

University of

Western Macedonia

Department of Engineering

Informatics & Telecommunications

ALGORITHMS FOR OPTIMAL

PROJECT SCHEDULING
PhD Thesis

Thomas S. Kyriakidis

Kozani, Greece

December 2012





j

j

i

i

LS

ESt

jti

LS

ESt

it ytpyt

 

 

 

 
kijjijk

Pji

rij

jijijk

Pji

rij

ik Rxzrxzrr
jkjk












,

0:

,

0:

1

Algorithms for Optimal Project Scheduling

by

Thomas S. Kyriakidis

A thesis submitted for the degree of Doctor of Philosophy

of the University of Western Macedonia

Supervisor: Prof. Michael C. Georgiadis

Committee Members: Prof. Andreas Georgiou

 Assist. Prof. Konstantinos Stergiou

Department of Engineering Informatics and

Telecommunications

University of Western Macedonia

Karamanli & Lygeris Street, 50100 Kozani, Greece

December 2012

Copyright © 2012 by Thomas S. Kyriakidis

The copyrights of this thesis rest with the author. No quotations of it should

be published without the author’s prior written consent and information

derived from it should be acknowledged.

Trademarked names are used in this book without the inclusion of a

trademark symbol. These names are used in an editorial context only; no

infringement of trademark is intended. All the trademarked names cited in

this thesis are © of their respective owners.

Dedicated to my wife Eleni and my parents…

Abstract

1

ABSTRACT

Project scheduling plays a vital role in project management, and constitutes

one of the most important directions in both research and practice in the

Operational Research (OR) field. During the last decades, the Resource-

Constrained Project Scheduling Problem (RCPSP) has become the most

challenging standard problem of project scheduling in the OR literature. The

RCPSP involves the construction of a precedence and resource feasible time

schedule which identifies the starting and completion times of activities, under

a specific objective. Several variations of the RCPSP exist that represent

different practical problems with different objectives, resource types, more

than one way (mode) to execute an activity, generalised precedence relations

for activities, etc. The RCPSP and its variants belong to the class of strongly

NP-hard problems and a number of solution methods, both exact and

approximate have been proposed in the literature.

Scheduling is also a critical issue in process operations. The process

scheduling problem consists of determining the most efficient way to produce

a set of products in a time horizon given a set of processing recipes and

limited resources. The activities to be scheduled usually take place in

multiproduct and multipurpose plants, in which a wide variety of different

products can be manufactured via the same recipe or different recipes by

sharing limited resources, such as equipment, material, time, and utilities.

The common problem features, such as required resource types, precedence

relations and initial/target inventories, suggest that exchanging solution

techniques between the two research fields is both possible and useful.

The process scheduling industry is driven by the substantial advances of

related modelling and solution techniques, as well as the rapidly growing

computational power. On the other hand, project scheduling research effort

has mostly focused on developing approximate solution techniques. However,

Abstract

recent project scheduling research papers show a renewed interest for

mathematical programming-based solution strategies. Moreover, the best

lower bounds ever found on broadly-studied RCPSP test instances, were

obtained by a hybrid method involving constraint propagation and a MILP

formulation. Additionally, mathematical programming solvers are often the

only software available to industrial practitioners. Therefore, the study of

exact methods, and especially mathematical programming techniques, for

solving the RCPSP is of particular theoretical and practical interest. The main

objective of this work is to develop new optimal project scheduling techniques

inspired by the process scheduling literature.

This thesis consists of a literature review and state-of-the-art, three chapters

with novel mathematical programming solution methods for the RCPSP and its

variants under the objective of minimising the makespan and finally some

concluding remarks. The first part presents new mixed-integer linear

programming models for the deterministic single- and multi-mode RCPSP with

renewable and non-renewable resources. The modelling approach relies on

the Resource-Task Network (RTN) representation, a network representation

technique used in process scheduling problems, based on continuous time

models. Next, two new binary integer programming discrete-time models and

two novel precedence-based mixed integer continuous-time formulations are

developed. These four novel mathematical formulations are compared with

four state-of-the-art models from the open literature using a total number of

2760 well-known open-accessed benchmark problem instances. The

computational comparison demonstrates that the proposed mathematical

formulations feature the best overall performance. Finally, a new precedence-

based continuous-time formulation is proposed for a challenging extension of

the standard single-mode resource-constrained project scheduling problem

that also considers minimum and maximum time lags (RCPSP/max). The new

formulation is then used to conduct an extensive computational study on a

total of 2,250 benchmark problems, which illustrates its efficient performance.

Πεξίιεςε

3

ΠΕΡΙΛΗΨΗ

Ο Υξνλνπξνγξνγξακκαηηζκόο Έξγσλ (ΥΕ) παίδεη δσηηθό ξόιν ζηε Δηαρείξηζε

Έξγσλ (Project Management), θαη απνηειεί κία από ηηο πην ζεκαληηθέο

θαηεπζύλζεηο ηόζν ζηελ έξεπλα όζν θαη ηελ πξαθηηθή ζην πεδίν ηεο

Επηρεηξεζηαθήο Έξεπλαο (ΕΕ). Σηο ηειεπηαίεο δεθαεηίεο, ην Πξόβιεκα

Υξνλνπξνγξακκαηηζκνύ Έξγσλ κε Πεξηνξηζκέλνπο Πόξνπο (Resource-

Constrained Project Scheduling Problem - RCPSP) έρεη ηππνπνηεζεί θαη

απνηειεί κία από ηηο κεγαιύηεξεο πξνθιήζεηο ζηελ βηβιηνγξαθία ηεο ΕΕ. Σν

RCPSP πεξηιακβάλεη ηε δεκηνπξγία ελόο ρξνλνπξνγξάκκαηνο πνπ ηθαλνπνηεί

ηηο ζπλζήθεο πξνηεξαηόηεηαο θαη ηνπο πεξηνξηζκνύο πόξσλ θαη ππνινγίδεη

ηνπο ρξόλνπο έλαξμεο θαη νινθιήξσζεο ησλ εξγαζηώλ, έρνληαο ζέζεη θάπνην

ζπγθεθξηκέλν ζηόρν. Τπάξρνπλ αξθεηέο παξαιιαγέο ηνπ RCPSP νη νπνίεο

αλαπαξηζηνύλ δηάθνξα πξαθηηθά πξνβιήκαηα κε δηαθνξεηηθνύο ζηόρνπο,

ηύπνπο πόξσλ, πεξηζζόηεξνπο από έλαλ ηξόπν εθηέιεζεο κίαο εξγαζίαο

(mode), γεληθεπκέλεο ζρέζεηο πξνηεξαηνηήησλ κεηαμύ ησλ εξγαζηώλ, θ.α. Σν

RCPSP θαη νη παξαιιαγέο ηνπ αλήθνπλ ζηελ θαηεγνξία ησλ ηζρπξά NP-hard

πξνβιεκάησλ θαη έρνπλ αλαπηπρζεί δηάθνξεο αθξηβείο θαη πξνζεγγηζηηθέο

κεζνδνινγίεο επίιπζήο ηνπο ζηε βηβιηνγξαθία.

Ο ρξνλνπξνγξακκαηηζκόο απνηειεί ζεκαληηθό πεδίν έξεπλαο θαη ζηνλ ηνκέα

ιεηηνπξγηώλ δηεξγαζηώλ (process operations). Σν πξόβιεκα

ρξνλνπξνγξακκαηηζκνύ δηεξγαζηώλ πεξηιακβάλεη ηνλ ππνινγηζκό ηνπ πην

απνδνηηθνύ ηξόπνπ παξαγσγήο ελόο ζπλόινπ πξντόλησλ ζε ζπγθξηκέλν

ρξνληθό νξίδνληα, δεδνκέλνπ ελόο ζπλόινπ ζπληαγώλ επεμεξγαζίαο θαη

πεξηνξηζκέλνπο πόξνπο. Οη εξγαζίεο πξέπεη λα ρξνλνπξνγξακκαηηζηνύλ ζε

έλα βηνκεραληθό πεξηβάιινλ, όπνπ κπνξεί λα παξαρζεί κία πιεζώξα

δηαθνξεηηθώλ πξντόλησλ κε ηελ ίδηα ή δηαθνξεηηθέο ζπληαγέο,

ρξεζηκνπνηώληαο θνηλόρξεζηνπο πεξηνξηζκέλνπο πόξνπο, όπσο εμνπιηζκό,

πιηθά, ρξόλν θαη αλαιώζηκα. Σα θνηλά ραξαθηεξηζηηθά ησλ δύν πξνβιεκάησλ,

όπσο νη απαηηνύκελνη ηύπνη πόξσλ, νη ζρέζεηο πξνηεξαηνηήησλ κεηαμύ

Πεξίιεςε

4

εξγαζηώλ, θαη ηα αξρηθά/ηειηθά απνζέκαηα, ππνδειώλνπλ όηη ε αληαιιαγή

ηερληθώλ επίιπζεο κεηαμύ ησλ δύν εξεπλεηηθώλ πεδίσλ είλαη δπλαηή θαη

ρξήζηκε.

Η βηνκεραλία ρξνλνπξνγξακκαηηζκνύ δηεξγαζηώλ επσθειείηαη από ηε

ζεκαληηθή πξόνδν ηερληθώλ κνληεινπνίεζεο θαη επίιπζεο, θαζώο θαη ηελ

ηαρύηαηα απμαλόκελε ππνινγηζηηθή ηζρύ. Από ηελ άιιε, ε έξεπλα ζην ΥΕ έρεη

εζηηάζεη θπξίσο ζηελ αλάπηπμε πξνζεγγηζηηθώλ ηερληθώλ επίιπζεο. Ωζηόζν,

πξόζθαηεο εξεπλεηηθέο εξγαζίεο ζην ΥΕ δείρλνπλ όηη παξνπζηάδεηαη

αλαλεσκέλν ελδηαθέξνλ γηα ζηξαηεγηθέο επίιπζεο πνπ βαζίδνληαη ζην

καζεκαηηθό πξνγξακκαηηζκό. Επηπιένλ, ηα θαιύηεξα θαηώηαηα όξηα πνπ

έρνπλ ππνινγηζηεί ζε επξέσο κειεηεκέλα ζηηγκηόηππα RCPSP, βξέζεθαλ κε

κία πβξηδηθή κέζνδν πνπ ρξεζηκνπνηεί δηάδνζε πεξηνξηζκώλ (constraint

propagation) θαη έλα καζεκαηηθό κνληέιν κηθηνύ-αθέξαηνπ γξακκηθνύ

πξνγξακκαηηζκνύ. Επηπξόζζεηα, ην κόλν ινγηζκηθό πνπ είλαη ζπλήζσο

δηαζέζηκν ζε βηνκεραληθό πεξηβάιινλ είλαη ινγηζκηθό επίιπζεο καζεκαηηθώλ

πξνγξακκάησλ. ΢πλεπώο, ε κειέηε αθξηβώλ κεζόδσλ θαη εηδηθά ηερληθώλ

καζεκαηηθνύ πξνγξακκαηηζκνύ, γηα ηελ επίιπζε RCPSP έρεη ηδηαίηεξν

ζεσξεηηθό θαη πξαθηηθό ελδηαθέξνλ. Ο θύξηνο ζηόρνο απηήο ηεο εξγαζίαο

είλαη ε αλάπηπμε λέσλ βέιηηζησλ κεζόδσλ ΥΕ, εκπλεπζκέλεο από ηελ

βηβιηνγξαθία ηνπ ρξνλνπξνγξακκαηηζκνύ δηεξγαζηώλ.

Ο θνξκόο απηήο ηεο δηαηξηβήο απνηειείηαη από ηελ αλαζθόπεζε ηεο

βηβιηνγξαθίαο θαη ησλ έσο ζήκεξα εμειίμεσλ, ηξία θεθάιηα κε θαηλνηόκεο

κεζόδνπο επίιπζεο καζεκαηηθνύ πξνγξακκαηηζκνύ γηα ην RCPSP θαη

παξαιιαγέο ηνπ, ζέηνληαο σο ζηόρν ηελ ειαρηζηνπνίεζε ηνπ ρξόλνπ

νινθιήξσζεο ηνπ έξγνπ θαη ηέινο, θάπνηα ζπκπεξάζκαηα. ΢ην πξώην κέξνο,

παξνπζηάδνληαη λέα καζεκαηηθά κνληέια κηθηνύ-αθέξαηνπ γξακκηθνύ

πξνγξακκαηηζκνύ γηα ην ληεηεξκηληζηηθό RCPSP κε έλαλ (single-mode) θαη

πνιιαπινύο (multi-mode) ηξόπνπο εθηέιεζεο ησλ εξγαζηώλ, πνπ ρξεζηκνπνηεί

αλαλεώζηκνπο θαη αλαιώζηκνπο πόξνπο. Η λέα πξνζέγγηζε ζηεξίδεηαη ζηελ

αλαπαξάζηαζε Resource-Task Network (RTN), κία ηερληθή κνληεινπνίεζεο

Πεξίιεςε

5

πνπ ρξεζηκνπνηείηαη ζε πξνβιήκαηα ρξνλνπξνγξακκαηηζκνύ δηεξγαζηώλ θαη

βαζίδεηαη ζε κνληέια ζπλερνύο-ρξόλνπ. ΢ην επόκελν θεθάιαην

παξνπζηάδνληαη 2 λέα κνληέια δπαδηθνύ-αθέξαηνπ πξνγξακκαηηζκνύ

δηαθξηηνύ-ρξόλνπ θαη 2 λέα κηθηνύ-αθέξαηνπ πξνγξακκαηηζκνύ ζπλερνύο-

ρξόλνπ, πνπ βαζίδνληαη ζηε δηαδνρή εξγαζηώλ. Απηά ηα ηέζζεξα κνληέια

ζπγθξίλνληαη κε 4 από ηα θνξπθαία κνληέια πνπ παξνπζηάδνληαη ζηε

βηβιηνγξαθία, ζε έλα ζύλνιν 2760 επξέσο ρξεζηκνπνηεκέλσλ πξνβιεκάησλ,

πνπ είλαη δηαζέζηκα ζην δηαδίθηπν. Από ηελ ππνινγηζηηθή κειέηε

απνδεηθλύεηαη όηη ην πξνηεηλόκελα κνληέια έρνπλ ζπλνιηθά ηελ θαιύηεξε

απόδνζε. Σέινο, αλαπηύζζεηαη έλα λέν καζεκαηηθό κνληέιν ζπλερνύο-ρξόλνπ

βαζηζκέλν ζηε δηαδνρή εξγαζηώλ, γηα κία δύζθνιε επέθηαζε ηνπ θιαζηθνύ

RCPSP πνπ ζπκπεξηιακβάλεη ειάρηζηεο θαη κέγηζηεο ρξνληθέο πζηεξήζεηο

κεηαμύ ησλ εξγαζηώλ (RCPSP/max). Η εθηελήο ππνινγηζηηθή κειέηε ζε 2250

πξνβιήκαηα απνδεηθλύεη ηελ απνηειεζκαηηθόηεηα ηνπ λένπ κνληέινπ.

Acknowledgements

6

ACKNOWLEDGEMENTS

Foremost, I would like to express my gratitude to my advisor, Prof. Michael C.

Georgiadis for his continuous support and mentorship, from first contact and

initial advice in the early stages, through ongoing guidance and

encouragement, and up to this day. I greatly appreciate the opportunity I

had to work on my PhD under his supervision.

This dissertation would have not been possible without the numerous

brainstorming sessions with Dr. Georgios Kopanos. His experience, assistance

and countless practical advices on many aspects of this thesis were

invaluable. Our fruitful collaboration has led to a series of novel publications.

I would also like to extend my thanks to my co-advisors Professors Andreas

Georgiou and Konstantinos Stergiou for sharing their expertise with sound

advice and helpful comments.

Last but not least, I would like to thank my wife Eleni for her love,

encouragement and great patience at all times. My parents, brothers and

friends have given me their indisputable support through all these years and

for which my mere expression of gratitude does not suffice.

Contents

7

CONTENTS

ABSTRACT 1

ΠΕΡΙΛΗΨΗ 3

ACKNOWLEDGEMENTS 6

CONTENTS 7

LIST OF FIGURES 11

LIST OF TABLES 12

1 Introduction 13

1.1 Project Scheduling and Management 13

1.2 The Resource-Constrained Project Scheduling Problem 14

1.3 Challenges and Motivation 15

1.4 Thesis Structure 17

2 State-of-the-Art 19

2.1 Resource-constrained project scheduling problem (RCPSP) 19

2.2 Project Activities 21

2.3 Precedence Relations 22

2.4 Resource Types 24

2.5 Project Network Representations 26

2.5.1 Activity-on-Arc (AoA) 26

2.5.2 Activity-on-Node (AoN) 27

2.6 Objectives of Project Scheduling 28

2.6.1 Time-based objectives 28

2.6.2 Maximizing the Net Present Value 29

2.6.3 Other objectives 30

2.7 A Classification Scheme 31

2.7.1 Field α – Resource Characteristics 32

2.7.2 Field β – Activity Characteristics 33

Contents

8

2.7.3 Field γ – Performance Measures 36

2.8 Test Instance Sets 37

2.8.1 Patterson test set 38

2.8.2 ProGen and ProGen/max 38

2.8.3 RanGen and RanGen2 39

2.8.4 Other test instance generators 39

2.9 Mathematical Programming 40

2.9.1 Mathematical Modelling 40

2.9.2 Types of optimal solutions 42

2.9.3 Linear Programming (LP) 43

2.9.4 Mixed Integer Programming (MIP) 47

2.9.5 Preprocessing 54

2.10 Time representation 55

2.11 Modelling and Solution Techniques 56

2.11.1 RCPSP 58

2.11.2 Multi-mode Resource Constrained Project Scheduling Problem (MRCPSP) 64

2.11.3 RCPSP/max 67

2.12 Modelling and Optimisation Software 69

2.12.1 General Algebraic Modelling System (GAMS) 70

2.12.2 CPLEX Solver 71

2.13 Concluding Remarks 72

3 RTN-based MILP Formulations for Single- and Multi-Mode Resource-

Constrained Project Scheduling Problems 75

3.1 Introduction 75

3.2 A new network representation for the RCPSP 77

3.2.1 Conversion of General Projects to RTN form 78

3.2.2 Project End Formulation 86

3.3 MILP Formulation for the Single-Mode RCPSP 93

3.3.1 Constraints 94

3.3.2 Improvement to the formulation 98

3.3.3 Using the RCPSP formulation in MRCPSPs 101

3.4 MILP Formulation for the MRCPSP 102

3.4.1 Constraints 102

3.4.2 Improvement to the formulation 107

Contents

9

3.5 Computational Results 109

3.5.1 Example problem 109

3.5.2 Results for various problem instances 113

3.6 Conclusions 115

3.7 Nomenclature 116

4 Four new Continuous-time and Discrete-time Mathematical Formulations for

Resource-constrained Project Scheduling Problems 119

4.1 Introduction 119

4.2 Problem Statement 121

4.3 Preprocessing Phase 122

4.4 Review of Existing Mathematical Formulations 125

4.4.1 Discrete-time model by Pritsker [Pri-DT] 125

4.4.2 Discrete-time model by Christofides [Chri-DT] 126

4.4.3 Continuous-time model by Artigues [Art-CT] 127

4.4.4 Continuous-time model by Koné [Kone-CT] 129

4.5 New Mathematical Formulations 130

4.5.1 Proposed discrete-time model 1 [KKG-DT1] 130

4.5.2 Proposed discrete-time model 2 [KKG-DT2] 133

4.5.3 Proposed continuous-time model 1 [KKG-CT1] 133

4.5.4 Proposed continuous-time model 2 [KKG-CT2] 138

4.6 Description of Problem Instance Sets 139

4.7 Computational Comparison Study 142

4.7.1 Overall Computational Results 143

4.7.2 Computational Results: Detailed Analysis 145

4.8 Conclusions 150

4.9 Nomenclature 152

5 Mathematical Formulation for Resource-Constrained Project Scheduling

Problems with Generalised Precedence Relations 155

5.1 Introduction 155

5.2 Problem statement 157

5.3 Preprocessing 159

5.4 The mathematical model 161

Contents

10

5.5 Computational Results 166

5.6 Description of Problem Sets 166

5.7 Computational Study Results 167

5.8 Conclusions 172

5.9 Nomenclature 173

6 Conclusions and future work 175

6.1 Conclusions 175

6.2 Future Work 177

7 Publications 179

8 References 181

List of Figures

11

LIST OF FIGURES

Figure 2.1. Illustrative example of a simple RCPSP and a feasible solution 20

Figure 2.2. Example of an Activity on Arc network .. 27

Figure 2.3. Example of Activity on Node network ... 27

Figure 2.4. Types of minima ... 43

Figure 2.5. Graphical interpretation of the Simplex method ... 45

Figure 2.6. Graphical interpretation of the Interior-point method 46

Figure 2.7. A full enumeration tree ... 49

Figure 2.8. Time representations .. 56

Figure 3.1. Example of the use of Logical Resources .. 79

Figure 3.2. Graphic Representation of a Resource Task Network 80

Figure 3.3. Production of Logical Resource .. 82

Figure 3.4. Production of Logical Resources for several output activities 82

Figure 3.5. Conditions Exactly x/At least x - Exactly one and Exactly one - At least one 83

Figure 3.6. Conditions Exactly x/At least x - At least one ... 84

Figure 3.7. Special case 1 example Exactly x with rINx  .. 85

Figure 3.8. Special case 2 example At least x-Exactly 1 with xINr 2 86

Figure 3.9. An example of an RTN representation of a project ... 87

Figure 3.10. Project End with 4 activities ... 88

Figure 3.11. Example of Project End with 4 alternate activities .. 89

Figure 3.12. Example of logical tree .. 90

Figure 3.13. Transformation of conjunctions to RTN ... 91

Figure 3.14. Transformation of disjunctions to RTN .. 92

Figure 3.15. Equivalent RTN for logical tree in Figure 3.12 .. 93

Figure 3.16. Slot boundaries example ... 99

Figure 3.17. Modelling activities with multiple modes ... 102

Figure 3.18. Activity network for example problem ... 111

Figure 3.19. Modelling activities with multiple modes ... 111

Figure 3.20. GANTT Chart of optimal solution for the example problem............................ 113

Figure 4.1. Illustrative example: modelling of resource constrains through binary variables wit

 ... 132

Figure 4.2. Illustrative example for overlapping conditions .. 134

Figure 5.1. Example of overlapping conditions for activities ... 162

Figure 5.2. Illustrative example for better optimal solution (Set j30, Instance 195) 171

List of Tables

12

LIST OF TABLES

Table 1.1. Test set characteristics and available instances .. 37

Table 3.1 Parameter values for decision boxes ... 84

Table 3.2. Combination of values for ittiti
yyy   1,1, .. 97

Table 3.3. Improved time slot bounds ... 100

Table 3.4. Precedence Relations for test instance j10 2_2 ... 109

Table 3.5. Project Mode Requests/Durations .. 110

Table 3.6. Resource Availabilities .. 111

Table 3.7.
L

riS ,
L

riS ,
U

riS and
U

riS parameter values ... 112

Table 3.8. Computational Results for various Single-mode RCPSP test instances 114

Table 3.9. Computational Results for Multi-mode RCPSP test instances from PSPLIB 115

Figure 4.1. Illustrative example: modelling of resource constrains through binary variables wit

 ... 132

Figure 4.2. Illustrative example for overlapping conditions .. 134

Table 4.1. Modelling of binary variables
jiz and ijx for activities   Pji  , 138

Table 4.2. Network structure topological indicators for RanGen2 141

Table 4.3. Overall mathematical models ranking for the 2760 problems considered 143

Table 4.4. Computational results per problem set .. 144

Table 4.5. Detailed analysis of suboptimal solutions found for problems sets j30 and j60 ... 146

Table 4.6. Detailed analysis of good quality solutions per RS and RF parameter setting for j30

 ... 147

Table 4.7. Detailed analysis of good quality solutions per RS and RF parameter setting for j60

 ... 148

Table 4.8. Computational analysis for problem Set 2 to 5 for RanGen2 150

Table 5.1 Modelling of binary variables jiz and ijx for activities   Pji , 165

Table 5.2 Test instance characteristics .. 167

Table 5.3 Computational results for all instances including reported infeasible, within

predefined time limit 600 CPU s .. 168

Table 5.4 Results for feasible instances ... 169

Table 5.5 Number of solutions better than the ones reported in literature 170

Table 5.6 Optimally solved instances with solution lower than the reported upper bound .. 170

Table 5.7 Non-proven optimal instance with a better solution than the reported upper bound

 ... 172

Chapter 1

13

Chapter 1

Introduction

1.1 Project Scheduling and Management

Project scheduling plays a vital role in project management, and constitutes

one of the most important directions in both research and practice in the

Operational Research (OR) field. The term project means different things to

different people and according to ISO 10006 (2003) Guideline for Quality in

Project Management (Section 3.5), it is used to describe a:

Unique process, consisting of a set of co-ordinated and controlled activities

with start and finish dates, undertaken to achieve an objective conforming to

specific requirements including constraints of time, cost and resources.

The same ISO, states some of the characteristics a project must have:

1. Unique, non-repetitive phases consisting of processes and

activities.

2. Expected to deliver specified (minimum) quality results within pre-

determined parameters.

3. Have planned start and finish dates, within clearly specified cost

and resource constraints.

A project is a one-time endeavour with a specific objective that must be

achieved, under cost, resource and time constraints. The relationships

between the various tasks that have to be performed to achieve the project’s

objectives can be very complex.

The process of project management involves three phases, planning,

scheduling and controlling. In the planning phase we define the activities that

Introduction

14

must be carried out to achieve the project objective and their characteristics

(i.e., duration, resource requirements, relationships, constraints, etc). During

the scheduling phase, the actual project schedule is produced, containing

activity starting and/or finishing times. Finally, the control phase focuses on

examining and determining solutions when variations from the original

schedule occur.

1.2 The Resource-Constrained Project Scheduling Problem

Quantitative approaches to project management date back to the 1950s.

Early solution procedures like the Critical Path Method (CPM) by Kelley and

Walker (1959) and Project Evaluation and Review Technique (PERT) by

Malcolm et al. (1959), only took into account activity durations (deterministic

or probabilistic) and assumed resources to be available in unlimited

quantities. However, in most practical situations this assumption is not

realistic, since the required resources are limited and to produce a functional

schedule the solution method should take them into account. The additional

constraints imposed by the limited resources, significantly increase the

problem hardness. According to Blazewicz et al. (1983) the Resource-

Constrained Project Scheduling Problem (RCPSP) belongs to the class of

strongly NP-hard problems.

During the last decades, the RCPSP has become a standard problem for

project scheduling in the OR literature. The RCPSP involves the construction

of a precedence and resource feasible time schedule which identifies the

starting and completion times of activities, under a specific objective. A

project consists of a set of interconnected activities and resources, logically

linked. These activities usually have to be performed for a successful project

completion. Several variations of the RCPSP exist that represent different

practical problems with different objectives, resource types, more than one

way (mode) to execute an activity, generalised precedence relations for

activities, e.t.c.

Chapter 1

15

1.3 Challenges and Motivation

OR uses scientific techniques and tools from various disciplines such as

informatics, mathematics, economics, chemistry, even biology to assist

decision making or provide a solution to a given problem (preferably optimal).

Over the years, the methodology of project scheduling has been developing

constantly, trying, from one side to model adequately new practical problems,

and, from the other side, to efficiently solve the resulting optimisation

problems. The methodology benefited from the development of both:

optimisation (especially combinatorial one) and computational possibilities.

A number of solution methods for the RCPSP, both exact and approximate

have been proposed in the OR literature. Exact techniques usually include

mathematical programming formulations and specialised branch-and-bound

algorithms. Due to the high degree of complexity of RCPSPs, an even larger

number of approximate methods such as heuristics and metaheuristics have

also been proposed. Roughly speaking, a heuristic is a technique designed to

solve a problem, or find an approximate solution with low computational

requirements, when classic methods fail to find any exact solution. By trading

optimality, completeness, accuracy, and/or precision for speed, a heuristic

can quickly produce a solution that is good enough for solving the problem at

hand.

Scheduling is a critical issue both in project management and process

operations. Process and project scheduling problems, share common features

such as required resource types, precedence relations and initial/target

inventories. The process scheduling problem consists of determining the most

efficient way to produce a set of products in a time horizon given a set of

processing recipes and limited resources. The activities to be scheduled

usually take place in multiproduct and multipurpose plants, in which a wide

variety of different products can be manufactured via the same recipe or

different recipes by sharing limited resources, such as equipment, material,

Introduction

16

time, and utilities. The common problem features, such as required resource

types, precedence relations and initial/target inventories, suggest that

exchanging solution techniques between the two research fields is both

possible and useful.

The process scheduling industry is driven by the substantial advances of

related modelling and solution techniques, as well as the rapidly growing

computational power. Mathematical programming, especially Mixed Integer

Linear Programming (MILP), because of its rigorousness, flexibility and

extensive modelling capability, has become one of the most widely explored

methods for process scheduling problems.

On the other hand, project scheduling research effort has mostly focused on

developing approximate solution techniques. However, recent project

scheduling research papers (Koné et al. 2011, Bianco and Caramia 2012a,

2012b and Rieck et al. 2012) show a renewed interest for mathematical

programming-based solution strategies. The study of exact methods, and

especially mathematical programming techniques, for solving the RCPSP is of

particular theoretical and practical interest. Indeed, mathematical

programming solvers are often the only software available to industrial

practitioners. Moreover, the best lower bounds ever found on broadly-studied

RCPSP test instances, were obtained by a hybrid method (Demassey et al.,

2005) involving constraint propagation and the MILP formulation of

Christofides et al. (1987). Also, a branch-and-cut method based on the latter

formulation was developed by Zhu et al. (2006), to solve the multimode

RCPSP and yielded very competitive results on benchmark problems.

Taking advantage of the continuous commercial software and hardware

advances, the size and difficulty of the combinatorial problems that can be

solved are constantly growing. The main objective of this thesis is to develop

new project scheduling techniques inspired by the process scheduling

literature, similar to the paper of Koné et al (2011), which is based on the

Chapter 1

17

work of Pinto and Grossmann on batch process problems (1995).

1.4 Thesis Structure

The rest of this thesis consists of a literature review and state-of-the-art,

three novel research chapters and finally some concluding remarks.

Chapter 2 is an introduction to state-of-the-art in RCPSP. We discuss the

resource constrained project scheduling problem, its components, variants

and network representation techniques. Afterwards, commonly used objective

functions and a classification scheme are described. We then present the test

instance sets available for benchmarking new solution techniques, followed

by a discussion of mathematical programming concepts, which is the main

optimisation method used in this thesis. Next a thorough literature review of

both exact and approximate solution techniques is presented. Finally, we

describe the commercial software used to solve RCPSP test problem instances

and measure the performance of the proposed solution procedures.

Chapter 3 presents new mixed-integer linear programming models for the

deterministic single- and multi-mode resource constrained project scheduling

problem with renewable and non-renewable resources. The modelling

approach relies on the Resource-Task Network (RTN) representation, a

network representation technique used in process scheduling problems,

based on continuous-time models. First, we propose new RTN-based network

representation methods, and then we efficiently transform them into

mathematical formulations including a set of constraints describing

precedence relations, different types of resources and multiple objectives.

Finally, the applicability of the proposed formulations is illustrated using

several example problems under the most commonly addressed objective, the

makespan minimization.

Introduction

18

Chapter 4 introduces two new binary integer programming discrete-time

models and two novel precedence-based mixed integer continuous-time

formulations for the solution of standard resource-constrained project

scheduling problems. The proposed discrete-time models are based on the

definition of binary variables that describe the processing state of every

activity between two consecutive time points, while the proposed continuous-

time models are based on the concept of overlapping of activities, and the

definition of a number of newly introduced sets. These four novel

mathematical formulations are compared with four representative literature

models using a total number of 2760 well-known open-accessed benchmark

problem instances involving 30 and 60 activities. A detailed computational

comparison study demonstrates the salient performance of the proposed

mathematical formulations, that feature the best overall performance.

Chapter 5 presents a new precedence-based continuous-time formulation for

a challenging extension of the standard single-mode resource-constrained

project scheduling problem that also considers minimum and maximum time

lags (RCPSP/max), under the objective of minimizing the project makespan.

The proposed linear mixed integer programming model is an extension of the

continuous-time formulations proposed in Chapter 4 and is used to conduct

an extensive computational study on a total of 2,250 well-known and open-

accessed benchmark problem instances from the literature. Various problem

sizes are considered in the test sets involving 10, 20, 30, 50 and 100

activities. Computational results illustrate the efficient performance of the

proposed mathematical formulation.

