk DECandkR  ; 

(2)      ivjvjj
xx DECjDECj   inf|min:* ; 

 ** : jxj
ptFT  ; 

  *: jACTACT xx  ; 

 COMPUTE  xk DECandkR  ; 

 IF  xDEC   GOTO Step (2)  ELSE  1:  xx ; 

END; 

Stop 

 

The upper bound calculated by the PSS is then used to calculate iLS  and 

iLF , again through the critical-path method. More specifically, the upper 

bound on the time horizon is equal to the minimum time horizon found by the 

two rules applied. Note that the computational time of such a simple 

preprocessing phase is negligible, and activities time-window lengths can be 

significantly reduced. 
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4.4 Review of Existing Mathematical Formulations 

 

In this section, some key and representative discrete- and continuous-time 

mathematical formulations for the RCPSP found in the literature are briefly 

presented. These mathematical models have been used for comparison 

purposes with the new mathematical formulations developed in this chapter. 

 

For the sake of clarity of the models presentation, we use the notation of 

Brucker et al. (1999). Additionally, we use lowercase Latin letters for decision 

variables and uppercase Latin letters for sets and subsets. The complete list 

of the notation used throughout this chapter is given in the Nomenclature 

section. 

 

4.4.1 Discrete-time model by Pritsker [Pri-DT] 

 

A very early mathematical model for the RCPSP was presented by Pritsker et 

al. (1969). This Binary Integer Programming (BIP) formulation is based on 

the definition of binary variables yit, which specify if activity i starts processing 

at time t (i.e., 1ity ) or not (i.e., 0ity ). Activities Vi  have a resource 

demand at the time point that they start processing, and no resource demand 

at the time point of their completion. Taking into account the above definition 

of binary variables ity , the following mathematical model was proposed: 







1

1

,1maxmin
n

n

LS

ESt

tnytC   (1) 

1


i

i

LS

ESt

ity    1 nVi  (2) 

100 y   (3) 


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LS
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jti

LS
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it ytpyt    Eji  ,  (4) 
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 

 

k

Vi

ti

tLS

ptESt

ik Ryr
i

ii

 






,min

1,max

  kTt ,  (5) 

 1,0ity     ii LSEStnVi ,...,,1   (6) 

 

Equation (1) minimises the completion time of the dummy end activity 1n , 

and thus the makespan of the project. Constraints (2) ensure that each 

activity starts processing exactly once. Note that the starting time for every 

activity i is between its earliest and latest starting time (i.e., ii LSESt ,..., ), 

and that the dummy start activity 0 begins at 0t  according to constraint 

(3). Constraints (4) and (5) represent the precedence and the renewable 

resource constraints, respectively. Finally, the decision variables domain is 

given by constraints (6). 

 

The BIP formulation of Pritsker et al. (1969), consisting of constraints (1) - 

(6), involves  





1

1

n

i ii ESLS  binary variables, and   11  nmhE  

constraints. Where h represents the upper bound on the time horizon. 

Henceforth, this model will be called Pri-DT. 

 

4.4.2 Discrete-time model by Christofides [Chri-DT] 

 

Christofides et al. (1987) proposed a BIP formulation very similar to Pri-DT 

model, by disaggregating the precedence constrains of Pri-DT, as follows: 

 

1

1,min

 










ij

j

i
ptLS

ESt

tj

LS

tt

ti yy    ii LSEStEji ,...,,,   (7) 

 

That way constraints (7) replace constraints (4). Therefore, the BIP model of 

Christofides et al. (1987) consists of constraints (1)-(3), and (5)-(7). 

Henceforth, this model will be referred as Chri-DT. Notice that this 
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formulation has the same number of binary variables as Pri-DT, but involves 

 





1

1

n

i ii ESLS  more constraints than Pri-DT. 

 

4.4.3 Continuous-time model by Artigues [Art-CT] 

 

Artigues et al. (2003) proposed a continuous MIP formulation based on 

sequencing and resource flow variables. Starting time continuous variables is  

are defined for each activity i. In addition, sequencing binary variables ijx  are 

introduced to define the sequence between any pair of activities i and j. 

Specifically, if activity i is processed before activity j, binary variable 1ijx , 

otherwise is set to zero. Finally, resource flow continuous variables 
ijkq  are 

defined to denote the quantity of resource k directly transferred from activity 

i (at its completion) to activity j (at the beginning of its processing). Notice 

that in this mathematical formulation 
kknk Rrr   ,1,0
, instead of setting them 

to zero. That way, the start dummy activity 0 acts as a resource source while 

the end dummy activity n+1 plays the role of a resource sink. In the current 

thesis and for comparison purposes we use the modified formulation 

presented recently in Koné et al. (2011). It should be noted that we removed 

the first two tightening constraints of the original formulation, because the 

model performance was inferior when they where included. The MIP model is 

formally stated by: 

 

1maxmin  nsC   (8) 

   
ijjiiijij xESLSpLSESss     jiAji  :, 2  (9) 

  ijjkikijk xrrq ,min         jiknVVji  :,10,  (10) 

ik

ijAj

ijk rq 
 ,

  kAi ,  (11) 

ik

ijAj

jik rq 
 ,

  kAi ,  (12) 
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kijk Rq        kjni ,0:,1:  (13) 

1ijx    Cji  ,  (14) 

0jix    Cji  ,  (15) 

00 s   (16) 

iii LSsES     1 nVi  (17) 

 1,0

0





ij

ijk

x

q
 

 

  jiAji

jikAji





:,

:,,

2

2

 (18) 

 

Objective (8) minimises the starting time of the dummy end activity n + 1, 

and therefore the makespan of the project. Constraints (9) are disjunctive 

constraints that prevent two activities linked through a resource unit flow 

from being scheduled simultaneously. Constraints (10) link resource flow 

variables 
ijkq  and sequencing variables ijx . Note that the maximum resource 

flow sent from i to j is set to  jkik rr ,min  if activity i precedes activity j, 

otherwise is set to zero. Resource flow conservation is ensured by imposing 

constraints (11) - (13), while precedence relations are satisfied by constraints 

(14) - (15). The starting time of the start dummy activity is equal to zero, 

according to constraint (16). Lower and upper bounds on the starting times 

of the remaining activities are imposed by constraint (17). Finally, constraints 

(18) provide the domain of the remaining decision variables. Note that set C 

is the transitive closure of set E. 

 

The MIP formulation of Artigues et al. (2003) consists of constraints (8) - 

(18), and involves C2  binary variables,   12
2

 nnm  continuous variables, 

and     12122
22

 mnnmnC  constraints. Henceforth, this model 

will be called Art-CT. 
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4.4.4 Continuous-time model by Koné [Kone-CT] 

 

Recently, Koné et al. (2011) presented two new continuous time MIP 

formulations. In this work we compare our models with the On/off event-

based formulation with preprocessing (OOE_prec), which according to their 

computational results presents the best performance. OOE_prec is based on 

the definition of event points e. The number of event points is equal to the 

number of non-dummy activities, i.e.,  nJe ,...,1: . This MIP model is based 

on the definition of binary variables iev  that denote if activity i starts 

processing at event point e, or if it still being processed immediately after 

event point e (i.e., 1iev ). Event timing continuous variables de are also 

introduced. The model proposed by Koné et al. (2011) is given below: 

 

  ieiiee pvvdC 1,maxmin   JeVi  ,  (19) 

1
Je

iev  Vi  (20) 

01 d   (21) 

ee dd 1   nJe \  (22) 

     ieieieiieee pvvvvdd 11,1,      eeJeeVi  :,, 2  (23) 
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ieik Rvr 
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    1,11, 1   eiieneiieieiie vvLSvvLSdESv  JeVi  ,  (28) 

1max1   nn LSCES   (29) 
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0iev     nneVi ii ,...,1,...,1,    (30) 

 1,0

0





ie

e

v

d
 

JeVi

Je





,
 (31) 

 

Objective (19) correlates the makespan to the timing of the event points, and 

thus minimises the makespan of the project. Constraints (20) ensure that 

each activity Vi , is processed at least once, while constraints (21) and (22) 

express the sequencing of event points. Constraints (23) give the timing 

between event points by linking to it event-start variables iev , and constraints 

(24) and (25) ensure non-preemption of activities. Precedence relations and 

renewable resource limitations are expressed by constraints (26) and (27), 

respectively. Lower and upper bounds on the makespan objective are given 

by constraints (29). Additionally, constraints (30) set to zero all event points 

wherein activity i cannot be in process due to its number of predecessors i  

and successors i . The decision variables domain is given by constraints (31). 

 
The MIP model of Kone et al. (2011) consists of constraints (19) - (31), and 

involves: n
2 binary variables, n continuous variables, and 

   nnnmEn  22 231  constraints. Henceforth, this model will be 

called Kone-CT. 

 

4.5 New Mathematical Formulations 

 

In this section, two new time-indexed discrete-time BIP models and two new 

precedence-based continuous-time MIP formulations for the RCPSP are 

developed and described in detail. 

 

4.5.1 Proposed discrete-time model 1 [KKG-DT1] 

 
Here, a new BIP formulation is presented which is based on the definition of 
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two types of binary variables. Specifically, we define binary variables ity , 

which specify if activity i starts processing at time t (i.e., 1ity ) or not (i.e., 

0ity ); likewise to Pri-DT and Chri-DT models. Moreover, we introduce 

variables itw , which specify if activity i is being processed in the time interval 

between time points t and t + 1 (i.e., 1itw ) or not (i.e., 0itw ). Figure 4.1 

shows an illustrative example of how binary variables itw  work. Activities 

Vi  have a resource demand at the time point that they start processing, 

and no resource demand at the time point of their completion. Considering 

the above definitions of binary variables ity  and itw , the following 

mathematical formulation is proposed: 
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Objective (32) minimises the completion time of the dummy end activity 

1n , which corresponds to the makespan of the project. Constraints (33) 

impose that each activity i starts processing exactly once. Obviously, the 

starting time for every activity i is between its earliest and latest starting time 

(i.e., ii LSESt ,..., ), and the dummy start activity 0 begins at 0t  according 

to constraint (34). Precedence relations are guaranteed by constraints (35). 

Additionally, constraints (36) link binary variables ity  and itw  for every 

activity i and time points 1,...,  ii LFESt . Constraints (37) tighten the 

model. The definition of binary variables itw  allows us to model the 

renewable resource constraints in a very simple way, according to constraints 

(38). The main idea of modelling renewable resource constraints using binary 

variables itw  is illustrated in Figure 4.1 through a simple example considering 

3 activities  3,2,1  and a single resource k. In this example, 1ikr  for all 

activities. Finally, the domain of the decision variables is given by constraints 

(39). 

 

 

Figure 4.1. Illustrative example: modelling of resource constrains through binary 

variables wit 
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This BIP model consists of constraints (32)-(39) and involves 

    






n

i ii

n

i ii ESLFESLS
1

1

1
 binary variables, and 

    


n

i ii ESLFnmhE
1

11  constraints. Henceforth, this model will be 

called KKG-DT1. 