Finally, concluding remarks and future research directions are drawn in

Chapter 6.

Chapter 2

19

Chapter 2

State-of-the-Art

In this chapter we first discuss the resource constrained project scheduling

problem, its components, variants and network representation techniques.

Afterwards, commonly used objective functions and a classification scheme

are described. We then present the test instance sets available for

benchmarking new solution techniques, followed by a discussion of

mathematical programming concepts, which is the main optimisation method

used in this thesis. Next a thorough literature review of modelling and

solution techniques is presented. Finally, we describe the commercial

software used to solve RCPSP test problem instances and measure the

performance of the proposed solution procedures.

2.1 Resource-constrained project scheduling problem
(RCPSP)

A project has a finite number of activities with specific durations. Precedence

relations between some activities are present and each activity requires

certain amounts of resources with limited availability, to be processed. For

modelling purposes, two dummy activities are added: (i) a start dummy

activity to represent the beginning of the project, and (ii) an end dummy

activity corresponding to the completion of the project. Dummy activities

have zero duration and zero resource requirements. The typical objective of

the RCPSP is to find an optimal (or at least feasible) schedule, while satisfying

time, precedence and resource constraints, such that a specific objective is

optimised (i.e., minimisation of the project makespan). An illustrative

example of a simple RCPSP and a feasible solution are displayed in Fig. 2.1.

In the standard RCPSP, all information data are deterministic. The resource

State-of-the-Art

20

type is renewable (i.e., they are not consumed, instead after the completion

of an activity, the bound quantities are released and become available again).

Notation

i number of activity

pi duration of activity i

ri1, ri2 requirement for

resource 1, 2

R1, R2 maximum capacity for

resource 1, 2

Cmax Project completion

time

Figure 2.1. Illustrative example of a simple RCPSP and a feasible solution

The standard RCPSP is denoted by PS|prec|Cmax in accordance with the

notation proposed by Brucker et al. (1999), which follows the well-known

three-field notation for machine scheduling problems introduced by Graham

et al. (1979). More specifically, PS|prec|Cmax notation specifies the single-mode

project scheduling (PS) problem under precedence constraints between

activities (prec) while minimizing the makespan of the project (Cmax).

Chapter 2

21

2.2 Project Activities

A project consists of activities, also known as jobs, operations, or tasks. In

order to complete the project successfully, all or some of the activities have

to be performed. Project activities have various characteristics, depending on

the tasks involved.

In some projects the processing of activities may be preempted (interrupted)

and recommenced at a later time (preempt-resume). In other cases, stopping

an activity is allowed, but resuming is not and it has to be restarted

(preempt-repeat). Finally, for certain activities preemption is not allowed at

all and once execution has started, it must be carried out to completion.

Another characteristic regards the order and timing in which activities are

executed. These precedence relations encountered in project scheduling

problems are presented in detail in the following section.

Activity ready times may need to be taken into account, durations can be

integer or continuous and deadlines may be imposed on each one or the

maximal project duration. The resource consumption can occur in constant or

variable amounts over their periods of execution.

Most problems assume a single execution mode per activity, while others

assume time/cost, time/resource and/or resource/resource trade-offs and

give rise to various possible execution modes. While the classical RCPSP is a

popular model, it cannot cover all situations that occur in practice. Therefore,

many researchers have developed more general project scheduling problems,

often using the standard RCPSP as a starting point. Such an example is the

Multi-mode Resource-Constrained Project Scheduling Problem (MRCPSP) or

MPS|prec|Cmax according to the notation of Brucker et al. (1999). In this

problem, the mode determines the duration of the activity and the

requirements for resources of various categories. Another extension studied

State-of-the-Art

22

by Salewski et al. (1997) are project scheduling problems which generalize

multiple activity modes to so-called mode identity constraints in which the set

of activities is partitioned into disjoint subsets. All activities in a subset must

then be executed in the same mode. Both the time and cost incurred by

processing a subset of activities depend on the resources assigned to it.

Finally, activities may require changeover times. When these times are

sequence-independent, we can include them in the activity durations.

However, sometimes changeovers are sequence-dependent (e.g. equipping

an excavator with different scoops and workers travelling between sites) and

must be taken into account separately in project settings.

2.3 Precedence Relations

Project activities are usually subject to precedence relations. In the rare case

where project activities can be performed in any order, no sophisticated

project scheduling solution procedures are required.

The traditional PERT/CPM methodology uses finish-start (FS) precedence

relations with zero time-lag, that is an activity can only start as soon as all its

predecessor activities have finished.

Precedence relations with zero time-lag between two activities are not always

enough. Elmaghraby and Kamburowski (1992) defined four types of

Generalized Precedence Relations (GPR): start-start (SS), start-finish (SF),

finish-start (FS) and finish-finish (FF) to model minimum and maximum time-

lags.

The minimal time-lag ( xSSij
min ,  xSFij

min ,  xFFij
min ,  xFSij

min) specifies that

activity j can only start/finish when its predecessor i has already

started/finished for a certain time period (x time units). A maximal time-lag

Chapter 2

23

( xSSij
max ,  xSFij

max ,  xFFij
max ,  xFS ij

max) specifies that activity j should be

started/finished at the latest x time periods after the start/finish of activity i.

In the minimal Finish-Start relation  0min

ijFS , an activity j (for example the

installation of a crane on a site) can start immediately after activity i (for

example the preparation of the site) has been finished. This strict finish-start

relation is the traditional PERT/CPM precedence relation mentioned before. If

a certain number of time units must elapse between the end of activity i and

the start of activity j (to allow for a lead time for example), the finish-start

relation receives a positive lead-lag factor. As such,  6min

ijFS means that the

start of activity j cannot be sooner than 6 time units after activity i finishes.

Minimal Start-Start relations denote that a certain time-lag must occur

between the start of two activities. The relationship  2min

ijSS for example,

denotes that the start of activity j (for example place pipe) must lag 2 time

units behind the start of activity i (level ground).  0min

ijSS denotes that

activity j (levelling concrete) can start as soon as activity i (pouring concrete)

has started. Ready time for activity i can be modelled by imposing a minimal

start-start relation between the start node in the project network and activity

i.

Minimal Finish-Finish relations are used quite often.  xFFij
min represents the

requirement that the finish of an activity j (for example finish walls) must lag

the finish of activity i (for example install electricity) by x time units.

Start-finish relations occur very rarely in practice.

Combinations of the various types of generalized precedence relations can be

used. Consider the example of activity i (erect wall frames) and activity j

(install electricity). Both activities have a  xSSij
min relationship (the

State-of-the-Art

24

electricians can only start installing electricity when sufficient wall frame

surface is in place), but since the electricians need some time to cope with

the output of the carpenters who are responsible for erecting the walls, both

activities also have a  xFFij
min relation.

Maximal time-lags respectively impose a maximum number of time units

between the start/finish times of activities. An interesting usage of such time-

lags is a  xSFij
max between the first and last activity in the project, which in

effect sets an upper bound to the project completion time.

The various types of GPRs can be represented in a standardized form by

reducing them to minimum SS precedence relationships, through the

transformations proposed by Bartusch et al. (1988). This extension of the

RCPSP is denoted as RCPSP/max or PS | temp | Cmax, using the notation of

Brucker et al. (1999). More specifically, PS | temp | Cmax notation specifies the

single-mode project scheduling problem (PS) under general temporal

constraints given by minimum and maximum start-start time lags between

activities (temp) while minimizing the makespan of the project (Cmax).

2.4 Resource Types

Each project activity (besides dummy ones) requires some resources for its

processing, that are available in limited amounts. Examples of resources are

raw materials, intermediate products, tools, machinery, manpower, financial,

energy, etc. Węglarz (1979) and Blazewicz et al. (1983) categorize resources

used by project activities as renewable, non-renewable and doubly

constrained.

Renewable resources are periodically renewed, but their quantity is limited

over each time period and may differ from one period to the next. Some

examples are manpower, machines, equipment, power and fuel flow.

Chapter 2

25

For non-renewable resources, constraints on availability only concern total

consumption over the whole period of project duration and not each time

period. Raw materials are a typical example of non-renewable resources,

since they are available at a specific quantity for a project.

Doubly constrained resource quantities are both per period and per project

constrained. Money is an example of such resource, since there is usually a

specific total budget for the entire project, as well as a limited cash flow per

period, according to progress. As formally shown by Talbot (1982), each

doubly constrained resource can be represented by one renewable and one

non-renewable resource, respectively.

Partially (non)renewable resources, introduced by Böttcher et al. (1996),

Schirmer and Drexl (1996) and Drexl (1997) limit utilization of resources

within a subset of the planning horizon. Essentially, partially (non)renewable

resources can be viewed as a generic resource concept in project scheduling,

as they include both renewable and non-renewable (and, hence doubly

constrained) resources. An example is that of a planning horizon of a month

with workers whose weekly working time, not the daily time, is limited by

their working contract.

It has been shown by Böttcher et al. (1999) both renewable and non-

renewable resource categories can be depicted by partially renewable

resources. A partially renewable resource, with a specified availability for a

time interval equal to a unit duration period, is essentially a renewable

resource. A partially renewable resource, with a specified availability for a

time interval equal to the project horizon, is essentially a non-renewable

resource. Partially renewable resources with a specified availability on both a

unit duration period and a total project horizon basis can be interpreted as

doubly constrained resources.

State-of-the-Art

26

2.5 Project Network Representations

Two representations have been commonly used to capture project networks,

the Activity-on-Arc (AoA) which is event-based and Activity-on-Node (AoN)

which is activity based. The latter represents activity interdependencies in a

more natural way, without the need for dummy activities. Understanding an

AoN is easier, even for inexperienced users. Finally, reviewing an AoN is

easier when a change occurs in the network.

2.5.1 Activity-on-Arc (AoA)

An Activity-on-Arc (AoA) diagram is based on the idea that each activity is a

transition between two events, its start and its end. Each activity is

represented as an arc, which starts and finishes at a node (drawn as a circle).

Each node represents an event, a point of zero time duration, which signifies

the completion of all the activities leading into it and the start of all activities

pointing out.

An AoA network can contain no cycles, because if it did, the transitivity

property of precedence would lead to the conclusion that an activity would

have to precede itself, which is impossible.

In AoA networks we use two dummy nodes to represent the start and

completion of the project. The initial event is the starting node of all activities

and has no predecessor(s), while the terminal event is the ending node of all

activities and has no successor(s).

Any two nodes may be connected by only one activity. So, for several

activities to be executed simultaneously, we need to introduce dummy

activities. Dummy activities are drawn as dotted arcs, consume no resources

and have zero time duration. An example of an AoA diagram is shown in Fig.

2.2 below.

Chapter 2

27

Figure 2.2. Example of an Activity on Arc network

2.5.2 Activity-on-Node (AoN)

Activity-on-Node (AoN) is a network representation for activity sequencing,

also known as Precedence Diagramming Method (PDM). Activity sequence

diagrams use boxes or rectangles to represent the activities which are called

nodes. The nodes are connected with other nodes by arrows, which show the

dependencies between the connected activities. To construct an AoN

network, we must draw one node for each activity and an arrow from all

nodes i to nodes j, if activity i precedes activity j. An example AoN network is

shown in Fig. 2.3 below.

Figure 2.3. Example of Activity on Node network

Dummy activities (nodes) are only needed to satisfy the requirement that the

network possesses only one initial and one terminal node.

A

B

C

Start Finish

D

1 2 4 6 7

3

5

A

B

C

E F

D G

State-of-the-Art

28

The AoN has certain advantages over the AoA, since it represents activity

interdependencies in a more natural way, it is easier to understand, even for

inexperienced users, and easier to review when a change occurs in the

network. A more thorough comparison of the two methods can be found in

Kolisch and Padman (2001).

2.6 Objectives of Project Scheduling

Project scheduling objective functions can be can be regular or non-regular. A

regular performance measure is a non-decreasing function of the activity

completion times (in the case of a minimization problem), otherwise it is non-

regular. Regular objective functions have received much more attention in the

literature than non-regular ones, especially the make span or project length.

Each of the objectives for deterministic project scheduling, presented in the

following sections can and has been examined for problems with a diversity

of resource and activity characteristics.

2.6.1 Time-based objectives

Minimizing the project make span is undoubtedly the most popular time-

based objective function discussed in the project scheduling literature. Most

often it is recognized as the most relevant objective in various review papers,

Kolisch (1996b), Herroelen (2005), Hartmann et al. (2010). According to

Kolisch (1996b):

1. The majority of income payments of projects (e.g. in the

construction industry) occur at the end of a project or at the end of

predefined project phases. Finishing the project early reduces the

amount of tied-up capital.

2. The quality of forecasts tends to deteriorate with the distance into

the future of the period for which they are made. Minimizing the

Chapter 2

29

project duration reduces the planning horizon and, therefore, the

uncertainty of data.

3. Finishing products as early as possible lowers the probability of

time-overruns of the project.

4. By freeing resource capacity as early as possible the flexibility of

the company can be raised in order to better cope with changes of

the economic environment.

5. Additionally, high resource utilization at the beginning of the

planning horizon leads to a larger amount of free resources at the

end of the planning horizon and, thus, raises the ability to accept

and process new projects.

Other time-based objectives based on project lateness, tardiness and

earliness exist. The lateness iL of an activity i is the difference of its

completion time and its due date. The lateness can be zero (if the task

finishes on time), positive (if the task finishes later) or negative (if the task

finishes earlier). The tardiness iT is the same as lateness, but it cannot be

negative ( max 0,i iT L). Earliness iE is defined as  max 0,i iE L  .

In the literature, we encounter a number of objectives based on lateness,

tardiness and earliness, such as minimization of the weighted tardiness

(Kolisch, 2000), minimization of the maximum lateness and of the weighted

total tardiness (Neumann, 2002), etc.

2.6.2 Maximizing the Net Present Value

The value of a certain amount of money is a function of the time of receipt or

disbursement of the cash. Money received today is more valuable than money

to be received in some future time period, because it can be invested to start

earning interest immediately. The nature and timing of the cash flows in

projects depend on the contract. The contractor would like to receive as

State-of-the-Art

30

much as possible, as early as possible to initiate activities, while the client

would like to delay payments for completion of parts of the project as long as

possible, since progress payments represent expenses.

To cope with such problems we need to set financial objectives related to

incoming and outgoing cash flows, including discount rates. Such objectives

are referred in literature as Maximizing the Net Present Value (NPV) of the

project and were introduced by Russell (1970).

In the unconstrained case, both the amount and timing of cash flows are

known and we attempt to maximize their NPV. Cash flows can be associated

with the completion of set of activities, occur at regular intervals (e.g.

weekly) or compounded to a single cash flow at the beginning/end of an

activity.

When both the amount and timing of the cash flows must be determined, we

have the payment scheduling problem. Finally, the resource-constrained case

is more complex, since we need to additionally deal with limited resources.

2.6.3 Other objectives

A number of other objectives has been examined in the literature, such as

minimizing resource availability costs (Demeulemeester 1995, Franck and

Schwindt 1995, Kimms 1998, Möhring 1984, Zimmermann 1997), the discrete

time/resource trade-off problem (Elmaghraby, 1977), minimizing the sum of

costs (Möhring et al. 2003, Achuthan and Hardjawidjaja, 2001), etc.

Finally, certain problems deal with multi-objective scheduling that requires

the optimisation of more than one objective (Nabrzyski and Węglarz 1994, Al-

Fawzana and Haouari 2005, Bomsdorf and Derigs 2008).

Chapter 2

31

2.7 A Classification Scheme

The increasing research interest in the area of Project Scheduling from both

science and practice has led to an ever growing number of problem types.

Various acronyms, such as RCPSP, MRCPSP, RCPSP-GPR have been

extensively used to describe the problem class. However, these abbreviations

offer an inadequate description of the problem characteristics and may often

lead to misconceptions.

Herroelen et al. (1998) proposed a classification system compatible with what

is generally accepted in machine scheduling (Graham et al., 1979) and

resource-constrained machine scheduling (Blazewicz et al., 1983), because

machine scheduling models are special cases of project scheduling models.

The proposed scheme resembles machine scheduling problems in that it is

also composed of three fields α | β | γ, but the composition of the fields and

the precise meaning of the various parameters are mostly new and specific to

the area of project scheduling. The meaning of each field is described below:

1. Field α – Represents resource characteristics and contains up

to three elements,

2. Field β – Represents activity characteristics and contains up to

nine fields and

3. Field γ – Contains one element and represents the

performance measures.

Brucker et al. (1999) provided their own classification scheme, but Herroelen

et al. (2000) revealed serious shortcomings and turned their own original

scheme into a unified classification scheme for resource scheduling

(Demeulemeester and Herroelen, 2002).

In the next sections, we cover the characteristic values of the three fields in

the original classification scheme (Herroelen, 1998) that apply to

deterministic project scheduling problems.

State-of-the-Art

32

2.7.1 Field α – Resource Characteristics

Field α, is a set describing the resource characteristics and consists of at most

three elements 1 , 2 and 3 . The symbol  denotes an empty field and will

be used when a field is omitted.

Parameter  m,1,1  represents the number of resource types used in the

problem:

1 no resource types are considered in the scheduling

problem

11  one resource type is considered

m1 the number of resource types is equal to m

The second parameter, 2 , describes the resource types used. As mentioned

in Section 2.4, in the project scheduling literature a common distinction is

made between various types of resources:

2 absence of any resource type specification

12  renewable resources, the availability of which is

specified for the unit duration period

T2 non-renewable resources, the availability of which

is specified for the entire project horizon T

T12  both renewable and nonrenewable resources

(including also doubly constrained resources, the

availability of which is specified on both a unit

duration period and a total project horizon basis)

v2 partially (non-)renewable resources the availability

of which is renewed in specific time periods

Chapter 2

33

Finally, parameter 3 describes the resource availability characteristics of the

problem.

3 (partially) renewable resources are available in

constant amounts

 v3 (partially) renewable resources are available in

variable amounts

2.7.2 Field β – Activity Characteristics

The second field describes the activity characteristics of the problem, using

nine parameters. The first parameter 1 indicates the possibility of activity

preemption:

1 no activity preemption is allowed

pmtn1 Activity preemption of type preempt-resume is

allowed

reppmtn1 Activity preemption of type preempt-repeat is

allowed

Parameter 2 describes the activity precedence relations:

2 no precedence constraints exist (activities can be

executed at any order)

cpm2 only Finish-to-Start relationships with zero time lag

are used, as in the PERT/CPM model

min2  precedence diagramming relations with minimal

time lags are used

gpr2 the activities are subject to generalized precedence

relationships with minimal and maximal time lags

State-of-the-Art

34

The third parameter 3 , denotes the ready times for activities:

3
all ready times are zero

j 3
ready times vary per activity

Parameter 4 describes the duration of project activities:

4 arbitrary integer durations

cont4 arbitrary continuous durations

)(4 dd j  all activities have a duration equal to d units

The fifth parameter 5 describes the project deadlines:

5 no deadlines

jd5 deadlines are imposed on individual project

activities

n 5 a deadline is imposed on the project

The next parameter 6 expresses the nature of resource requirements for

project activities:

6 constant discrete resource requirements (e.g. a

number of units for every time period of activity

execution)

vr6 variable discrete resource requirements (e.g. a

number of units which varies over the periods of

activity execution)

Chapter 2

35

If the activity durations have to be determined by the solution procedure on

the basis of a resource requirement function, then the following settings are

used:

disc6 The resource requirements are a discrete function

of the activity duration

cont6 The resource requirements are a continuous

function of the activity duration

int6  the activity resource requirements are expressed as

an intensity or rate function

If needed, the user can be more specific on the type of resource requirement

function (e.g. concave, convex, linear, e.t.c.)

The type and number of possible execution modes of project activities is

described by parameter 7 .

7 activities are performed in a single execution mode

mu7 activities have multiple preset execution modes

id7 Activities are subject to mode identity constraints

The next parameter 8 is used to address financial issues of the project

activities. Most models with cash flows, assume the cash flow amounts to be

known. Other models assume that the cash flows are periodic in that they

occur at regular time intervals or with a known frequency. Still other models

assume that both the amount and the timing of the cash flows have to be

determined.

8 no cash flows are specified

jc8 activities have associated cash flows

State-of-the-Art

36

 jc8 activities have an associated positive cash flow

per8 periodic cash flows are specified

sched8 both the amount and timing of the cash flows have

to be determined

Finally parameter 9 denotes the changeover times. Changeover times are

usually sequence-independent, so we include them in the activity durations.

However, sometimes changeovers are sequence-dependent (e.g. equipping

an excavator with different scoops and workers travelling between sites) and

must be taken into account in project settings:

9 no changeover times

jks9 Sequence-dependent changeover times

2.7.3 Field γ – Performance Measures

The last field is used to define the performance measures:

reg the performance measure is any regular measure

nonreg the performance measure is any nonregular

measure

Obviously, the list of performance measures is practically endless. Some

examples of such measures are:

maxC minimize the project makespan

npv maximize the net present value of the project

F minimize the average flow time over all subprojects

or activities

curve determine the time vs cost trade-off curve

Chapter 2

37

rac minimize the resource availability costs

maxL minimize the project lateness

maxT minimize the project tardiness

av minimize the resource allocations whilst meeting

the project deadlines

multi multiple objectives

2.8 Test Instance Sets

When testing exact or heuristic methods for project scheduling, test instances

are necessary for evaluation and comparison reasons. Although the first

problem test sets were usually a collection of solved instances in the

literature, several parameter-driven instance generators have been developed

for the RCPSP its extensions. A summary of online available test sets and

their characteristics is provided in Table 1.1.

Table 1.1. Test set characteristics and available instances

Test Set
Problem

Types
Number of
Instances

Number of
Activities

Number
of

Modes

Number
of Resources

Patterson RCPSP 110 7-50 1 1-3 Renewable

ProGen

RCPSP 2040 30,60,90,120 1 4 Renewable

MRCPSP 11182
10,12,14,16,18,

20,30
1,2,3,4,5

1-3 Renewable
1-5 Non-Renewable

ProGen/max

RCPSP/max 2520
10,20,30,50,100,

200,500,1000
1 5 Renewable

RIP/max 810 10,20,30 1 1,3,5 Renewable

RCPSP/RLP 1890
10,15,20,30,50,

100,200,500,1000
1 1,3,5 Renewable

MRCPSP/max 1620 10,20,30,50,100 2,3,4,5
3,5 Renewable

2,3 Non-Renewable

RanGen2 RCPSP 1800 30 1 4 Renewable

State-of-the-Art

38

2.8.1 Patterson test set

Patterson (1984) was the first to assemble a set of 110 test problems (with 7

up to 50 activities and 1 to 3 renewable resource types) which over the years

became a standard for validating optimal and suboptimal procedures for the

RCPSP. But Herroellen et al. (1998) pointed out that test sets should span the

full range of complexity, from very easy to very hard problem instances

generated by using a controlled design of specified problem parameters. The

generation of easy and hard problem instances, however, appears to be a

very difficult task which heavily depends on the possibility to isolate the

factors that precisely determine the computing effort required by the solution

procedure used to solve a problem, and the calibration of the scale that

characterizes such effort. Such problem sets are generated by ProGen

proposed by Kolisch et al. (1995) that quickly replaced the Patterson test

problem set.

2.8.2 ProGen and ProGen/max

ProGen was developed by Kolisch et al. (1995), as a network instance

generator for the classical RCPSP as well as the multi-mode extension. A

number of instances, systematically generated by ProGen, are available for

researchers in PSPLIB (Kolisch and Sprecher, 1996), an online scheduling

library (http://129.187.106.231/psplib/). PSPLIB test sets have been used as

a benchmark in a large number of studies. According to the review papers by

Herroelen (2005), Lancaster and Ozbayrak (2007) and Hartmann and

Briskorn (2010), it is the most widely used test bed for the RCPSP and its

variations.

The library contains data sets that can be used for the evaluation of solution

procedures for single- and multi-mode resource-constrained project

scheduling problems, as well as reported optimal and heuristic solutions.

Researchers can download the benchmark sets to evaluate their algorithms,

http://129.187.106.231/psplib/

Chapter 2

39

and send their results to be added to the library, or generate their own test-

data.

Schwindt (1996) developed a version called ProGen/max in order to include

minimal and maximal time lags. This generator can also produce activities

with multiple modes as well as instances for the resource levelling and the

resource investment problem.

2.8.3 RanGen and RanGen2

The generators presented in the previous sections do not generate strongly

random networks because they do not allow selection from the full space of

feasible networks. Hence, Demeulemeester et al. (2003) developed RanGen,

which claims to generate strongly random networks that conform to desired

values of complexity measures. RanGen produces single- and multi-mode

project instances based on different control parameters than ProGen.

Vanhoucke et al. (2008) enhanced RanGen to RanGen2, by incorporating

further topological network measures.

2.8.4 Other test instance generators

A test set generator for AOA project networks was proposed by Agrawal et al.

(1996). In this generator, named DAGEN, the user can specify the level of a

summary measure of network complexity. Browning and Yassine (2010)

presented a generator for problems consisting of multiple projects with

controlled resource distributions and amounts of resource contention. They

also generated 12,320 test problems for a full-factorial experiment and used

analysis of means to conclude that the generator produces “near-strongly

random” problems.

State-of-the-Art

40

2.9 Mathematical Programming

Mathematical Programming is the use of mathematical models, particularly

optimising models, to assist in taking decisions. It is very different and should

not be confused with computer programming, even though solving most

practical problems requires the use of computer calculating power.

The term programming is actually used in the sense of planning/scheduling.

The goal of mathematical programming is to optimise (minimise or maximise)

a quantity. This quantity is known as the objective function.

2.9.1 Mathematical Modelling

Many scientific applications utilise models as a structure to present features

and characteristics of an “object”. Sometimes models are physical, such as a

model aircraft used in wind tunnels to test its aerodynamics. However, the

models examined in operational research are abstract. These abstract models

are usually mathematical and involve a set of mathematical relationships

involving equations, inequalities and logical dependencies to describe real-

world relationships and constraints.

Building a mathematical model gives us greater insight and understanding of

the “object” being modelled. A number of not so obvious aspects are revealed

and further mathematical analysis can lead to different courses of action.

Finally, it is easier to implement various “scenarios”, however radical, and

harmlessly observe their outcome.

It is important to understand that a model is actually defined by its

relationships and constraints. These are, to a large extent, independent of the

data in the model. This means that a model can be used in a variety of

similar situations, that differ in the data involved (i.e., costs, resource

availabilities, activity durations, etc).

Chapter 2

41

According to Yang (2008), whatever the real-world problem is, it is usually

possible to formulate the optimization problem in a generic form. All

optimization problems with explicit objectives can in general be expressed as

nonlinearly constrained optimization problems in the following generic form:

minimise
nx 
/ maximise  xf

subject to

   

   Kkx

Mmx

k

m

,...,10

,...,10









where   nT

nxxxx  ,...,, 21

(1.1)

where  xf ,  xm , and  xk are scalar functions of the real column vector

x . The function  xf is called objective function, and is a quantitative

measure of the performance of the system in question. The components ix of

vector x are called decision variables, or simply variables, and they can be

either continuous, discrete or a mix of these two. The variables are the

unknowns whose values are to be determined such that the objective

function is optimized. Additionally,  xm are constraints in terms of M

equalities, and  xk are constraints written as K inequalities. Therefore,

there are M+K constraints in total. Constraints represent any restrictions that

the decision variables must satisfy.

According to Nemhauser and Wolsey (1999), in mathematical programming

(especially when integer decisions are involved) formulating a "good" model

is of crucial importance to solving the problem. Indeed, the quality of a

mathematical formulation strongly depends on the choice of decision

variables and the constraints formulated. At this point it should be

emphasized that it is instinctive to believe that the computational time

increases and computational feasibility decreases as the number of

constraints increases, however, trying to find a formulation with a small

State-of-the-Art

42

number of constraints is often a very bad strategy (Nemhauser and Wolsey,

1999).

The procedure of identifying the decision variables, constraints and objective

function is known as modelling. Depending on the properties of the functions

f ,  , and  and the vector x , the mathematical program (1.1) is called:

 Linear: If x is continuous and the functions f ,  , and  are all

linear.

 Nonlinear: If x is continuous and at least one of the functions f ,  ,

and  is nonlinear.

 Mixed integer linear: If x requires at least some of the variables ix to

take integer (or binary) values only; and the functions f ,  , and 

are linear.

 Mixed integer nonlinear: If x requires at least some of the variables ix

to take integer (or binary) values only; and at least one of the

functions f ,  , and  is nonlinear.

2.9.2 Types of optimal solutions

The feasible region contains the set of feasible solutions to the problem,

    0,0|  xxxF km

n  . A feasible solution *x that optimises the

objective function is called optimal,     FxxforxfFx  ,: ** . The

value of the objective function for the optimal solution  *xf should be less

or equal () to every other value, with Fx , when we have a minimisation

problem and greater or equal () for a maximisation problem.

If for a minimisation problem, the property    xfxf * is satisfied for all

Fx , then *x is a global minimum. If this condition is satisfied for all x in a

neighbourhood of *x , then it is a local minimum, as shown in Fig. 2.4. Finally,

Chapter 2

43

if the inequality holds strictly, *x is a strong minimum, while it is called weak

minimum otherwise.

Figure 2.4. Types of minima

2.9.3 Linear Programming (LP)

Linear Programming (LP) is a mathematical method for determining a way to

achieve the best outcome (such as maximum profit or lowest cost) in a

given mathematical model for some list of requirements represented as linear

relationships.

More formally, linear programming is a technique for the optimization of a

linear objective function, subject to linear equality and linear

inequality constraints. Its feasible region is a convex polyhedron, which is a

set defined as the intersection of finitely many half spaces, each of which is

defined by a linear inequality. Its objective function is a real-valued affine

function defined on this polyhedron. A linear programming algorithm finds a

point in the polyhedron where this function has the smallest (or largest) value

if such a point exists.

State-of-the-Art

44

Linear programs are problems that can be expressed in canonical form:

maximise xcT

subject to bAx 

and 0x

(1.2)

where x represents the vector of variables (to be determined), c and b are

vectors of (known) coefficients, A is a (known) matrix of coefficients, and

 T is the matrix transpose. The expression to be maximized or minimized is

called the objective function (xcT in this case). The inequalities bAx  are

the constraints which specify a convex polytope over which the objective

function is to be optimised. In this context, two vectors are comparable when

they have the same dimensions. If every entry in the first is less-than or

equal-to the corresponding entry in the second then we can say the first

vector is less-than or equal-to the second vector.

Two well-known solution procedures for LP problems are the Simplex

algorithm and the interior points method.

Simplex Algorithm

The Simplex Algorithm, developed by George Dantzig in 1947, solves LP

problems by starting with an initial Basic Feasible Solution (BFS) and testing

its optimality. If the optimality condition is verified, then the algorithm

terminates. Otherwise, the algorithm identifies an adjacent BFS, with a better

objective value. The optimality of this new solution is tested again, and the

entire scheme is repeated, until an optimal BFS is found. Since every time a

new BFS is identified the objective value is improved (except from a certain

pathological case that we shall see later), and the set of BFS’s is finite, it

follows that the algorithm will terminate in a finite number of steps

(iterations).

Chapter 2

45

It is also interesting to examine the geometrical interpretation of the

behaviour of Simplex algorithm. Given the above description of the algorithm

and the correspondence of BFS's to extreme points, it follows that Simplex

essentially starts from some initial extreme point, and follows a path along

the edges of the feasible region towards an optimal extreme point, such that

all the intermediate extreme points visited are improving (more accurately,

not worsening) the objective function (see Fig. 2.5).

Figure 2.5. Graphical interpretation of the Simplex method

It is worth mentioning that in 1953 Dantzig and Orchard-Hays proposed the

Revised Simplex method, which actually is not a different method but is a

different (more efficient) way to carry out each computational step of the

Simplex method.

Interior Point Method

An interior point method is one that improves a feasible interior point of the

linear program by steps through the interior (see Fig. 2.6), rather than

State-of-the-Art

46

around the boundary of the feasible region, as in the Simplex algorithm.

Figure 2.6. Graphical interpretation of the Interior-point method

A polynomial time linear programming algorithm using an interior point

method was found by Karmarkar (1984). Arguably, interior point methods

were known as early as the 1960s in the form of the barrier function

methods, but the media hype accompanying Karmarkar's announcement led

to these methods receiving a great deal of attention. Karmarkar's

breakthrough revitalized the study of interior point methods and barrier

problems, showing that it was possible to create an algorithm for linear

programming characterized by polynomial complexity and, moreover, that

was competitive with the simplex method. Already Khachiyan's ellipsoid

method was a polynomial time algorithm; however, in practice it was too slow

to be of practical interest.

The key idea behind interior-point methods are as follows, assuming an initial

feasible interior point is available and that all moves satisfy bAx  :

Chapter 2

47

1. Try to move through the interior in directions that show promise of

moving quickly to the optimal solution.

2. Recognize that if we move in a direction that sets the new point too

"close" to the boundary, this will be an obstacle that will impede our

moving quickly to an optimal solution. One way around this is to

transform the feasible region so that the current feasible interior point

is at the center of the transformed feasible region. Once a movement

has been made, the new interior point is transformed back to the

original space, and the whole process is repeated with the new point

as the center.

3. The simple stopping rule typically followed is to stop with an

approximate optimal solution when the difference between iterates

"deemed" sufficiently small in the original space.

2.9.4 Mixed Integer Programming (MIP)

A Mixed-Integer Programming (MIP) problem results when some of the

variables in your model are real-valued and some of the variables are integer

and/or binary. The model is therefore “mixed”. Integer variables appear when

modelling indivisible entities, while a very common use of binary (0–1)

variables is to represent binary choice. Consider an event that may or may

not occur, and suppose that it is part of the problem to decide between these

possibilities. In order to model such a choice, a binary variable, which

typically equals 1 if the event occurs otherwise is set to zero, can be used.

Depending on the specific problem the event may represent yes/no decisions,

logical conditions, fixed costs or piecewise linear functions.

Mixed Integer Programming (MIP) problems can be expressed in standard

form, as follows:

State-of-the-Art

48

maximise hyxcT 

subject to bGyAx 

0x and

0y is integer or binary

(1.3)

where x represents the vector of non-negative variables, y represents the

vector of integer and/or binary variables, c and b are vectors of coefficients,

and A and G are matrices of coefficients. In this case the objective function

is hyxcT  .

For further reading on MIP optimisation, we refer to the excellent books of

Floudas (1995) and Nemhauser and Wolsey (1999). MIP problems are usually

solved using branch-and-bound, cutting planes or branch-and-cut methods.

Branch-and-Bound Techniques

Branch and Bound (B&B) is by far the most widely used tool for solving large

scale NP-hard combinatorial optimization problems (Floudas, 1995). The

method was first proposed by Land and Doig (1960) for discrete

programming. The Branch and Bound technique consists of a systematic

enumeration of all candidate solutions, where large subsets of fruitless

candidates are discarded en masse, by using upper and lower estimated

bounds of the quantity being optimized.

The method is based on the observation that the enumeration of integer

solutions has a tree structure. For example, consider the complete

enumeration of a model having one general integer variable 1x , and two

binary variables 2x and 3x , whose ranges are 31 1  x , 10 2  x , and

10 3  x . Fig. 2.7 shows the complete enumeration of all of the solutions for

these variables, even those which might be infeasible due to other constraints

Chapter 2

49

on the model. The structure in Fig. 2.7 looks like a tree lying on its side with

the root (or root node) on the left, labelled “all solutions”, and the leaves (or

leaf nodes) on the right. The leaf nodes represent the actual enumerated

solutions, so there are 12 of them: (3 possible values of 1x) × (2 possible

values of 2x) × (2 possible values of 3x). For example, the node at the upper

right represents the solution in which 11 x , 02 x , and 03 x . The other

nodes can be thought of as representing sets of possible solutions. For

example, the root node represents all solutions that can be generated by

growing the tree. Another intermediate node, e.g. the first node directly to

the right of the root node, represents another subset of all of the possible

solutions, in this case, all of the solutions in which 21 x and the other two

variables can take on any of their possible values. For any two directly

connected nodes in the tree, the parent node is the one closer to the root,

and the child node is the one closer to the leaves.

Figure 2.7. A full enumeration tree

State-of-the-Art

50

Now the main idea in branch and bound is to avoid growing the whole tree as

much as possible, because the entire tree is just too big in any real problem.

Instead branch and bound grows the tree in stages, and grows only the most

promising nodes at any stage. It determines which node is the most

promising by estimating a bound on the best value of the objective function

that can be obtained by growing that node to later stages. The name of the

method comes from the branching that happens when a node is selected for

further growth and the next generation of children of that node is created.

The bounding comes in when the bound on the best value attained by

growing a node is estimated. We hope that in the end we will have grown

only a very small fraction of the full enumeration tree.

Another important aspect of the method is pruning, in which you cut off and

permanently discard nodes when you can show that it, or any its

descendents, will never be either feasible or optimal. The name derives from

gardening, in which pruning means to clip off branches on a tree, exactly

what we will do in this case. Pruning is one of the most important aspects of

branch and bound since it is precisely what prevents the search tree from

growing too much.

To describe branch and bound in detail, we first need to introduce some

terminology:

 Node: any partial or complete solution. For example, a node that is two

levels down in a 5-variable problem might represent the partial solution 3-

17-?-?-?, in which the first variable has a value of 3 and the second

variable has a value of 17. The values of the last three variables are not

yet set.

 Leaf (leaf node): a complete solution in which all of the variable values

are known.

 Bud (bud node): a partial solution, either feasible or infeasible. Think of

it as a node that might yet grow further, just as on a real tree.

Chapter 2

51

Branch and bound is a very general framework. To completely specify how

the process is to proceed, you also need to define policies concerning

selection of the next node, selection of the next variable, how to prune, and

when to stop.

At any intermediate point in the algorithm, we have the current version of the

branch and bound tree, which consists of bud nodes labelled with their

bounding function values and other nodes labelled in various ways. The node

selection policy governs how to choose the next bud node for expansion.

There are three popular policies for node selection best-first or global-best

node selection, depth-first and breadth-first.

Once a bud node has been chosen for expansion, the variable selection policy

governs which variable to use in creating the child nodes of the bud node.

There are few standard policies for variable selection. The variables are often

selected just in their natural order, though a good variable selection policy

can improve efficiency greatly.

We also need to establish policies and rules for pruning bud nodes. As

mentioned above, there are two main reasons to prune a bud node: you can

show that no descendent will be feasible, or you can show that no

descendent will be optimal.

Finally, we need a terminating rule to tell us when to stop expanding the

branch and bound tree. To guarantee that we have reached optimality, we

stop when the incumbent solution’s objective function value is better than or

equal to the bounding function value associated with all of the bud nodes.

This means that none of the bud nodes could possibly develop into a better

solution than the complete feasible solution we already have in hand, so

there is no point in expanding the tree any further. Of course, according to

our policies for pruning, all bud nodes in this condition will already have been

pruned, so this terminating rule amounts to saying that we stop when there

State-of-the-Art

52

are no more bud nodes left to consider for further growth. This also proves

that the incumbent solution is optimum.

Cutting Plane Methods

The term cutting-plane method is an umbrella term for optimization

methods which iteratively refine a feasible set or objective function by means

of linear inequalities, termed cuts. Such procedures are popularly used to

find integer solutions to integer programming and MIP problems, as well as

to solve general, not necessarily differentiable convex optimization problems.

The use of cutting planes to solve MIP was introduced by Gomory (1958,

1960). However most experts, including Gomory himself, considered them to

be impractical due to numerical instability, as well as ineffective because

many rounds of cuts were needed to make progress towards the solution.

Things turned around when in the mid-1990s Cornuejols and co-workers

showed them to be very effective in combination with branch-and-cut and

ways to overcome numerical instabilities. Nowadays, all commercial MILP

solvers use Gomory cuts in one way or another. Gomory cuts, however, are

very efficiently generated from a simplex tableau, whereas many other types

of cuts are either expensive or even NP-hard to separate. Among other

general cuts for MILP, most notably lift-and-project dominates Gomory cuts.

Cutting-plane methods for general convex continuous optimization and

variants are known under various names: Kelley's method, Kelley-Cheney-

Goldstein method, and bundle methods.

Cutting plane methods for MIP work by solving a non-integer linear program,

the linear relaxation of the given integer program. The theory of Linear

Programming dictates that under mild assumptions (if the linear program has

an optimal solution, and if the feasible region does not contain a line), one

can always find an extreme point or a corner point that is optimal. The

obtained optimum is tested for being an integer solution. If it is not, there is

guaranteed to exist a linear inequality that separates the optimum from

Chapter 2

53

the convex hull of the true feasible set. Finding such an inequality is

the separation problem, and such an inequality is a cut. A cut can be added

to the relaxed linear program. Then, the current non-integer solution is no

longer feasible to the relaxation. This process is repeated until an optimal

integer solution is found.

Branch-and-Cut Techniques

Branch-and-cut (B&C) is a hybrid of branch and bound and cutting

plane methods. It has proven to be effective in solving different combinatorial

optimization problems, especially the traveling-salesman problem (TSP) and

its variants (Bard et al. 2002). B&C methods have also been used to solve

other combinatorial optimization problems. Problems addressed recently with

cutting plane or branch-and-cut methods include the linear ordering problem,

maximum cut problems, scheduling problems, network design problems,

packing problems, the maximum satisfiability problem, biological and medical

applications, and finding maximum planar subgraphs (Mitchell, 2001).

The linear program is solved without the integer constraint using the

regular simplex algorithm. When an optimal solution is obtained, and this

solution has a non-integer value for a variable that is supposed to be integer,

a cutting plane algorithm is used to find further linear constraints which are

satisfied by all feasible integer points but violated by the current fractional

solution. If such an inequality is found, it is added to the linear program, such

that resolving it will yield a different solution which is hopefully "less

fractional". This process is repeated until either an integer solution is found

(which is then known to be optimal) or until no more cutting planes are

found.

At this point, the branch and bound part of the algorithm is started. The

problem is split into two versions, one with the additional constraint that the

variable is greater than or equal to the next integer greater than the

State-of-the-Art

54

intermediate result, and one where this variable is less than or equal to the

next lesser integer. In this way new variables are introduced in the basis

according to the number of basic variables that are non-integers in the

intermediate solution but which are integers according to the original

constraints. The new linear programs are then solved using the simplex

method and the process repeats until a solution satisfying all the integer

constraints is found. During the branch and bound process, further cutting

planes can be separated, which may be either global cuts, i.e., valid for all

feasible integer solutions, or local cuts, meaning that they are satisfied by all

solutions fulfilling the side constraints from the currently considered branch

and bound subtree.

2.9.5 Preprocessing

Given a mathematical formulation, preprocessing refers to elementary

operations that can be performed to enhance or simplify the formulation. The

preprocessing phase often involves at least one of the following actions: (i)

development of tightening constraints, (ii) addition of logical inequalities, (iii)

fixing of variables, and (iv) removing redundant constraints. Actually,

preprocessing can be considered as a phase between formulation and

solution, and it can significantly improve the speed of a sophisticated

mathematical framework that might, for instance, be unable to recognize the

fact that some variables can be fixed and then be eliminated from the model

(Nemhauser and Wolsey, 1999).

The most common preprocessing performed in mathematical models for the

RCPSP is the definition of earliest and latest starting times (ESi and LSi,

respectively) and earliest and latest finishing times (EFi and LFi, respectively)

(i.e., time-indexed discrete-time models) for the RCPSP are highly sensitive to

time horizon. The time-window preprocessing reduces: (i) the number of the

time-indexed decision variables, and (ii) the total number of constraints

needed.

Chapter 2

55

2.10 Time representation

In all mathematical formulations, the representation of time is an important

issue. Two main approaches are used: discrete-time and continuous-time,

depending on whether the events of the schedule can only take place at

some predefined time points , or can occur at any moment during the time

horizon of interest, respectively.

Discrete-time models are based on: (i) dividing the scheduling horizon into a

finite number of time intervals with predefined duration and, (ii) allowing the

events such as the beginning or ending of tasks to happen only at the

boundaries of these time periods (see Fig. 2.8a). Therefore, scheduling

constraints have only to be monitored at specific and known time points,

which reduces the problem complexity and makes the model structure

simpler and easier to solve, particularly when resource limitations are taken

into account. On the other hand, this type of problem simplification has two

major disadvantages. First, the size of the mathematical model as well as its

computational efficiency strongly depend on the number of time intervals

postulated, which is defined as a function of the problem data and the

desired accuracy of the solution. Note that a dense discretisation of the time

horizon would increase the number of decision variables and lead to large

combinatorial problems, which are hard to solve (or even intractable).

Second, sub-optimal or even infeasible schedules may be generated because

of the reduction of the domain of timing decisions. This time representation is

an approximation of time, with the length of each interval usually set to be

equal to the greatest common factor of activity processing times. Despite

being a simplified version of the original scheduling problem, discrete

formulations have proven to be very efficient, adaptable and convenient for a

wide variety of industrial applications, especially in those cases where a

reasonable number of intervals is sufficient to obtain the desired problem

representation.

State-of-the-Art

56

In order to overcome the previous limitations and generate data-independent

models, a wide variety of optimisation approaches employ a continuous-time

representation (see Fig. 2.8b). In these formulations, timing decisions are

explicitly represented as a set of continuous variables defining the exact times

at which the events take place. In the general case, a variable time handling

allows obtaining a significant reduction in the number of variables of the

model and at the same time, more flexible solutions in terms of time can be

generated. Also, problems with non-integer activity durations could be

modelled more accurately. This is of great importance for real-life problems,

wherein processing times rarely have integer values. However, because of

the modelling of variable processing times, resource limitations usually needs

the definition of more complicated constraints involving many big-M terms,

which tends to increase the model complexity and the integrality gap and

may negatively impact on the capabilities of the method.

Figure 2.8. Time representations

2.11 Modelling and Solution Techniques

In this section we will review modelling and solution techniques for the

Resource-Constrained Project Scheduling Problem and its variants. Blazewicz

et al. (1983) have shown that solving the RCPSP is a hard NP-hard problem

and for some variants, such as the RCPSP/max, even the theoretically easier

problem of checking its feasibility is NP-complete (Hartmann and Briskorn,

2010).

Chapter 2

57

A number of solution methods, both exact and approximate have been

proposed in the literature so far. Exact techniques found in the literature rely

usually on mathematical programming formulations and specialised branch-

and-bound algorithms. Due to the high degree of complexity of RCPSPs, a

number of approximate methods such as heuristics and metaheuristics have

also been proposed in the literature.

Roughly speaking, a heuristic is a technique designed to solve a problem, or

find an approximate solution with few computational requirements, when

classic methods fail to find any exact solution. By trading optimality,

completeness, accuracy, and/or precision for speed, a heuristic can quickly

produce a solution that is good enough for solving the problem at hand. The

heuristic procedures broadly fall into two categories, namely constructive

heuristics and improvement heuristics (Demeulemeester and Herroelen,

2002). Constructive heuristics start from an empty schedule and add activities

one by one until one feasible schedule is obtained. To that purpose, the

activities are typically ranked by using priority rules which determine the

order in which the activities are added to the schedule. Improvement

heuristics, on the other hand, start from a feasible schedule that was

obtained by some constructive heuristic. Operations are performed on a

schedule which transform a solution into an improved one. These operations

are repeated until a locally optimal solution is obtained. Steepest descent,

fastest descent and iterated descent are various way of arriving in locally

optimal solutions. Some improvement heuristics try to avoid getting stuck in a

locally optimal solution by allowing an intermediate deterioration of the

project makespan. In those cases, one has to avoid the phenomenon of

cycling, i.e. repeatedly considering the same sequence of schedules. To that

purpose, several metaheuristics like tabu search, simulated annealing and

genetic algorithms have been proposed. A metaheuristic optimises a problem

by iteratively trying to improve a candidate solution with regard to a given

measure of quality. Metaheuristics make few or no assumptions about the

problem being optimized and can search very large spaces of candidate

State-of-the-Art

58

solutions. However, similar to heuristics, there is no guarantee on the quality

of the solution obtained, and it is often impossible to tell how far the current

solution is from optimality.

Finally, hybrid methods combine more than solution technique, e.g. exact and

heuristic, heuristic and metaheuristic, e.t.c.

We focus our review to solution procedures that aim at minimising the project

makespan, which (as pointed out in section 2.6.1) is the most popular and

important objective. For a thorough state-of-the-art the interested reader is

referred to the excellent works of Kolisch (1996a), Hartmann and Kolisch

(2000), Demeulemeester and Herroelen (2002), Kolisch and Hartmann

(2006), Hartmann and Briskorn (2010) and Węglarz et al. (2011).

2.11.1 RCPSP

The classical RCPSP belongs to the class of problems that are strongly NP-

hard, as demonstrated by Blazewicz et al. (1983), and since the late 1950s

most of the work in project scheduling has focused on developing solution

techniques for it. Due to its generality the classical RCPSP, has attracted most

of the project scheduling research effort. Our review, will focus on the most

important solution methods proposed in the literature.

Exact methods

Starting with exact methods for the RCPSP, a very early discrete-time

mathematical model for the RCPSP was presented by Pritsker et al. (1969).

This Binary Integer Programming (BIP) formulation was designed for multi-

project scheduling, but can also be used for the single-project case. It is

based on the definition of binary variables, which specify if an activity starts

processing at a specific time point or not. Activities have a resource demand

at the time point that they start processing, and no resource demand at the

Chapter 2

59

time point of their completion. The MILP model accommodated a wide range

of conditions and supported objectives for minimizing the makespan and

minimizing the total lateness. No computational results are available for this

early study.

Christofides et al. (1987) developed a formulation similar to Pritsker et al.,

which mainly differs in how they formulate the precedence constraints with

the new precedence constraints being disaggregated expressions of

Pritsker’s. They introduced CAT, a depth-first branch-and-bound procedure

that generates a branch-and-bound tree, whose nodes correspond to semi-

active feasible partial schedules. The procedure only branches to resolve a

resource conflict. The reported computational results are on randomly

generated problems involving up to 25 activities and 3 resources.

Kaplan (1988) developed a different time-indexed discrete-time BIP

formulation for the preemptive version of the RCPSP, which can easily be

adopted to the standard RCPSP. It is based on defining a single type of binary

variables that specify if activities are in process in each time period, thus

allowing a much simpler definition of the resource constraints. In this

formulation, the dummy start and end activities are assigned durations equal

to 1 which have to be considered when performing the forward and the

backward pass, respectively. Moreover, transitive precedence relationships

are introduced between activities.

The very efficient algorithm, presented by Demeulemeester and Herroelen

(1992, 1997a) is an extension of the depth-first branch and bound approach

of Christofides et al. (1987). The new nodes in the enumeration tree are

created by considering sets of activities which are delayed. Two dominance

rules are used to prune the enumeration tree. The first one is a variation of

the left-shift dominance rule. The second one makes use of a “cutest”, i.e.

unscheduled activities for which all predecessors belong to the partial

schedule. Bounding is performed with the precedence-based and the critical-

State-of-the-Art

60

sequence-based lower bound used by Stinson et al. (1978), and the

weighted-node-packing-bound of Mingozzi et al. (1998).

Two formulations with an exponential number of variables are those of

Alvarez-Valdés and Tamarit (1993) and Mingozzi et al. (1998), making them

more useful when calculating lower bounds. The first one proposes a

continuous-time formulation based on the definition of a set IS of all minimal

resource incompatible sets S. A resource incompatible set is a set of activities

between which no precedence relation exists, but which would violate the

resource constraints, if performed in parallel. Their model is based on the

definition of sequencing binary variables which define the sequencing of

activities. The second one by Mingozzi et al. (1998), is a discrete-time BIP

formulation based on feasible subsets, that is activities that can be

simultaneously executed without violating resource or precedence

constraints.

Klein (2000) proposed a discrete-time BIP model with precedence and

resource constraints similar to those presented by Kaplan (1988). A single

type of binary variables is used, specifying if an activity starts at the

beginning of time point t or earlier.

Artigues et al. (2003) proposed a continuous MIP formulation based on

sequencing and resource flow variables. Starting time continuous variables

are defined for each activity. In addition, sequencing binary variables are

introduced to define the sequence between any pair of activities. Finally,

resource flow continuous variables are defined to denote the quantity of

resource directly transferred from one activity (at its completion) to another

(at the beginning of its processing). Notice that in this mathematical

formulation the resource requirements of the dummy activities are equal to

the maximum available capacity, instead of setting them to zero. That way,

the start dummy activity acts as a resource source while the end dummy

activity plays the role of a resource sink.

Chapter 2

61

Schmidt and Grossmann (1996) proposed a single mode, slot-based

continuous-time formulation with no resource constraints for the optimal

scheduling of testing tasks in the new product development process of an

agricultural chemical or pharmaceutical company. In subsequent work, the

focus changed to the development of realistic models that could be solved for

large-scale problems. Jain and Grossmann (1999) extended Schmidt’s work

by including resource constraints, and Maravelias and Grossmann (2004)

further extended that model by allowing the allocation of different levels of

resources and capacity expansion. On the same problem of scheduling of

clinical trials in the pharmaceutical research and development pipeline, Colvin

and Maravelias (2008) developed a basic resource-constrained multi-stage

stochastic programming formulation (MSSP) model which was extended in

Colvin and Maravelias (2009) to account for outlicensing and resource

planning including outsourcing. In their recent work, Colvin and Maravelias

(2010) focused on the development of new results that lead to smaller MSSP

mixed-integer programming (MIP) formulations and the development of a

solution algorithm to address problems that cannot be generated using

commercial tools. Papageorgiou, Rotstein, and Shah (2001) proposed a MILP

model assuming that enough resources are always available. The formulation

integrates the selection of both a product development and introduction

strategy and a capacity planning and investment strategy. Levis and

Papageorgiou (2004) proposed a mathematical model, which is an extension

of the previous work, determining both the product portfolio and the multi-

site capacity planning in the face of uncertain clinical trials outcomes while

taking into account the trading structure of the company.

Recently, Koné et al. (2011) introduced two different event-based

continuous-time MIP formulations wherein the decision variables are indexed

using event points instead of time points, that correspond to start or end

times of activities. The Start/End Event-based (SEE) formulation, which is a

variant of the event-based formulation proposed in Zapata et al. (2008), and

the On/Off Event-based (OOE) formulation. The variables in such

State-of-the-Art

62

formulations are fewer than in time-indexed ones, since they are not a

function of the time horizon. They compared the event-based formulations

with three other formulations issued from the literature, two of which

(Pritsker et. al., 1969 and Christofides et al., 1987) use time-indexed

variables, and a third formulation (Artigues et al., 2003) that uses sequential

variables. The computational results proved that the formulation proposed by

Christofides et al. (1987) yields better results for exact solving on traditional

test instances. The event-based formulations (more particularly the OOE) and

the one by Artigues et al. (2003), have the advantage of solving more easily

the instances involving very large scheduling horizons. Finally, their OOE

formulation consistently outperformed the SEE on all tested instance sets.

Approximate methods

A number of different approximate procedures have been developed for the

RCPSP. Priority-rule-based scheduling is made up of two components: A

schedule generation scheme (SGS) and a priority rule. Two different schemes

for the generation of feasible schedules can be distinguished (see Kolisch,

1996a): the serial and the parallel method, respectively. Both generate a

feasible schedule by extending a partial schedule in a stage-wise fashion. In

each stage the generation scheme forms the set of all schedulable activities,

called the decision set. A specific priority rule is then employed in order to

choose one activity from the decision set which will be scheduled. While the

decision set of the serial method is made up of all currently unscheduled

activities whose predecessors have already been scheduled, the parallel

method defines the set by including all the precedence- and resource-feasible

unscheduled activities which can be started at the schedule time. Depending

on the number of passes performed, and hence the number of schedules

generated, single- and multi-pass approaches can be distinguished. A number

of such heuristics along with a computational study are reported by Kolisch

(1996a).

Chapter 2

63

Truncated branch-and-bound methods do not explore the entire enumeration

tree, instead only a partial exploration is performed. An example of such a

method is the work of Alvarez-Valdes and Tamarit (1989) that makes use of

the enumeration tree as presented in Christofides et al. (1987), i.e., nodes

consist of sets of activities which have to be delayed. Instead of enumerating

all offspring nodes, the heuristic implicitly or explicitly chooses one node.

Kochetov and Stolyar (2003) devised an evolutionary algorithm which

combines genetic algorithm, path relinking, and tabu search. Solutions are

evolved and diversified in a genetic way. Evolution is done by choosing two

solutions from the pool and constructing the path of solutions linking the

selected solutions (path relinking). The best solution from the path is chosen

and improved via tabu search. The latter employs a neighborhood where the

activity list is divided in three parts. For the first and the last part the serial

SGS is employed while for the mid part the parallel SGS is used. The best

solution from the tabu search is added to the population and the worst

solution is removed from the population.

Debels et al. (2006) proposed a new metaheuristic that combines elements

from scatter search, a generic population-based evolutionary search method,

and from a recently introduced heuristic method for the optimisation of

unconstrained continuous functions based on an analogy with

electromagnetism theory. The computational experiments show that the

procedure is capable of producing consistently good results for challenging

instances of the resource-constrained project scheduling problem and that

the algorithm outperforms previous state-of-the-art existing heuristics.

Debels and Vanhoucke (2008) presented a new genetic algorithm (GA) that is

able to provide near-optimal heuristic solutions. This GA procedure is also

extended by a so-called decomposition-based genetic algorithm (DBGA) that

iteratively solves subparts of the project. They present computational

experiments on two data sets. The first benchmark set is used to illustrate

State-of-the-Art

64

the performance of both the GA and the DBGA. The second set is used to

compare the results with current state-of-the-art heuristics and to show that

the procedure is capable of producing consistently good results for

challenging problem instances. The GA outperforms all state-of-the-art

heuristics and the DBGA further improves the performance of the GA.

Paraskevopoulos et al. (2012) proposed a new solution representation and an

evolutionary algorithm for solving the RCPSP. The representation scheme is

based on an ordered list of events, that are sets of activities that start (or

finish) at the same time. The proposed solution methodology, namely SAILS,

operates on the event list and relies on a scatter search framework. The

latter incorporates an Adaptive Iterated Local Search (AILS), as an

improvement method, and integrates an event-list based solution

combination method. AILS utilizes new enriched neighborhoods, guides the

search via a long term memory and applies an efficient perturbation strategy.

Computational results on benchmark instances of the literature indicate that

both AILS and SAILS produce consistently high quality solutions, while the

best results are derived for most problem data sets.

2.11.2 Multi-mode Resource Constrained Project Scheduling

Problem (MRCPSP)

When the solution has to additionally determine the assignment of modes

(MRCPSP), further complexity is added since the solution search space is

enlarged. The MRCPSP is NP-hard in the strong sense being a generalization

of the RCPSP. Moreover, for more than one non-renewable resources the

problem of finding a feasible solution is already NP-complete (Kolisch, 1995).

Exact methods

Exact methods for the MRCPSP include the formulation of Talbot (1982),

which considers the objective of minimizing the makespan under a given

Chapter 2

65

budget, and minimizing the total non-renewable resource consumption under

the presence of a project due date.

Sprecher et al. (1997) extended the enumeration scheme of Demeulemeester

and Herroelen (1992) for the single-mode to the multi-mode RCPSP.

Hartmann and Drexl (1998) generalised the exact procedure of Stinson et al.

(1978) to the multi-mode context.

Zhu et al. (2006) proposed a branch-and-cut method based on Christofides et

al. formulation (1987) for the MRCPSP. The primary contribution of their

research aimed at the development of several techniques for accelerating the

solution process, including variable reduction, cut generation, and bound

tightening. In addition, a high-level search strategy referred to as local

branching was applied to find good feasible solutions in the early stages of

the computations. Their work gave very competitive results on benchmark

problems and remains the best-performing exact method to date.

Sabzehparvar et al. (2008) presented a continuous-time formulation for the

MRCPSP with Generalized Precedence Relations (MRCPSP-GPR) with mode-

dependent minimal or maximal time lags. The proposed model has been

inspired by the rectangle packing problems, but it has no need for a feasible

solution to start. Their computational study consisted of a set of 60 test

problems.

In a recent paper from the process systems industry, Zapata et al. (2008)

developed 3 different MILP models to address large-scale Multi-mode

Resource Constrained Multi-Project Scheduling Problems (multi-mode

RCMPSP), using continuous divisible resources and continuous time. The

“curse” of dimensionality of the problem (indexing of task execution modes,

indexing of time periods, and the discrete character of the resources), limits

the exact solution of the formulations to very small systems. Each of the 3

proposed models handles the time domain in a different way, but the

State-of-the-Art

66

computational results show that hat despite the theoretical advantages of the

strategies used they are limited to problems in the same range of applicability

of conventional multi-mode formulations.

Approximate methods

Starting with approximate solution procedures, Hartmann (2001) presented

an efficient genetic algorithm, with the genetic encoding based on a

precedence feasible list of activities and a mode assignment. After defining

the related crossover, mutation, and selection operators, they use a local

search extension to improve the schedules found by the basic genetic

algorithm.

Alcaraz et al. (2003) proposed another genetic algorithm with slightly worse

performance than that of Hartmann, but with a better fitness function.

Jarboui et al. (2008) propose a combinatorial Particle Swarm Optimisation

(CPSO) algorithm that first generates an assignment of modes to activities

which is called particle and then uses a local search to optimize the

sequences when a new assignment is made.

Van Peteghem and Vanhoucke (2010) designed a genetic algorithm which

uses two populations, one with left-justified schedules and one with right-

justified schedules. They also introduced an extended serial schedule

generation scheme, which improves the mode selection by choosing that

feasible mode of a certain activity that minimises the finish time of that

activity. According to their computational results, their algorithm outperforms

all prior algorithms in literature, within reasonable computation times.

Coelho and Vanhoucke (2011) developed a new algorithm that splits the

problem type into a mode assignment and a single mode project scheduling

step. The mode assignment step is solved by a satisfiability (SAT) problem

Chapter 2

67

solver and returns a feasible mode selection to the project scheduling step.

The project scheduling step is solved using an efficient meta-heuristic

procedure from literature to solve the RCPSP. Computational results show

that the procedure can report similar or sometimes even better solutions than

the algorithm of Van Peteghem and Vanhoucke (2010), although it often

requires a higher CPU time. This makes the considered genetic algorithm

approach the most powerful heuristic developed up to now.

2.11.3 RCPSP/max

The addition of maximal time lags to the classical RCPSP, significantly

increases the complexity of the problem. Moreover, the generation of

problem instances could be problematic because infeasible problems might be

generated. The RCPSP/max is an NP-hard problem and even the theoretically

easier problem of checking its feasibility is NP-complete (Hartmann and

Briskorn, 2010).

The RCPSP/max has been mostly studied under the objective of minimising

the project makespan. Non-regular objectives functions, such as resource

levelling and net present value problems, are also considered in various

works (Neumann and Zimmermann 1999, 2000 and Rieck et al., 2012). For

an extensive review of project scheduling problems with time windows the

interested reader is referred to Neumann, Schwindt and Zimmermann (2002,

2003).

Exact methods

Most exact solution procedures for the RCPSP/max in the literature are

usually branch-and-bound algorithms.

The early work of Bartusch et al. (1988), mainly aimed at the mathematical

properties of the problem, but also proposed a B&B procedure that extends

State-of-the-Art

68

the set of precedence relations to eliminate all reduced forbidden sets in an

initial time-feasible solution. The computational results are limited to a single

bridge construction project.

Demeulemeester and Herroelen (1997b) extend their DH-procedure to the

Generalized Resource-Constrained Project Scheduling Problem (GRCPSP),

which only deals with minimal time lags.

De Reyck and Herroelen (1998) proposed a hybrid depth-first/laser beam

search B&B algorithm. Schwindt (1998a) delayed activities by adding special

precedence constraints (i.e., disjunctive precedence constraints) between

sets of activities, unlike the previous two methods which used activity pairs.

Fest et al. (1998) proposed a similar approach, but instead of introducing

precedence constraints, the resource conflicts were resolved only locally by a

dynamic update of job release dates.

Dorndorf et al. (2000) presented a time-oriented B&B algorithm that uses

constraint-propagation techniques which actively exploit the temporal and

resource constraints of the problem in order to reduce the search space.

Recently, Bianco and Caramia (2012b) proposed a B&B algorithm that utilises

a new mathematical formulation. The mathematical uses a discrete-time

approach with one continuous and two binary variables. Continuous variable

xit represents the percentage of activity i executed till the end of time period

t. Binary variables itit fs / assume value 1 for every t , where τ is the time

activity i started/finished, and value 0 otherwise. Lower bounds are calculated

through a Langrangian relaxation of the former model. Their extensive

computational comparison with known lower bounds and exact methods,

displays the efficiency of their algorithm in the calculation of bounds and

solutions.

Chapter 2

69

Approximate methods

Some representative approximate approaches are mentioned below. Franck

and Neumann (1998) proposed a two step method: (a) a sophisticated

decomposition analysis is performed to identify critical sub-components which

can be scheduled independently, and (b) the scheduled sub-components

(partial schedules) are integrated into one using a set of priority rules.