 

4.5.2 Proposed discrete-time model 2 [KKG-DT2] 

 

A slightly different BIP formulation can be obtained by disaggregating the 

precedence constrains of KKG-DT1, as follows: 

  
 

1

1,min

 
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





ij

j

i
ptLS

ESt

tj

LS

tt

ti yy    ii LSEStEji ,...,,,   (40) 

 
By doing so, constraints (40) replace constraints (35), and that way we have 

a new BIP model that consists of constraints (32)-(34), and (36)-(40). 

Henceforth, this model will be referred as KKG-DT2. Note that the KKG-DT2 

formulation has the same number of binary variables as KKG-DT1, but 

involves  





1

1

n

i ii ESLS  more constraints than KKG-DT1. 

 

4.5.3 Proposed continuous-time model 1 [KKG-CT1] 

 

In this part, a new MIP formulation based on the definition of two types of 

continuous and binary variables is proposed. Specifically, starting and 

finishing time continuous variables is  and if  are defined for each activity 

  1 nVi . Moreover sequencing binary variables ijx  are introduced to 

define the sequence between any pair of activities i and j. For pairs of 

activities that cannot be executed in parallel (e.g., activities for which the 

sum of resource requirements exceeds the maximum availability, etc), 1ijx  

if activity i is completed before activity j starts processing (i.e., 
ji sf  ), 

otherwise is zero. However for pairs of activities that could be executed in 
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parallel, ijx  is used to define the relative sequencing between the activities’ 

starting times. More specifically 1ijx  if activity i begins processing before or 

exactly at the same time as activity j starts ( ji ss  ), otherwise is set to 0. 

 
To continue with, in order to model renewable resource constraints using 

sequence-based continuous-time formulations, it is necessary to identify the 

set of activities requiring the same resource k and being processed 

simultaneously. That can be done by extending the concept of overlapping 

activities (Marchetti and Cedrá, 2009). By definition, an activity j that is 

overlapping the starting time of activity i must satisfy the following conditions 

(see Figure 4.2): 

(A)  It should require some resource k also required by activity i (i.e., 0ikr   

and 0jkr ). 

(B)  It starts before or exactly at the time that activity i starts processing (i.e., 

ij ss  ). 

(C)  It should end after the starting time of activity i (i.e., 
ij sf  ). 

 

 

Figure 4.2. Illustrative example for overlapping conditions 
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In order to model condition (B) the definition of the sequencing binary 

variables ijx  is extended so that it also controls the sequencing of the starting 

times of parallel tasks i and j. Additionally, condition (C) can be modelled by 

defining overlapping binary variables jiz  which are equal to one whenever 

activity j is completed after activity i starts processing (
ij sf  ). Finally, three 

sets of activity pairs have been defined:  

i) Set B containing activities   2, Vji   sharing at least one renewable 

resource,  

ii) Set G containing   Bji ,  that cannot be processed simultaneously 

due to resource capacity limitations (i.e., kjkik Rrr  ) and  

iii) Set D containing activities   Cji ,  that according to the 

preprocessing phase ji ESLF   (i.e., activity j should be processed 

after the completion of activity i).  

 
Before moving on to describe the various constraints we use the previously 

defined sets to create more composite ones. First, we can define Set K 

 DC  containing activities for which precedence is already known and 

thus, no ijx  variables need to be defined. Set S KG \  contains activities that 

cannot overlap due to resource capacity limitations, excluding those with 

known precedence relations. For this set, only variables ijx  need to be 

defined. Finally, set P  KGB  \  contains activities that can overlap. For 

such activity pairs, both ijx  and jiz  variables need to be defined. The 

preprocessing time to determine sets B, C, D, G, K and P is negligible. Using 

the above definition of decision variables, sets and overlapping conditions, 

the following mathematical formulation is derived: 

 

1maxmin  nfC   (41) 

iii psf     1 nVi  (42) 

ji sf           KjinVVji  ,:1,  (43) 
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 
jijiji xESLFsf     jiSji  :,  (44) 
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 (52) 

Equation (41) minimises the completion time of the dummy end activity 1n , 

and therefore the duration of the project. Constraints (42) correlate the 

finishing and starting time for activities   1 nVi . Constraints (43) set 

all the priori known precedence relations between activities   Kji , . 

Constraints (44)-(47) define the sequencing constraints between any pair of 

activities   Kji , . The value of big M constraints could strongly affect the 

performance of any model. For this reason, and in order not to use any 

arbitrary values for the big M parameters, we use proper differences between 

ES, LS and LF; similarly to Art-CT model. It should be noted that constraints 

(46) and (47) relax (extend) the definition of sequencing binary variables ijx  

to also control the starting times of the potential parallel tasks i and j. Also, 

notice that a small positive parameter λ is included to constraint (47) to deal 

with the case that activities i and j start processing at the same time. That 

way when ji ss   the activity with the higher index is assumed to start last 
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(i.e., if ji ss   and ji  , then 1jix ). In the case studies we used a value of 

0.1 for parameter λ. Overlapping condition (C) is modelled by constraints 

(48), while renewable resource constraints are given by constraints (49). By 

using  
ijji xz   we are able to detect activity overlapping and properly model 

the resource constraints. 

 
Constraints (46) – (49) state that if activity i starts processing before activity j 

(i.e., 1ijx ), then activity j has to finish after activity i starts (i.e., 1jiz ). 

The only case that the difference  
ijji xz   takes the value of 1 is when 

activity j overlaps i. That means, according to the definition of overlapping 

given above, that j finishes after i starts (i.e., 1jiz ) and activity j starts 

processing before i (i.e., 0ijx ). Constraints (50) are tightening constraints 

that correlate directly sequencing and overlapping binary variables. It can be 

easily proven that for activities which could overlap   Pji , , if 1ijx  that 

means that jji fss  , and consequently 0 ij sf  which according to 

constraints (48) gives 1jiz . 

 
Table 4.1 displays all possible combinations for variables jiz  and ijx  for 

activities   Pji ,  that could be executed in parallel. In the first two cases 

wherein 0jiz , no overlapping occurs since activity i starts after the 

completion of activity j (i.e., ijj sfs  ). Especially, in the second case, 

notice that if 0jiz  and 1ijx  that would mean that jij ssf  , which 

obviously is impossible. For this reason, if 0jiz  then always 0ijx . In the 

last two cases wherein 1jiz , overlapping occurs if and only if activity j 

begins processing before activity i starts (i.e., 0ijx ), because in that case 

holds jij fss  . Further, the sequencing binary variables for activities 

  Pji ,  that ij ESLS   can be fixed due to the preprocessing phase, 

according to constraints (51). Finally, the domain of the decision variables is 

given by constraints (52). 
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Table 4.1. Modelling of binary variables 
jiz  and ijx  for activities   Pji  ,  

Constraints (48) Constraints (46) - (47) Constraints (49) 

ij sf   jiz  
ji ss   ijx  ijji xz   

≤ 0 0 > 0 0 0 

≤ 0 0 < 0 1 impossible 

> 0 1 < 0 1 0 

> 0 1 > 0 0 1 

 

The proposed continuous-time MIP model consists of constraints (41) - (52), 

and henceforth, this model will be referred as KKG-CT1. 

 

4.5.4 Proposed continuous-time model 2 [KKG-CT2] 

 

Here, another continuous-time MIP formulation is proposed that uses the 

same types of binary and continuous variables as KKG-CT1 model, while 

modelling the sequencing and resource constraints differently, as follows: 

 

  
jiijij xESLFsf  1    jiSji  :,  (53) 

 
jijiji xESLFsf     jiSji  :,  (54) 

  
jiijij xESLSss  1    jiPji  :,  (55) 

 
jijiji xESLSss      jiPji  :,  (56) 

 

 

 

 
kijjijk

Pji

rij

jijijk

Pji

rij

ik Rxzrxzrr
jkjk












,

0:

,

0:

1  0:,  ikrkVi  (57) 

ijji zx     jiPji  :,  (58) 

jiji zx 1    jiPji  :,  (59) 

1jix    ij ESLSjiPji  ,:,  (60) 
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 (61) 

Constraints (53)-(56) define the sequencing for any pair of activities 

  Kji , , when ji  . The relative sequencing, regarding the starting times, 

of parallel activities ji,  is given by constraints (55) and (56), and constraints 

(57) express resource constraints. Moreover, constraints (58) and (59) are 

tightening constraints which directly correlate sequencing and overlapping 

binary variables; similarly to constraints (50) of the KKG-CT1 model. 

Additionally, sequencing binary variables jix  can be fixed for activities 

  Pji ,  that ji   and ij ESLS  ; i.e., it is known a priori that activity j  

starts before i . Finally, the domain of the decision variables is given by 

constraints (61). 

 

The new proposed continuous-time MIP model consists of constraints (41) - 

(43), (48) and (53) - (61). Henceforth, this model will be referred as KKG-

CT2. Note that the KKG-CT2 formulation has the same number of 

constraints, continuous variables, overlapping binary variables and the half of 

sequencing variables than KKG-CT1. 

 

4.6 Description of Problem Instance Sets 

 

In this section, we present the project generators, the parameters they toggle 

to create test instances, and the problem sets available for benchmarking 

project scheduling problems that have been used in this work. Specifically, 

the computational performance of all formulations has been tested 

extensively using a large number of test instances, generated by the 

parameter-driven generators ProGen and RanGen2. 

 
ProGen was developed by Kolisch et al. (1995), as a network instance 

generator for the classical RCPSP as well as the multi-mode extension. A 

number of instances, systematically generated by ProGen, are available for 
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researchers in PSPLIB (Kolisch and Sprecher, 1996), an online scheduling 

library (http://129.187.106.231/psplib/). PSPLIB test sets have been used as 

a benchmark in a large number of studies. These instances were generated 

by varying the Network Complexity (NC), Resource Factor (RF) and Resource 

Strength (RS) parameter values. NC is the average number of non-redundant 

arcs per activity (node), including the dummy source and sink activities. RF 

reflects the average quantity of resources required per activity, and is 

normalised in the interval [0,1]. A value of 1 suggests that all activities 

require all resources, while a value of 0, that no resource is required by any 

activity (which corresponds to the unconstrained case). The RS parameter 

measures the strength of the resource constraints. It is a scaling parameter 

expressing resource availability as a convex combination of a minimum and 

maximum level with values in the interval [0,1]. In this work, we use the 

problem sets with 30 and 60 activities, utilizing 4 renewable resources. Each 

problem set comprises of 480 test problem instances. In the PSPLIB problem 

instances the parameters values are:  

NC = {1.50, 1.80, 2.10},  

RF = {0.25, 0.50, 0.75, 1.00}  

RS = {0.20, 0.50, 0.70, 1.00}  

Henceforth, the 480 problem instance test sets with 30 and 60 activities will 

be referred to as j30 and j60, respectively. 

 
Vanhoucke et al. (2008) developed RanGen2 which is a random project 

network generator for single- and multi-mode project instances, extending 

RanGen (Demeulemeester et al., 2003) by incorporating further topological 

network measures. RanGen and RanGen2 use different measures than 

ProGen. These six topological measures are displayed in Table 4.2. The first 

five indicators (I1 to I5) are based on the indicators proposed by Tavares et al. 