Cesta et al. (2002) presented an algorithm based on a constraint satisfaction

problem solving search procedure. Cicirello and Smith (2004) described a

framework for integrating multiple heuristics within a stochastic sampling

search algorithm, and validated it on the RCPSP/max. Smith (2004)

developed a non-systematic hybrid that combines squeaky wheel optimisation

with an effective window-based conflict resolution mechanism.

Finally, Ballestin et al. (2011) proposed an evolutionary algorithm that utilises

the double justification technique of Valls et al. (2005) to improve solutions

generated in the evolutionary process.

2.12 Modelling and Optimisation Software

Solving mathematical programming problems without the use of a computer

is extremely hard even for small cases. Available commercial software and

hardware have evolved greatly the last few years, reducing running times,

computational costs and solving larger problems. Examples of commercial

modelling and optimisation software with common features are GAMS,

AIMMS, AMPL, Gurobi and ILOG. GAMS is the most commonly used tool in

the Process Systems Engineering community, with which we attempt to

exchange methods in this thesis. The rest of this section presents the GAMS

system and CPLEX solver that were selected to solve the optimisation

problems developed.

State-of-the-Art

70

2.12.1 General Algebraic Modelling System (GAMS)

The General Algebraic Modelling System (GAMS) is a high-level

modelling system for mathematical optimisation. It is designed for modelling

and solving linear, nonlinear, and mixed-integer optimisation problems. GAMS

was the first algebraic modelling language (AML) and is formally similar to

commonly used fourth-generation programming languages. It is available for

use on various computer platforms and the models are portable from one

platform to another.

GAMS allows the users to implement a sort of hybrid algorithms combining

different solvers in a seamless way. Models are described in concise algebraic

statements which are easy to read, both for humans and machines. Although

initially designed for applications related to economics and management

science, it has a large community of users from various backgrounds of

engineering and science.

GAMS contains an integrated development environment (IDE) which is

connected to a group of third-party optimisation solvers, such as BARON,

COIN solvers, CONOPT, CPLEX, DICOPT, GUROBI, MOSEK, SNOPT, and

XPRESS. The GAMS system is tailored for complex, large-scale modelling

applications and allows the user to build large maintainable models that can

be adapted to new situations.

According to Rosenthal (2012) and Castillo, Conejo, Pedregal, García, and

Alguaci (2001), some of the more remarkable features of GAMS algebraic

modelling language are:

 The model representation is analogous to the mathematical description

of the problem. Therefore, learning GAMS programming language is

almost natural for those working in the optimisation field. Additionally,

GAMS is formally similar to commonly used programming languages.

Chapter 2

71

 Models are described in compact and concise algebraic statements

which are easy for both humans and machines to read.

 The modelling task is completely apart from the solving procedure.

Once the model of the system in question has been built, one can

choose among the diverse solvers available to optimise the problem.

 Allows changes to be made in model specifications simply and safely.

 Allows unambiguous statements of algebraic relationships.

 Permits model descriptions that are independent of solution

algorithms.

 All data transformations are specified concisely and algebraically. This

means that all data can be entered in their most elemental form and

that all transformations made in constructing the model and in

reporting are available for inspection.

 The ability to model small size problems and afterwards transform

them into large-scale problems without significantly varying the code.

 Decomposition algorithms can be programmed in GAMS by using

specific commands, thus not requiring additional software.

 GAMS imports/exports data from/to Microsoft EXCEL. Additionally,

GAMS can be easily linked with MATLAB (The Mathworks, 1998) using

the matgams library (Ferris, 1999) if some special data manipulation is

needed.

2.12.2 CPLEX Solver

IBM ILOG CPLEX, which is often informally referred to simply as CPLEX, is an

optimisation solver package. The CPLEX Optimiser was named after the C

programming language in which it was implemented and the Simplex

method. However, today it provides additional methods for mathematical

programming and offers interfaces other languages such as C++, C#, and

Java, Python (through the C interface). Additional connectors to Microsoft

Excel and MATLAB are also provided. The CPLEX Optimiser is accessible

through independent modelling systems such as AIMMS, AMPL, GAMS, MPL,

State-of-the-Art

72

OpenOpt, OptimJ and TOMLAB. Specifically for GAMS, GAMS/CPLEX is a

solver that allows users to combine the high level modelling capabilities of

GAMS with the power of CPLEX optimisers.

The CPLEX Optimiser is designed to solve large, difficult problems quickly and

with minimal user intervention. Access is provided (subject to proper

licensing) to solution algorithms for linear, integer, quadratically constrained

and mixed integer programming problems.

While numerous solving options are available, GAMS/CPLEX automatically

calculates and sets most options at the best values for specific problems. It is

worth mentioning that for problems with integer variables CPLEX uses a

branch-and-cut algorithm which solves a series of LP subproblems. Because a

single mixed integer problem generates many subproblems, even small MIP

problems can be very computationally intensive and require significant

amounts of physical memory.

2.13 Concluding Remarks

In this chapter, various aspects of the RCPSP and its variants have been

reviewed, along with test instances commonly used by researchers for

benchmarking. Also, major optimisation techniques and tools used

throughout this thesis have been presented. The main concepts beneath each

method have been briefly described in order to provide the reader with a

general understanding of the theory involved into the solution approaches.

Finally, exact and approximate solution procedures for the RCPSP, from the

literature have been thoroughly reviewed.

At this point, it is worth noticing that the process of building a mathematical

model is often considered to be as important as solving it because this

process provides insight about how the system works and helps organise

essential information about it. Models of the real world are not always easy to

Chapter 2

73

formulate because of the richness, variety, and ambiguity that exists in the

real world or because of our ambiguous understanding of it. As a result,

building up concise, useful and efficient mathematical models/approaches is a

very difficult and challenging task and this thesis has placed particular

attention towards this direction.

74

Chapter 3

75

Chapter 3

RTN-based MILP Formulations for Single- and

Multi-Mode Resource-Constrained Project

Scheduling Problems

This chapter presents new mixed-integer linear programming models for the

deterministic single- and multi-mode resource-constrained project scheduling

problem with renewable and non-renewable resources. The modelling

approach relies on the Resource-Task Network (RTN) representation, a

network representation technique used in process scheduling problems,

based on continuous time models. First, we propose new RTN-based network

representation methods, and then we efficiently transform them into

mathematical formulations including a set of constraints describing

precedence relations, different types of resources and multiple objectives.

Finally, the applicability of the proposed formulations is illustrated using

several example problems under the most commonly addressed objective, the

makespan minimization.

3.1 Introduction

The main scope of this chapter is to extend and therefore apply modelling

and network representation techniques used in the process industry to RCPSP

and MRCPSP problems.

A general project consists of a set of interconnected activities and resources,

logically linked. These activities usually have to be performed for a successful

project completion. However, there may exist alternatives for some activities,

which vary in aspects such as duration, cost and required sets of resources.

Since resources impose restrictions to project scheduling, they must be

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

76

included in the general project description. Logical links and precedence

constraints for activities must also be incorporated.

Traditional networks included only two different types of nodes for the

description of the logic links and dependencies: activities and decision boxes

(Eisner 1962, Minieka 1978). For generalised projects, resources should be

included as an additional element. The overall structural components of a

general project that must be described before a feasible schedule is

computed are:

1. Activity: A project comprises of several activities. Each activity is

typically described by its duration and a set of resources. These

resources can be used throughout the entire activity, consumed at the

beginning of the activity or produced at its end. Each activity is

considered non-preemptive (once started, it must be performed to

completion).

2. Resource: Each resource is defined by its initial amount and its

maximum availability throughout the entire project.

3. Decision box: A decision box is characterised by the conditions

placed on the activities entering it and by the conditions on the

activities emanating from it. A decision box provides logical links

between project activities. Assuming inI to be the number of input

activities of such a decision box, the following different cases exist:

 all activities (inI) entering the decision box must be performed,

 exactly x activities entering the decision box must be

performed, with inIx 1 ,

 at least x activities entering the decision box must be

performed, with inIx 1 .

The first is a special case of the second, since exactly all input

activities must be performed is the same with exactly inI activities

Chapter 3

77

must be performed. This enables us to group the all input condition

with the exactly x, by allowing x to take the value inI .

The input condition must be satisfied for some of the activities

emanating from the decision box to be performed. A decision box may

have two different output logics:

 at least one activity emanating from the decision box can be

performed,

 exactly one activity emanating from the decision box can be

performed.

4. Project end: The simplest way of describing the project end is as a

special decision box with one or more activities entering it.

The chapter is organised as follows. In section 3.2, a new network

representation of project scheduling problems based on the RTN concept is

presented. In sections 3.3 and 3.4 we propose new MILP formulations for

RCPSPs and MRCPSPs, including precedence relations, different types of

resources, time, and other constraints. Afterwards, the applicability of the

proposed formulations on several project scheduling problems is

demonstrated in section 3.5. Finally, concluding remarks are drawn in section

3.6.

3.2 A new network representation for the RCPSP

The RTN process representation although simple, can describe a very wide

variety of process scheduling problems (Pantelides, 1994). Indeed, it has

been extensively used in the process scheduling literature (e.g. Castro et al.

2001, 2004). Its bipartite directed graph for general processes consists of

resources, represented as circles and tasks/activities, represented as

rectangles. A task/activity consumes and/or produces a set of resources that

can be anything from raw materials, intermediate and final products to

manpower and processing equipment. A new network representation method

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

78

is proposed, based on the RTN, that can express more complex activity

precedence relations, than the AoN and AoA representations.

3.2.1 Conversion of General Projects to RTN form

Creating a mathematical formulation based on the RTN, requires the

definition of a framework that converts the general project characteristics

aforementioned to their equivalent RTN components. Some conventions are

easier than others, for example Activities correspond to Tasks and Project

Resources to RTN Resources. On the other hand, Decision Boxes are more

complex and they will be modelled as Resources, with specific values on their

following parameters:

1. the activity consumption and production coefficients (ri and ri) and

2. the minimum and maximum excess levels (min

rR and max

rR)

Special consideration will be given to Project End translation. The Project End

is treated as a special Decision Box, which in turn is converted to an RTN

Resource.

Precedence Constraints

Projects consist of coordinated and controlled activities with start and finish

times. To achieve the required execution sequence, precedence constraints

on each activity are imposed. These constraints will be modelled indirectly, in

the proposed representation, by adding a new type of resource, called Logical

and adjusting the quantities consumed and produced by each activity.

So, besides the physical resource requirements, each activity requires one

unit of the logical resource assigned to it. This unit is produced by the

activity’s immediate predecessor(s) in equal quantities and is addressed by

properly adjusting the production coefficients (ri) for the preceding activities

Chapter 3

79

and the consumption coefficient (ri) for the succeeding activity, as shown in

Figure 3.1.

Figure 3.1. Example of the use of Logical Resources

General Resource Management

Resource limitations can extend the project execution time, as they often

restrict parallel execution for activities that require the same resource(s).

Different activities may require the same resource, so we must define a

minimum and maximum resource quantity available throughout the duration

of the project, as well as the initial amount.

Let’s consider the example in Figure 3.2, the number of tasks that can be

executed simultaneously depends on the number of available Operators. If

only one operator is available, then:

1initial

OPR

0min OPR

1max OPR

and only one task can be active at any given time. On the other hand, if two

operators were present, Cleaning and Settling could have been performed at

the same time, making the Blender available for use sooner.

Activity3

LR

Activity1

Activity4

Activity2

1/4

1/4

1/4

1/4

Activity5

1

R2

R1

1

41

41

41

41

5,

4,

3,

2,

1,











ActivityLR

ActivityLR

ActivityLR

ActivityLR

ActivityLR











RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

80

Figure 3.2. Graphic Representation of a Resource Task Network

Converting Decision Boxes to Resources

A decision box is used to represent complex interactions among activities. For

example, activities having more than one immediate predecessors or

alternate activities, that must be modelled properly to create a feasible

schedule. The RTN formulation equips tasks and resources to model

processes. Project activities and resources are easily represented as tasks and

resources, respectively. Decision boxes though, are more complex, as they

are logical components of a project.

Decision boxes will be represented as a special type of resources, called

logical resources, with specific modifications to some of their coefficients.

Before moving on, we must define a number of sets:

rI the set of all activities interacting with logical resource r

in

rI the set of input activities of logical resource r

out

rI the set of output activities of logical resource r

with in

rI and out

rI being disjoint sets, as an activity cannot be both input and

output to a decision box:

out

r

in

rr III  and  out

r

in

r II

Cleaning Blending

Settling Packing

OP

BO A2

SB

CB

BP SP

ST PL

FP

A1

Chapter 3

81

Let
rIN and rOUT be the number of input and output activities, respectively,

to logical resource r. The minimum excess resource min

rR for logical resources

is set to zero 0min rR , as they are initially not available in any amount and

we can assume that they may or may not be produced throughout the

duration of the project.

On the other hand, the maximum excess resource max

rR and the activity

consumption and production coefficients (ri and ri) values, depend on the

type of decision box they represent.

Starting from the input conditions, we distinguish two cases:

 Exactly x inputs.

We set 1max rR and in

rri Iix  ,1 . The first constraint, limits

the excess resource of r to 1.

The second one, defines that each input activity (in

rIi) produces

exactly x1 quantity of logical resource r, so that when all x

activities are performed, one unit of r will be produced.

 At least x inputs.

We set xINR rr max and in

rri Iix  ,1 , allowing any number

of activities to start, but at least x of them must be completed,

before one unit of logical resource r is produced.

Consider the example in Figure 3.3, where a decision box/logical resource has

five activities entering, and exactly 3 of them must be performed. The values

of the coefficients for resource r would be 1max rR and in

rri Ii ,31 . So,

when three activities have completed, the amount of resource r, produced

would be 1313131  . And due to the restriction 1max rR , no other

activity would be allowed to execute.

Similarly, if the condition was at least 3, then 35max rR and

in

rri Ii ,31 , then to produce one unit of resource r, at least three

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

82

activities would have to complete. The maximum quantity 35max rR , would

be achieved, if all activities were executed.

Figure 3.3. Production of Logical Resource

As far as the output conditions are concerned, if we allow only one output

activity of out

rI to start after reaching the necessary amount max

rR (case

exactly 1), we specify the consumption value of the output activities to

1ri . For the previous example in Figure 3.3, the highest possible value

for the excess resource r is 35 . We have two possible output activities, 6 and

7, but only one of them is allowed to start. The start limit is 1, but as soon as

6 or 7 start, it is reduced by 1 and no second start is possible.

For a possible start of several output tasks, we have to define one logical

resource for each output task, as in Figure 3.4. The production of each of

these resources is similar to what was described previously.

Figure 3.4. Production of Logical Resources for several output activities

Activity 3

r1

Activity 1

Activity 2

Activity 5

Activity 4

r2

Activity 3

r

Activity 5

Activity 1

Activity 4

Activity 2

Activity 7

Activity 6

Chapter 3

83

After the input conditions are satisfied, resources r1 and r2 are available in

their necessary amounts and the output tasks can be performed.

The possible combinations for input and output conditions are:

 Exactly x – exactly one

 At least x – exactly one

 Exactly one – at least one

 Exactly x – at least one

 At least x – at least one

These possible combinations can be described by the two networks of Figures

3.5 and 3.6.

Figure 3.5. Conditions Exactly x/At least x - Exactly one and Exactly one - At least

one

A decision box with output condition Exactly 1, is represented using one only

one new logical resource. This case corresponds to Figure 3.5. A decision box

with input condition Exactly 1, can also be represented as depicted in Figure

3.5, but we have to distinguish among different output conditions. If the

output condition is also Exactly 1, we set the consumption value to 1ri ,

to allow only one output activity to start. If the output condition is At least 1,

we set the consumption value to rri OUT1 so that every output activity

receives part of the available amount 1.

Activity 3

Activity 1

Activity 2

Activity 5

r1

Activity 4

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

84

Figure 3.6. Conditions Exactly x/At least x - At least one

For the other cases we define OUTr logical resources, as in Figure 3.6. Each

input activity contributes equally to the production of every logical resource.

Since the output condition is at least 1, we have to allow the start of every

output activity after the satisfaction of the input condition. To model this,

each output activity has its own logical input resource, which it can consume

entirely. So, we set the consumption value of all output activities to 1ri .

Another case is to allow some activities to start immediately after their

predecessors without any delay. This is possible only between tasks whose

interaction is known in advance (case All/Exactly 1). It can be achieved by

not allowing the excess resource of r to reach values greater or equal to 1

  
rr

INR 11max  . This forces the consumption of the logical resource to take

place at the same time as the production of the last amount rIN1 .

A summary of the parameter values for the various conditions of decision

boxes is given in Table 3.1.

Table 3.1 Parameter values for decision boxes

Input Condition
Output

Condition
in

rri Ii
out

rri Ii
max

rR Representation

Exactly x, rINx 1 Exactly 1 x1 -1 1 Figure 3.5

At least x, rINx 1 Exactly 1 x1 -1 xIN r Figure 3.5

Exactly 1 At least 1 1 rOUT1 1 Figure 3.5

All 1 Immediate rIN1 -1  
r

IN11 Figure 3.5

Exactly x, rINx 1 At least 1 x1 -1 1 Figure 3.6

At least x, rINx 1 At least 1 x1 -1 xIN r Figure 3.6

Activity 3

r1

Activity 1

Activity 2

Activity 5

Activity 4

r2

Chapter 3

85

There are two special subcases that require additional mechanisms to enforce

the required logical dependencies. The first such case occurs when rINx  .

The value 1max rR is used to ensure that no more than x input activities are

performed. And it does so until an output activity consumes a certain quantity

of r and the excess resource becomes less than 1. This will allow another

input activity to execute, violating the Exactly x, condition.

To resolve this problem, a new resource r΄ is introduced as input to each

input activity in

rIi with

1ir

Hence, in order for one of the input tasks to execute, a unit amount of

resource r΄ is required. If the available quantity of this resource is limited to

x, no more than x activities are allowed to start. This can be done by setting:

xR initial

r 

Figure 3.7. Special case 1 example Exactly x with rINx 

An example of this case for 3 activities entering a decision box with an

Exactly 2 – Exactly 1 condition is depicted in Figure 3.7.

The second special condition occurs for decision boxes with input logic At

least x and output logic Exactly one. An example for this case is given in

Figure 3.8, with logic At least 2 – Exactly 1.

Activity 3

Activity 1

Activity 2

Activity 5

r

Activity 4

r΄

Case

Exactly 2 – Exactly 1

1

,2

,3

,2

3,

2,1,

















Activityr

ActivityrActivityr

initial

r

r

R

IN

x





RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

86

Figure 3.8. Special case 2 example At least x-Exactly 1 with xINr 2

The problem arises when xIN r 2 . If more than 2x input activities do take

place, then they will produce 2 or more units of excess resource. This, in

turn, will allow more than one output activity to be executed, which is

contrary to the intention of the decision box. This problem can easily be

overcome by making each output activity out

rIi produce a unit amount of a

new resource r΄ (i.e. out

rir Ii ,1) and setting:

1max

,  FinalrR

Since the new resource r΄ is not consumed by any activity in the project RTN,

this immediately implies that no more than one activity out

rIi may be

executed.

3.2.2 Project End Formulation

Projects are completed successfully, after all required activities have been

performed and all constraints satisfied. A project may end in several ways:

 One activity must be performed.

 More than one activities must be performed.

 Alternative final activities exist.

 More complex logical conditions.

Case

At least 2 – Exactly 1

1

,1

,5

,2

,,

max

,









ActivityBr΄ActivityAr΄

Finalr΄

r

R

IN

x



Activity 3

Activity 1

Activity 2

Activity 5

r

Activity 4

Activity A

Activity B

r΄

Chapter 3

87

The project end is modelled as a decision box/logical resource with no output

activities. This resource can only be produced and not consumed. Completion

of the project, calls for the production of this logical resource in the required

quantities.

To make sure that the project end resource is produced, lower and upper

bounds are imposed on its initial, overall and final excess quantities initial

rR ,

min

rR , max

rR , min

,FinalrR and max

,FinalrR . For intermediate resources, the overall and final

values are identical. Figure 3.9 depicts an example of the simple case where

the project end requires the execution of a single final activity.

Figure 3.9. An example of an RTN representation of a project

The successful completion of the project in the example requires the

execution of activity D. It can be modelled by setting a lower bound of 1 on

the final excess quantity of PE. The complete set of data values is:

0initial

PER

1,0 maxmin  PEPE RR

1max

,

min

,  FinalPEFinalPE RR

1, DPE

Project End with more than one final activity

Usually, projects require the completion of more than one activity. In such

cases, we consider the Project End (PE) resource to be a decision box with

input logic All. Suppose the set of activities to be performed is F and it

contains NF activities.

B

R1

R2 D

PE

A

C

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

88

Each activity contributes an amount of NF1 of PE:

FiNFiPE  ,1,

By demanding the minimum and maximum final excess resources of PE to be

1, all input activities are enforced to be executed. The rest of data values are

the same as the case with one activity:

0initial

PER

0min PER

1max PER

1min

, FinalPER

1max

, FinalPER

FiNFiPE  ,1,

An example of modelling the project end in a project with 4 final activities is

illustrated in Fig. 3.10.

Figure 3.10. Project End with 4 activities

Project End with alternative final activities

Having examined the case of multiple required final activities, we move on to

another one. It is possible to have alternatives among final activities,

meaning that project completion can be achieved by performing only one of

them. This is equivalent to the input condition Exactly 1 in a decision box.

Activity 3

PE

Activity 1

Activity 4

Activity 2

1/4

1/4

1/4

1/4

Chapter 3

89

Therefore, a logical final resource PE, with no output conditions is introduced.

Each alternate input activity i is set to produce 1, iPE quantity of PE, and

the maximum final excess resource is set to 1, 1max

, FinalPER . This allows only one

activity to produce this resource, but by itself is not enough. To ensure that

Exactly 1 of PE, and no less, is produced, we also require that 1min

, FinalPER . For

an illustrative example see Figure 3.11.

Figure 3.11. Example of Project End with 4 alternate activities

Project End with general conditions

To provide a complete formulation of projects using the RTN, more complex

conditions that identify project completion must be considered. These could

involve a combination of disjunctions (logic exclusive OR - XOR) and/or

conjunctions (logic AND).

We can initially try to represent such formulations as a logical tree with circles

corresponding to operators and rectangles to activities. The root node, which

is also modelled as a circle, is the condition for project completion. An

example of such a tree is shown in Figure 3.12.

Activity 3

PE

Activity 1

Activity 4

Activity 2

1

1

1

1

Case

4 alternate activities

1

1

,1

4,3,

2,1,

min

,

max

,









ActivityPEActivityPE

ActivityPEActivityPE

FinalPE

FinalPE

R

R





RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

90

Figure 3.12. Example of logical tree

The example corresponds to the condition, that the project will be completed

when all of the following are satisfied:

 complete either A and B, and

 complete C, and

 complete either D or E, and

 complete either F and G, or H

We can write this succinctly as:

(A XOR B) AND C AND (D XOR E) AND ((F AND G) XOR H)

It is relatively easy to transform the logical tree into an RTN. Conjunctions of

activities can be translated by creating a new output logical resource for each

activity with an Exactly 1 – Exactly 1 logic. These resources are required by a

conjunction activity in equal unit amounts, to produce the final logical

resource. The translation process for the F AND G conjunction of Figure 3.12

is depicted in Figure 3.13.

AND

A

XOR XOR XOR

B

C

D

E

H

F

G

AND

Chapter 3

91

Figure 3.13. Transformation of conjunctions to RTN

Let’s examine the complete data set per activity, for the previous example:

 For activity F:

1, FRF

0initial

RFR

0min RFR

1max RFR

 For activity G:

1, GRG

0initial

RGR

0min RGR

1max RGR

 For activity FandG:

1, FandGRF

1, FandGRG

1, FandGR

0initial

RR

1min

, FinalRR

1max

, FinalRR

F

G

AND

FandG

R

RF RG

G

F

1 1

1 1

1

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

92

Disjunctions are much easier to represent, as they are, essentially, a decision

box with an Exactly 1 input logic. Figure 3.14, illustrates an example of such

a disjunction of two activities.

Figure 3.14. Transformation of disjunctions to RTN

The data set for this transformation is:

1, RA

1, RB

0initial

RR

0min RR

1max RR

1min

, FinalRR

1max

, FinalRR

Using these transformations we can convert the logical tree of Figure 3.12, to

its equivalent RTN of Figure 3.15, with all arrows corresponding to unit

consumption/production of resource.

A

B

XOR R

B

A

1 1

Chapter 3

93

Figure 3.15. Equivalent RTN for logical tree in Figure 3.12

3.3 MILP Formulation for the Single-Mode RCPSP

The Single-mode RCPSP consists of scheduling the project activities under

specific precedence and resource constraints, while minimizing the project

makespan. The mathematical model, proposed in this section, is based on the

time-slot synchronised formulation introduced by Schilling and Pantelides

(1996), where the variable time horizon H, is divided into T slots with variable

time duration. Although, the RTN representation is simple and elegant for

process scheduling, it can become even more simplified when employed for

project scheduling.

It should be emphasised, that the underlying formulation of Schilling and

Pantelidis (1996) is not the best performing RTN-based formulation in the

literature, but it has been merely chosen to illustrate the applicability and

potential of the proposed RCPSPs representation. More efficient formulations

include the improved continuous-time RTN formulation of Castro et al.

(2001), that relaxes the non-linear timing constraint producing an easier to

Project
End

A

RAB RDE
RFGH

B

C

D

E

H

F

G

F and G

RC

PE

RF RG

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

94

solve, pure MILP problem and also the work of Castro et al. (2004), where a

new set of timing constraints further reduces the computational cost. The

main objective of this section is to establish a new modelling framework for

RCPSPs utilising techniques from the process scheduling area. The

representation of RCPSPs could provide the basis for translations into more

efficient RTN formulations than the original work of Schilling and Pantelidis

(1996).

The complete list of the notation used throughout this chapter is given in

Section 3.7. We set the number of time slots T equal to the number of

activities, in case the worst scenario is realised, with only one activity

executed at each slot. We assume that no more than one instance of an

activity can be executed at any time point. This assumption converts the

original RTN variable Nit, representing the number of activity instances

starting at time t, from integer to binary, since the only possible values are 0

and 1, depending on whether none or one instance of the activity is being

executed.

Additionally, resource consumption and production does not depend on the

size of the activity, so the corresponding size-dependent coefficients’ values

are 0, 0 riri vv .

Activities can be executed only once over the duration of the project. If an

activity is to be executed again, we represent it as a new one. This is because

it is bound to have different constraints, or else it would be included in the

first one, requiring double input and producing double output resources.

3.3.1 Constraints

Schilling and Pantelides (1996) distinguish four types of constraints: timing,

slot, excess resource balances and excess resource capacity constraints. We

will adapt these constraints to project scheduling problems.

Chapter 3

95

Two binary variables ity and
ity are defined to express starting time and

spanning over consecutive time slots. The first set of binary variables ity ,

replace the RTN variable Nit and take a value of 1 if activity i starts at t or 0

otherwise. The second new variable
ity , takes a value of 1 if activity i is

active over both t and t-1 or 0 otherwise. The model can be simplified by

setting 0
1,


i
y , since no task can be active over t = 0, as it is out of the

scheduling horizon. Using the
ity variable (activity spanning over two

adjacent slots), instead of tity  (activity spanning over multiple slots) used in

the original RTN, results in a simpler mathematical model with far fewer

binary variables than the original one.

Timing Constraints

The total duration of all time slots t must be equal to the time horizon H:

 



T

t

t H
1

 (1)

A project activity i may extend over one or more consecutive time slots and

the sum of the durations of these slots must be equal to the duration θi of the

activity. Using the new variables ity and
ity , instead of itN and tity  the

timing constraints of the general RTN formulation (Schilling and Pantelides,

1996) are transformed to:

   iyyy
T

t

it

T

t

ititit  


,
11

 (2)

We note that constraint (2) involves nonlinearities since both the binary

variables ity and
ity and the slot durations t are variables. These

nonlinearities can be removed using standard techniques (Glover, 1975).

Considering that at most one instance of task i can be active at any time, we

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

96

define the new variables   tititit yylin   . This definition can be effected

using the following linear constraints:

      tiyylinyy
ititiititit ,,,min maxmin   (3)

   tilinyy titititt ,,1max   (4)

where min and max are the minimum and maximum slot durations,

respectively. We can set the maximum slot duration to be equal to the value

of the greatest activity duration max

i and the minimum duration equal to 1.

After applying this linearization technique, constraint (2) becomes linear:

 iylin
T

t

it

T

t

iit  


,
11

 (5)

Slot Constraints

Variable 1, tiy can take a value of 1 only if activity i started at an earlier time

slot (1 t) and is still active over 1t . For an activity to start at an earlier

time one of the variables ity or
ity must take a value of 1. To ensure proper

activity execution over multiple time slots we now need both new variables

ity and
ity , instead of tity  and this is expressed as:

  1,1,,
1,




Ttiyyy
tiitit (6)

If activity i has not been active over slot t, the value of all three variables

must be 0. The inequality is necessary for the case that activity i is actually

completed at the end of slot t. The possible combinations for the values of

the previous variables are shown on Table 3.2.

Chapter 3

97

Table 3.2. Combination of values for ittiti
yyy   1,1,

1, ti
y 1, tiy

ity ittiti yyy   1,1, Production

0 0 0 0
No amount of r is produced, since activity i

is not executed

0 1 0 1
An amount of r is produced, since activity i

started and completed execution over t-1

0 1 1 0
No amount of r is produced, since activity i

started at t-1, but is still active.

1 0 0 1
An amount of r is produced, since activity i

finished at t-1

1 0 1 0
No amount of r is produced, since activity i

is active from at least t-2 and is still active

Another important constraint expresses that an activity can be executed at

most once over the time horizon H:

 iy
T

t

it 


,1
1

 (7)

Excess Resource Balances

The balance for every resource r at slot boundary t considers all starting and

ending tasks rI interacting with the resource r. It adds the changes at time

point t to the excess amount 1, trR over the previous slot 1t in order to

obtain the amount of excess resource over the new slot t:

     1,1,,1,1,1,,  


 TtryyyyRR
rIi

ittitiriitritrtr  (8)

The first term itri y in the summation represents the amount of resource r

consumed by starting activities, while the second one corresponds to the

amount produced. For 0t , 0,rR is the quantity of resource r initially

available initial

rR . To deal with renewable resources, we set the production

coefficient of all activities requiring it, equal to the consumption coefficient.

Thus we express that the amount of renewable resources consumed (used)

by an activity, is released upon its completion.

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

98

Excess Resource Capacity Constraints

Since resources are limited in their availability, we have to introduce an upper

and lower bound on their capacity. During the whole time horizon H, the

actual excess amount of any resource r has to lie between these boundaries:

 trRRR rrtr ,,maxmin  (9)

Additionally, we introduce similar boundaries for the excess amount of each

resource r at the end of the project:

 rRRR FinalrTrFinalr   ,max

,1,

min

, (10)

Objective Function

The objective function for the proposed formulation aims at minimizing the

project duration and is expressed as:

 HMinimize

3.3.2 Improvement to the formulation

The proposed mathematical model although it is simple and compact, can be

improved to achieve better computational performance. Considering the

various aspects of project scheduling, we can set tighter bounds to variables

and reduce the number of elements for sets that participate in constraints.

Slot bounds for activities

The initial model, assumes that all activities can be executed over any time

slot. Given the existence of precedence constraints, this is not a realistic

approach. Consider the example displayed in Figure 3.16. Activity C is

Chapter 3

99

preceded by A and cannot be executed before A finishes. This sets a lower

slot bound to C’s starting time slot to 2.

Figure 3.16. Slot boundaries example

We can set proper lower and upper bounds for the starting time slots of

activities that allow successful project completion and at the same time

improve the computational performance of our model. These bounds for an

activity i, can be calculated using the number of maximum preceding iPA

and succeeding iSA decision boxes:

 iPAtl ii  ,1

 iSATtu ii  ,

We always consider the worst case for these bounds, to avoid eliminating a

feasible solution. This means that in our example 4Ftl and not 3, since the

worst case requires that activities A, C and D are performed and not A, B

(activity E can be executed in parallel with D, so it does not count).

Let assume that the number of time slots, for the example in Figure 3.16 is

T=5. Table 3.3 contains the appropriate lower and upper bounds for this

case.

This improvement reduces the number of ity ,
ity and it variables, as well as

the related constraints. Without slot bounds one would have to define a

number of ity and it variables equal to Number of Activities x T. This number

B

R1

R3

A

C

R2

D

E

R4

F

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

100

of variables (6x5 = 30 for this example) could be reduced to 14, as given in

Table 3.3, which is 46,66% of the original figure. Similarly for the binary

variable
ity , the initial number of variables is equal to Number of Activities x (T-

1) = 6x4 =24, as it is defined per pair of time slots (t and t-1) for each activity.

Therefore, the total number of
ity variables after applying the improvement

is   
i

ii tltu 8 .

Table 3.3. Improved time slot bounds

Activity i A B C D E F

iPA 0 1 1 2 2 3

iSA 3 1 2 1 0 0

itl 1 2 2 3 3 4

itu 2 4 3 4 5 5

1 ii tltu 2 3 2 2 3 2

  
i

ii tltu 1 14

In the case of alternative preceding activities or complex project completion

conditions, this procedure becomes more complicated.

Mandatory Activities

Projects contain various activities that may or may not be performed. For

mandatory activities sureI , such as end-activities, we can further tighten the

formulation, by replacing constraint (7) by:

 sure

T

t

it Iiy 


,1
1

 (11)

Exploiting, constraint (11), we can also transform (2) to:

   sure

T

t

ititit Iiyy 


,
1

 (12)

Chapter 3

101

Alternative Activities

Further improvements can be achieved in case alternative activities exist.

Assume a set
XALTI with only one of its alternatives being performed through

the entire project. For these activities, the slot constraint (7) can be

transformed to:

 xy

xALTI t

it  ,1 (13)

This results in a reduction of   TN
xALT 1 for the constraint, with

xALTN

denoting the number of activities in set xALT . In the given example, this is a

reduction of     55121  TN
xALT

 with only one alternative and its two

members D, E.

The proposed model for RCPSPs, which is named SMRTN, consists of

constraints (1), (3) – (13) and the objective function represents the total

project duration.

3.3.3 Using the RCPSP formulation in MRCPSPs

The formulation for RCPSPs (SMRTN model) introduced in this section can

also be used for MRCPSPs by disaggregating the multi-mode activities into

different activities. The activity modes are modelled using decision boxes with

multiple inputs, exactly one of which is to be executed. An example of how

activities with multiple modes are modelled is shown in Figure 3.17.

Activity A can be performed in 3 modes which we represent as different

activities called A1, A2 and A3. Aside from physical resources, the activity

requires 1 unit of logical resource LRA (13,2,1,  ALRAALRAALRA ). To

ensure that only 1 mode is executed, the initial quantity of LRA is limited to 1

(1initial

LRAR).

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

102

Figure 3.17. Modelling activities with multiple modes

Upon completion, activity A produces 1 unit of LRB

(13,2,1,  ALRBALRBALRB ). Similarly, by properly adjusting the

consumption coefficients of activity B, to 12,1,  BLRBBLRB  we allow only

one of its modes to perform.

This extension for MRCPSPs, which is named MMRTN1, consists of

constraints (1), (3) – (13) and the objective function represents the total

project duration.

3.4 MILP Formulation for the MRCPSP

The standard Multi-Mode RCPSP requires sequencing the project activities, so

that the precedence constraints are met, determining the execution mode for

each activity, meeting the resource constraints and minimizing the project

duration.

In this section we propose a MILP formulation for the MRCPSP. The

formulation is an extension of the RCPSP introduced in the previous section

and is also based on the RTN.

3.4.1 Constraints

The formulation consists of five types of constraints, Timing, Slot, Excess

Resource Balances, Excess Resource Capacity and Task Operation

1

1

,1

3,

2,1,

3,

2,1,











ALRB

ALRBALRB

ALRA

ALRAALRA

initial

LRAR









A3

A1

A2

B2

LRB

B1

LRA LRC

Chapter 3

103

constraints. As in the RCPSP formulation, we can simplify the model, by

setting 0
1,


i
y , since no task can be active over 0t .

Timing Constraints

The total duration of all time slots must be equal to the time horizon:

 



T

t

t H
1

 (14)

A project activity i may extend over one or more consecutive time slots and

the sum of the durations of these slots must be equal to the duration mi of

activity i in mode m:

   izyy
m

mimi

T

t

titit  


,
1

 (15)

Where miz is a binary variable that expresses whether alternate mode m of

activity i is chosen (1) or not (0).

The linearization of the left of constraint (15) can be performed as described

in Section 3.3.1 We define new variables   tititit yylin   , through the

linear constraints:

      tiyylinyy
ititmiititit ,,)max(,min maxmin   (16)

   tilinyy titititt ,,1max   (17)

where τ
min and τ

max are the minimum and maximum slot durations,

respectively. We can set the maximum slot duration to be equal to the value

of the greatest activity duration max

mi . After applying this linearization

technique, constraint (15) becomes linear:

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

104

 izlin
T

t m

mimiit  


,
1

 (18)

Slot Constraints

As in the RCPSP formulation, variable 1, ti
y can take a value of 1 only if

activity i started at an earlier time slot (1 t) and is still active over 1t .

For an activity to start at an earlier time one of the variables ity or
it
y must

take a value of 1. These constraints can be combined to the following

inequality:

  1,1,,
1,




Ttiyyy
tiitit (19)

If activity i has not been active over slot t, the value of all three variables

must be 0. The inequality is necessary for the case that activity i is actually

completed at the end of slot t.

An activity can be executed at most once over the time horizon H:

 iy
T

t

it 


,1
1

 (20)

and if so, only one activity mode is performed:

 iyz
T

t

it

m

mi 


,
1

 (21)

Excess Resource Balances

The balance of a resource r at slot boundary t is given by:

       tryyySSySSRR
rIi

ittitiri

L

riitri

L

ritrtr ,,1,1,1,,  


 (22)

Chapter 3

105

The ri and ri coefficients of the RCPSP formulation, are now replaced by

the minimum resource consumption and production values L

riS and
L

riS plus

their surplus variables riS and riS respectively.

The values of U

ri

L

ri SS coefficients representing the minimum/maximum

quantities of resource r required by the various modes m at the beginning of

activity i, are given by:

  imr

L

ri aS min and  imr

U

ri aS max

Similarly, the values of the minimum/maximum quantities of resource r

produced by the various modes m at the end of activity i,
U

ri

L

ri SS are given

by:

  imr

L

ri aS min and  imr

U

ri aS max

Surplus variables riS and riS depend on the selected mode m, are bounded

by constraints (30) and (31) and calculated through (32) and (33), as

presented in the Task Operation Constraints section below.

The excess resource balance contains a type of nonlinearities similar to

constraint (15), which can be removed by introducing two new variables:

riitrit SyS  and   riittitirit SyyyS   1,1,

The first variable ritS is defined:

  )(,,0 ritySSS it

L

ri

U

ririt  (23)

)(, riSS ri

t

rit  (24)

Similarly for the second variable ritS :

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

106

   )(,,0 1,1,
rityyySSS

ittiti

L

ri

U

ririt  
 (25)

)(, riSS ri

t

rit  (26)

Now we can replace (22) with:

    trSyyySSySRR
rIi

ritittiti

L

riritit

L

ritrtr ,,1,1,1,,  


 (27)

Excess Resource Capacity Constraints

Since resources are limited in their availability, we have to introduce an upper

and lower bound on their capacity. During the whole time horizon H, the

actual excess amount of any resource r has to lie between these boundaries:

 trRRR rrtr ,,maxmin  (28)

Additionally, we introduce similar boundaries for the excess amount of each

resource r at the end of the project:

 rRRR FinalrTrFinalr   ,max

,1,

min

, (29)

Task Operation Constraints

The surpluses of resource r consumed and produced by activity i are bound

to:

),(,0 irSSS L

ri

U

riri  (30)

),(,0 irSSS
L

ri

U

riri  (31)

For logical resources L

riS and
L

riS are equal to 0.

Chapter 3

107

The surpluses riS and riS consumed and produced, depending on the

selected mode, are calculated by:

   irSzSa rimi

m

L

riimr ,, (32)

   irSzSa rimi

m

L

riimr ,, (33)

Due to constraints (32) and (33), variables miz are not required in the Excess

Resource Balances constraint (22), thus reducing the number of binary

variables involved.

Objective Function

The minimization of the project duration is the optimisation goal similar to the

previous model.

3.4.2 Improvement to the formulation

The extended formulation proposed in this section can achieve better

computational performance, using the improvement techniques in Section

3.3.2. To account for the new variables introduced, we need to clarify a few

points, regarding each constraint.

Slot bounds for activities

Multi-mode problems include activities that can be executed in various

modes, possibly with different durations. The slot bounds improvement is

used to define lower and upper slot bounds on activity starting and finishing

time slots, respectively. These bounds are calculated using precedence

relations between activities and not their durations. Therefore, the

improvement can also be applied to the multi-mode case, as it is not affected

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

108

by the varying activity duration caused by the multiple modes. As a result, we

achieve a reduction in the number of ity ,
ity , it , ritS , ritS variables and

related constraints.

Mandatory Activities

This improvement is used for project activities that must be performed. For

such activities, in the multi-mode case, we can replace constraint (20) with

constraint (11), as in the single-mode case:

 sure

T

t

it Iiy 


,1
1

 (11)

However, in contrast to the single-mode case, we can not exploit constraint

(11) to transform timing constraint (19), due to the introduction of variable

miz . Instead, we can use it to replace constraint (21) for mandatory activities,

with:

 sure

m

mi
Iiz  ,1 (34)

Alternative Activities

An MRCPSP can contain sets ALTxI of activities with only one of their

alternatives being executed. For these activities, we can transform slot

constraint (20) to constraint (13), similarly to the single-mode case:

 iy

XALT t

it  ,1
I

 (13)

This model for MRCPSPs, which is named MMRTN2, consists of constraints

(11), (13), (14), (16) – (21), (23) – (34), and the objective function

represents the total project duration.

Chapter 3

109

3.5 Computational Results

In this section, we consider a typical MRCPSP with all typical modelling

aspects and then solve a number of RCPSP and MRCPSP problems using the

proposed formulations to illustrate their applicability. The following notation is

used for a consistent reference to the proposed formulations:

 SMRTN – the formulation used for RCPSPs, presented in Section 3.3

 MMRTN1 – the RCPSP formulation with the modifications in

Subsection 3.3.3 used for MRCPSPs, and

 MMRTN2 – the formulation used for MRCPSPs, presented in Section

3.4.

All formulations were solved on an Intel Core 2 Quad Q8300 @ 2.5GHz and

4GB RAM using CPLEX 11.1.1 (GAMS Development Corporation, 2007) via a

GAMS 22.8.1 (Rosenthal, 2012) WIN 6007.6015 VIS interface.

3.5.1 Example problem

In this section, we consider a typical MRCPSP from PSPLIB (Kolisch et al.,

1996). The test instance used is j10 2_2 with 10 activities, each having 3

possible execution modes. Table 3.4 displays the number of modes, the

number of successors and precedence relations between activities. Activities

1 and 12 are dummy activities representing the start and end of the project.

Table 3.4. Precedence Relations for test instance j10 2_2

Activity
Number

Nr. of
modes

Nr. of
successors

Successors

1 1 3 2 3 4

2 3 2 5 6

3 3 2 10 11

4 3 1 9

5 3 2 7 8

6 3 2 10 11

7 3 2 9 10

8 3 1 9

9 3 1 12

10 3 1 12

11 3 1 12

12 1 0 -

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

110

Activity durations and resource requests for each mode are provided in Table

3.5. The maximum project duration is 86, and we calculate it by summing the

maximum mode duration per activity.

Table 3.5. Project Mode Requests/Durations

Activity Mode Duration
Resource

R1 R2 N1 N2

1 1 0 0 0 0 0

2

1 3 6 0 9 0

2 9 5 0 0 8

3 10 0 6 0 6

3

1 1 0 4 0 8

2 1 7 0 0 8

3 5 0 4 0 5

4

1 3 10 0 0 7

2 5 7 0 2 0

3 8 6 0 0 7

5

1 4 0 9 8 0

2 6 2 0 0 7

3 10 0 5 0 5

6

1 2 2 0 8 0

2 4 0 8 5 0

3 6 2 0 0 1

7

1 3 5 0 10 0

2 6 0 7 10 0

3 8 5 0 0 10

8

1 4 6 0 0 1

2 10 3 0 10 0

3 10 4 0 0 1

9

1 2 2 0 6 0

2 7 1 0 0 8

3 10 1 0 0 7

10

1 1 4 0 4 0

2 1 0 2 0 8

3 9 4 0 0 5

11

1 6 0 2 0 10

2 9 0 1 0 9

3 10 0 1 0 7

12 1 0 0 0 0 0

This project uses 2 renewable (R1, R2) and 2 non-renewable resources (N1,

N2) and their availabilities are displayed on Table 3.6. For the renewable

resources, the availabilities are per period.

Chapter 3

111

Table 3.6. Resource Availabilities

R1 R2 N1 N2

9 4 29 40

The activities network and coefficients using our representation is shown in

Figure 3.18. The resources L2-L12 are logical resources.

Figure 3.18. Activity network for example problem

Each activity is performed in one out of three modes. When using the

MMRTN1 formulation for the MRCPSP case, we use activity alternatives to

represent modes. The activity modes are modelled using decision boxes with

multiple inputs, exactly one of which is to be executed, as in Figure 3.19:

Figure 3.19. Modelling activities with multiple modes

Activity A can be performed in 3 modes which are represented as different

activities called A1, A2 and A3. Aside from physical resources, the activity

requires 1 unit of logical resource L1 (13,12,11,1  ALALAL ). To ensure

1

1

,1

3,22,21,2

3,12,11,1

1







ALALAL

ALALAL

initial

LR





A3

A1

A2

L2 L1

1

4

8

7

L9

L4

5 L8

L7

L10

9

10

11 L11

6

2

L5

L6

3

L2

L3

L12 12

1

1/3

1/2

1 1

1

1

1

1

1

1

1 1/2

1/3

1/3

1

1

1

1

1

1

1

1/3

1/3

1/3 1/3

1/3

1/3
1

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

112

that only 1 mode is executed, the initial quantity of L1 is limited to 1

(11 initial

LR). Upon completion, activity A produces 1 unit of L2

(13,22,21,2  ALALAL ).

The L

riS ,
L

riS , U

riS and
U

riS parameter values when using the MMRTN2

formulation, are shown on Table 3.7.

Table 3.7.
L

riS ,
L

riS , U

riS and
U

riS parameter values

L

riS
U

riS

Resource
Activity

R1 R2 N1 N2
Resource

Activity
R1 R2 N1 N2

1 - - - - 1 - - - -

2 - - - - 2 6 6 9 8

3 - - - 5 3 7 4 - 8

4 6 - - - 4 10 - 2 7

5 - - - - 5 2 9 8 7

6 - - - - 6 2 8 8 1

7 - - - - 7 5 7 10 10

8 3 - - - 8 6 - 10 1

9 1 - - - 9 2 - 6 8

10 - - - - 10 4 2 4 8

11 - 1 - 7 11 - 2 - 10

12 - - - - 12 - - - -

L

riS
U

riS

Resource
Activity

R1 R2
Resource

Activity
R1 R2

1 - - - -

2 - - 6 6

3 - - 7 4

4 6 - 10 -

5 - - 2 9

6 - - 2 8

7 - - 5 7

8 3 - 6 -

9 1 - 2 -

10 - - 4 2

11 - 1 - 2

12 - - - -

Chapter 3

113

The MMRTN1 formulation obtained the optimal makespan (20 time units) in

239.12 CPU s (see Table 3.9) and the optimal project schedule is shown in

Figure 3.20. Activities 1 and 12 are not included in the GANTT chart since

they are dummy and have zero duration.

Activity 1 2 3 4 5 6 7 8

2 m1

3 m3

4 m2

5

6

7 m1

8 m1

9 m1

10 m2

11

Time (h) 3 8 9 13 14 17 19 20

Slot

duration
3 5 1 4 1 3 2 1

m2

m3

m1

Figure 3.20. GANTT Chart of optimal solution for the example problem

3.5.2 Results for various problem instances

The SMRTN formulation was used to solve a number of single-mode RCPSPs,

with 12, 16 and 20 activities, utilizing up to 4 renewable resources. The

computational results are presented in Table 3.8.

The formulation managed to find the optimal solution for each instance, and

as expected the CPU time required increases with the number of activities.

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

114

Table 3.8. Computational Results for various Single-mode RCPSP test instances

Activities
Renewable
Resources

Resource
Complexity

CPU
Time

Number of
Equations

Binary
Variables

Cont.
Variables

Nr. of
Nodes

Time
Horizon

12

0 - 0.36 761 287 350 257 44

1
Required by
all activities

0.50 774 288 363 157 47

2
Required by
all activities

0.50 787 287 376 141 54

4
1 Resource

by each
activity

0.57 813 287 402 183 45

4
Required by
all activities

0.36 813 287 402 162 51

16

0 - 6.60 1286 511 577 2816 73

3
1 Resource

by each
activity

9.57 1337 512 628 2509 73

4
1 Resource

by each
activity

8.10 1354 512 645 1949 73

4
Required by
all activities

2.71 1354 512 645 852 97

20

0 - 9.12 1926 799 881 2840 92

1
Required by
all activities

17.40 1947 800 902 6142 93

4
1 Resource

by each
activity

11.07 2010 800 965 2488 92

4
Required by
all activities

4.46 2010 800 965 1362 116

For the MRCPSP case a set of multi-mode test instances from PSPLIB was

used. The multi-mode problem sets were selected from instances j10, j12,

j14, c15, c21. For problem sets j and c each activity may be performed in 1

out of 3 modes and requires 2 renewable and 2 non-renewable resources.

The duration of a mode varies between 1 and 10 periods. The problems from

sets j10, j12 and j14 include 10, 12 and 14 activities respectively, while the

problems from c15 and c21 have 16 activities.

The sets were solved using both the MMRTN1 and MMRTN2 formulations with

the improvements and the computational results are displayed in Table 3.9.

The optimal solutions reported in Table 3.9, are taken from the website of

PSPLIB (http://129.187.106.231/psplib/).

http://129.187.106.231/psplib/

Chapter 3

115

Notice that the MMRTN1 formulation performs better on smaller problem

instances with 10 and 12 activities. As the number increases, the MMRTN2

model provides better results, due to the smaller number of binary variables.

Table 3.9. Computational Results for Multi-mode RCPSP test instances from

PSPLIB

Instance Model
CPU
Time

Equations
Binary

Variables
Continuous
Variables

Nodes

Solution

Integrality
Gap (%)

Final Optimal

j10 2_2
MMRTN1 239.12 1583 600 536 59423 0 20

20
MMRTN2 1000+ 4555 225 3890 118685 5.97 20

j12 2_8
MMRTN1 146.14 2205 864 738 16925 0 49

49
MMRTN2 1000+ 7023 318 6104 147486 12.24 49

j14 1_8
MMRTN1 1000+ 2967 1176 972 33931 31.63 34

34
MMRTN2 1000+ 10247 427 9027 51586 2.94 34

c15 4_3
MMRTN1 1000+ 3935 1536 1238 14420 44.44 36

34
MMRTN2 1000+ 14345 553 12746 11137 35.13 37

c21 4_6
MMRTN1 1000+ 3899 1536 1238 9058 50.00 38

36
MMRTN2 1000+ 14333 552 12754 7995 36.82 37

3.6 Conclusions

New MILP models for the RCPSP and the MRCPSP are proposed, and used to

solve various project scheduling problems found in the literature.

In the MMRTN2 formulation, the number of integer variables is reduced due

to less defined binary variables ity and
it
y for less tasks. Meanwhile, the

number of continuous variables and constraints are higher. Overall, the

MMRTN1 formulation performs better on smaller test instances, while the

MMRTN2 model requires less computational effort for larger problems, due to

its reduced number of computationally expensive binary variables. Extensive

tests indicate that for large-scale problems (e.g. more than 30 activities) the

proposed MILP models cannot lead to a global optimal solution in reasonable

computational times.

In summary the main objective of this chapter is to establish a new

framework for RCPSPs utilising techniques from the process scheduling area.

RTN-based MILP Formulations for Single- and Multi-Mode RCPSPs

116

As such, the proposed models are suitable to be integrated with challenging

process scheduling problems where project scheduling decisions are also

important (e.g. pharmaceutical product design and scheduling process). In

general the computational results and the similarities between process and

project scheduling problems, such as initial and target inventories, required

resource types and precedence relations, suggest that exchanging solution

techniques between the two research fields is both possible and useful.

3.7 Nomenclature

Indices/ Sets

Ii activities

Rr resources

 Tt ,...,1 time slots

Subsets

XALTI x
th set of alternative activities, 1 of which is to be executed,

II
XALT 

rI activities interacting with resource r, II r 

sureI activities that must be executed, II sure 

Parameters

initial

rR initial available quantity of resource r

maxmin

rr RR minimum/maximum possible quantities for resource r

max

,

min

, FinalrFinalr RR minimum/maximum excess of resource r at the end of the

project

U

ri

L

ri SS lower/upper bounds on the amount of resource r required at

the beginning of activity i

U

ri

L

ri SS lower/upper bounds on the amount of resource r produced at

the end of activity i

Chapter 3

117

aimr/ imra the quantities of resource r consumed/produced respectively,

when activity i is performed in mode m.

i duration of activity i

mi duration of activity i when executed in mode m

ririv / size dependent/independent coefficient of resource r

consumption at the beginning of activity i

ririv / size dependent/independent coefficient of resource r

production at the end of activity i

T number of time slots

maxmin / minimum/maximum slot duration

Binary Variables

ity 1 if activity i starts at t or 0 otherwise

it
y 1 if activity i is active over both t and 1t or 0 otherwise

miz 1 if activity i is executed in mode m or 0 otherwise

Continuous Variables

H time horizon

itN number of instances of activity i for time slot t

rtR excess quantity of resource r at the start of time slot t

Sri surplus of resource r consumed at the beginning of activity i

(above basic consumption level)

riS surplus of resource r produced at the end of activity i (above

basic production level)

ritrit SS / linearised surplus terms

t duration of time slot t

itlin linearised duration term

118

Chapter 4

119

Chapter 4

Four new Continuous-time and Discrete-time

Mathematical Formulations for Resource-

constrained Project Scheduling Problems

Two new binary integer programming discrete-time models and two novel

precedence-based mixed integer continuous-time formulations are developed

for the solution of resource-constrained project scheduling problems. The

proposed discrete-time models are based on the definition of binary variables

that describe the processing state of every activity between two consecutive

time points, while the proposed continuous-time models are based on the

concept of overlapping of activities, and the definition of a number of newly

introduced sets. The four novel mathematical formulations are compared with

four representative literature models using a total number of 2760 well-

known open-accessed benchmark problem instances (j30 and j60 from the

PSPLIB and 1800 problems generated by RanGen2). A detailed computational

comparison study demonstrates the salient performance of the proposed

mathematical models. The new continuous-time formulations feature the best

overall performance. Finally, interesting observations are made through the

computational study and future research lines are revealed.

4.1 Introduction

The study of exact methods, and especially mathematical programming

techniques, for solving the RCPSP is of particular theoretical and practical

interest. Indeed, mathematical programming solvers are often the only

software available to industrial practitioners. Moreover, the best lower bounds

ever found on broadly-studied problem test instances, were obtained by

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

120

hybrid methods involving constraint propagation and mathematical

programming models (Demassey et al., 2005).

There is a plethora of mathematical programming formulations for the RCPSP

in the OR literature. Typically, the standard RCPSP can be formulated as: a

Binary Integer Programming (BIP), involving only binary decision variables, or

a linear Mixed Integer Programming (MIP) model, involving both binary and

continuous decision variables. Discrete-time models use time-indexed binary

decision variables, while continuous-time models usually rely on precedence-

based or event-based decision variables. Also, time-indexed continuous-time

models can be derived, if a variable time grid is applied. It should be noted

that time-indexed BIP discrete-time models divide the scheduling horizon into

equal-size time intervals, while precedence-based MIP continuous-time

formulations are based on sequencing binary variables that indicate the

processing priority between pairs of activities.

New contributions on the project scheduling field are usually evaluated and

compared in benchmark problem test instances derived by using random data

generators. These generators produce a large number of different problems

with various parameter settings. ProGen (Kolisch et al., 1995), RanGen

(Demeulemeester et al., 2003), and RanGen2 (Vanhoucke et al., 2008) are

the most important generators for benchmark RCPSP test instances. For the

classical RCPSP, the most commonly used test instances in the literature can

be found in PSPLIB <http://129.187.106.231/psplib/library.html> (Kolisch

and Sprecher, 1996), which is an the internet-based library with various test

problems involving different number of total activities (from 30 to 120),

derived by the ProGen generator. Additionally, a total number of 1,800

problem instances for the RCPSP have been generated using RanGen2

generator, and they can be found in

<http://www.projectmanagement.ugent.be/rangen.html>. These open-

accessed test instances have been considered in this chapter in an attempt to

http://129.187.106.231/psplib/library.html
http://www.projectmanagement.ugent.be/rangen.html

Chapter 4

121

evaluate the performance of the newly proposed mathematical formulations

and compare them with previous models in the literature.

The rest of the chapter is organised as follows. In Section 4.2, the classical

RCPSCP is formally stated along with some remarks on formulating

mathematical models. Section 4.3 describes the preprocessing phase

employed in this chapter followed by Section 4.4 which presents four

representative mathematical models in the OR literature. In Section 4.5, two

new discrete-time BIP and two new precedence-based continuous-time MIP

formulations are described in detail. A brief description of the problem

instance sets considered is presented in Section 4.6. Then, in Section 4.7 a

comprehensive computational comparison study is realised, while final

conclusions are drawn in Section 4.8.

4.2 Problem Statement

The standard RCPSP considers a project with a finite number of activities

 nVi ,...,1: with durations ip . Preemption of activities is not allowed (i.e.,

the processing of activities cannot be interrupted). Precedence relations

between some activities are present. These relations are given by defining

sets of immediate predecessors E with pairs of activities  ji, , indicating that

activity j cannot start before the completion of all its predecessor activities i.

Additionally, each activity requires certain amounts ikr of renewable

resources  mk ,...,1: , with specific maximum capacities kR , to be

processed. Renewable resources fully retrieve the occupied resource amount

after the completion of each activity. In other words, the temporary

availability of the renewable resources at every time is constrained. Moreover,

usually for modelling purposes, two dummy activities are added: (i) a start

dummy activity 0 to represent the beginning of the project, and (ii) an end

dummy activity n +1 corresponding to the completion of the project. Dummy

activities have zero duration and zero resource requirements. Along with the

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

122

real activities they consist set  1,...,0  nA . The typical objective of the

RCPSP is to find an optimal (or at least feasible) schedule, satisfying

precedence and resource constraints, such that the total duration of the

project (i.e., the makespan Cmax) is minimised. In the standard RCPSP, all

activities and renewable resources are available at the beginning of the

project. Also, all information data are deterministic.

The standard RCPSP is denoted by PS|prec|Cmax in accordance with the

notation proposed by Brucker et al. (1999), which follows the well-known

three-field notation for machine scheduling problems introduced by Graham

et al. (1979). More specifically, PS|prec|Cmax notation specifies the single-mode

project scheduling (PS) problem under precedence constraints between

activities (prec) while minimizing the makespan of the project (Cmax).

The classical RCPSP can be formulated as a mathematical programming

model in several modelling ways, regarding the definition of decision variables

and the construction of necessary constraints.

4.3 Preprocessing Phase

In this chapter, the critical-path method (Kelley, Jr and Walker, 1959) is

employed to estimate iES and iEF for each activity i. Additionally, we use

the Parallel Scheduling Scheme (PSS) of Brooks, as presented by Kolisch

(1996a), under two different rules: the minimum latest finishing time rule,

and the minimum latest starting time rule, so as to find an upper bound to

the time horizon.

The parallel method consists of a number stages that are at most equal to

A , the number of all project activities (including dummy). In each stage a

set of activities (which might be empty) is scheduled. A unique feature of the

parallel method is that each stage x is associated with a schedule time xt ,

Chapter 4

123

where xy tt  , for xy  holds. On account of this schedule time, the set of

scheduled activities is now divided into the following two subsets: Activities

which were scheduled and are completed up to the schedule time are in the

complete set xCOMP , while activities which were scheduled, but which are at

the schedule time still active, are in the active set xACT . Finally, we have the

decision set xDEC , which contains all yet unscheduled activities that are

available for scheduling w.r.t. precedence and resource constraints. The

partial schedule of each stage is made up by the activities in the complete set

and the active set. The schedule time of a stage equals the earliest

completion time of activities in the active set of the ancestral stage. Each

stage is made up of two steps:

(1) The new schedule time is determined and activities with a finish time

equal to the (new) schedule time are removed from the active set

and put into the complete set. This, in turn, may place a number of

activities into the decision set.

(2) One activity from the decision set is selected with a priority rule

(again, in case of ties the activity with the smallest label is chosen)

and scheduled to start at the current schedule time. Afterwards, this

activity is removed from the decision set and put into the active set.

Step (2) is repeated until the decision set is empty, i.e. activities were

scheduled or are not longer available for scheduling w.r.t, resource

constraints. The parallel method terminates when all activities are in the

complete or active set.

Given xACT , the active set, and xCOMP , the complete set, respectively, kK ,

the left over period capacity of the renewable resource k at the schedule

time, and xDEC , the decision set, are defined as follows:





xACTj

jkkk rRR : ,

   kRrCOMPPACTCOMPjjDEC kjkxjxxx ,,|:

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

124

A formal description of the parallel scheduling scheme (PSS), given  jv a

priority value of activity j , xDECj representing the priority rule, is given

below:

Initialisation: 1:n , 0:xt ,  1:xDEC , 0::  xx COMPACT ,

 kRR kk : , GOTO Step (1)

WHILE ACOMPACT xx  DO Stage x;

BEGIN

(1)  1|min:  xjx ACTjFTt ;

  
xjxxx tFTACTjjACTACT   ,|\: 11

;

  
xjxxx tFTACTjjCOMPCOMP   ,|: 11

;

 COMPUTE xk DECandkR  ;

(2)      ivjvjj
xx DECjDECj   inf|min:* ;

 ** : jxj
ptFT  ;

  *: jACTACT xx  ;

 COMPUTE xk DECandkR  ;

 IF xDEC GOTO Step (2) ELSE 1:  xx ;

END;

Stop

The upper bound calculated by the PSS is then used to calculate iLS and

iLF , again through the critical-path method. More specifically, the upper

bound on the time horizon is equal to the minimum time horizon found by the

two rules applied. Note that the computational time of such a simple

preprocessing phase is negligible, and activities time-window lengths can be

significantly reduced.

Chapter 4

125

4.4 Review of Existing Mathematical Formulations

In this section, some key and representative discrete- and continuous-time

mathematical formulations for the RCPSP found in the literature are briefly

presented. These mathematical models have been used for comparison

purposes with the new mathematical formulations developed in this chapter.

For the sake of clarity of the models presentation, we use the notation of

Brucker et al. (1999). Additionally, we use lowercase Latin letters for decision

variables and uppercase Latin letters for sets and subsets. The complete list

of the notation used throughout this chapter is given in the Nomenclature

section.

4.4.1 Discrete-time model by Pritsker [Pri-DT]

A very early mathematical model for the RCPSP was presented by Pritsker et

al. (1969). This Binary Integer Programming (BIP) formulation is based on

the definition of binary variables yit, which specify if activity i starts processing

at time t (i.e., 1ity) or not (i.e., 0ity). Activities Vi have a resource

demand at the time point that they start processing, and no resource demand

at the time point of their completion. Taking into account the above definition

of binary variables ity , the following mathematical model was proposed:







1

1

,1maxmin
n

n

LS

ESt

tnytC (1)

1


i

i

LS

ESt

ity   1 nVi (2)

100 y (3)





j

j

i

i

LS

ESt

jti

LS

ESt

it ytpyt   Eji  , (4)

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

126

 

 

k

Vi

ti

tLS

ptESt

ik Ryr
i

ii

 






,min

1,max

  kTt , (5)

 1,0ity    ii LSEStnVi ,...,,1  (6)

Equation (1) minimises the completion time of the dummy end activity 1n ,

and thus the makespan of the project. Constraints (2) ensure that each

activity starts processing exactly once. Note that the starting time for every

activity i is between its earliest and latest starting time (i.e., ii LSESt ,...,),

and that the dummy start activity 0 begins at 0t according to constraint

(3). Constraints (4) and (5) represent the precedence and the renewable

resource constraints, respectively. Finally, the decision variables domain is

given by constraints (6).

The BIP formulation of Pritsker et al. (1969), consisting of constraints (1) -

(6), involves  





1

1

n

i ii ESLS binary variables, and   11  nmhE

constraints. Where h represents the upper bound on the time horizon.

Henceforth, this model will be called Pri-DT.