(1999). More specifically, I1, I2 and I4 are exact copies of the original ones, 

while I3 and I5 are improved versions. The last indicator I6 is totally new. In 

our computational comparison we used the 1800 problem instances 

http://129.187.106.231/psplib/
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generated by RanGen2 and available online at 

http://www.projectmanagement.ugent.be/rangen.html. This set of problem 

instances contains single-mode RCPSP with 30 activities and 4 renewable 

resources and will be referred to as RanGen2, henceforth. Two additional 

parameters with fixed values for the 1800 problem set are the Resource-

Constrainedness (RC) (Patterson, 1976) and the Resource Use (RU) 

(Demeulemeester and Herroelen, 2002). RC is defined per resource type as 

the average quantity demanded by all activities divided by its availability and 

has a fixed value of 0.4, while RU is equal to the number of resource types 

required by each activity; for the 1800 test instances is set to 3. The 

parameters variations for these problem instances can be found in Vanhoucke 

et al. (2008). The 1800 test instances are divided to 5 different set of 

problems (Set 1 to Set 5). Set 1 was generated under nine different values 

for the I2 indicator, thus generating 100 instances per setting resulting in a 

total of 900 instances. The other sets were generated by varying the I2 

indicator (by three values) and one other indicator (I3, I4, I5 or I6). It should 

be noticed that 10 instances per setting were generated, resulting in 240 

instances for Sets 3, 4 and 5. Set 2 contains only 180 instances because 

networks with high I2 values and I3 values lower than 0.75 could not be 

generated or simply do not exist. 

 

Table 4.2. Network structure topological indicators for RanGen2 

Indicator Description 

I1 Network size expressed as number of activities 

I2 closeness to a serial or parallel graph 

I3 distribution of activities over the progressive levels 

I4 presence of short arcs 

I5 presence of long arcs 

I6 topological float of activities 

 

http://www.projectmanagement.ugent.be/rangen.html
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4.7 Computational Comparison Study 

 

This section summarises the computational comparison between some 

existing representative formulations and the four new mathematical 

formulations presented in Sections 4.4 and 4.5, respectively. Here, we 

present the computational results for all formulations, and further analyse 

and discuss the computational performance of the models considered. Notice 

that our experimental computational study involves a total number of 2760 

RCPSP problems, considering the 3 benchmark RCPSP problem sets j30, j60 

and RanGen2 described in the previous section. All mathematical formulations 

have been solved on an Intel Core i5 CPU M430 2.27GHz with 4GB RAM using 

CPLEX 11.1.1 via a GAMS 22.8.1 (Rosenthal, 2012) WIN 6007.6015 VIS 

interface under standard configurations. A maximum resource time limit of 

600 CPU s has been set for all problem instances. 

 

A description of the notation used in the computational results follows. 

Feasible (%) is the percentage of instances that gave an integer solution 

(i.e., optimal, suboptimal, or not-proven optimal) within the predefined time 

limit. Good (%) is the percentage of instances that gave a good integer 

solution (i.e., optimal, or suboptimal with a gap lower than 3% from the 

optimal solution) within the predefined time limit. Optimal (%) represents the 

percentage of (proven) optimal solutions found within the time limit. Gap (%) 

is the average gap of the integer non-proven optimal solutions from the real 

optimal solution, or the best known solution if optimal solution is not available 

(some problems in j60 and RanGen2). ΔHEUR (%) stands for the average 

deviation of the optimal solution from the upper bound calculated by the 

preprocessing stage, taking into account only instances that were solved to 

optimality. Similarly, ΔCPM (%) is the average deviation of the optimal 

solution found from the lower bound calculated through the critical-path 

method. Finally, Optimal CPU (s) is the average CPU time required for 

instances solved to optimality. 
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4.7.1 Overall Computational Results 

 

Table 4.3 presents the overall mathematical models performance ranking 

(based on Good (%)) for the total number of 2760 problem instances 

considered. It is observed that the two continuous-time MIP formulations 

proposed in this work, KKG-CT1 and KKG-CT2, outperform the remaining 

models. Moreover, it should be noted that the best-performing discrete-time 

model is KKG-DT2 which outperforms the models of Chri-DT and Pri-DT. Also, 

notice that KKG-DT2 found the highest number of optimal solutions within the 

predefined time limit. Chri-DT is slightly better than KKG-DT1. As Table 4.3 

clearly shows, Art-CT and especially Kone-CT formulations perform rather 

poor. 

 
Table 4.3. Overall mathematical models ranking for the 2760 problems considered 

Ranking Model Good (%) Optimal 
(%) 

Feasible (%)  

1 KKG-CT1 74.82 69.78 87.32  
2 KKG-CT2 74.10 69.06 86.60  

3 KKG-DT2 71.09 70.25 86.16  

4 Chri-DT 70.00 68.91 84.38  

5 KKG-DT1 69.86 68.23 82.72  

6 Pri-DT 65.76 63.95 74.89  

7 Art-CT 50.00 45.40 56.89  

8 Kone-CT 39.38 26.12 61.63  

 
In the literature, discrete-time models have been considered to be better and 

more appropriate than their continuous-time counterparts for dealing with the 

RCPSP. This fact is also reflected in the plethora of discrete-time models 

developed so far in contrast with few approaches using a continuous-time 

representation. Our experimental study demonstrates that continuous-time 

formulations (such as the ones proposed in this work) can perform better 

than state-of-the-art discrete-time models. We tend to believe that the 

definition of the decision variables is the most significant stage in the overall 

modelling process, and that further improvement in the modelling phase 

seems a particularly challenging and promising research direction. 

 
Table 4.4 presents the computational results for all mathematical formations 

per problem set. Note that RanGen2 problem set has been divided to 
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RanGen2-A (containing Set 1 of the RanGen2 library) and RanGen2-B 

(containing Set 2 to 5 of RanGen2 library) subsets, because there are no 

available optimal (neither best) solutions for Set 1 (i.e., RanGen2-A) from 

Vanhoucke et al. (2008). For this reason, in RanGen2-A, Good (%) is set 

equal to Optimal (%). The best performance values are marked in bold. 

 
Table 4.4. Computational results per problem set 

Problem 
Set 

Model 
Feasible 

(%) 
Good 
(%) 

Optimal 
(%) 

Gap 
(%) 

ΔHEUR 
(%) 

ΔCPM 
(%) 

Optimal 
CPU s 

j30 

Pri-DT 87.71 83.54 80.42 5.19 2.00 4.03 8.19 
Chri-DT 94.17 87.29 84.79 6.52 2.32 5.62 13.58 

KKG-DT1 91.25 88.33 85.21 5.49 2.34 5.52 18.49 
KKG-DT2 94.58 89.38 88.13 8.24 2.49 6.63 21.65 

Art-CT 81.04 75.21 67.50 3.04 1.53 3.47 10.57 
Kone-CT 62.92 48.75 32.08 3.73 0.43 0.09 12.94 
KKG-CT1 98.13 95.21 85.42 1.97 2.61 9.82 16.78 
KKG-CT2 96.88 93.54 85.42 2.39 2.61 9.57 17.79 

         

j60 

Pri-DT 76.25 73.33 72.50 6.68 1.93 0.82 5.10 
Chri-DT 77.71 75.42 75.42 6.77 2.18 1.13 8.62 

KKG-DT1 77.29 75.63 75.21 5.60 2.17 1.13 10.74 
KKG-DT2 77.50 76.04 75.21 4.46 2.18 1.15 8.91 

Art-CT 63.13 59.58 55.42 3.96 1.32 0.58 28.50 
Kone-CT 2.71 2.08 2.08 4.80 0.00 0.00 106.62 
KKG-CT1 71.67 67.50 64.58 4.81 1.87 1.34 19.56 
KKG-CT2 70.83 67.29 62.71 4.25 1.77 1.27 20.41 

         

RanGen2-A 

Pri-DT 71.33 56.56 56.56 _ 3.48 4.04 17.94 
Chri-DT 84.11 62.00 62.00 - 3.86 5.80 22.57 

KKG-DT1 82.89 61.00 61.00 - 3.78 5.51 29.74 
KKG-DT2 87.44 63.33 63.33 - 3.99 6.21 24.00 

Art-CT 49.56 36.89 36.89 - 1.96 3.46 26.47 
Kone-CT 75.44 32.00 32.00 - 2.09 1.10 38.98 
KKG-CT1 88.00 66.67 66.67 - 4.09 9.32 17.78 
KKG-CT2 87.56 65.56 65.56 - 4.00 9.02 13.15 

         

RanGen2-B 

Pri-DT 70.89 61.44 58.00 9.60 3.89 5.92 23.80 
Chri-DT 83.00 65.89 63.89 9.90 4.11 7.47 16.97 

KKG-DT1 80.89 65.78 62.67 10.96 4.10 7.20 33.75 
KKG-DT2 85.00 66.44 65.00 11.61 4.15 7.93 21.44 

Art-CT 48.00 44.56 36.78 2.63 1.56 6.98 25.12 
Kone-CT 78.56 61.67 29.89 3.39 2.42 2.12 42.40 
KKG-CT1 89.22 76.00 67.33 5.42 4.05 12.09 20.52 
KKG-CT2 88.56 76.11 67.22 5.27 4.07 11.63 17.56 

 
The proposed continuous-time models, KKG-CT2 and especially KKG-CT1 

feature the best performance in the j30, RanGen2-A, and RanGen2-B problem 

sets that involve 30 activities. However, it is worth noticing that the discrete-
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time model KKG-DT2 reported the highest number of optimal solutions in the 

j30 problem set. In the problem set j60, which involves a total number of 60 

activities, discrete-time models perform better than continuous-time 

formulations. More specifically, KKG-DT2 and Chri-DT feature the best 

performance among the mathematical models considered. These results 

indicate that the performance of continuous-time formulations probably tends 

to reduce as the total number of activities increases. The worst-performing 

model, and probably not surprisingly, is that of Kone-CT, mainly due to its 

very big model size. This model was able to solve solely problem instances 

whose optimal solutions are very near to the solution found by the CPM 

method or to the solution found by the preprocessing stage (i.e., low ΔHEUR 

and ΔCΡΜ values). 

 
Another interesting observation is that continuous-time models report lower 

Gap (%), in comparison with those of the discrete-time models. In other 

words, a suboptimal integer solution found by continuous-time formulations is 

more probable to be a good quality solution (i.e., close to the optimal). This 

characteristic of the continuous-time models could be of great importance in 

real-life RCPSP wherein near-optimal solutions, within reasonable 

computational time, are often acceptable. In order to highlight this point 

more, consider problem set j30, and observe that KKG-DT2 features a 88.13 

Optimal (%) while KKG-CT1 reports a lower 85.42 Optimal (%) value. 

Nevertheless, KKG-CT1 results in a 95.21 Good (%) value, due to a very low 

1.97 Gap (%), while KKG-DT2 reaches a 89.38 Good (%) value. Therefore, 

KKG-CT1 clearly overwhelms KKG-DT2 in the j30 problem instance. Similar, 

observations could be done for the remaining problem sets. 

 

4.7.2 Computational Results: Detailed Analysis 

 

In the detailed analysis of the computational results some further notation is 

introduced. More specifically, Subopt. sol. corresponds to the number of 

instances producing a feasible but non-proven optimal solution. Actually opt. 
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is the number of suboptimal solutions that are actually optimal, but the solver 

did not manage to prove it due to the time limit. Actually opt. (%) is the 

percentage of suboptimal solutions that are actually optimal, Subopt. gap 

<3% is the number of suboptimal solutions with a deviation from the optimal 

solution that is less than 3% (excluding the Actually opt.), Good subopt. (%) 

is the percentage of suboptimal solutions that are actually optimal or have a 

gap <3%. Dif (%) is the percentage of improvement difference between 

Optimal (%) and Good (%). 

 

Problem Set j30 

 

The detailed analysis of the suboptimal solutions from each mathematical 

model for problem set j30, is presented in Table 4.5 which demonstrates the 

higher quality of the suboptimal solutions derived from continuous-time 

models in contrast with those found by discrete-time formulations. For 

instance, observe that 31.15% of the suboptimal solutions reported by KKG-

CT1 are actually (i.e., non-proven) optimal, and furthermore 77.05% of the 

suboptimal solutions are either non-proven optimal or feature a gap <3% 

from the optimal solution. The corresponding percentages are relatively low 

for the discrete-time models, in accordance with Table 4.5. 

 

Table 4.5. Detailed analysis of suboptimal solutions found for problems sets j30 and j60 

Problem 
Set 

Model 
Subopt. 

sol. 
Actually 

opt. 
Subopt. 

gap<3% 
Actually 

opt. (%) 
Good  

subopt. (%) 
Optimal 

(%) 
Good 
(%) 

Dif 
(%) 

j30 

Pri-DT 35 5 10 14.29 42.86 80.42 83.54 3.88 

Chri-DT 45 6 6 13.33 26.67 84.79 87.29 2.95 

KKG-DT1 29 5 10 17.24 51.72 85.21 88.33 3.67 

KKG-DT2 31 4 2 12.90 19.35 88.13 89.38 1.41 

Art-CT 65 20 17 30.77 56.92 67.50 75.21 11.42 

Kone-CT 148 45 35 30.41 54.05 32.08 48.75 51.96 

KKG-CT1 61 19 28 31.15 77.05 85.42 95.21 11.46 

KKG-CT2 55 16 23 29.09 70.91 85.42 93.54 9.51 

j60 

Pri-DT 18 2 2 11.11 22.22 72.50 73.33 1.15 

Chri-DT 11 0 0 0.00 0.00 75.42 75.42 0.00 

KKG-DT1 10 0 2 0.00 20.00 75.21 75.63 0.55 

KKG-DT2 11 0 4 0.00 36.36 75.21 76.04 1.11 

Art-CT 37 7 13 18.92 54.05 55.42 59.58 7.52 

Kone-CT 3 0 0 0.00 0.00 2.08 2.08 0.00 

KKG-CT1 34 3 11 8.82 41.18 64.58 67.50 4.52 

KKG-CT2 39 8 14 20.51 56.41 62.71 67.29 7.31 
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Table 4.6 shows a detailed analysis of good quality solutions for different RS 

and RF parameter settings for problem set j30. The maximum value for each 

cell is 30 instances. This also applies to Tables 4.7 and 4.8. According to this 

table, problem instances with low RS value (i.e., 0.20) and high RF values 

(i.e., 0.75, and 1.00) are the most difficult RCPSP to solve by the 

mathematical models considered. Note that only the proposed KKG-CT1 and 

KKG-CT2 models have managed to solve a significant percentage of these 

problem instances. The most difficult problem instances for KKG-CT1 and 

KKG-CT2 are those with RS={0.20, 0.50} and RF=1.00. It should be noted 

that discrete-time models solved almost all problems with RS=0.50 and 

RF=1.00, but manage to solve just a very small number of problem instances 

with RS=0.20 and RF={0.75, 1.00}. The majority of the remaining problem 

instances in problem set j30 have been solved by the mathematical models 

considered except for the Kone-CT model, which performed poorly. The 

proposed KKG-CT1 formulation found the most good quality solutions, 

resulting into a 95.21% good solutions percentage. 

 

Table 4.6. Detailed analysis of good quality solutions per RS and RF parameter setting for 

j30 

Parameter Mathematical Formulation 

RS RF Pri-DT Chri-DT KKG-DT1 KKG-DT2 Art-CT Kone-CT KKG-CT1 KKG-CT2 

0.20 0.25 30 30 30 30 30 16 30 30 

0.20 0.50 14 23 27 30 8 8 30 30 

0.20 0.75 0 4 6 7 0 1 29 27 

0.20 1.00 0 6 3 2 0 2 23 18 

0.50 0.25 30 30 30 30 30 19 30 30 

0.50 0.50 30 30 30 30 29 11 30 30 

0.50 0.75 30 30 30 30 23 6 28 28 

0.50 1.00 27 26 28 30 4 2 18 19 

0.70 0.25 30 30 30 30 30 26 30 30 

0.70 0.50 30 30 30 30 30 14 30 30 

0.70 0.75 30 30 30 30 30 12 30 30 

0.70 1.00 30 30 30 30 27 10 29 27 

1.00 0.25 30 30 30 30 30 29 30 30 

1.00 0.50 30 30 30 30 30 28 30 30 

1.00 0.75 30 30 30 30 30 24 30 30 

1.00 1.00 30 30 30 30 30 26 30 30 

Good solutions 401 419 424 429 361 234 457 449 

Good (%) 83.54 87.29 88.33 89.38 75.21 48.75 95.21 93.54 
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Problem Set j60 

 

Table 4.5 also shows a detailed analysis of the suboptimal solutions found 

from each mathematical model for problem set j60. Once again, we observe 

the higher quality of the suboptimal solutions found from continuous-time 

formulations in comparison with those reported by discrete-time models. For 

example, 20.51% of the suboptimal solutions reported by KKG-CT2 are non-

proven optimal, and 56.41% of the suboptimal solutions are either non-

proven optimal or have a gap from the optimal solution lower than 3%. 

Again, it should be noted that the corresponding percentages are relatively 

low for the discrete-time formulations. The detailed analysis of good quality 

solutions for different RS and RF parameter settings for problem set j60 is 

summarised in Table 4.7.  

 

Table 4.7. Detailed analysis of good quality solutions per RS and RF parameter setting for 

j60  

Parameter Mathematical Formulation 

RS RF Pri-DT Chri-DT KKG-DT1 KKG-DT2 Art-CT Kone-CT KKG-CT1 KKG-CT2 

0.20 0.25 23 29 29 30 17 0 30 30 

0.20 0.50 0 0 0 0 0 0 1 0 

0.20 0.75 0 0 0 0 0 0 0 0 

0.20 1.00 0 0 0 0 0 0 0 0 

0.50 0.25 30 30 30 30 30 0 30 30 

0.50 0.50 27 28 28 28 8 0 19 19 

0.50 0.75 20 22 23 24 2 0 4 6 

0.50 1.00 12 13 13 13 1 0 2 2 

0.70 0.25 30 30 30 30 30 0 30 30 

0.70 0.50 30 30 30 30 30 0 30 30 

0.70 0.75 30 30 30 30 27 0 29 29 

0.70 1.00 30 30 30 30 21 0 29 27 

1.00 0.25 30 30 30 30 30 6 30 30 

1.00 0.50 30 30 30 30 30 2 30 30 

1.00 0.75 30 30 30 30 30 1 30 30 

1.00 1.00 30 30 30 30 30 1 30 30 

Good solutions 352 362 363 365 286 10 324 323 

Good (%) 73.33 75.42 75.63 76.04 59.58 2.08 67.50 67.29 

 

It is demonstrated clearly that the most hard RCPSPs to solve by the 

mathematical models considered are those with low RS value (i.e., 0.20) and 

medium-to-high RF values (i.e., 0.50, 0.75, and 1.00); notice the inability of 

all models to solve these problem instances. Additionally, problem instances 
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with RS=0.50 and RF={0.75, 1.00} are hard to solve for continuous-time 

models, however discrete-time models perform considerably better. The 

majority of the remaining problem instances, in problem set j60, has been 

solved by the mathematical models considered except for the Kone-CT model, 

which again had an extremely poor performance featuring just a 2.08% good 

solutions percentage. The proposed KKG-DT2 formulation found the largest 

number of good quality solutions, resulting into a 76.04% of good solutions. 

Problem Set RanGen2 

 

Table 4.8 presents the computational analysis for Sets 2 to 5 for RanGen2. 

Note that the computational analysis for Set 1 can be found in Table 4.4 (see 

RanGen2-A problem set). With respect to Good (%) values, the KKG-CT1 

performs best in Set 1, 3 and 5, and KKG-CT2 in Set 2, while in Set 4 they 

both report a percentage of 70 % of good solutions. It is worth noticing that 

the continuous-time models proposed (KKG-CT1 and KKG-CT2) perform 

better than any discrete-time model considered in all sets of the RanGen2 

problem set. Once again, lower Gap (%) values are observed for the 

continuous-time formulations in comparison with those of the discrete-time 

models. For instance, in Set 4, KKG-DT2 and KKG-CT2 report a 65.42% and 

62.50% of optimal solutions, respectively. Nevertheless, KKG-CT2 features a 

higher Good (%) percentage (70.00%) than that of KKG-DT2 (67.08%), due 

to the fact that KKG-CT2 reports many good suboptimal solutions which are 

either non-proven optimal or have a gap from the optimal solution lower than 

3%. 

 
According to the computational results in Table 4.8, Sets 1, 2, and 4 seem to 

include the hardest RCPSP problem instances for the mathematical models 

considered. Also, note that KKG-CT1 and KKG-CT2 solved very successfully 

almost all problem instances of Set 3. It is worth mentioning that KKG-DT2 

model outperforms the Chri-DT model in all sets apart from Set 5, and the 

Pri-DT model is the worst discrete-time model in all sets. On average, Kone-
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CT performs better than Art-CT in contrast with the previous problem sets j30 

and j60. 