4.4.2 Discrete-time model by Christofides [Chri-DT]

Christofides et al. (1987) proposed a BIP formulation very similar to Pri-DT

model, by disaggregating the precedence constrains of Pri-DT, as follows:

 

1

1,min

 










ij

j

i
ptLS

ESt

tj

LS

tt

ti yy   ii LSEStEji ,...,,,  (7)

That way constraints (7) replace constraints (4). Therefore, the BIP model of

Christofides et al. (1987) consists of constraints (1)-(3), and (5)-(7).

Henceforth, this model will be referred as Chri-DT. Notice that this

Chapter 4

127

formulation has the same number of binary variables as Pri-DT, but involves

 





1

1

n

i ii ESLS more constraints than Pri-DT.

4.4.3 Continuous-time model by Artigues [Art-CT]

Artigues et al. (2003) proposed a continuous MIP formulation based on

sequencing and resource flow variables. Starting time continuous variables is

are defined for each activity i. In addition, sequencing binary variables ijx are

introduced to define the sequence between any pair of activities i and j.

Specifically, if activity i is processed before activity j, binary variable 1ijx ,

otherwise is set to zero. Finally, resource flow continuous variables
ijkq are

defined to denote the quantity of resource k directly transferred from activity

i (at its completion) to activity j (at the beginning of its processing). Notice

that in this mathematical formulation
kknk Rrr   ,1,0
, instead of setting them

to zero. That way, the start dummy activity 0 acts as a resource source while

the end dummy activity n+1 plays the role of a resource sink. In the current

thesis and for comparison purposes we use the modified formulation

presented recently in Koné et al. (2011). It should be noted that we removed

the first two tightening constraints of the original formulation, because the

model performance was inferior when they where included. The MIP model is

formally stated by:

1maxmin  nsC (8)

   
ijjiiijij xESLSpLSESss    jiAji  :, 2 (9)

  ijjkikijk xrrq ,min        jiknVVji  :,10, (10)

ik

ijAj

ijk rq 
 ,

  kAi , (11)

ik

ijAj

jik rq 
 ,

  kAi , (12)

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

128

kijk Rq       kjni ,0:,1: (13)

1ijx   Cji  , (14)

0jix   Cji  , (15)

00 s (16)

iii LSsES    1 nVi (17)

 1,0

0





ij

ijk

x

q

 

  jiAji

jikAji





:,

:,,

2

2

 (18)

Objective (8) minimises the starting time of the dummy end activity n + 1,

and therefore the makespan of the project. Constraints (9) are disjunctive

constraints that prevent two activities linked through a resource unit flow

from being scheduled simultaneously. Constraints (10) link resource flow

variables
ijkq and sequencing variables ijx . Note that the maximum resource

flow sent from i to j is set to  jkik rr ,min if activity i precedes activity j,

otherwise is set to zero. Resource flow conservation is ensured by imposing

constraints (11) - (13), while precedence relations are satisfied by constraints

(14) - (15). The starting time of the start dummy activity is equal to zero,

according to constraint (16). Lower and upper bounds on the starting times

of the remaining activities are imposed by constraint (17). Finally, constraints

(18) provide the domain of the remaining decision variables. Note that set C

is the transitive closure of set E.

The MIP formulation of Artigues et al. (2003) consists of constraints (8) -

(18), and involves C2 binary variables,   12
2

 nnm continuous variables,

and     12122
22

 mnnmnC constraints. Henceforth, this model

will be called Art-CT.

Chapter 4

129

4.4.4 Continuous-time model by Koné [Kone-CT]

Recently, Koné et al. (2011) presented two new continuous time MIP

formulations. In this work we compare our models with the On/off event-

based formulation with preprocessing (OOE_prec), which according to their

computational results presents the best performance. OOE_prec is based on

the definition of event points e. The number of event points is equal to the

number of non-dummy activities, i.e.,  nJe ,...,1: . This MIP model is based

on the definition of binary variables iev that denote if activity i starts

processing at event point e, or if it still being processed immediately after

event point e (i.e., 1iev). Event timing continuous variables de are also

introduced. The model proposed by Koné et al. (2011) is given below:

  ieiiee pvvdC 1,maxmin  JeVi  , (19)

1
Je

iev Vi (20)

01 d (21)

ee dd 1  nJe \ (22)

     ieieieiieee pvvvvdd 11,1,     eeJeeVi  :,, 2 (23)

    1,

1

1

11 





  eiie

e

e

ei vvev 1\, JeVi  (24)

    1,11 



  eiie

ee

ei vvenv 1\, JeVi  (25)

  111
1




 evvv ie

e

e

ejie   JeEji  ,, (26)

k

Vi

ieik Rvr 


 Jek  , (27)

    1,11, 1   eiieneiieieiie vvLSvvLSdESv JeVi  , (28)

1max1   nn LSCES (29)

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

130

0iev    nneVi ii ,...,1,...,1,   (30)

 1,0

0





ie

e

v

d

JeVi

Je





,
 (31)

Objective (19) correlates the makespan to the timing of the event points, and

thus minimises the makespan of the project. Constraints (20) ensure that

each activity Vi , is processed at least once, while constraints (21) and (22)

express the sequencing of event points. Constraints (23) give the timing

between event points by linking to it event-start variables iev , and constraints

(24) and (25) ensure non-preemption of activities. Precedence relations and

renewable resource limitations are expressed by constraints (26) and (27),

respectively. Lower and upper bounds on the makespan objective are given

by constraints (29). Additionally, constraints (30) set to zero all event points

wherein activity i cannot be in process due to its number of predecessors i

and successors i . The decision variables domain is given by constraints (31).

The MIP model of Kone et al. (2011) consists of constraints (19) - (31), and

involves: n
2 binary variables, n continuous variables, and

   nnnmEn  22 231 constraints. Henceforth, this model will be

called Kone-CT.

4.5 New Mathematical Formulations

In this section, two new time-indexed discrete-time BIP models and two new

precedence-based continuous-time MIP formulations for the RCPSP are

developed and described in detail.

4.5.1 Proposed discrete-time model 1 [KKG-DT1]

Here, a new BIP formulation is presented which is based on the definition of

Chapter 4

131

two types of binary variables. Specifically, we define binary variables ity ,

which specify if activity i starts processing at time t (i.e., 1ity) or not (i.e.,

0ity); likewise to Pri-DT and Chri-DT models. Moreover, we introduce

variables itw , which specify if activity i is being processed in the time interval

between time points t and t + 1 (i.e., 1itw) or not (i.e., 0itw). Figure 4.1

shows an illustrative example of how binary variables itw work. Activities

Vi have a resource demand at the time point that they start processing,

and no resource demand at the time point of their completion. Considering

the above definitions of binary variables ity and itw , the following

mathematical formulation is proposed:







1

1

,1maxmin
n

n

LS

ESt

tnytC (32)

1


i

i

LS

ESt

ity   1 nVi (33)

100 y (34)





j

j

i

i

LS

ESt

jti

LS

ESt

it ytpyt   Eji  , (35)





t

ptt

tiit

i

yw
1

 1,...,,  ii LFEStVi (36)

i

LF

ESt

it pw
i

i






1

 Vi (37)

 

kitik

LFESt

rVi

Rwr

ii

ik








1,

0,

  kTt , (38)

 

 1,0

1,0





it

it

w

y

  

1,...,,

,...,,1





ii

ii

LFEStVi

LSEStnVi
 (39)

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

132

Objective (32) minimises the completion time of the dummy end activity

1n , which corresponds to the makespan of the project. Constraints (33)

impose that each activity i starts processing exactly once. Obviously, the

starting time for every activity i is between its earliest and latest starting time

(i.e., ii LSESt ,...,), and the dummy start activity 0 begins at 0t according

to constraint (34). Precedence relations are guaranteed by constraints (35).

Additionally, constraints (36) link binary variables ity and itw for every

activity i and time points 1,...,  ii LFESt . Constraints (37) tighten the

model. The definition of binary variables itw allows us to model the

renewable resource constraints in a very simple way, according to constraints

(38). The main idea of modelling renewable resource constraints using binary

variables itw is illustrated in Figure 4.1 through a simple example considering

3 activities  3,2,1 and a single resource k. In this example, 1ikr for all

activities. Finally, the domain of the decision variables is given by constraints

(39).

Figure 4.1. Illustrative example: modelling of resource constrains through binary

variables wit

Chapter 4

133

This BIP model consists of constraints (32)-(39) and involves

    






n

i ii

n

i ii ESLFESLS
1

1

1
 binary variables, and

    


n

i ii ESLFnmhE
1

11 constraints. Henceforth, this model will be

called KKG-DT1.

4.5.2 Proposed discrete-time model 2 [KKG-DT2]

A slightly different BIP formulation can be obtained by disaggregating the

precedence constrains of KKG-DT1, as follows:

 

1

1,min

 










ij

j

i
ptLS

ESt

tj

LS

tt

ti yy   ii LSEStEji ,...,,,  (40)

By doing so, constraints (40) replace constraints (35), and that way we have

a new BIP model that consists of constraints (32)-(34), and (36)-(40).

Henceforth, this model will be referred as KKG-DT2. Note that the KKG-DT2

formulation has the same number of binary variables as KKG-DT1, but

involves  





1

1

n

i ii ESLS more constraints than KKG-DT1.

4.5.3 Proposed continuous-time model 1 [KKG-CT1]

In this part, a new MIP formulation based on the definition of two types of

continuous and binary variables is proposed. Specifically, starting and

finishing time continuous variables is and if are defined for each activity

  1 nVi . Moreover sequencing binary variables ijx are introduced to

define the sequence between any pair of activities i and j. For pairs of

activities that cannot be executed in parallel (e.g., activities for which the

sum of resource requirements exceeds the maximum availability, etc), 1ijx

if activity i is completed before activity j starts processing (i.e.,
ji sf ),

otherwise is zero. However for pairs of activities that could be executed in

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

134

parallel, ijx is used to define the relative sequencing between the activities’

starting times. More specifically 1ijx if activity i begins processing before or

exactly at the same time as activity j starts (ji ss ), otherwise is set to 0.

To continue with, in order to model renewable resource constraints using

sequence-based continuous-time formulations, it is necessary to identify the

set of activities requiring the same resource k and being processed

simultaneously. That can be done by extending the concept of overlapping

activities (Marchetti and Cedrá, 2009). By definition, an activity j that is

overlapping the starting time of activity i must satisfy the following conditions

(see Figure 4.2):

(A) It should require some resource k also required by activity i (i.e., 0ikr

and 0jkr).

(B) It starts before or exactly at the time that activity i starts processing (i.e.,

ij ss ).

(C) It should end after the starting time of activity i (i.e.,
ij sf ).

Figure 4.2. Illustrative example for overlapping conditions

Chapter 4

135

In order to model condition (B) the definition of the sequencing binary

variables ijx is extended so that it also controls the sequencing of the starting

times of parallel tasks i and j. Additionally, condition (C) can be modelled by

defining overlapping binary variables jiz which are equal to one whenever

activity j is completed after activity i starts processing (
ij sf ). Finally, three

sets of activity pairs have been defined:

i) Set B containing activities   2, Vji  sharing at least one renewable

resource,

ii) Set G containing   Bji , that cannot be processed simultaneously

due to resource capacity limitations (i.e., kjkik Rrr ) and

iii) Set D containing activities   Cji , that according to the

preprocessing phase ji ESLF  (i.e., activity j should be processed

after the completion of activity i).

Before moving on to describe the various constraints we use the previously

defined sets to create more composite ones. First, we can define Set K

 DC containing activities for which precedence is already known and

thus, no ijx variables need to be defined. Set S KG \ contains activities that

cannot overlap due to resource capacity limitations, excluding those with

known precedence relations. For this set, only variables ijx need to be

defined. Finally, set P  KGB  \ contains activities that can overlap. For

such activity pairs, both ijx and jiz variables need to be defined. The

preprocessing time to determine sets B, C, D, G, K and P is negligible. Using

the above definition of decision variables, sets and overlapping conditions,

the following mathematical formulation is derived:

1maxmin  nfC (41)

iii psf    1 nVi (42)

ji sf          KjinVVji  ,:1, (43)

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

136

 
jijiji xESLFsf    jiSji  :, (44)

1 jiij xx     jiKjiVji  ,,:, 2 (45)

 
ijijij xESLSss    jiPji  :, (46)

 
jijiji xESLSss     jiPji  :, (47)

 
jiijij zESLFsf    jiPji  :, (48)

 

 
kijjijk

Pji

rij

ik Rxzrr
jk








,

0:

 0:,  ikrkVi (49)

jiij zx    jiPji  :, (50)

1jix   ij ESLSjiPji  ,:, (51)

 

 1,0

1,0

0,0







ji

ji

ii

z

x

fs

  
   
  jiPji

jiKGBji

nVi







:,

:\,

1

 (52)

Equation (41) minimises the completion time of the dummy end activity 1n ,

and therefore the duration of the project. Constraints (42) correlate the

finishing and starting time for activities   1 nVi . Constraints (43) set

all the priori known precedence relations between activities   Kji , .

Constraints (44)-(47) define the sequencing constraints between any pair of

activities   Kji , . The value of big M constraints could strongly affect the

performance of any model. For this reason, and in order not to use any

arbitrary values for the big M parameters, we use proper differences between

ES, LS and LF; similarly to Art-CT model. It should be noted that constraints

(46) and (47) relax (extend) the definition of sequencing binary variables ijx

to also control the starting times of the potential parallel tasks i and j. Also,

notice that a small positive parameter λ is included to constraint (47) to deal

with the case that activities i and j start processing at the same time. That

way when ji ss  the activity with the higher index is assumed to start last

Chapter 4

137

(i.e., if ji ss  and ji  , then 1jix). In the case studies we used a value of

0.1 for parameter λ. Overlapping condition (C) is modelled by constraints

(48), while renewable resource constraints are given by constraints (49). By

using  
ijji xz  we are able to detect activity overlapping and properly model

the resource constraints.

Constraints (46) – (49) state that if activity i starts processing before activity j

(i.e., 1ijx), then activity j has to finish after activity i starts (i.e., 1jiz).

The only case that the difference  
ijji xz  takes the value of 1 is when

activity j overlaps i. That means, according to the definition of overlapping

given above, that j finishes after i starts (i.e., 1jiz) and activity j starts

processing before i (i.e., 0ijx). Constraints (50) are tightening constraints

that correlate directly sequencing and overlapping binary variables. It can be

easily proven that for activities which could overlap   Pji , , if 1ijx that

means that jji fss  , and consequently 0 ij sf which according to

constraints (48) gives 1jiz .

Table 4.1 displays all possible combinations for variables jiz and ijx for

activities   Pji , that could be executed in parallel. In the first two cases

wherein 0jiz , no overlapping occurs since activity i starts after the

completion of activity j (i.e., ijj sfs ). Especially, in the second case,

notice that if 0jiz and 1ijx that would mean that jij ssf  , which

obviously is impossible. For this reason, if 0jiz then always 0ijx . In the

last two cases wherein 1jiz , overlapping occurs if and only if activity j

begins processing before activity i starts (i.e., 0ijx), because in that case

holds jij fss  . Further, the sequencing binary variables for activities

  Pji , that ij ESLS  can be fixed due to the preprocessing phase,

according to constraints (51). Finally, the domain of the decision variables is

given by constraints (52).

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

138

Table 4.1. Modelling of binary variables
jiz and ijx for activities   Pji  ,

Constraints (48) Constraints (46) - (47) Constraints (49)

ij sf  jiz
ji ss  ijx ijji xz 

≤ 0 0 > 0 0 0

≤ 0 0 < 0 1 impossible

> 0 1 < 0 1 0

> 0 1 > 0 0 1

The proposed continuous-time MIP model consists of constraints (41) - (52),

and henceforth, this model will be referred as KKG-CT1.

4.5.4 Proposed continuous-time model 2 [KKG-CT2]

Here, another continuous-time MIP formulation is proposed that uses the

same types of binary and continuous variables as KKG-CT1 model, while

modelling the sequencing and resource constraints differently, as follows:

  
jiijij xESLFsf  1   jiSji  :, (53)

 
jijiji xESLFsf    jiSji  :, (54)

  
jiijij xESLSss  1   jiPji  :, (55)

 
jijiji xESLSss     jiPji  :, (56)

 

 

 

 
kijjijk

Pji

rij

jijijk

Pji

rij

ik Rxzrxzrr
jkjk












,

0:

,

0:

1 0:,  ikrkVi (57)

ijji zx    jiPji  :, (58)

jiji zx 1   jiPji  :, (59)

1jix   ij ESLSjiPji  ,:, (60)

Chapter 4

139

 

 1,0

1,0

0,0







ji

ji

ii

z

x

fs

  

   

  jiPji

jiKGBji

nVi







:,

:\,

1

 (61)

Constraints (53)-(56) define the sequencing for any pair of activities

  Kji , , when ji  . The relative sequencing, regarding the starting times,

of parallel activities ji, is given by constraints (55) and (56), and constraints

(57) express resource constraints. Moreover, constraints (58) and (59) are

tightening constraints which directly correlate sequencing and overlapping

binary variables; similarly to constraints (50) of the KKG-CT1 model.

Additionally, sequencing binary variables jix can be fixed for activities

  Pji , that ji  and ij ESLS  ; i.e., it is known a priori that activity j

starts before i . Finally, the domain of the decision variables is given by

constraints (61).

The new proposed continuous-time MIP model consists of constraints (41) -

(43), (48) and (53) - (61). Henceforth, this model will be referred as KKG-

CT2. Note that the KKG-CT2 formulation has the same number of

constraints, continuous variables, overlapping binary variables and the half of

sequencing variables than KKG-CT1.

4.6 Description of Problem Instance Sets

In this section, we present the project generators, the parameters they toggle

to create test instances, and the problem sets available for benchmarking

project scheduling problems that have been used in this work. Specifically,

the computational performance of all formulations has been tested

extensively using a large number of test instances, generated by the

parameter-driven generators ProGen and RanGen2.

ProGen was developed by Kolisch et al. (1995), as a network instance

generator for the classical RCPSP as well as the multi-mode extension. A

number of instances, systematically generated by ProGen, are available for

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

140

researchers in PSPLIB (Kolisch and Sprecher, 1996), an online scheduling

library (http://129.187.106.231/psplib/). PSPLIB test sets have been used as

a benchmark in a large number of studies. These instances were generated

by varying the Network Complexity (NC), Resource Factor (RF) and Resource

Strength (RS) parameter values. NC is the average number of non-redundant

arcs per activity (node), including the dummy source and sink activities. RF

reflects the average quantity of resources required per activity, and is

normalised in the interval [0,1]. A value of 1 suggests that all activities

require all resources, while a value of 0, that no resource is required by any

activity (which corresponds to the unconstrained case). The RS parameter

measures the strength of the resource constraints. It is a scaling parameter

expressing resource availability as a convex combination of a minimum and

maximum level with values in the interval [0,1]. In this work, we use the

problem sets with 30 and 60 activities, utilizing 4 renewable resources. Each

problem set comprises of 480 test problem instances. In the PSPLIB problem

instances the parameters values are:

NC = {1.50, 1.80, 2.10},

RF = {0.25, 0.50, 0.75, 1.00}

RS = {0.20, 0.50, 0.70, 1.00}

Henceforth, the 480 problem instance test sets with 30 and 60 activities will

be referred to as j30 and j60, respectively.

Vanhoucke et al. (2008) developed RanGen2 which is a random project

network generator for single- and multi-mode project instances, extending

RanGen (Demeulemeester et al., 2003) by incorporating further topological

network measures. RanGen and RanGen2 use different measures than

ProGen. These six topological measures are displayed in Table 4.2. The first

five indicators (I1 to I5) are based on the indicators proposed by Tavares et al.

(1999). More specifically, I1, I2 and I4 are exact copies of the original ones,

while I3 and I5 are improved versions. The last indicator I6 is totally new. In

our computational comparison we used the 1800 problem instances

http://129.187.106.231/psplib/

Chapter 4

141

generated by RanGen2 and available online at

http://www.projectmanagement.ugent.be/rangen.html. This set of problem

instances contains single-mode RCPSP with 30 activities and 4 renewable

resources and will be referred to as RanGen2, henceforth. Two additional

parameters with fixed values for the 1800 problem set are the Resource-

Constrainedness (RC) (Patterson, 1976) and the Resource Use (RU)

(Demeulemeester and Herroelen, 2002). RC is defined per resource type as

the average quantity demanded by all activities divided by its availability and

has a fixed value of 0.4, while RU is equal to the number of resource types

required by each activity; for the 1800 test instances is set to 3. The

parameters variations for these problem instances can be found in Vanhoucke

et al. (2008). The 1800 test instances are divided to 5 different set of

problems (Set 1 to Set 5). Set 1 was generated under nine different values

for the I2 indicator, thus generating 100 instances per setting resulting in a

total of 900 instances. The other sets were generated by varying the I2

indicator (by three values) and one other indicator (I3, I4, I5 or I6). It should

be noticed that 10 instances per setting were generated, resulting in 240

instances for Sets 3, 4 and 5. Set 2 contains only 180 instances because

networks with high I2 values and I3 values lower than 0.75 could not be

generated or simply do not exist.

Table 4.2. Network structure topological indicators for RanGen2

Indicator Description

I1 Network size expressed as number of activities

I2 closeness to a serial or parallel graph

I3 distribution of activities over the progressive levels

I4 presence of short arcs

I5 presence of long arcs

I6 topological float of activities

http://www.projectmanagement.ugent.be/rangen.html

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

142

4.7 Computational Comparison Study

This section summarises the computational comparison between some

existing representative formulations and the four new mathematical

formulations presented in Sections 4.4 and 4.5, respectively. Here, we

present the computational results for all formulations, and further analyse

and discuss the computational performance of the models considered. Notice

that our experimental computational study involves a total number of 2760

RCPSP problems, considering the 3 benchmark RCPSP problem sets j30, j60

and RanGen2 described in the previous section. All mathematical formulations

have been solved on an Intel Core i5 CPU M430 2.27GHz with 4GB RAM using

CPLEX 11.1.1 via a GAMS 22.8.1 (Rosenthal, 2012) WIN 6007.6015 VIS

interface under standard configurations. A maximum resource time limit of

600 CPU s has been set for all problem instances.

A description of the notation used in the computational results follows.

Feasible (%) is the percentage of instances that gave an integer solution

(i.e., optimal, suboptimal, or not-proven optimal) within the predefined time

limit. Good (%) is the percentage of instances that gave a good integer

solution (i.e., optimal, or suboptimal with a gap lower than 3% from the

optimal solution) within the predefined time limit. Optimal (%) represents the

percentage of (proven) optimal solutions found within the time limit. Gap (%)

is the average gap of the integer non-proven optimal solutions from the real

optimal solution, or the best known solution if optimal solution is not available

(some problems in j60 and RanGen2). ΔHEUR (%) stands for the average

deviation of the optimal solution from the upper bound calculated by the

preprocessing stage, taking into account only instances that were solved to

optimality. Similarly, ΔCPM (%) is the average deviation of the optimal

solution found from the lower bound calculated through the critical-path

method. Finally, Optimal CPU (s) is the average CPU time required for

instances solved to optimality.

Chapter 4

143

4.7.1 Overall Computational Results

Table 4.3 presents the overall mathematical models performance ranking

(based on Good (%)) for the total number of 2760 problem instances

considered. It is observed that the two continuous-time MIP formulations

proposed in this work, KKG-CT1 and KKG-CT2, outperform the remaining

models. Moreover, it should be noted that the best-performing discrete-time

model is KKG-DT2 which outperforms the models of Chri-DT and Pri-DT. Also,

notice that KKG-DT2 found the highest number of optimal solutions within the

predefined time limit. Chri-DT is slightly better than KKG-DT1. As Table 4.3

clearly shows, Art-CT and especially Kone-CT formulations perform rather

poor.

Table 4.3. Overall mathematical models ranking for the 2760 problems considered

Ranking Model Good (%) Optimal
(%)

Feasible (%)

1 KKG-CT1 74.82 69.78 87.32
2 KKG-CT2 74.10 69.06 86.60

3 KKG-DT2 71.09 70.25 86.16

4 Chri-DT 70.00 68.91 84.38

5 KKG-DT1 69.86 68.23 82.72

6 Pri-DT 65.76 63.95 74.89

7 Art-CT 50.00 45.40 56.89

8 Kone-CT 39.38 26.12 61.63

In the literature, discrete-time models have been considered to be better and

more appropriate than their continuous-time counterparts for dealing with the

RCPSP. This fact is also reflected in the plethora of discrete-time models

developed so far in contrast with few approaches using a continuous-time

representation. Our experimental study demonstrates that continuous-time

formulations (such as the ones proposed in this work) can perform better

than state-of-the-art discrete-time models. We tend to believe that the

definition of the decision variables is the most significant stage in the overall

modelling process, and that further improvement in the modelling phase

seems a particularly challenging and promising research direction.

Table 4.4 presents the computational results for all mathematical formations

per problem set. Note that RanGen2 problem set has been divided to

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

144

RanGen2-A (containing Set 1 of the RanGen2 library) and RanGen2-B

(containing Set 2 to 5 of RanGen2 library) subsets, because there are no

available optimal (neither best) solutions for Set 1 (i.e., RanGen2-A) from

Vanhoucke et al. (2008). For this reason, in RanGen2-A, Good (%) is set

equal to Optimal (%). The best performance values are marked in bold.

Table 4.4. Computational results per problem set

Problem
Set

Model
Feasible

(%)
Good
(%)

Optimal
(%)

Gap
(%)

ΔHEUR
(%)

ΔCPM
(%)

Optimal
CPU s

j30

Pri-DT 87.71 83.54 80.42 5.19 2.00 4.03 8.19
Chri-DT 94.17 87.29 84.79 6.52 2.32 5.62 13.58

KKG-DT1 91.25 88.33 85.21 5.49 2.34 5.52 18.49
KKG-DT2 94.58 89.38 88.13 8.24 2.49 6.63 21.65

Art-CT 81.04 75.21 67.50 3.04 1.53 3.47 10.57
Kone-CT 62.92 48.75 32.08 3.73 0.43 0.09 12.94
KKG-CT1 98.13 95.21 85.42 1.97 2.61 9.82 16.78
KKG-CT2 96.88 93.54 85.42 2.39 2.61 9.57 17.79

j60

Pri-DT 76.25 73.33 72.50 6.68 1.93 0.82 5.10
Chri-DT 77.71 75.42 75.42 6.77 2.18 1.13 8.62

KKG-DT1 77.29 75.63 75.21 5.60 2.17 1.13 10.74
KKG-DT2 77.50 76.04 75.21 4.46 2.18 1.15 8.91

Art-CT 63.13 59.58 55.42 3.96 1.32 0.58 28.50
Kone-CT 2.71 2.08 2.08 4.80 0.00 0.00 106.62
KKG-CT1 71.67 67.50 64.58 4.81 1.87 1.34 19.56
KKG-CT2 70.83 67.29 62.71 4.25 1.77 1.27 20.41

RanGen2-A

Pri-DT 71.33 56.56 56.56 _ 3.48 4.04 17.94
Chri-DT 84.11 62.00 62.00 - 3.86 5.80 22.57

KKG-DT1 82.89 61.00 61.00 - 3.78 5.51 29.74
KKG-DT2 87.44 63.33 63.33 - 3.99 6.21 24.00

Art-CT 49.56 36.89 36.89 - 1.96 3.46 26.47
Kone-CT 75.44 32.00 32.00 - 2.09 1.10 38.98
KKG-CT1 88.00 66.67 66.67 - 4.09 9.32 17.78
KKG-CT2 87.56 65.56 65.56 - 4.00 9.02 13.15

RanGen2-B

Pri-DT 70.89 61.44 58.00 9.60 3.89 5.92 23.80
Chri-DT 83.00 65.89 63.89 9.90 4.11 7.47 16.97

KKG-DT1 80.89 65.78 62.67 10.96 4.10 7.20 33.75
KKG-DT2 85.00 66.44 65.00 11.61 4.15 7.93 21.44

Art-CT 48.00 44.56 36.78 2.63 1.56 6.98 25.12
Kone-CT 78.56 61.67 29.89 3.39 2.42 2.12 42.40
KKG-CT1 89.22 76.00 67.33 5.42 4.05 12.09 20.52
KKG-CT2 88.56 76.11 67.22 5.27 4.07 11.63 17.56

The proposed continuous-time models, KKG-CT2 and especially KKG-CT1

feature the best performance in the j30, RanGen2-A, and RanGen2-B problem

sets that involve 30 activities. However, it is worth noticing that the discrete-

Chapter 4

145

time model KKG-DT2 reported the highest number of optimal solutions in the

j30 problem set. In the problem set j60, which involves a total number of 60

activities, discrete-time models perform better than continuous-time

formulations. More specifically, KKG-DT2 and Chri-DT feature the best

performance among the mathematical models considered. These results

indicate that the performance of continuous-time formulations probably tends

to reduce as the total number of activities increases. The worst-performing

model, and probably not surprisingly, is that of Kone-CT, mainly due to its

very big model size. This model was able to solve solely problem instances

whose optimal solutions are very near to the solution found by the CPM

method or to the solution found by the preprocessing stage (i.e., low ΔHEUR

and ΔCΡΜ values).

Another interesting observation is that continuous-time models report lower

Gap (%), in comparison with those of the discrete-time models. In other

words, a suboptimal integer solution found by continuous-time formulations is

more probable to be a good quality solution (i.e., close to the optimal). This

characteristic of the continuous-time models could be of great importance in

real-life RCPSP wherein near-optimal solutions, within reasonable

computational time, are often acceptable. In order to highlight this point

more, consider problem set j30, and observe that KKG-DT2 features a 88.13

Optimal (%) while KKG-CT1 reports a lower 85.42 Optimal (%) value.

Nevertheless, KKG-CT1 results in a 95.21 Good (%) value, due to a very low

1.97 Gap (%), while KKG-DT2 reaches a 89.38 Good (%) value. Therefore,

KKG-CT1 clearly overwhelms KKG-DT2 in the j30 problem instance. Similar,

observations could be done for the remaining problem sets.

4.7.2 Computational Results: Detailed Analysis

In the detailed analysis of the computational results some further notation is

introduced. More specifically, Subopt. sol. corresponds to the number of

instances producing a feasible but non-proven optimal solution. Actually opt.

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

146

is the number of suboptimal solutions that are actually optimal, but the solver

did not manage to prove it due to the time limit. Actually opt. (%) is the

percentage of suboptimal solutions that are actually optimal, Subopt. gap

<3% is the number of suboptimal solutions with a deviation from the optimal

solution that is less than 3% (excluding the Actually opt.), Good subopt. (%)

is the percentage of suboptimal solutions that are actually optimal or have a

gap <3%. Dif (%) is the percentage of improvement difference between

Optimal (%) and Good (%).

Problem Set j30

The detailed analysis of the suboptimal solutions from each mathematical

model for problem set j30, is presented in Table 4.5 which demonstrates the

higher quality of the suboptimal solutions derived from continuous-time

models in contrast with those found by discrete-time formulations. For

instance, observe that 31.15% of the suboptimal solutions reported by KKG-

CT1 are actually (i.e., non-proven) optimal, and furthermore 77.05% of the

suboptimal solutions are either non-proven optimal or feature a gap <3%

from the optimal solution. The corresponding percentages are relatively low

for the discrete-time models, in accordance with Table 4.5.

Table 4.5. Detailed analysis of suboptimal solutions found for problems sets j30 and j60

Problem
Set

Model
Subopt.

sol.
Actually

opt.
Subopt.

gap<3%
Actually

opt. (%)
Good

subopt. (%)
Optimal

(%)
Good
(%)

Dif
(%)

j30

Pri-DT 35 5 10 14.29 42.86 80.42 83.54 3.88

Chri-DT 45 6 6 13.33 26.67 84.79 87.29 2.95

KKG-DT1 29 5 10 17.24 51.72 85.21 88.33 3.67

KKG-DT2 31 4 2 12.90 19.35 88.13 89.38 1.41

Art-CT 65 20 17 30.77 56.92 67.50 75.21 11.42

Kone-CT 148 45 35 30.41 54.05 32.08 48.75 51.96

KKG-CT1 61 19 28 31.15 77.05 85.42 95.21 11.46

KKG-CT2 55 16 23 29.09 70.91 85.42 93.54 9.51

j60

Pri-DT 18 2 2 11.11 22.22 72.50 73.33 1.15

Chri-DT 11 0 0 0.00 0.00 75.42 75.42 0.00

KKG-DT1 10 0 2 0.00 20.00 75.21 75.63 0.55

KKG-DT2 11 0 4 0.00 36.36 75.21 76.04 1.11

Art-CT 37 7 13 18.92 54.05 55.42 59.58 7.52

Kone-CT 3 0 0 0.00 0.00 2.08 2.08 0.00

KKG-CT1 34 3 11 8.82 41.18 64.58 67.50 4.52

KKG-CT2 39 8 14 20.51 56.41 62.71 67.29 7.31

Chapter 4

147

Table 4.6 shows a detailed analysis of good quality solutions for different RS

and RF parameter settings for problem set j30. The maximum value for each

cell is 30 instances. This also applies to Tables 4.7 and 4.8. According to this

table, problem instances with low RS value (i.e., 0.20) and high RF values

(i.e., 0.75, and 1.00) are the most difficult RCPSP to solve by the

mathematical models considered. Note that only the proposed KKG-CT1 and

KKG-CT2 models have managed to solve a significant percentage of these

problem instances. The most difficult problem instances for KKG-CT1 and

KKG-CT2 are those with RS={0.20, 0.50} and RF=1.00. It should be noted

that discrete-time models solved almost all problems with RS=0.50 and

RF=1.00, but manage to solve just a very small number of problem instances

with RS=0.20 and RF={0.75, 1.00}. The majority of the remaining problem

instances in problem set j30 have been solved by the mathematical models

considered except for the Kone-CT model, which performed poorly. The

proposed KKG-CT1 formulation found the most good quality solutions,

resulting into a 95.21% good solutions percentage.