 
Table 4.8. Computational analysis for problem Set 2 to 5 for RanGen2  

Problem 
Set 

Model 
Feasible 

(%) 
Good 
(%) 

Optimal 
(%) 

Gap 
(%) 

ΔHEUR 
(%) 

ΔCPM 
(%) 

Optimal 
CPU s 

Set 2 

Pri-DT 64.44 52.22 49.44 13.02 6.46 5.77 34.14 

Chri-DT 77.78 54.44 54.44 11.79 6.39 7.48 19.50 

KKG-DT1 78.33 56.11 52.78 12.06 6.48 6.97 37.96 

KKG-DT2 83.89 56.67 55.56 12.81 6.40 7.93 30.42 

Art-CT 26.11 23.33 16.11 2.69 2.33 8.91 31.02 

Kone-CT 67.78 46.67 18.89 4.51 5.18 2.11 105.26 

KKG-CT1 80.56 61.67 53.33 6.44 5.92 10.08 17.23 

KKG-CT2 81.67 64.44 55.00 7.06 6.24 9.79 27.86 

         

Set 3 

Pri-DT 67.92 64.17 58.75 3.88 0.66 10.71 13.81 

Chri-DT 81.25 71.67 67.92 5.50 0.91 13.17 18.76 

KKG-DT1 74.58 69.58 65.83 5.71 0.87 12.89 36.39 

KKG-DT2 81.25 72.50 70.00 7.50 1.02 14.06 28.61 

Art-CT 70.00 67.08 62.92 2.30 0.73 11.76 22.86 

Kone-CT 91.25 79.17 33.75 1.73 0.25 4.69 13.06 

KKG-CT1 99.17 94.58 81.25 2.01 1.69 22.16 22.64 

KKG-CT2 98.33 94.17 81.25 2.44 1.72 21.72 20.15 

         

Set 4 

Pri-DT 75.00 62.50 60.00 9.68 4.88 3.58 27.06 

Chri-DT 86.25 66.67 64.17 9.77 5.29 4.30 16.13 

KKG-DT1 86.25 67.50 63.33 11.54 5.26 4.13 30.47 

KKG-DT2 86.67 67.08 65.42 11.54 5.37 4.64 16.65 

Art-CT 42.92 39.17 30.00 2.94 2.03 1.81 23.36 

Kone-CT 76.25 57.92 32.08 4.02 3.12 1.05 52.59 

KKG-CT1 83.75 70.00 63.33 6.14 4.94 5.65 21.38 

KKG-CT2 83.75 70.00 62.50 5.30 4.79 4.68 12.43 

         

Set 5 

Pri-DT 74.58 64.58 61.67 10.57 4.47 3.74 23.91 

Chri-DT 85.42 67.92 66.67 11.41 4.84 4.71 14.40 

KKG-DT1 83.75 67.50 66.25 11.63 4.79 4.62 31.75 

KKG-DT2 87.92 67.08 66.67 12.67 4.84 4.71 13.02 

Art-CT 47.50 43.33 32.92 2.50 2.45 1.86 28.89 

Kone-CT 76.25 59.17 32.08 3.97 2.79 0.51 35.53 

KKG-CT1 91.25 74.17 67.92 6.52 4.96 7.22 19.13 

KKG-CT2 88.75 72.92 67.08 5.84 4.90 7.03 12.87 

 

4.8 Conclusions 

 

This chapter presents two BIP discrete-time models (KKG-DT1, KKG-DT2) and 

two MIP continuous-time formulations (KKG-CT1, KKG-CT2) followed by a 

detailed comparison with four existing literature models using 2760 RCPSPs. 

Overall, KKG-CT1 and KKG-CT2 have been found to be the best models for 
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the problems addressed. The detailed and comprehensive computational 

analysis reveals some interesting features of the problems solved and the 

mathematical models considered. More specifically, it has been observed, that 

problem instances with low RS values and high RF values are the most hard 

to solve, according to the computational results in problem sets j30 and j60. 

Moreover, it seems that increasing the number of activities directly affects 

negatively the computational performance of continuous-time models since 

the number of sequencing binary variables is increased dramatically, while 

discrete-time models are affected less due to the fact that the number of the 

decisions variables principally depends on the time points. Notice that, in 

contrast to continuous-time models, the performance of discrete-time models 

is strongly affected (positively) from the bounds imposed on the 

preprocessing phase. In addition, continuous-time formulations feature lower 

Gap (%) values compared with discrete-time models. Also, the event-based 

Kone-CT formulation generally performs poor and becomes inappropriate for 

large number of activities due to the huge model size. Finally, it has been 

demonstrated that continuous-time models, which have received little 

attention in the literature so far, could deal very successfully and efficiently 

with RCPSPs. 

 

At this point, it should be emphasised that in discrete-time approaches: (a) 

the scheduling horizon is divided into a finite number of time intervals with 

predefined duration, and therefore (b) activities can start or end only at the 

boundaries of these time periods. For this reason, in real-world problems 

where the duration of the activities may not be integer numbers, a finer 

division of the scheduling horizon (resulting in bigger model sizes), and/or 

duration time rounding (sacrificing optimality) should be employed. An 

inherent special advantage of continuous-time approaches is that timing 

decisions can be represented explicitly. However, the modelling of resource 

limitations needs more complicated constraints involving many big-M terms, 

which tends to increase the model complexity. 
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4.9 Nomenclature 

 

Indices/Sets 

 1,...,0:,  nAji  activities (including start 0 and end 1n  dummy 

activities) 

 mk ,...,1:  renewable resources 

 hTt ,...,0:  time points 

 nJe ,...,1:  event points 

 

Subsets 

B activity pairs   2, Vji   sharing at least one renewable 

resource 

C transitive closure of subset E 

D pairs of activities   Cji ,  where according to the 

preprocessing phase ii ESLF   

E pairs of activities  ji,  where j is an immediate successor of 

activity i; CE   

G pairs of activities   2, Vji   that cannot be processed 

simultaneously due to resource capacity limitations, BG   

K pairs of activities with known precedence relations, 

 DCK   

P pairs of activities that could overlap,  DCGBP  \   

S pairs of activities that cannot overlap due to resource 

capacity limitations, excluding those with known precedence 

relations,  DCGS  \  

 nV ,...,1:  set of non-dummy activities, AV   

 

Parameters 

EFi earliest finishing time of activity i 

ESi earliest starting time of activity i 
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LFi latest finishing time of activity i 

LSi latest starting time of activity i 

rik renewable resource k requirements for activity i 

Rk maximum capacity of renewable resource k 

ζi number of predecessors of activity i 

θi number of successors of activity i 

λ a small number (= 0.1 in this work) 

pi duration of activity i 

 

Continuous Variables 

si starting time of activity i   

fi finishing time of activity i   

de time of event point e 

qijk quantity of resource k transferred from activity i (at the end 

of its processing) to activity j (at the beginning of its 

processing)   

 

Binary Variables 

vie = 1, if activity i starts at event point e, or if it is still being 

processed immediately after event point e 

wit = 1, if activity i is being processed in the time interval 

between time points t and t+1 

xij = 1, if activity i is completed before activity j starts (remark: 

in KKG-CT1 and KKG-CT2, for activities   Pji ,  this 

definition is relaxed, and 1ijx  if activity i starts before 

activity j)    

yit = 1, if activity i starts at time point t 

zij = 1, if activity i is overlapped by activity j 



 

154 



 
Chapter 5 

155 

Chapter 5 

Mathematical Formulation for Resource-

Constrained Project Scheduling Problems with 

Generalised Precedence Relations 

 

This chapter presents a new precedence-based continuous-time formulation 

for a challenging extension of the standard single-mode resource-constrained 

project scheduling problem that also considers minimum and maximum time 

lags (RCPSP/max), under the objective of minimizing the project makespan. 

The proposed linear mixed integer programming model is based on the 

definition of two types of binary variables to express: (i) the relative 

sequencing of activities, and (ii) the overlapping conditions. Two types of 

continuous variables for activity starting and finishing times are also used. 

Additionally, a number of new activity subsets are introduced for modelling 

purposes, in order to reduce the model size and tighten the proposed model. 

The new mathematical formulation is used to conduct an extensive 

computational study on a total of 2,250 well-known and open-accessed 

benchmark problem instances from the literature. Various problem sizes are 

considered in the test sets involving 10, 20, 30, 50 and 100 activities. The 

computational results illustrate the efficient performance of the proposed 

mathematical formulation. Finally, interesting observations are made through 

the computational study and potential future research lines are proposed. 

 

5.1 Introduction 

 

The classical single-mode RCPSP uses finish-start precedence relations with 

zero time-lags, which means that an activity can only start as soon as all its 

predecessor activities have finished. This work studies a challenging 
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extension of the RCPSP in which activity starting times are constrained by 

generalised precedence relations (also called temporal constraints or 

minimum and maximum time lags or time windows). This extension is 

denoted as RCPSP/max or PS | temp | Cmax, using the notation of Brucker et al. 

(1999). More specifically, PS | temp | Cmax notation specifies the single-mode 

project scheduling problem (PS) under general temporal constraints given by 

minimum and maximum start-start time lags between activities (temp) while 

minimizing the makespan of the project (Cmax).  

 

Elmaghraby and Kamburowski (1992) defined four types of generalised 

precedence relations (GPR): Start-Start (SS), Start-Finish (SF), Finish-Start 

(FS) and Finish-Finish (FF) to model minimum and maximum time-lags. For 

activity pairs  ji, , the minimum time-lag (  xSSij
min ,  xSFij

min ,  xFFij
min , 

 xFS ij
min ) specifies that activity j can only start/finish when its predecessor i 

has already started/finished for a certain x time period (in time units). A 

maximum time-lag (  xSSij
max ,  xSFij

max ,  xFFij
max ,  xFS ij

max ) specifies that 

activity j should start/finish at the latest x time periods after the start/finish of 

activity i. The various types of GPRs can be represented in a standardised 

form by reducing them to minimum SS precedence relationships, through the 

transformations proposed by Bartusch et al. (1988).  

 

From a modelling point of view, time lags are necessary to represent partial 

or total overlapping of activities, release or ready times, project milestones 

and deadlines, time windows or time-varying resource requirements. For even 

more applications of GPRs to modelling real-life project scheduling problems, 

we refer the reader to Neumann and Schwindt (1995).  

 

The addition of maximal time lags to the classical RCPSP, significantly 

increases the complexity of the problem. Moreover, the generation of 

problem instances could be problematic because infeasible problems might be 

generated. The RCPSP/max is an NP-hard problem and even the theoretically 
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easier problem of checking its feasibility is NP-complete (Hartmann and 

Briskorn, 2010).  

 
The main contribution of this chapter is that it efficiently solves the 

RCPSP/max using a pure mathematical programming approach. It is an 

extension of the KKG-CT2 model introduced in the previous chapter, and to 

the best of our knowledge, it is the only continuous-time approach for the 

RCPSP/max, in the OR literature. The only other mathematical model for the 

RCPSP/max is proposed Bianco and Caramia (2012b), but it is a discrete-time 

one. The formulation is used to calculate a lower bound through a 

Langrangean relaxation and a branch-and-bound algorithm which exploits 

both. 

 
The rest of the chapter is organised as follows. In Section 5.2, the 

RCPSP/max problem is formally stated. Section 5.3 describes the 

preprocessing phase employed in this work. Section 5.4 describes in detail 

the new continuous-time Mixed-Integer Programming (MIP) formulation. A 

brief description of the problem instance sets considered and a 

comprehensive computational study are presented in Section 5.5. Finally, 

concluding remarks are drawn in Section 5.6. 

 

5.2 Problem statement 

 

The single-mode RCPSP/max consists of a set of n activities  nV ,...,1 , that 

have to be processed without interruption, under the objective of minimising 

the project makespan. For modelling purposes, dummy activities 0 and n+1 to 

represent the beginning and completion of the project are defined. Set 

 1,,...,1,0  nnA  defines the new complete set of activities. The processing 

time of activity i is denoted by ip , (for dummy activities 010  npp ).  

 
The project utilises a set of renewable resource types  mk ,...,1: . Each 

activity i requires ikr  units of resource k during each time period of its 
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execution ( 0,10   knk rr ). The maximum available capacity of each resource 

k is kR  units. Renewable resources fully retrieve the occupied resource 

amount after the completion of each activity. In other words, the temporary 

availability of the renewable resources at every time is constrained.  