Table 4.6. Detailed analysis of good quality solutions per RS and RF parameter setting for

j30

Parameter Mathematical Formulation

RS RF Pri-DT Chri-DT KKG-DT1 KKG-DT2 Art-CT Kone-CT KKG-CT1 KKG-CT2

0.20 0.25 30 30 30 30 30 16 30 30

0.20 0.50 14 23 27 30 8 8 30 30

0.20 0.75 0 4 6 7 0 1 29 27

0.20 1.00 0 6 3 2 0 2 23 18

0.50 0.25 30 30 30 30 30 19 30 30

0.50 0.50 30 30 30 30 29 11 30 30

0.50 0.75 30 30 30 30 23 6 28 28

0.50 1.00 27 26 28 30 4 2 18 19

0.70 0.25 30 30 30 30 30 26 30 30

0.70 0.50 30 30 30 30 30 14 30 30

0.70 0.75 30 30 30 30 30 12 30 30

0.70 1.00 30 30 30 30 27 10 29 27

1.00 0.25 30 30 30 30 30 29 30 30

1.00 0.50 30 30 30 30 30 28 30 30

1.00 0.75 30 30 30 30 30 24 30 30

1.00 1.00 30 30 30 30 30 26 30 30

Good solutions 401 419 424 429 361 234 457 449

Good (%) 83.54 87.29 88.33 89.38 75.21 48.75 95.21 93.54

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

148

Problem Set j60

Table 4.5 also shows a detailed analysis of the suboptimal solutions found

from each mathematical model for problem set j60. Once again, we observe

the higher quality of the suboptimal solutions found from continuous-time

formulations in comparison with those reported by discrete-time models. For

example, 20.51% of the suboptimal solutions reported by KKG-CT2 are non-

proven optimal, and 56.41% of the suboptimal solutions are either non-

proven optimal or have a gap from the optimal solution lower than 3%.

Again, it should be noted that the corresponding percentages are relatively

low for the discrete-time formulations. The detailed analysis of good quality

solutions for different RS and RF parameter settings for problem set j60 is

summarised in Table 4.7.

Table 4.7. Detailed analysis of good quality solutions per RS and RF parameter setting for

j60

Parameter Mathematical Formulation

RS RF Pri-DT Chri-DT KKG-DT1 KKG-DT2 Art-CT Kone-CT KKG-CT1 KKG-CT2

0.20 0.25 23 29 29 30 17 0 30 30

0.20 0.50 0 0 0 0 0 0 1 0

0.20 0.75 0 0 0 0 0 0 0 0

0.20 1.00 0 0 0 0 0 0 0 0

0.50 0.25 30 30 30 30 30 0 30 30

0.50 0.50 27 28 28 28 8 0 19 19

0.50 0.75 20 22 23 24 2 0 4 6

0.50 1.00 12 13 13 13 1 0 2 2

0.70 0.25 30 30 30 30 30 0 30 30

0.70 0.50 30 30 30 30 30 0 30 30

0.70 0.75 30 30 30 30 27 0 29 29

0.70 1.00 30 30 30 30 21 0 29 27

1.00 0.25 30 30 30 30 30 6 30 30

1.00 0.50 30 30 30 30 30 2 30 30

1.00 0.75 30 30 30 30 30 1 30 30

1.00 1.00 30 30 30 30 30 1 30 30

Good solutions 352 362 363 365 286 10 324 323

Good (%) 73.33 75.42 75.63 76.04 59.58 2.08 67.50 67.29

It is demonstrated clearly that the most hard RCPSPs to solve by the

mathematical models considered are those with low RS value (i.e., 0.20) and

medium-to-high RF values (i.e., 0.50, 0.75, and 1.00); notice the inability of

all models to solve these problem instances. Additionally, problem instances

Chapter 4

149

with RS=0.50 and RF={0.75, 1.00} are hard to solve for continuous-time

models, however discrete-time models perform considerably better. The

majority of the remaining problem instances, in problem set j60, has been

solved by the mathematical models considered except for the Kone-CT model,

which again had an extremely poor performance featuring just a 2.08% good

solutions percentage. The proposed KKG-DT2 formulation found the largest

number of good quality solutions, resulting into a 76.04% of good solutions.

Problem Set RanGen2

Table 4.8 presents the computational analysis for Sets 2 to 5 for RanGen2.

Note that the computational analysis for Set 1 can be found in Table 4.4 (see

RanGen2-A problem set). With respect to Good (%) values, the KKG-CT1

performs best in Set 1, 3 and 5, and KKG-CT2 in Set 2, while in Set 4 they

both report a percentage of 70 % of good solutions. It is worth noticing that

the continuous-time models proposed (KKG-CT1 and KKG-CT2) perform

better than any discrete-time model considered in all sets of the RanGen2

problem set. Once again, lower Gap (%) values are observed for the

continuous-time formulations in comparison with those of the discrete-time

models. For instance, in Set 4, KKG-DT2 and KKG-CT2 report a 65.42% and

62.50% of optimal solutions, respectively. Nevertheless, KKG-CT2 features a

higher Good (%) percentage (70.00%) than that of KKG-DT2 (67.08%), due

to the fact that KKG-CT2 reports many good suboptimal solutions which are

either non-proven optimal or have a gap from the optimal solution lower than

3%.

According to the computational results in Table 4.8, Sets 1, 2, and 4 seem to

include the hardest RCPSP problem instances for the mathematical models

considered. Also, note that KKG-CT1 and KKG-CT2 solved very successfully

almost all problem instances of Set 3. It is worth mentioning that KKG-DT2

model outperforms the Chri-DT model in all sets apart from Set 5, and the

Pri-DT model is the worst discrete-time model in all sets. On average, Kone-

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

150

CT performs better than Art-CT in contrast with the previous problem sets j30

and j60.

Table 4.8. Computational analysis for problem Set 2 to 5 for RanGen2

Problem
Set

Model
Feasible

(%)
Good
(%)

Optimal
(%)

Gap
(%)

ΔHEUR
(%)

ΔCPM
(%)

Optimal
CPU s

Set 2

Pri-DT 64.44 52.22 49.44 13.02 6.46 5.77 34.14

Chri-DT 77.78 54.44 54.44 11.79 6.39 7.48 19.50

KKG-DT1 78.33 56.11 52.78 12.06 6.48 6.97 37.96

KKG-DT2 83.89 56.67 55.56 12.81 6.40 7.93 30.42

Art-CT 26.11 23.33 16.11 2.69 2.33 8.91 31.02

Kone-CT 67.78 46.67 18.89 4.51 5.18 2.11 105.26

KKG-CT1 80.56 61.67 53.33 6.44 5.92 10.08 17.23

KKG-CT2 81.67 64.44 55.00 7.06 6.24 9.79 27.86

Set 3

Pri-DT 67.92 64.17 58.75 3.88 0.66 10.71 13.81

Chri-DT 81.25 71.67 67.92 5.50 0.91 13.17 18.76

KKG-DT1 74.58 69.58 65.83 5.71 0.87 12.89 36.39

KKG-DT2 81.25 72.50 70.00 7.50 1.02 14.06 28.61

Art-CT 70.00 67.08 62.92 2.30 0.73 11.76 22.86

Kone-CT 91.25 79.17 33.75 1.73 0.25 4.69 13.06

KKG-CT1 99.17 94.58 81.25 2.01 1.69 22.16 22.64

KKG-CT2 98.33 94.17 81.25 2.44 1.72 21.72 20.15

Set 4

Pri-DT 75.00 62.50 60.00 9.68 4.88 3.58 27.06

Chri-DT 86.25 66.67 64.17 9.77 5.29 4.30 16.13

KKG-DT1 86.25 67.50 63.33 11.54 5.26 4.13 30.47

KKG-DT2 86.67 67.08 65.42 11.54 5.37 4.64 16.65

Art-CT 42.92 39.17 30.00 2.94 2.03 1.81 23.36

Kone-CT 76.25 57.92 32.08 4.02 3.12 1.05 52.59

KKG-CT1 83.75 70.00 63.33 6.14 4.94 5.65 21.38

KKG-CT2 83.75 70.00 62.50 5.30 4.79 4.68 12.43

Set 5

Pri-DT 74.58 64.58 61.67 10.57 4.47 3.74 23.91

Chri-DT 85.42 67.92 66.67 11.41 4.84 4.71 14.40

KKG-DT1 83.75 67.50 66.25 11.63 4.79 4.62 31.75

KKG-DT2 87.92 67.08 66.67 12.67 4.84 4.71 13.02

Art-CT 47.50 43.33 32.92 2.50 2.45 1.86 28.89

Kone-CT 76.25 59.17 32.08 3.97 2.79 0.51 35.53

KKG-CT1 91.25 74.17 67.92 6.52 4.96 7.22 19.13

KKG-CT2 88.75 72.92 67.08 5.84 4.90 7.03 12.87

4.8 Conclusions

This chapter presents two BIP discrete-time models (KKG-DT1, KKG-DT2) and

two MIP continuous-time formulations (KKG-CT1, KKG-CT2) followed by a

detailed comparison with four existing literature models using 2760 RCPSPs.

Overall, KKG-CT1 and KKG-CT2 have been found to be the best models for

Chapter 4

151

the problems addressed. The detailed and comprehensive computational

analysis reveals some interesting features of the problems solved and the

mathematical models considered. More specifically, it has been observed, that

problem instances with low RS values and high RF values are the most hard

to solve, according to the computational results in problem sets j30 and j60.

Moreover, it seems that increasing the number of activities directly affects

negatively the computational performance of continuous-time models since

the number of sequencing binary variables is increased dramatically, while

discrete-time models are affected less due to the fact that the number of the

decisions variables principally depends on the time points. Notice that, in

contrast to continuous-time models, the performance of discrete-time models

is strongly affected (positively) from the bounds imposed on the

preprocessing phase. In addition, continuous-time formulations feature lower

Gap (%) values compared with discrete-time models. Also, the event-based

Kone-CT formulation generally performs poor and becomes inappropriate for

large number of activities due to the huge model size. Finally, it has been

demonstrated that continuous-time models, which have received little

attention in the literature so far, could deal very successfully and efficiently

with RCPSPs.

At this point, it should be emphasised that in discrete-time approaches: (a)

the scheduling horizon is divided into a finite number of time intervals with

predefined duration, and therefore (b) activities can start or end only at the

boundaries of these time periods. For this reason, in real-world problems

where the duration of the activities may not be integer numbers, a finer

division of the scheduling horizon (resulting in bigger model sizes), and/or

duration time rounding (sacrificing optimality) should be employed. An

inherent special advantage of continuous-time approaches is that timing

decisions can be represented explicitly. However, the modelling of resource

limitations needs more complicated constraints involving many big-M terms,

which tends to increase the model complexity.

Four New Discrete- and Continuous-time Mathematical Formulations for the RCPSP

152

4.9 Nomenclature

Indices/Sets

 1,...,0:,  nAji activities (including start 0 and end 1n dummy

activities)

 mk ,...,1: renewable resources

 hTt ,...,0: time points

 nJe ,...,1: event points

Subsets

B activity pairs   2, Vji  sharing at least one renewable

resource

C transitive closure of subset E

D pairs of activities   Cji , where according to the

preprocessing phase ii ESLF 

E pairs of activities  ji, where j is an immediate successor of

activity i; CE 

G pairs of activities   2, Vji  that cannot be processed

simultaneously due to resource capacity limitations, BG 

K pairs of activities with known precedence relations,

 DCK 

P pairs of activities that could overlap,  DCGBP  \

S pairs of activities that cannot overlap due to resource

capacity limitations, excluding those with known precedence

relations,  DCGS  \

 nV ,...,1: set of non-dummy activities, AV 

Parameters

EFi earliest finishing time of activity i

ESi earliest starting time of activity i

Chapter 4

153

LFi latest finishing time of activity i

LSi latest starting time of activity i

rik renewable resource k requirements for activity i

Rk maximum capacity of renewable resource k

ζi number of predecessors of activity i

θi number of successors of activity i

λ a small number (= 0.1 in this work)

pi duration of activity i

Continuous Variables

si starting time of activity i

fi finishing time of activity i

de time of event point e

qijk quantity of resource k transferred from activity i (at the end

of its processing) to activity j (at the beginning of its

processing)

Binary Variables

vie = 1, if activity i starts at event point e, or if it is still being

processed immediately after event point e

wit = 1, if activity i is being processed in the time interval

between time points t and t+1

xij = 1, if activity i is completed before activity j starts (remark:

in KKG-CT1 and KKG-CT2, for activities   Pji , this

definition is relaxed, and 1ijx if activity i starts before

activity j)

yit = 1, if activity i starts at time point t

zij = 1, if activity i is overlapped by activity j

154

Chapter 5

155

Chapter 5

Mathematical Formulation for Resource-

Constrained Project Scheduling Problems with

Generalised Precedence Relations

This chapter presents a new precedence-based continuous-time formulation

for a challenging extension of the standard single-mode resource-constrained

project scheduling problem that also considers minimum and maximum time

lags (RCPSP/max), under the objective of minimizing the project makespan.

The proposed linear mixed integer programming model is based on the

definition of two types of binary variables to express: (i) the relative

sequencing of activities, and (ii) the overlapping conditions. Two types of

continuous variables for activity starting and finishing times are also used.

Additionally, a number of new activity subsets are introduced for modelling

purposes, in order to reduce the model size and tighten the proposed model.

The new mathematical formulation is used to conduct an extensive

computational study on a total of 2,250 well-known and open-accessed

benchmark problem instances from the literature. Various problem sizes are

considered in the test sets involving 10, 20, 30, 50 and 100 activities. The

computational results illustrate the efficient performance of the proposed

mathematical formulation. Finally, interesting observations are made through

the computational study and potential future research lines are proposed.

5.1 Introduction

The classical single-mode RCPSP uses finish-start precedence relations with

zero time-lags, which means that an activity can only start as soon as all its

predecessor activities have finished. This work studies a challenging

Mathematical Formulation for the RCPSP/max

156

extension of the RCPSP in which activity starting times are constrained by

generalised precedence relations (also called temporal constraints or

minimum and maximum time lags or time windows). This extension is

denoted as RCPSP/max or PS | temp | Cmax, using the notation of Brucker et al.

(1999). More specifically, PS | temp | Cmax notation specifies the single-mode

project scheduling problem (PS) under general temporal constraints given by

minimum and maximum start-start time lags between activities (temp) while

minimizing the makespan of the project (Cmax).

Elmaghraby and Kamburowski (1992) defined four types of generalised

precedence relations (GPR): Start-Start (SS), Start-Finish (SF), Finish-Start

(FS) and Finish-Finish (FF) to model minimum and maximum time-lags. For

activity pairs  ji, , the minimum time-lag ( xSSij
min ,  xSFij

min ,  xFFij
min ,

 xFS ij
min) specifies that activity j can only start/finish when its predecessor i

has already started/finished for a certain x time period (in time units). A

maximum time-lag ( xSSij
max ,  xSFij

max ,  xFFij
max ,  xFS ij

max) specifies that

activity j should start/finish at the latest x time periods after the start/finish of

activity i. The various types of GPRs can be represented in a standardised

form by reducing them to minimum SS precedence relationships, through the

transformations proposed by Bartusch et al. (1988).

From a modelling point of view, time lags are necessary to represent partial

or total overlapping of activities, release or ready times, project milestones

and deadlines, time windows or time-varying resource requirements. For even

more applications of GPRs to modelling real-life project scheduling problems,

we refer the reader to Neumann and Schwindt (1995).

The addition of maximal time lags to the classical RCPSP, significantly

increases the complexity of the problem. Moreover, the generation of

problem instances could be problematic because infeasible problems might be

generated. The RCPSP/max is an NP-hard problem and even the theoretically

Chapter 5

157

easier problem of checking its feasibility is NP-complete (Hartmann and

Briskorn, 2010).

The main contribution of this chapter is that it efficiently solves the

RCPSP/max using a pure mathematical programming approach. It is an

extension of the KKG-CT2 model introduced in the previous chapter, and to

the best of our knowledge, it is the only continuous-time approach for the

RCPSP/max, in the OR literature. The only other mathematical model for the

RCPSP/max is proposed Bianco and Caramia (2012b), but it is a discrete-time

one. The formulation is used to calculate a lower bound through a

Langrangean relaxation and a branch-and-bound algorithm which exploits

both.

The rest of the chapter is organised as follows. In Section 5.2, the

RCPSP/max problem is formally stated. Section 5.3 describes the

preprocessing phase employed in this work. Section 5.4 describes in detail

the new continuous-time Mixed-Integer Programming (MIP) formulation. A

brief description of the problem instance sets considered and a

comprehensive computational study are presented in Section 5.5. Finally,

concluding remarks are drawn in Section 5.6.

5.2 Problem statement

The single-mode RCPSP/max consists of a set of n activities  nV ,...,1 , that

have to be processed without interruption, under the objective of minimising

the project makespan. For modelling purposes, dummy activities 0 and n+1 to

represent the beginning and completion of the project are defined. Set

 1,,...,1,0  nnA defines the new complete set of activities. The processing

time of activity i is denoted by ip , (for dummy activities 010  npp).

The project utilises a set of renewable resource types  mk ,...,1: . Each

activity i requires ikr units of resource k during each time period of its

Mathematical Formulation for the RCPSP/max

158

execution (0,10   knk rr). The maximum available capacity of each resource

k is kR units. Renewable resources fully retrieve the occupied resource

amount after the completion of each activity. In other words, the temporary

availability of the renewable resources at every time is constrained.

Modelling activities with a piecewise constant resource requirement  trik

(i.e., activity i requires an amount)(trik of resource k , during the t th

time unit it is in process) can be easily done by replacing them with several

other activities which are “tied together” through temporal constraints.

Similarly, time-varying resource availability)(tRk (i.e., a specific quantity

)(tRk of resource k is available at time t) can be modelled by introducing

dummy jobs with fixed start times which consume excessive resources.

Therefore, it is safe to assume that)(trik and)(tRk are constant over time

without any loss of generality (Fest et al., 1998).

Time lags ijd between activity pairs),(ji are included in set E and take

integer values (i.e., ijd). Time lags can be presented as an activity-on-

node (AON) network  dEAG ,, , where nodes correspond to the set of

activities A and set E represents the arcs with weight d. Minimal lags are

usually represented as forward arcs and maximal lags as backward arcs.

Given that the various types of minimum and maximum time lags (SS, SF, FS,

FF) can be transformed to a single type using the rules by Bartusch et al.

(1988), from now on we will consider them to be of type start-start. Time

lags can be represented in the following general form:

iijj sds    Eji  ,

where is (js) is the starting time of activity i (j). The case 0ijd

corresponds to a minimum time lag of ijd units, stating that activity j has to

start at least ijd time units after the start time of activity i. The case 0ijd

Chapter 5

159

corresponds to maximum time lag units, stating that activity i has to start at

the latest ijd time units after the start time of activity j. By exploiting time

lags, we can define a set L containing pairs of activities  ji, that have real

precedence relations (i.e., the finishing time of activity i is smaller or equal to

the starting time of j). Specifically, when
iij pd  holds, activity j cannot

begin earlier than the finish of activity i (iii fps  , with if the finishing

time of activity i).

A solution for the RCPSP/max is a list of start times or schedule S = (0s , 1s , …,

ns , 1ns), where 00 s , and 1ns corresponds to the makespan of the project.

5.3 Preprocessing

In this chapter some fast computable bounds are considered, however other

bounding techniques could be used. First, a trivial upper bound UB equal to

 
 












Ai

ij
Eji

i dp
,
max,max is calculated.

Defining an earliest starting time (iES) for each activity i is also a common

preprocessing step. It can be computed using the first of the Special

Implementations of the Modified Label Correcting Algorithm of Ahuja et al.

(1993); which is of  EAO time complexity. A label correcting algorithm is

iterative and assigns tentative distance labels j to nodes at each step. The

distance labels are estimates of (i.e., lower bounds on) the longest path

distances and are considered as temporary until the final step where j is

the longest path length from the source node 1 to node j. In each pass, arcs

  Eji , are scanned one by one, and condition ijij d  is checked. If the

arc satisfies this condition, ijij d  is updated. The algorithm stops when

Mathematical Formulation for the RCPSP/max

160

no distance label changes during an entire pass. Finally, we set jjES  .

The algorithm runs as displayed in Algorithm 1.

Algorithm 1. Modified label-correcting algorithm

algorithm modified label-correcting;

begin

  0:0  and   0:0 pred ;

  :j for each node  0 Aj ;

falsenochange : ;

while truenochange do

begin

 truenochange : ;

for each   Ejiarc , do

begin

if ijij d  then

begin

ijij d  ;

falsenochange : ;

end;

end;

end;

end;

Through the iES we can easily calculate the earliest finishing times iEF by

adding the activity duration (iii pESEF ). We can also set a trivial lower

bound to the time horizon, equal to the earliest finishing time of the dummy

end activity (1 nEFLB). It should be noted that other preprocessing

methods could be used, potentially yielding better bounds at the expense of

CPU time. Here we have chosen a relatively simple method that requires

negligible computational effort.

Chapter 5

161

5.4 The mathematical model

The proposed MIP mathematical formulation relies on a continuous-time

approach. Binary sequencing variables are defined to represent activity

ordering and overlapping, and continuous variables are used for activity

starting and finishing times. The presented formulation is an extension of the

KKG-CT2 model introduced in the previous chapter. For projects that contain

activities with non-integer durations, continuous-time formulations are more

efficient than discrete-time formulations. In the proposed approach,

continuous variables is , if defined for each activity   1 nVi , denote

its starting and finishing time, while binary sequencing variables ijx define the

relative execution order of activities i and j. For pairs of activities that cannot

be executed in parallel (e.g., activities for which the sum of resource

requirements exceeds the maximum availability, etc), 1ijx if activity i is

completed before activity j starts processing (i.e.,
ji sf ) , otherwise is 0.

However, for pair of activities that could execute in parallel, ijx is used to

define the relative sequencing between the activities' starting times. More

specifically, 1ijx if activity i begins processing before (i.e., ji ss ), or

exactly at the same time as activity j starts and j has a larger index (i.e.,

ji ss  with ji ), otherwise is equal to 0.

In order to model renewable resource constraints, pairs of activities that

could be executed in parallel should be defined. That can be done by

extending the concept of overlapping activities (Marchetti and Cerdá, 2009).

By definition, an activity j that is overlapping the starting time of activity i

must satisfy the following conditions (see Fig. 5.1):

A) it should require at least one resource k in common with activity i (i.e.,

0ikr and 0jkr),

B) it starts before or exactly at the time that activity i starts processing

(i.e., ij ss ) and

Mathematical Formulation for the RCPSP/max

162

C) it is completed after the starting time of activity i (i.e.,
ij sf ).

To model condition (B), the definition of binary sequencing variables jix is

extended so as to control the relative ordering of the starting times of parallel

activities i and j. To model condition (C) we introduce binary overlapping

variables jiz , which are equal to 1 whenever activity j is completed after

activity i starts processing (i.e., when
ij sf ).

Figure 5.1. Example of overlapping conditions for activities

Finally, for modelling purposes, three new sets of activity pairs are

introduced:

(i) set C is the transitive closure of immediate predecessor subset L ,

(ii) set B that contains pairs of activities   2, Vji  sharing at least one

renewable resource and

(iii) set G that contains pairs of activities   Bji , that cannot be

processed simultaneously due to resource capacity limitations (i.e.,

kjkik Rrr ).

Chapter 5

163

Two more composite sets are defined by using the previously defined sets of

activities. The first set CGS \ contains pairs of activities that cannot

overlap due to resource capacity limitations, excluding those with known

precedence relations. Notice that for this set only variables ijx need to be

defined. And the second set  CGBP  \ contains pairs of activities that

could overlap. For such activity pairs, both ijx and jiz variables need to be

defined. The preprocessing time to determine sets B, C, G, L, P and S is

negligible. Using the above definition of sets and decision variables, the

following mathematical formulation is proposed:

1maxmin  nfC (1)

00 s (2)

iii psf    1 nVi (3)

ji sf       CjinVjVi  ,:1, (4)

iijj sds    Eji  , (5)

   
jiiij xESMsf  1   jiSji  :, (6)

 
jijji xESMsf    jiSji  :, (7)

   
jiiij xESMss  1   jiPji  :, (8)

 
jijji xESMss    jiPji  :, (9)

  jiiij zESMsf    jiPji  :, (10)

 

 

 

 
kijjijk

Pji

rij

jijijk

Pji

rij

ik Rxzrxzrr
jkjk












,

0:

,

0:

1 0:,  ikrRkVi (11)

ijji zx    jiPji  :, (12)

jiji zx 1   jiPji  :, (13)

 1,0jix     jiSPji  :,

 1,0jiz   jiPji  :, (14)

iiii EFfESs  ,   1 nVi

Mathematical Formulation for the RCPSP/max

164

Equation (1) minimises the completion time of dummy end activity n+1,

representing the project completion. Note that the makespan is lower than or

equal to the upper bound UB calculated in the preprocessing phase. The

starting time of the dummy start activity is equal to zero, according to

constraint (2). Constraints (3) correlate the starting and finishing times for

activities   1 nVi throughout their execution. Constraints (4) set all a

priori known precedence relations between activities   Cji , , through their

starting and finishing times. Minimum and maximum time lags ijd are

imposed by constraints (5). Big-M constraints (6) to (9) define the sequencing

constraints between any pair of activities   Cji , when ji  . The value of

big M parameters could strongly affect the performance of any model. For

this reason, and in order not to use any arbitrary values for the big M

parameters, a value equal to UB+1 is used, the trivial upper bound to the

time horizon, calculated in Section 5.3. To reduce the solution search space,

the value of the big M parameters is properly adjusted by the ES of the

corresponding activity. It should be noted that constraints (8) and (9) extend

the definition of sequencing binary variable ijx to also control the starting

times of the parallel tasks i and j. Also, notice that a small positive parameter

ι is included to constraint (9) so as to deal with the case that activities i and j

start processing at the same time. That way, when ji ss  the activity with

the higher index is assumed to start last (i.e., if ji ss  and ji  , then

1jix). In the case studies, parameter 1.0 . Overlapping condition (C) is

modelled by constraints (10), and renewable resource constraints are given

by constraints (11). By splitting the resource demand into two separate

summations containing  1 jiji xz when ij  and  
ijji xz  when ij  , we

are able to detect overlapping between activity pairs   Pji , and properly

model the resource constraints.

Constraints (8) to (11) state that if activity i starts processing before activity j

(i.e., 1ijx), then activity j has to finish after activity i starts (i.e., 1jiz).

Chapter 5

165

The only case that one of the parentheses  1 jiji xz and  
ijji xz  in the

resource constraints (10) takes the value of 1 is when activity j overlaps i

(i.e., 1jiz) and activity j starts processing before i (i.e., 1jix). It can be

easily proven that for activities which could overlap   Pji , , if 1ijx that

means that
jji fss  , and consequently 0 ij sf which according to

constraints (10) gives 1jiz . Table 5.1 displays all possible combinations for

variables jiz and ijx for activities   Pji , that could be executed in parallel.

In the first two cases wherein 0jiz , no overlapping occurs since activity i

starts after the completion of activity j (i.e.,
ijj sfs ). Especially, in the

second case, notice that if 0jiz , 1ijx and 0jix that would mean that

jij ssf  , which is obviously impossible. For this reason, if 0jiz then

always 0ijx . In the last two cases wherein 1jiz , overlapping occurs if and

only if activity j begins processing before activity i starts (i.e., 0ijx),

because in that case holds
jij fss  .

Table 5.1 Modelling of binary variables jiz and ijx for activities   Pji ,

Constraints (10) Constraints (8) – (9) Constraints (11)

ij sf  jiz ji ss  ijx jix  1 jiji xz  
ijji xz 

≤ 0 0 > 0 0 1 0 0

≤ 0 0 < 0 1 0 impossible impossible

> 0 1 < 0 1 0 0 0

> 0 1 > 0 0 1 1 1

Constraints (12) and (13) are tightening constraints that correlate directly

sequencing and overlapping binary variables. Finally, the domain of the

decision variables is given by constraints (14).

In summary, the proposed continuous-time MIP model for the RCPSP/max

consists of constraints (1) - (14).

Mathematical Formulation for the RCPSP/max

166

5.5 Computational Results

In this section we present the problem sets solved by the proposed

mathematical formulation and an extended computational study. All problem

instances have been solved on an Intel Core i5 CPU M430 2.27GHz with 4GB

RAM using CPLEX 11.1.1 via a GAMS 22.8.1 (Rosenthal, 2012) WIN

6007.6015 VIS interface under standard configurations. A maximum resource

time limit of 600 CPU s has been set for all problem instances.

5.6 Description of Problem Sets

Three widely-used test sets consisting of a total of 2,250 problem instances

have been solved by the proposed mathematical formulation. These sets

were generated by ProGen/max, a random networks generator by Schwindt

(1996) capable of creating project scheduling problems of varying structure,

constrainedness and difficulty. It is an extension of the instance generator

ProGen, developed by Kolisch and Sprecher (1996) which was designed to

create instances with ordinary precedence constraints only. It uses two

generating methods: DIRECT, which directly generates entire projects, and

CONTRACT, which first generates cycle structures, upon which the (acyclic)

contracted project network is generated. At this point, we point out that the

generator does not always produce instances with a feasible solution. These

instances are included in the computational study, since proving their

infeasibility is an NP-complete problem.

The first set was taken from Schwindt (1998a) and contains 270 problems for

each network size of  30,20,10n activities. These problem sets will be

referred to as j10, j20 and j30, for  30,20,10n respectively. The second set,

from Franck et al. [13] includes 90 instances for each network size with

 100,50,20,10n . From now on, these test sets will be referred as ubo10,

ubo20, ubo50 and ubo100, depending on the number of activities. Finally, the

third set was generated by Schwindt (1996) and it contains 1080 instances

Chapter 5

167

with 100 activities. We will refer to this set as CD in our study. The three sets

are summarised in Table 5.2.

Table 5.2 Test instance characteristics

Set
of

activities
of

instances

of
infeasible

instances*

% of
infeasible

instances*

j10 10 270 83 30.74

j20 20 270 86 31.85

j30 30 270 85 31.48

ubo10 10 90 17 18.89

ubo20 20 90 20 22.22

ubo50 50 90 17 18.89

ubo100 100 90 12 13.33

CD 100 1,080 21 1.94

Total 2,250 341 15.16

* problems that are reported to be infeasible

5.7 Computational Study Results

Before presenting the results we briefly discuss the notation used. Solved

instances (%) reports the percentage of problems that gave a feasible

solution or were proven infeasible (Feasible and Proven Infeasible). Optimally

Solved Instances (%) represents the percentage of proven solutions using

the suggested formulation, optimal or infeasible (Proven Optimal and Proven

Infeasible). Feasible (%) is the percentage of instances for which a feasible

solution was found (optimal or not). Proven Optimal (%) reports the

percentage of problems for which an optimal solution was found within the

predefined time limit. Proven Infeasible (%) is the percentage of reported

infeasible problems that were proven by the proposed model. Average CPU

(s) is the average computational time in CPU seconds for all instances in the

set, while Optimal CPU (s) considers only the Optimally Solved Instances.

Table 5.3 presents the computational results for all test sets solved.