 

Modelling activities with a piecewise constant resource requirement  trik  

(i.e., activity i requires an amount )(trik  of resource k , during the t th 

time unit it is in process) can be easily done by replacing them with several 

other activities which are “tied together” through temporal constraints. 

Similarly, time-varying resource availability )(tRk  (i.e., a specific quantity 

)(tRk  of resource k is available at time t) can be modelled by introducing 

dummy jobs with fixed start times which consume excessive resources. 

Therefore, it is safe to assume that )(trik  and )(tRk  are constant over time 

without any loss of generality (Fest et al., 1998).  

 

Time lags ijd  between activity pairs ),( ji  are included in set E and take 

integer values (i.e., ijd ). Time lags can be presented as an activity-on-

node (AON) network  dEAG ,, , where nodes correspond to the set of 

activities A and set E represents the arcs with weight d. Minimal lags are 

usually represented as forward arcs and maximal lags as backward arcs. 

Given that the various types of minimum and maximum time lags (SS, SF, FS, 

FF) can be transformed to a single type using the rules by Bartusch et al. 

(1988), from now on we will consider them to be of type start-start. Time 

lags can be represented in the following general form: 

iijj sds     Eji  ,  

where is  ( js ) is the starting time of activity i  ( j ). The case 0ijd  

corresponds to a minimum time lag of ijd  units, stating that activity j has to 

start at least ijd  time units after the start time of activity i. The case 0ijd  
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corresponds to maximum time lag units, stating that activity i has to start at 

the latest ijd  time units after the start time of activity j. By exploiting time 

lags, we can define a set L containing pairs of activities  ji,  that have real 

precedence relations (i.e., the finishing time of activity i is smaller or equal to 

the starting time of j). Specifically, when 
iij pd   holds, activity j cannot 

begin earlier than the finish of activity i ( iii fps  , with if  the finishing 

time of activity i). 

 

A solution for the RCPSP/max is a list of start times or schedule S = ( 0s , 1s , …, 

ns , 1ns ), where 00 s , and 1ns  corresponds to the makespan of the project. 

 

5.3 Preprocessing 

 

In this chapter some fast computable bounds are considered, however other 

bounding techniques could be used. First, a trivial upper bound UB equal to 

 
 












Ai

ij
Eji

i dp
,
max,max  is calculated.  

 

Defining an earliest starting time ( iES ) for each activity i is also a common 

preprocessing step. It can be computed using the first of the Special 

Implementations of the Modified Label Correcting Algorithm of Ahuja et al. 

(1993); which is of  EAO  time complexity. A label correcting algorithm is 

iterative and assigns tentative distance labels j  to nodes at each step. The 

distance labels are estimates of (i.e., lower bounds on) the longest path 

distances and are considered as temporary until the final step where j  is 

the longest path length from the source node 1 to node j. In each pass, arcs 

  Eji ,  are scanned one by one, and condition ijij d  is checked. If the 

arc satisfies this condition, ijij d  is updated. The algorithm stops when 
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no distance label changes during an entire pass. Finally, we set jjES  . 

The algorithm runs as displayed in Algorithm 1. 

 

 

 

Algorithm 1. Modified label-correcting algorithm 

 

algorithm modified label-correcting; 

begin 

  0:0   and   0:0 pred ; 

  :j  for each node  0 Aj ; 

falsenochange : ; 

while truenochange   do 

begin 

 truenochange : ; 

for each   Ejiarc ,  do 

begin 

if ijij d    then 

begin 

ijij d  ; 

falsenochange : ; 

end; 

end; 

end; 

end; 

 

 

Through the iES  we can easily calculate the earliest finishing times iEF  by 

adding the activity duration ( iii pESEF  ). We can also set a trivial lower 

bound to the time horizon, equal to the earliest finishing time of the dummy 

end activity ( 1 nEFLB ). It should be noted that other preprocessing 

methods could be used, potentially yielding better bounds at the expense of 

CPU time. Here we have chosen a relatively simple method that requires 

negligible computational effort. 
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5.4 The mathematical model 

 

The proposed MIP mathematical formulation relies on a continuous-time 

approach. Binary sequencing variables are defined to represent activity 

ordering and overlapping, and continuous variables are used for activity 

starting and finishing times. The presented formulation is an extension of the 

KKG-CT2 model introduced in the previous chapter. For projects that contain 

activities with non-integer durations, continuous-time formulations are more 

efficient than discrete-time formulations. In the proposed approach, 

continuous variables is , if  defined for each activity   1 nVi , denote 

its starting and finishing time, while binary sequencing variables ijx  define the 

relative execution order of activities i and j. For pairs of activities that cannot 

be executed in parallel (e.g., activities for which the sum of resource 

requirements exceeds the maximum availability, etc), 1ijx  if activity i is 

completed before activity j starts processing (i.e., 
ji sf  ) , otherwise is 0. 

However, for pair of activities that could execute in parallel, ijx  is used to 

define the relative sequencing between the activities' starting times. More 

specifically, 1ijx  if activity i begins processing before (i.e., ji ss  ), or 

exactly at the same time as activity j starts and j has a larger index (i.e., 

ji ss   with ji  ), otherwise is equal to 0. 

 

In order to model renewable resource constraints, pairs of activities that 

could be executed in parallel should be defined. That can be done by 

extending the concept of overlapping activities (Marchetti and Cerdá, 2009). 

By definition, an activity j that is overlapping the starting time of activity i 

must satisfy the following conditions (see Fig. 5.1): 

A) it should require at least one resource k in common with activity i (i.e., 

0ikr  and 0jkr ), 

B) it starts before or exactly at the time that activity i starts processing 

(i.e., ij ss  ) and 
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C) it is completed after the starting time of activity i (i.e., 
ij sf  ). 

To model condition (B), the definition of binary sequencing variables jix  is 

extended so as to control the relative ordering of the starting times of parallel 

activities i and j. To model condition (C) we introduce binary overlapping 

variables jiz , which are equal to 1 whenever activity j is completed after 

activity i starts processing (i.e., when 
ij sf  ). 

 

 

 

Figure 5.1. Example of overlapping conditions for activities 

 

Finally, for modelling purposes, three new sets of activity pairs are 

introduced:  

(i) set C  is the transitive closure of immediate predecessor subset L , 

(ii) set B  that contains pairs of activities   2, Vji   sharing at least one 

renewable resource and 

(iii)  set G  that contains pairs of activities   Bji ,  that cannot be 

processed simultaneously due to resource capacity limitations (i.e., 

kjkik Rrr  ). 
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Two more composite sets are defined by using the previously defined sets of 

activities. The first set CGS \  contains pairs of activities that cannot 

overlap due to resource capacity limitations, excluding those with known 

precedence relations. Notice that for this set only variables ijx  need to be 

defined. And the second set  CGBP  \  contains pairs of activities that 

could overlap. For such activity pairs, both ijx  and jiz  variables need to be 

defined. The preprocessing time to determine sets B, C, G, L, P and S is 

negligible. Using the above definition of sets and decision variables, the 

following mathematical formulation is proposed: 

 

1maxmin  nfC   (1) 

00 s   (2) 

iii psf     1 nVi  (3) 

ji sf        CjinVjVi  ,:1,  (4) 

iijj sds     Eji  ,  (5) 

   
jiiij xESMsf  1    jiSji  :,  (6) 

 
jijji xESMsf     jiSji  :,  (7) 

   
jiiij xESMss  1    jiPji  :,  (8) 

 
jijji xESMss     jiPji  :,  (9) 

  jiiij zESMsf     jiPji  :,  (10) 

 

 

 

 
kijjijk

Pji

rij

jijijk

Pji

rij

ik Rxzrxzrr
jkjk












,

0:

,

0:

1  0:,  ikrRkVi  (11) 

ijji zx     jiPji  :,  (12) 

jiji zx 1    jiPji  :,  (13) 

 1,0jix       jiSPji  :,  

 1,0jiz     jiPji  :,  (14) 

iiii EFfESs  ,    1 nVi  
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Equation (1) minimises the completion time of dummy end activity n+1, 

representing the project completion. Note that the makespan is lower than or 

equal to the upper bound UB calculated in the preprocessing phase. The 

starting time of the dummy start activity is equal to zero, according to 

constraint (2). Constraints (3) correlate the starting and finishing times for 

activities   1 nVi  throughout their execution. Constraints (4) set all a 

priori known precedence relations between activities   Cji , , through their 

starting and finishing times. Minimum and maximum time lags ijd  are 

imposed by constraints (5). Big-M constraints (6) to (9) define the sequencing 

constraints between any pair of activities   Cji ,  when ji  . The value of 

big M parameters could strongly affect the performance of any model. For 

this reason, and in order not to use any arbitrary values for the big M 

parameters, a value equal to UB+1 is used, the trivial upper bound to the 

time horizon, calculated in Section 5.3. To reduce the solution search space, 

the value of the big M parameters is properly adjusted by the ES of the 

corresponding activity. It should be noted that constraints (8) and (9) extend 

the definition of sequencing binary variable ijx  to also control the starting 

times of the parallel tasks i and j. Also, notice that a small positive parameter 

ι is included to constraint (9) so as to deal with the case that activities i and j 

start processing at the same time. That way, when ji ss   the activity with 

the higher index is assumed to start last (i.e., if ji ss   and ji  , then 

1jix ). In the case studies, parameter 1.0 . Overlapping condition (C) is 

modelled by constraints (10), and renewable resource constraints are given 

by constraints (11). By splitting the resource demand into two separate 

summations containing  1 jiji xz  when ij   and  
ijji xz   when ij  , we 

are able to detect overlapping between activity pairs   Pji ,  and properly 

model the resource constraints. 

 
Constraints (8) to (11) state that if activity i starts processing before activity j 

(i.e., 1ijx ), then activity j has to finish after activity i starts (i.e., 1jiz ). 
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The only case that one of the parentheses  1 jiji xz  and  
ijji xz   in the 

resource constraints (10) takes the value of 1 is when activity j overlaps i 

(i.e., 1jiz ) and activity j starts processing before i (i.e., 1jix ). It can be 

easily proven that for activities which could overlap   Pji , , if 1ijx  that 

means that 
jji fss  , and consequently 0 ij sf  which according to 

constraints (10) gives 1jiz . Table 5.1 displays all possible combinations for 

variables jiz  and ijx  for activities   Pji ,  that could be executed in parallel. 

In the first two cases wherein 0jiz , no overlapping occurs since activity i 

starts after the completion of activity j (i.e., 
ijj sfs  ). Especially, in the 

second case, notice that if 0jiz , 1ijx  and 0jix  that would mean that 

jij ssf  , which is obviously impossible. For this reason, if 0jiz  then 

always 0ijx . In the last two cases wherein 1jiz , overlapping occurs if and 

only if activity j begins processing before activity i starts (i.e., 0ijx ), 

because in that case holds 
jij fss  .  

 
Table 5.1 Modelling of binary variables jiz  and ijx  for activities   Pji ,  

Constraints (10) Constraints (8) – (9) Constraints (11) 

ij sf   jiz  ji ss   ijx  jix   1 jiji xz   
ijji xz   

≤ 0 0 > 0 0 1 0 0 

≤ 0 0 < 0 1 0 impossible impossible 

> 0 1 < 0 1 0 0 0 

> 0 1 > 0 0 1 1 1 

 
Constraints (12) and (13) are tightening constraints that correlate directly 

sequencing and overlapping binary variables. Finally, the domain of the 

decision variables is given by constraints (14). 

 
In summary, the proposed continuous-time MIP model for the RCPSP/max 

consists of constraints (1) - (14). 
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5.5 Computational Results 

 

In this section we present the problem sets solved by the proposed 

mathematical formulation and an extended computational study. All problem 

instances have been solved on an Intel Core i5 CPU M430 2.27GHz with 4GB 

RAM using CPLEX 11.1.1 via a GAMS 22.8.1 (Rosenthal, 2012) WIN 

6007.6015 VIS interface under standard configurations. A maximum resource 

time limit of 600 CPU s has been set for all problem instances. 

 

5.6 Description of Problem Sets 

 

Three widely-used test sets consisting of a total of 2,250 problem instances 

have been solved by the proposed mathematical formulation. These sets 

were generated by ProGen/max, a random networks generator by Schwindt 

(1996) capable of creating project scheduling problems of varying structure, 

constrainedness and difficulty. It is an extension of the instance generator 

ProGen, developed by Kolisch and Sprecher (1996) which was designed to 

create instances with ordinary precedence constraints only. It uses two 

generating methods: DIRECT, which directly generates entire projects, and 

CONTRACT, which first generates cycle structures, upon which the (acyclic) 

contracted project network is generated. At this point, we point out that the 

generator does not always produce instances with a feasible solution. These 

instances are included in the computational study, since proving their 

infeasibility is an NP-complete problem. 

 
The first set was taken from Schwindt (1998a) and contains 270 problems for 

each network size of  30,20,10n  activities. These problem sets will be 

referred to as j10, j20 and j30, for  30,20,10n  respectively. The second set, 

from Franck et al. [13] includes 90 instances for each network size with 

 100,50,20,10n . From now on, these test sets will be referred as ubo10, 

ubo20, ubo50 and ubo100, depending on the number of activities. Finally, the 

third set was generated by Schwindt (1996) and it contains 1080 instances 
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with 100 activities. We will refer to this set as CD in our study. The three sets 

are summarised in Table 5.2. 

 
Table 5.2 Test instance characteristics 

Set 
# of 

activities 
# of 

instances 

# of  
infeasible 

instances* 

% of  
infeasible 

instances* 

j10 10 270 83 30.74 

j20 20 270 86 31.85 

j30 30 270 85 31.48 

ubo10 10 90 17 18.89 

ubo20 20 90 20 22.22 

ubo50 50 90 17 18.89 

ubo100 100 90 12 13.33 

CD 100 1,080 21 1.94 

Total 2,250 341 15.16 

* problems that are reported to be infeasible 

 

5.7 Computational Study Results 

 

Before presenting the results we briefly discuss the notation used. Solved 

instances (%) reports the percentage of problems that gave a feasible 

solution or were proven infeasible (Feasible and Proven Infeasible). Optimally 

Solved Instances (%) represents the percentage of proven solutions using 

the suggested formulation, optimal or infeasible (Proven Optimal and Proven 

Infeasible). Feasible (%) is the percentage of instances for which a feasible 

solution was found (optimal or not). Proven Optimal (%) reports the 

percentage of problems for which an optimal solution was found within the 

predefined time limit. Proven Infeasible (%) is the percentage of reported 

infeasible problems that were proven by the proposed model. Average CPU 

(s) is the average computational time in CPU seconds for all instances in the 

set, while Optimal CPU (s) considers only the Optimally Solved Instances. 

Table 5.3 presents the computational results for all test sets solved. 

 



 
Mathematical Formulation for the RCPSP/max 

168 

Table 5.3 Computational results for all instances including reported infeasible, within 

predefined time limit 600 CPU s 

Set 
Solved 

Instances  
(%) 

Optimally 
Solved 

Instances  
(%) 

Feasible  
(%) 

Proven 
Optimal 

(%) 

Proven 
Infeasible  

(%) 

Average 
CPU  

(s) 

Optimal 
CPU  

(s) 

j10 100.00 100.00 69.26 69.26 30.74 0.06 0.06 

j20 99.63 95.56 67.78 63.70 31.85 31.24 4.79 

j30 97.04 85.56 65.56 54.07 31.48 99.60 15.11 

ubo10 100.00 100.00 81.11 81.11 18.89 0.06 0.06 

ubo20 100.00 100.00 77.78 77.78 22.22 0.59 0.59 

ubo50 93.33 78.89 74.44 60.00 18.89 186.44 75.74 

ubo100 44.44 22.22 31.11 8.89 13.33 483.53 70.54 

CD 54.26 43.33 53.43 42.50 0.83 425.73 197.54 

 
All reported infeasible instances were proven, except those of the CD test set, 

wherein 9 out of 21 (0.83%) where identified (see Tables 5.2 and 5.3). All 

instances in sets j10, ubo10, ubo20 and most (95.56%) in j20 are easily 

solved to optimality with few computational requirements. As the number of 

activities increases in sets j30 and ubo50, we observe that the formulation 

still finds a high number of optimally solved instances (second column of 

Table 5.3), with percentages 85.56% and 78.89% respectively. When taking 

into account all feasible solutions (first column of Table 5.3), the 

corresponding percentages rise to 97.04% and 93.33%. Finally, for the larger 

sets ubo100 and CD, which involve 100 activities, the percentage of solved 

instances drops to 44.44% and 54.26%, respectively. For the CD set, the 

number of optimal solutions (43.33%) is almost twice that of the ubo100 set 

(22.22%). It is worth noticing that the Optimal CPU time which refers to 

optimally solved instances is quite lower than the total Average CPU time. 

This is because instances for which a solution was not found or non-proven 

deplete the 600 CPU s time limit. 

 
Table 5.4 displays the computational results normalised to the reported 

feasible instances (i.e., excluding the reported infeasible instances). Feasible 

instances solved (%) represents the percentage of feasible solutions found. 

Good solutions (%) reports the percentage of optimal and non-proven 

solutions with a deviation from the reported optimal or best solution less than 
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3%. Optimal (%) are the optimal solutions found and Average gap (%) is the 

average gap reported by the solver, for non-proven solutions only.  

 
Table 5.4 Results for feasible instances 

Set 
Feasible 

instances 
solved (%) 

Good 
solutions 

(%) 

Optimal 
(%) 

Average 
gap (%) 

j10 100.00 100.00 100.00 0.00 

j20 99.46 94.02 93.48 10.58 

j30 95.68 84.32 78.92 17.40 

ubo10 100.00 100.00 100.00 0.00 

ubo20 100.00 100.00 100.00 0.00 

ubo50 91.78 83.56 73.97 12.91 

ubo100 35.90 30.77 10.26 10.43 

CD 54.49 49.67 43.34 7.18 

 

Notice that for sets with up to 50 activities, although the percentage of 

optimal solutions decreases as the number of activities increases, the number 

of feasible instances solved and good solutions remains high.  

 
Through the computational study, the proposed formulation found a number 

of solutions that are better than the ones reported in the online Project 

Scheduling Problem Library (PSPLIB). In Table 5.5, we present the total 

number of problems for which we found a better solution (# of better 

solutions), the number of optimal solutions that were lower than the best 

upper bound achieved (# of better optimal), the number of problems for 

which the upper bound is now proven to be the optimal solution (# of extra 

proven optimal solutions) and in the final column we display the number of 

better non-proven optimal solutions found. 

 
For sets j10 and ubo10 all optimal solutions are reported, so no better results 

are reported. Set ubo20 contained 4 instances without a reported optimal 

solution. Those solutions were either found or proven by our formulation. For 

project networks with 30 or more activities, a substantial number of better 
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solutions has been found. Especially in set ubo50, that number consists of 

about 1/3 of the problems (29 out of 90). 

 
Table 5.5 Number of solutions better than the ones reported in literature 

Set 
# of 

better 
solutions 

# of better 
optimal 

# of extra 
proven 
optimal 

solutions 

# of better 
non-proven 

solutions 

j10 0 0 0 0 

j20 15 1 13 1 

j30 36 4 24 8 

ubo10 0 0 0 0 

ubo20 4 2 2 0 

ubo50 29 11 11 7 

ubo100 10 1 0 9 

CD 5 0 2 3 

 
Table 5.6 presents an analysis of the instances for which an optimal solution 

was found, which was lower than the reported upper bound, along with the 

corresponding CPU time. 

 
Table 5.6 Optimally solved instances with solution lower than the reported upper 

bound 

Set 
Instance 

# 
Our 

solution 
Best 

reported 
CPU 

Time 

j20 150 46 47 289.12 

ubo20 
15 45 46 12.18 

20 65 66 1.65 

j30 

32 113 114 3.1 

139 88 89 2.82 

170 95 96 7.63 

195 55 58 598.06 

ubo50 

14 153 168 159.81 

18 163 164 45.99 

31 302 308 24.24 

37 229 232 7.04 

42 147 148 256.56 

45 181 187 223.66 

49 145 153 504.86 

52 137 139 78.12 

57 132 133 186.92 

67 243 246 11.17 

68 275 278 4.02 

ubo100 68 538 540 45.43 
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As an illustrative example, the Gantt chart and resource profiles for instance 

195 of the j30 problem set in displayed in Figure 5.2. 

 

 

Figure 5.2. Illustrative example for better optimal solution (Set j30, Instance 195) 

 
Table 5.7 lists the instances for which a better solution than the best reported 

upper bound was found. Note that in some cases the new solution is 

significantly better than the reported one. Instance 33 of set j30 and instance 

67 of ubo100 displayed the greatest improvement in percentage on the upper 

bound with 15.56% and 10.24%, respectively. The improvement percentage 

is calculated by (Reported UB – New UB)/Reported UB. 
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Table 5.7 Non-proven optimal instance with a better solution than the reported upper 

bound 

Set 
Instance 

# 

New solution 
Reported 
solution UB 

Improvement 
(%) 

LB UB 
Gap 
(%) 

LB UB 

j20 167 49.00 50 2 42 52 3.85 

j30 

4 94.05 101 6.88 84 104 2.88 
33 94.00 114 17.54 81 135 15.56 
38 76.22 90 15.31 63 93 3.23 
40 100.70 114 11.67 80 120 5.00 
65 110.08 162 32.05 104 163 0.61 
78 58.91 63 6.49 56 64 1.56 
123 121.43 150 19.05 91 151 0.66 
175 68.10 70 2.71 59 71 1.41 

ubo50 

6 203.99 216 5.56 202 232 6.90 
9 165.01 217 23.96 170 230 5.65 
11 140.00 145 3.45 139 146 0.68 
34 193.34 228 15.2 170 232 1.72 
36 171.00 207 17.39 149 218 5.05 
54 88.00 90 2.22 88 91 1.10 
65 177.23 199 10.94 169 215 7.44 

ubo100 

8 350.92 430 18.39 351 435 1.15 
36 354.01 437 18.99 364 457 4.38 
37 369.86 450 17.81 372 453 0.66 
38 476.00 477 0.21 473 483 1.24 
62 498.82 531 6.06 500 540 1.67 
64 523.73 536 2.29 522 538 0.37 
67 352.59 412 14.42 335 459 10.24 
73 391.99 398 1.51 394 414 3.86 
87 362.89 367 1.12 361 368 0.27 

CD 
760 631.74 679 6.96 661 685 0.88 
817 550.96 569 3.17 558 575 1.04 
992 577.98 615 6.02 578 616 0.16 

 

5.8 Conclusions 

 

This chapter proposes a new continuous-time formulation for the RCPSP/max. 

The suggested mathematical model is based on the concept of overlapping 

conditions, which is modelled through sequencing and overlapping variables. 

In our approach, the model performance is enhanced through simple (i.e., 

with low computational effort) preprocessing techniques that include the 

calculation of upper/lower bounds and earliest starting/finishing times. The 

proposed formulation was tested on 2,250 well-known test instances from the 



 
Chapter 5 

173 

literature, with problems sizes varying from 10 to 100 activities. The 

computational results revealed a number of solutions that are better than the 

ones reported in PSPLIB. 

 
All reported infeasible instances were proven, with the exception of the CD 

test set, wherein 9 out of 21 where identified. For projects with up to 30 

activities, the proposed formulation solved optimally most problems. Problem 

sizes of 50 activities are also dealt efficiently with a feasible solution for 

91.78% and a good solution for 83.56% of the solvable instances. Finally, for 

the larger sets ubo100 and CD that involve 100 activities, the reported results 

were quite satisfactory for a solution method that relies on a mathematical 

formulation taking into consideration the problem sizes. This declining model 

performance is caused by the larger number of activities, which leads to a 

polynomial increase in the number of sequencing and overlapping variables. 

 
With the increasing computational power available, even in personal 

computers, mathematical solvers are becoming capable of dealing with larger 

problems than in the past. Given that the RCPSP/max is an offline problem, 

we can easily accept to increase the time limit of the solver and obtain 

optimal or good suboptimal solutions. 

 

5.9 Nomenclature 

 

Indices/Sets 

 1,...,1,0:,  nAji  activities 

 mk ,...,1:   renewable resources 

 
Subsets 

B   set of activities   2, Vji  , sharing at least one renewable 

resource 

C   transitive closure of subset L  

E   pairs of activities with temporal constraints 
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G  set of activities   2, Vji   that cannot be processed 

simultaneously (due to resource capacity limitations); BG   

L  activity pairs  ji,  where j is an immediate successor of activity 

i; CL   

P  activity pairs that could overlap;  CGBP  \  

S  activity pairs that cannot overlap due to resource capacity 

limitations, excluding those with known precedence relations; 

CGS \  

 nV ,...,1:  set of non-dummy activities i; AV   

 
Parameters 

ikr   renewable resource k requirements for activity i 

kR   maximum capacity of renewable resource k 

λ  a small number (= 0.1) 

Μ  a large number (= UB+1) 

ESi   earliest starting time of activity i defined as 
 

 
ijj

Eji
lES 

,
max  

EFi   earliest finishing time of activity i defined as ESi + pi 

lij  time lag between activities   Eji ,  

pi  processing time of activity i 

UB  upper bound on time horizon 

LB  lower bound on time horizon 

 
Continuous Variables 

si   starting time of activity i 

fi   finishing time of activity i 

 
Binary Variables 

ijx  = 1, if activity i is completed before activity j starts, (remark: 

for activities   Pji ,  this definition is relaxed and 1ijx  if 

activity i starts before activity j) 

ijz   = 1, if activity i finishes after activity j starts 
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Chapter 6 

Conclusions and future work 

 

In this chapter, we summarise the main contributions of this thesis and 

discuss possible future research directions that seem promising. 

 

6.1 Conclusions 

 

The objective of this thesis is to establish a new representation and solution 

framework for RCPSPs utilising techniques from the process scheduling area. 

For this reason, a new network representation method has been developed, 

based on the well-known RTN, as well as a number of mathematical 

programming formulations for the RCPSP and its variants. The computational 

results displayed the efficient performance of the formulations, which 

outperform state-of-the-art models from the literature. 

 

 In Chapter 3, we proposed a new network representation method and 

new MILP models for the RCPSP and the MRCPSP, based on the well-

known RTN process representation from the process scheduling industry. 

The formulations were used to solve some project scheduling problems 

from the online PSPLIB. The computational results of this initial approach, 

indicated that for problems involving more than 30 activities, the proposed 

MILP models cannot lead to a global optimal solution in reasonable 

computational times. However the proven similarities between process 

and project scheduling problems, suggested that exchanging solution 

techniques between the two research fields is both possible and useful. In 

summary, the main objective of this chapter, to establish a new 

framework for RCPSPs utilising techniques from the process scheduling 

area was achieved. 
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 In Chapter 4, four very efficient discrete- and continuous-time 

formulations were developed, followed by a detailed comparison with four 

state-of-the-art models from the literature, using 2760 RCPSPs. Also, a 

number of computationally inexpensive preprocessing steps were taken to 

enhance and simplify the formulations. Overall, the continuous-time 

models have been found to be the best models for the problems 

addressed. The detailed and comprehensive computational analysis 

revealed some interesting features of the problems solved and the 

mathematical models considered. In particular, it has been observed, that 

problem instances with low RS values and high RF values are the most 

hard to solve, according to the computational results in problem sets j30 

and j60. Moreover, it seems that increasing the number of activities 

directly affects negatively the computational performance of continuous-

time models since the number of sequencing binary variables is increased 

dramatically, while discrete-time models are affected less due to the fact 

that the number of the decisions variables principally depends on the time 

points. Notice that, in contrast to continuous-time models, the 

performance of discrete-time models is strongly affected (positively) from 

the bounds imposed on the preprocessing phase. In addition, continuous-

time formulations featured lower Gap (%) values compared with discrete-

time models.  

 

 In Chapter 5 a new continuous-time formulation for the RCPSP/max was 

proposed. The suggested mathematical model is an extension of the KKG-

CT2 model introduced in Chapter 4. The model performance was 

enhanced through simple (i.e., with low computational effort) 

preprocessing techniques that include the calculation of upper/lower 

bounds and earliest starting/finishing times. The proposed formulation 

was tested on 2,250 well-known test instances from the literature, with 

problems sizes varying from 10 to 100 activities. The computational 

results revealed a number of solutions that are better than the ones 

reported in PSPLIB. All reported infeasible instances were proven, with the 
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exception of the CD test set, wherein 9 out of 21 where identified. For 

projects with up to 30 activities, the proposed formulation solved optimally 

most problems. Problem sizes of 50 activities are also dealt efficiently with 

a feasible solution for 91.78% and a good solution for 83.56% of the 

solvable instances. Finally, for the larger sets ubo100 and CD that involve 

100 activities, the reported results were quite satisfactory for a solution 

method that solely relies on a mathematical formulation taking into 

consideration the problem sizes.  

 

6.2 Future Work 

 

The results of this thesis revealed a range of issues and pointed to several 

interesting directions for future work:  

 Further research in devising other continuous- and discrete-time 

mathematical modelling approaches seems promising and highly 

challenging. 

 Of particular interest would be the comparison of the proposed 

formulations with more mathematical models from the literature 

and hopefully some new ones, using the same and possibly larger 

RCPSP problems (i.e. sets j90 and j120). A more extensive 

computational study could provide us with further insight regarding 

the performance of the available mathematical frameworks, and 

could inspire the development of new modelling approaches.  

 Since the new continuous-time models proposed in chapters 4 and 

5, have proven to be efficient for solving the RCPSP and the 

RCPSP/max, a possible extension to the multi-mode RCPSP could 

be considered. 

 The proposed models could be the core element of new 

decomposition methods, such as the one proposed by Kopanos et 

al. (2010), or part of hybrid methods, in an attempt to reduce the 
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computational burden of the complicated problems solved and 

allow us to deal with larger problems. 

 Given that the RCPSP is an offline problem, we can easily accept an 

increase on the time limit of the solver and obtain more optimal 

and/or good suboptimal solutions.  

 The RCPSP has a number of interesting variants, that could be 

addressed. For example, since project scheduling is dynamic in 

nature, the consideration of uncertainty also arises as a challenging 

future research task. Three main categories of approaches can be 

distinguished: proactive, reactive and stochastic.  

 Another interesting extension, is the Resource Levelling Problem 

(RLP), which arises whenever it is expedient to reduce the 

fluctuations in patterns of resource utilizations over time, while 

maintaining compliance with a prescribed project completion time. 

In particular, in cases where even slight variations in resource 

needs represent financial burden or heightened risks of accidents, a 

resource levelling approach helps to schedule the project activities 

such that the resource utilization will be as smooth as possible over 

the entire planning horizon. Under resource levelling, no resource 

limits are typically imposed. Therefore, only the time lags between 

individual activities form the project constraints.  

 Finally, if we reverse the scope of this thesis, we could transfuse 

solution techniques and concepts from project scheduling literature 

to process scheduling.  

 

Hopefully, this work will motivate further research in developing better and/or 

improved modelling frameworks for the standard RCPSP.  
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Publications 

 

This is a list of the works carried out so far within the scope of interest of this 

thesis, in reversed chronological order. The list has been divided in papers 

submitted to international refereed journals and published in conference 

proceedings: 

 

Scientific Journals 

Manuscript published 

[1] Kyriakidis, T.S., Kopanos, G.M., Georgiadis, M.C., 2012. MILP 

formulations for single- and multi-mode resource-constrained project 

scheduling problems, Computers & Chemical Engineering 36, 369–385. 

 

Manuscripts submitted 

[1] Kyriakidis, T.S., Kopanos, G.M., Georgiadis, M.C., 2012. Mathematical 

Formulation for Resource-Constrained Project Scheduling Problems with 

Generalized Precedence Relations, OR Spectrum (September 2012, 

under review). 

[2] Kopanos, G.M., Kyriakidis, T.S., Georgiadis, M.C., 2012. New 

Continuous-time and Discrete-time Mathematical Formulations for 

Resource-constrained Project Scheduling Problems, European Journal of 

Operational Research (January 2012, 1st revision completed). 

 

Conference Proceeding Articles 

The work realised in this thesis has been also presented and published to 

different international specialised conferences. The RCPSP/max formulation 

proposed in Chapter 5, is very recent and has not been submitted to any 

conferences yet. A list of publications in conferences proceedings follows: 



 
Publications 

180 

[1] Kyriakidis, T.S., Georgiadis, M.C., Solving resource-constrained project 

scheduling problems with new mathematical programming formulations, 

25th European Conference on Operational Research (EURO 2012), 8-11 

July 2012, Vilnius, Lithuania. 

[2] Kopanos, G.M., Kyriakidis, T.S., Georgiadis, M.C., New Mathematical 

Programming Formulations for Resource-Constrained Project Scheduling 

Problems, 9th International Conference on Computational Management 

Science (CMS 2012), 18-20 April 2012, London, United Kingdom. 

[3] Kyriakidis, T.S., Kopanos, G.M., Georgiadis, M.C., MILP Formulation for 

Resource-Constrained Project Scheduling Problems, 21st European 

Symposium on Computer Aided Process Engineering (ESCAPE-21), 29 

May-01 June 2011, Porto Carras, Greece, In Proceedings: 880-884. 
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