Mathematical Formulation for the RCPSP/max

168

Table 5.3 Computational results for all instances including reported infeasible, within

predefined time limit 600 CPU s

Set
Solved

Instances
(%)

Optimally
Solved

Instances
(%)

Feasible
(%)

Proven
Optimal

(%)

Proven
Infeasible

(%)

Average
CPU

(s)

Optimal
CPU

(s)

j10 100.00 100.00 69.26 69.26 30.74 0.06 0.06

j20 99.63 95.56 67.78 63.70 31.85 31.24 4.79

j30 97.04 85.56 65.56 54.07 31.48 99.60 15.11

ubo10 100.00 100.00 81.11 81.11 18.89 0.06 0.06

ubo20 100.00 100.00 77.78 77.78 22.22 0.59 0.59

ubo50 93.33 78.89 74.44 60.00 18.89 186.44 75.74

ubo100 44.44 22.22 31.11 8.89 13.33 483.53 70.54

CD 54.26 43.33 53.43 42.50 0.83 425.73 197.54

All reported infeasible instances were proven, except those of the CD test set,

wherein 9 out of 21 (0.83%) where identified (see Tables 5.2 and 5.3). All

instances in sets j10, ubo10, ubo20 and most (95.56%) in j20 are easily

solved to optimality with few computational requirements. As the number of

activities increases in sets j30 and ubo50, we observe that the formulation

still finds a high number of optimally solved instances (second column of

Table 5.3), with percentages 85.56% and 78.89% respectively. When taking

into account all feasible solutions (first column of Table 5.3), the

corresponding percentages rise to 97.04% and 93.33%. Finally, for the larger

sets ubo100 and CD, which involve 100 activities, the percentage of solved

instances drops to 44.44% and 54.26%, respectively. For the CD set, the

number of optimal solutions (43.33%) is almost twice that of the ubo100 set

(22.22%). It is worth noticing that the Optimal CPU time which refers to

optimally solved instances is quite lower than the total Average CPU time.

This is because instances for which a solution was not found or non-proven

deplete the 600 CPU s time limit.

Table 5.4 displays the computational results normalised to the reported

feasible instances (i.e., excluding the reported infeasible instances). Feasible

instances solved (%) represents the percentage of feasible solutions found.

Good solutions (%) reports the percentage of optimal and non-proven

solutions with a deviation from the reported optimal or best solution less than

Chapter 5

169

3%. Optimal (%) are the optimal solutions found and Average gap (%) is the

average gap reported by the solver, for non-proven solutions only.

Table 5.4 Results for feasible instances

Set
Feasible

instances
solved (%)

Good
solutions

(%)

Optimal
(%)

Average
gap (%)

j10 100.00 100.00 100.00 0.00

j20 99.46 94.02 93.48 10.58

j30 95.68 84.32 78.92 17.40

ubo10 100.00 100.00 100.00 0.00

ubo20 100.00 100.00 100.00 0.00

ubo50 91.78 83.56 73.97 12.91

ubo100 35.90 30.77 10.26 10.43

CD 54.49 49.67 43.34 7.18

Notice that for sets with up to 50 activities, although the percentage of

optimal solutions decreases as the number of activities increases, the number

of feasible instances solved and good solutions remains high.

Through the computational study, the proposed formulation found a number

of solutions that are better than the ones reported in the online Project

Scheduling Problem Library (PSPLIB). In Table 5.5, we present the total

number of problems for which we found a better solution (# of better

solutions), the number of optimal solutions that were lower than the best

upper bound achieved (# of better optimal), the number of problems for

which the upper bound is now proven to be the optimal solution (# of extra

proven optimal solutions) and in the final column we display the number of

better non-proven optimal solutions found.

For sets j10 and ubo10 all optimal solutions are reported, so no better results

are reported. Set ubo20 contained 4 instances without a reported optimal

solution. Those solutions were either found or proven by our formulation. For

project networks with 30 or more activities, a substantial number of better

Mathematical Formulation for the RCPSP/max

170

solutions has been found. Especially in set ubo50, that number consists of

about 1/3 of the problems (29 out of 90).

Table 5.5 Number of solutions better than the ones reported in literature

Set
of

better
solutions

of better
optimal

of extra
proven
optimal

solutions

of better
non-proven

solutions

j10 0 0 0 0

j20 15 1 13 1

j30 36 4 24 8

ubo10 0 0 0 0

ubo20 4 2 2 0

ubo50 29 11 11 7

ubo100 10 1 0 9

CD 5 0 2 3

Table 5.6 presents an analysis of the instances for which an optimal solution

was found, which was lower than the reported upper bound, along with the

corresponding CPU time.

Table 5.6 Optimally solved instances with solution lower than the reported upper

bound

Set
Instance

Our

solution
Best

reported
CPU

Time

j20 150 46 47 289.12

ubo20
15 45 46 12.18

20 65 66 1.65

j30

32 113 114 3.1

139 88 89 2.82

170 95 96 7.63

195 55 58 598.06

ubo50

14 153 168 159.81

18 163 164 45.99

31 302 308 24.24

37 229 232 7.04

42 147 148 256.56

45 181 187 223.66

49 145 153 504.86

52 137 139 78.12

57 132 133 186.92

67 243 246 11.17

68 275 278 4.02

ubo100 68 538 540 45.43

Chapter 5

171

As an illustrative example, the Gantt chart and resource profiles for instance

195 of the j30 problem set in displayed in Figure 5.2.

Figure 5.2. Illustrative example for better optimal solution (Set j30, Instance 195)

Table 5.7 lists the instances for which a better solution than the best reported

upper bound was found. Note that in some cases the new solution is

significantly better than the reported one. Instance 33 of set j30 and instance

67 of ubo100 displayed the greatest improvement in percentage on the upper

bound with 15.56% and 10.24%, respectively. The improvement percentage

is calculated by (Reported UB – New UB)/Reported UB.

Mathematical Formulation for the RCPSP/max

172

Table 5.7 Non-proven optimal instance with a better solution than the reported upper

bound

Set
Instance

New solution
Reported
solution UB

Improvement
(%)

LB UB
Gap
(%)

LB UB

j20 167 49.00 50 2 42 52 3.85

j30

4 94.05 101 6.88 84 104 2.88
33 94.00 114 17.54 81 135 15.56
38 76.22 90 15.31 63 93 3.23
40 100.70 114 11.67 80 120 5.00
65 110.08 162 32.05 104 163 0.61
78 58.91 63 6.49 56 64 1.56
123 121.43 150 19.05 91 151 0.66
175 68.10 70 2.71 59 71 1.41

ubo50

6 203.99 216 5.56 202 232 6.90
9 165.01 217 23.96 170 230 5.65
11 140.00 145 3.45 139 146 0.68
34 193.34 228 15.2 170 232 1.72
36 171.00 207 17.39 149 218 5.05
54 88.00 90 2.22 88 91 1.10
65 177.23 199 10.94 169 215 7.44

ubo100

8 350.92 430 18.39 351 435 1.15
36 354.01 437 18.99 364 457 4.38
37 369.86 450 17.81 372 453 0.66
38 476.00 477 0.21 473 483 1.24
62 498.82 531 6.06 500 540 1.67
64 523.73 536 2.29 522 538 0.37
67 352.59 412 14.42 335 459 10.24
73 391.99 398 1.51 394 414 3.86
87 362.89 367 1.12 361 368 0.27

CD
760 631.74 679 6.96 661 685 0.88
817 550.96 569 3.17 558 575 1.04
992 577.98 615 6.02 578 616 0.16

5.8 Conclusions

This chapter proposes a new continuous-time formulation for the RCPSP/max.

The suggested mathematical model is based on the concept of overlapping

conditions, which is modelled through sequencing and overlapping variables.

In our approach, the model performance is enhanced through simple (i.e.,

with low computational effort) preprocessing techniques that include the

calculation of upper/lower bounds and earliest starting/finishing times. The

proposed formulation was tested on 2,250 well-known test instances from the

Chapter 5

173

literature, with problems sizes varying from 10 to 100 activities. The

computational results revealed a number of solutions that are better than the

ones reported in PSPLIB.

All reported infeasible instances were proven, with the exception of the CD

test set, wherein 9 out of 21 where identified. For projects with up to 30

activities, the proposed formulation solved optimally most problems. Problem

sizes of 50 activities are also dealt efficiently with a feasible solution for

91.78% and a good solution for 83.56% of the solvable instances. Finally, for

the larger sets ubo100 and CD that involve 100 activities, the reported results

were quite satisfactory for a solution method that relies on a mathematical

formulation taking into consideration the problem sizes. This declining model

performance is caused by the larger number of activities, which leads to a

polynomial increase in the number of sequencing and overlapping variables.

With the increasing computational power available, even in personal

computers, mathematical solvers are becoming capable of dealing with larger

problems than in the past. Given that the RCPSP/max is an offline problem,

we can easily accept to increase the time limit of the solver and obtain

optimal or good suboptimal solutions.

5.9 Nomenclature

Indices/Sets

 1,...,1,0:,  nAji activities

 mk ,...,1: renewable resources

Subsets

B set of activities   2, Vji  , sharing at least one renewable

resource

C transitive closure of subset L

E pairs of activities with temporal constraints

Mathematical Formulation for the RCPSP/max

174

G set of activities   2, Vji  that cannot be processed

simultaneously (due to resource capacity limitations); BG 

L activity pairs  ji, where j is an immediate successor of activity

i; CL 

P activity pairs that could overlap;  CGBP  \

S activity pairs that cannot overlap due to resource capacity

limitations, excluding those with known precedence relations;

CGS \

 nV ,...,1: set of non-dummy activities i; AV 

Parameters

ikr renewable resource k requirements for activity i

kR maximum capacity of renewable resource k

λ a small number (= 0.1)

Μ a large number (= UB+1)

ESi earliest starting time of activity i defined as
 

 
ijj

Eji
lES 

,
max

EFi earliest finishing time of activity i defined as ESi + pi

lij time lag between activities   Eji ,

pi processing time of activity i

UB upper bound on time horizon

LB lower bound on time horizon

Continuous Variables

si starting time of activity i

fi finishing time of activity i

Binary Variables

ijx = 1, if activity i is completed before activity j starts, (remark:

for activities   Pji , this definition is relaxed and 1ijx if

activity i starts before activity j)

ijz = 1, if activity i finishes after activity j starts

Chapter 6

175

Chapter 6

Conclusions and future work

In this chapter, we summarise the main contributions of this thesis and

discuss possible future research directions that seem promising.

6.1 Conclusions

The objective of this thesis is to establish a new representation and solution

framework for RCPSPs utilising techniques from the process scheduling area.

For this reason, a new network representation method has been developed,

based on the well-known RTN, as well as a number of mathematical

programming formulations for the RCPSP and its variants. The computational

results displayed the efficient performance of the formulations, which

outperform state-of-the-art models from the literature.

 In Chapter 3, we proposed a new network representation method and

new MILP models for the RCPSP and the MRCPSP, based on the well-

known RTN process representation from the process scheduling industry.

The formulations were used to solve some project scheduling problems

from the online PSPLIB. The computational results of this initial approach,

indicated that for problems involving more than 30 activities, the proposed

MILP models cannot lead to a global optimal solution in reasonable

computational times. However the proven similarities between process

and project scheduling problems, suggested that exchanging solution

techniques between the two research fields is both possible and useful. In

summary, the main objective of this chapter, to establish a new

framework for RCPSPs utilising techniques from the process scheduling

area was achieved.

Conclusions and Future Work

176

 In Chapter 4, four very efficient discrete- and continuous-time

formulations were developed, followed by a detailed comparison with four

state-of-the-art models from the literature, using 2760 RCPSPs. Also, a

number of computationally inexpensive preprocessing steps were taken to

enhance and simplify the formulations. Overall, the continuous-time

models have been found to be the best models for the problems

addressed. The detailed and comprehensive computational analysis

revealed some interesting features of the problems solved and the

mathematical models considered. In particular, it has been observed, that

problem instances with low RS values and high RF values are the most

hard to solve, according to the computational results in problem sets j30

and j60. Moreover, it seems that increasing the number of activities

directly affects negatively the computational performance of continuous-

time models since the number of sequencing binary variables is increased

dramatically, while discrete-time models are affected less due to the fact

that the number of the decisions variables principally depends on the time

points. Notice that, in contrast to continuous-time models, the

performance of discrete-time models is strongly affected (positively) from

the bounds imposed on the preprocessing phase. In addition, continuous-

time formulations featured lower Gap (%) values compared with discrete-

time models.

 In Chapter 5 a new continuous-time formulation for the RCPSP/max was

proposed. The suggested mathematical model is an extension of the KKG-

CT2 model introduced in Chapter 4. The model performance was

enhanced through simple (i.e., with low computational effort)

preprocessing techniques that include the calculation of upper/lower

bounds and earliest starting/finishing times. The proposed formulation

was tested on 2,250 well-known test instances from the literature, with

problems sizes varying from 10 to 100 activities. The computational

results revealed a number of solutions that are better than the ones

reported in PSPLIB. All reported infeasible instances were proven, with the

Chapter 6

177

exception of the CD test set, wherein 9 out of 21 where identified. For

projects with up to 30 activities, the proposed formulation solved optimally

most problems. Problem sizes of 50 activities are also dealt efficiently with

a feasible solution for 91.78% and a good solution for 83.56% of the

solvable instances. Finally, for the larger sets ubo100 and CD that involve

100 activities, the reported results were quite satisfactory for a solution

method that solely relies on a mathematical formulation taking into

consideration the problem sizes.

6.2 Future Work

The results of this thesis revealed a range of issues and pointed to several

interesting directions for future work:

 Further research in devising other continuous- and discrete-time

mathematical modelling approaches seems promising and highly

challenging.

 Of particular interest would be the comparison of the proposed

formulations with more mathematical models from the literature

and hopefully some new ones, using the same and possibly larger

RCPSP problems (i.e. sets j90 and j120). A more extensive

computational study could provide us with further insight regarding

the performance of the available mathematical frameworks, and

could inspire the development of new modelling approaches.

 Since the new continuous-time models proposed in chapters 4 and

5, have proven to be efficient for solving the RCPSP and the

RCPSP/max, a possible extension to the multi-mode RCPSP could

be considered.

 The proposed models could be the core element of new

decomposition methods, such as the one proposed by Kopanos et

al. (2010), or part of hybrid methods, in an attempt to reduce the

Conclusions and Future Work

178

computational burden of the complicated problems solved and

allow us to deal with larger problems.

 Given that the RCPSP is an offline problem, we can easily accept an

increase on the time limit of the solver and obtain more optimal

and/or good suboptimal solutions.

 The RCPSP has a number of interesting variants, that could be

addressed. For example, since project scheduling is dynamic in

nature, the consideration of uncertainty also arises as a challenging

future research task. Three main categories of approaches can be

distinguished: proactive, reactive and stochastic.

 Another interesting extension, is the Resource Levelling Problem

(RLP), which arises whenever it is expedient to reduce the

fluctuations in patterns of resource utilizations over time, while

maintaining compliance with a prescribed project completion time.

In particular, in cases where even slight variations in resource

needs represent financial burden or heightened risks of accidents, a

resource levelling approach helps to schedule the project activities

such that the resource utilization will be as smooth as possible over

the entire planning horizon. Under resource levelling, no resource

limits are typically imposed. Therefore, only the time lags between

individual activities form the project constraints.

 Finally, if we reverse the scope of this thesis, we could transfuse

solution techniques and concepts from project scheduling literature

to process scheduling.

Hopefully, this work will motivate further research in developing better and/or

improved modelling frameworks for the standard RCPSP.

Publications

179

Publications

This is a list of the works carried out so far within the scope of interest of this

thesis, in reversed chronological order. The list has been divided in papers

submitted to international refereed journals and published in conference

proceedings:

Scientific Journals

Manuscript published

[1] Kyriakidis, T.S., Kopanos, G.M., Georgiadis, M.C., 2012. MILP

formulations for single- and multi-mode resource-constrained project

scheduling problems, Computers & Chemical Engineering 36, 369–385.

Manuscripts submitted

[1] Kyriakidis, T.S., Kopanos, G.M., Georgiadis, M.C., 2012. Mathematical

Formulation for Resource-Constrained Project Scheduling Problems with

Generalized Precedence Relations, OR Spectrum (September 2012,

under review).

[2] Kopanos, G.M., Kyriakidis, T.S., Georgiadis, M.C., 2012. New

Continuous-time and Discrete-time Mathematical Formulations for

Resource-constrained Project Scheduling Problems, European Journal of

Operational Research (January 2012, 1st revision completed).

Conference Proceeding Articles

The work realised in this thesis has been also presented and published to

different international specialised conferences. The RCPSP/max formulation

proposed in Chapter 5, is very recent and has not been submitted to any

conferences yet. A list of publications in conferences proceedings follows:

Publications

180

[1] Kyriakidis, T.S., Georgiadis, M.C., Solving resource-constrained project

scheduling problems with new mathematical programming formulations,

25th European Conference on Operational Research (EURO 2012), 8-11

July 2012, Vilnius, Lithuania.

[2] Kopanos, G.M., Kyriakidis, T.S., Georgiadis, M.C., New Mathematical

Programming Formulations for Resource-Constrained Project Scheduling

Problems, 9th International Conference on Computational Management

Science (CMS 2012), 18-20 April 2012, London, United Kingdom.

[3] Kyriakidis, T.S., Kopanos, G.M., Georgiadis, M.C., MILP Formulation for

Resource-Constrained Project Scheduling Problems, 21st European

Symposium on Computer Aided Process Engineering (ESCAPE-21), 29

May-01 June 2011, Porto Carras, Greece, In Proceedings: 880-884.

References

181

References

Ahuja, R., Magnanti, T., Orlin, J., 1993. Network Flows. Prentice Hall,

Englewood Cliffs.

Achuthan, N.R., Hardjawidjaja, A., 2005. Project scheduling under time

dependent costs - A branch and bound algorithm. Annals of Operations

Research 108 (1-4), 55-74.

Agrawal, M.K., Elmaghraby, S.E., Herroelen, W.S., 1996. DAGEN: A generator

of testsets for project activity nets. European Journal of Operational Research

90. 376–82.

Alcaraz, J., Maroto, C., Ruiz, R., 2004. Improving the performance of genetic

algorithms for the RCPS problem. Proceedings of the Ninth International

Workshop on Project Management and Scheduling, Nancy, 40–3.

Al-Fawzana, M.A., Haouari, M., 2005. A bi-objective model for robust

resource-constrained project scheduling. International Journal of Production

Economics 96, 175–87.

Alcaraz, J., Maroto, C., Ruiz, R., 2003. Solving the multi-mode resource-

constrained project scheduling problem with genetic algorithms. Journal of

the Operational Research Society 54 (6), 614–26.

Alvarez-Valdes, R., Tamarit, J.M., 1993. The project scheduling polyhedron:

Dimension, facets and lifting theorems. European Journal of Operational

Research 67 (2), 204-20.

Alvarez-Valdes, R., Tamarit, J.M., 1989. Heuristic algorithms for resource-

constrained project scheduling: a review and an empirical analysis. In:

Slowinski, R., Węglarz, J., editors. Advances in project scheduling, p. 113–34.

Elsevier, Amsterdam.

References

182

Artigues, C., Michelon, P., Reusser, S., 2003. Insertion techniques for static

and dynamic resource-constrained project scheduling. European Journal of

Operational Research 149 (2), 249-67.

Ballestin, F., Barrios, A., Valls, V., 2011. An evolutionary algorithm for the

resource-constrained project scheduling problem with minimum and

maximum time lags. Journal of Scheduling 14, 391-406.

Bard, J.F., Kontoravdis, G., Yu, G., 2002. A branch-and-cut procedure for the

vehicle routing problem with time windows. Transportation Science 36, 250–

69.

Bartusch, M., Möhring, R.H., Radermacher, F.J., 1988. Scheduling project

networks with resource constraints and time windows. Annals of Operations

Research 16, 201–40.

Bianco, L., Caramia, M., 2012a. A new formulation for the project scheduling

problem under limited resources. Flexible Services and Manufacturing Journal

2012. published online.

Bianco, L., Caramia, M., 2012b. An exact algorithm to minimize the makespan

in project scheduling with scarce resources and generalized precedence

relations. European Journal of Operational Research 219, 73-85.

Blazewicz, J., Lenstra, J. Κ., Rinnooy Kan, A. H. G., 1983. Scheduling subject

to resource constraints: classification and complexity. Discrete Applied

Mathematics 5 (1), 11-24.

Bomsdorf, F., Derigs, U., 2008. A model, heuristic procedure and decision

support system for solving the movie shoot scheduling problem. OR Spectrum

30 (4), 751–72.

Böttcher, J., Drexl, A., Kolisch, R., 1996. A Branch-and-Bound Procedure for

Project Scheduling with Partially Renewable Resource Constraints.

Proceedings of the Fifth Workshop on Project Management and Scheduling,

Poznan, April 11-13, 48-51.

References

183

Böttcher, J., Drexl, A., Kolisch, R., Salewski, F., 1999. Project scheduling

under partially renewable resource constraints. Management Science 45(4),

543–59.

Browning, T.R., Yassine, A.A., 2007. A Random Generator of Resource-

constrained Multi-project Scheduling Problems, Technical Report, Texas

Christian University, M.J. Neeley School of Business.

Brucker, P., Drexl, A., Mohring, R., Neumann, Κ., Pesch, E., 1999. Resource-

constrained project scheduling: Notation, classification, models, and methods.

European Journal of Operational Research 112 (1), 3-41.

Castillo, E., Conejo, A.J., Pedregal, P., García, R., Alguaci, N., 2001. Building

and Solving Mathematical Programming Models in Engineering and Science.

New York, USA: John Wiley & Sons.

Castro, P., Barbosa-Póvoa, A.P., Matos, H.A., 2001. An Improved Continuous-

Time Formulation for the Short-term Scheduling of Multipurpose Batch Plants.

Industrial and Engineering Chemistry Research 40, 2059-68.

Castro, P.M., Barbosa-Póvoa, A.P., Matos, H.A., Novais, A.Q., 2004. Simple

Continuous-Time Formulation for Short-Term Scheduling of Batch and

Continuous Processes. Industrial and Engineering Chemistry Research 43,

105-18.

Cesta, A., Oddi, A., Smith, S., 2002. A constraint based method for project

scheduling with time windows. Journal of Heuristics 8(1), 109-36.

Christofides, N., Alvarez-Valdes, R., Tamarit, J. M., 1987. Project scheduling

with resource constraints: a branch-and-bound approach. European Journal

of Operational Research 29 (3), 262-73.

Cicirello, V.A., Smith, S.F., 2004. Heuristic selection for stochastic search

optimization: Modeling solution quality by extreme value theory. In:

Proceedings of the 10th International Conference on Principles and Practice

of Constraint Programming. CP 2004, Toronto, Canada, 197-211.

References

184

Coelho, J., Vanhoucke, M., 2011. Multi-mode resource-constrained project

scheduling using RCPSP and SAT solvers. European Journal of Operational

Research 213, 73–82.

Colvin, M., Maravelias, C.T., 2008. A stochastic programming approach for

clinical trial planning in new drug development. Computers and Chemical

Engineering 32, 2626-42.

Colvin, M., Maravelias, C.T., 2009. Scheduling of testing tasks and resource

planning in new product development using stochastic programming.

Computers and Chemical Engineering 33 (5), 964-76.

Colvin, M., Maravelias, C.T., 2010. Modeling methods and a branch and cut

algorithm for pharmaceutical clinical trial planning using stochastic

programming. European Journal of Operational Research 203, 205-15.

De Reyck, B., Herroelen, W.S., 1998. A branch-and-bound procedure for the

resource-constrained project scheduling problem with generalized precedence

relations. European Journal of Operational Research 111 (1), 152–74.

Debels, D., De Reyck, B., Leus, R., Vanhoucke, M., 2006. A hybrid scatter

search/Electromagnetism meta-heuristic for project scheduling. European

Journal of Operational Research 169 (2), 638-53.

Debels, D., Vanhoucke, M., 2008. A Decomposition-Based Genetic Algorithm

for the Resource-Constrained Project-Scheduling Problem. Operations

Research 55 (3), 457–69.

Demassey, S., Artigues, C., Michelon, P., 2005. Constraint propagation based

cutting planes: an application to the resource-constrained project scheduling

problem. INFORMS Journal on Computing 17 (1), 52-65.

Demeulemeester, E.L., 1995. Minimizing Resource-Availability Costs in Time-

Limited Project Networks, Management Science 41, 1590-8.

References

185

Demeulemeester, E.L., Herroelen, W.S., 2002. Project Scheduling: A Research

Handbook. Kluwer Academic Publishers, Boston.

Demeulemeester, E.L., Herroelen, W.S., 1997a. New benchmark results for

the resource-constrained project scheduling problem. Management Science

43 (11), 1485–92.

Demeulemeester, E.L., Herroelen, W.S., 1997b. A branch-and-bound

procedure for the generalized resource-constrained project scheduling

problem. Operations Research 45, 201–12.

Demeulemeester, E.L., Herroelen, W.S., 1992. A branch-and-bound

procedure for the multiple resource-constrained project scheduling problem.

Management Science 38 (12), 1803–18.

Demeulemeester, E.L., Vanhoucke, M., Herroelen, W.S., 2003. RanGen: A

random network generator for activity-on-the-node networks. Journal of

Scheduling 6 (1), 17-38.

Dorndorf, U., Pesch, E., Phan-Huy, T., 2000. A time-oriented branch-and-

bound algorithm for resource-constrained project scheduling with generalised

precedence constraints. Management Science 46, 1365-84.

Drexl, A., 1997. Local Search Methods for Project Scheduling under Partially

Renewable Resource Constraints, Paper presented at the INFORMS San Diego

Spring Meeting, May 4-7, 1997.

Eisner, H., 1962. A generalized network approach to the planning and

scheduling of a research project. Operations Research 10 (1), 115-125.

Elmaghraby, S.E., Kamburowski J., 1992. The Analysis of Activity Networks

under Generalized Precedence Relations (GPRs). Management Science 38 (9),

1245-63.

Elmaghraby, S.E., 1977. Activity Networks – Project Planning and Control by

Network Models, John Wiley & Sons Inc., New York.

References

186

Ferris, M., 1999. MATLAB and GAMS: Interfacing optimization and

visualization software. Technical report, University of Wisconsin.

Fest, A., Möhring, R.H., Stork, F., Uetz, M., 1998. Resource-constrained

project scheduling with time windows: a branching scheme based on dynamic

release dates. Technical Report 596, Technical University of Berlin. (Revised

in 1999).

Franck, B., Schwindt, C., 1995. Different Resource-Constrained Project

Scheduling Models with Minimal and Maximal Time-Lags, Technical Report

WIOR-450, Universität Karlsruhe, Germany.

Franck, B., Neumann, K., 1998. Resource Constrained Project Scheduling

Problems with Time Windows - Structural Questions and Priority-Rule

Methods. Technical Report WIOR-492, University of Karlsruhe, Germany.

Franck, B., Neumann, K., Schwindt, C., 2001. Truncated branch and bound,

schedule construction, and schedule improvement procedures for resource

constrained project scheduling. OR Spectrum 23, 297–324.

GAMS Development Corporation (2007). GAMS/Cplex 11 User Notes.

Glover, F., 1975. Improved linear integer programming formulations of

nonlinear integer problems. Management Science 22 (4), 455–60.

Gomory, R.E., 1960. An algorithm for the mixed integer problem. Technical

Report RM-2597, The Rand Corporation.

Gomory, R.E., 1958. Outline of an Algorithm for Integer Solutions to Linear

Programs. Bulletin Of the American Mathematical Society 64, 275–8.

Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., 1979.

Optimisation and approximation in deterministic sequencing and scheduling:

A survey. Annals of Discrete Mathematics 5 (2), 287-326.

References

187

Hartmann, S., 2002. A self-adapting genetic algorithm for project scheduling

under resource constraints. Naval Research Logistics 49, 433–48.

Hartmann, S., 2001. Project scheduling with multiple modes: a genetic

algorithm. Annals of Operations Research 102 (1–4), 111–35.

Hartmann, S., Briskorn, D., 2010. A survey of variants and extensions of the

resource-constrained project scheduling problem. European Journal of

Operational Research 207, 1-14.

Hartmann, S., Drexl, A., 1998. Project scheduling with multiple modes: a

comparison of exact algorithms. Networks 32, 283–97.

Hartmann, S., Kolisch, R., 2000. Experimental evaluation of state-of-the-art

heuristics for the resource-constrained project scheduling problem. European

Journal of Operational Research 127 (2), 394-407.

Herroelen, W.S., 2005. Project Scheduling - Theory and Practice. Production

and Operations Management 14 (4), 413-32.

Herroelen, W.S., De Reyck, B., Demeulemeester, E..L. 1998. A Classification

Scheme for Project Scheduling, In Węglarz, J. (Ed.), Handbook of Recent

Advances in Project Scheduling, Kluwer Academic Publishers, 1-26.

International Organization for Standardization, 2003. ISO 10006: Guideline

for Quality in Project Management. ISO Press, Geneva.

Jain, V., Grossmann, I.E., 1999. Resource-constrained scheduling of tests in

new product development. Industrial and Engineering Chemistry Research 38,

3013-26.

Jarboui, B., Damak, N., Siarry, P., Rebai, A., 2008. A combinatorial particle

swarm optimization for solving multi-mode resource-constrained project

scheduling problems. Applied Mathematics and Computation 195, 299–308.

References

188

Kaplan, L.A., 1988. Resource-constrained project scheduling with preemption

of jobs. Ph.D. thesis, University of Michigan.

Karmarkar, N., 1984. A New Polynomial-Time Algorithm for Linear

Programming. Combinatorica 4, 373-95.

Kelley, Jr, J. E., Walker, M. R., 1959. Critical-path planning and scheduling.

In: Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM

computer conference. IRE-AIEE-ACM ’59 (Eastern). ACM, New York, NY, USA,

pp. 160-73.

Kimms, A., 1998. Optimization Guided Lower and Upper Bounds for the

Resource Investment Problem, Research Report 481, Universitat Kiel,

Germany.

Klein, R., 2000. Scheduling of resource-constrained projects. Kluwer

Academic Publishers, Boston.

Kochetov, Y., Stolyar, A., 2003. Evolutionary local search with variable

neighborhood for the resource constrained project scheduling problem.

Proceedings of the 3rd International Workshop of Computer Science and

Information Technologies, Russia.

Kolisch, R., 2000. Integrated scheduling, assembly area- and part-assignment

for large-scale, make-to-order assemblies. International Journal of Production

Economics 64 (1-3), 127-42.

Kolisch, R., 1996a. Serial and parallel resource-constrained project scheduling

methods revisited: theory and computation. European Journal of Operational

Research 90 (2), 320-33.

Kolisch, R., 1996b. Efficient Priority Rules for the Resource-Constrained

Project Scheduling Problem. Journal of Operations Management 14, 179-192.

Kolisch, R., 1995. Project Scheduling under Resource Constraints – Efficient

Heuristics for Several Problem Classes, Physica-Verlag, Heidelberg.

References

189

Kolisch, R., Hartmann, S., 2006. Experimental investigation of heuristics for

resource-constrained project scheduling: An update. European Journal of

Operational Research 174 (1), 23-37.

Kolisch, R., Padman, R., 2001. An integrated survey of deterministic project

scheduling. Omega 29, 249-72.

Kolisch, R., Sprecher, A., 1996. PSPLIB - a project scheduling problem library.

European Journal of Operational Research 96 (1), 205-16.

Kolisch, R., Schwindt, C., Sprecher A., 1998. Benchmark Instances for Project

Scheduling Problems. In J. Węglarz, editor, Handbook on Recent Advances in

Project Scheduling. Kluwer.

Kolisch, R., Sprecher, A., Drexl, A., 1995. Characterization and generation of

a general class of resource-constrained project scheduling problems.

Management Science 41 (10), 1693-703.

Kone, O., Artigues, C., Lopez, P., Mongeau, M., 2011. Event-based MILP

models for resource-constrained project scheduling problems. Computers &

Operations Research 38 (1), 3-13.

Kopanos, G.M., Mendez, C.A., Puigjaner, L., 2010. MIP-based decomposition

strategies for large-scale scheduling problems in multiproduct multistage

batch plants: A benchmark scheduling problem of the pharmaceutical

industry. European Journal of Operational Research 207 (2), 644-55.

Kyriakidis, T.S., Kopanos, G.M., Georgiadis, M.C., 2012a. Solving Resource-

Constrained Project Scheduling Problems through new Mathematical

Programming Formulations. Proceedings of the European Conference on

Operational Research (EURO 2012), Vilnius, Lithuania, 240.

Kyriakidis, T. S., Kopanos, G. M., Georgiadis, M. C., 2012b. MILP formulations

for single- and multi-mode resource-constrained project scheduling problems.

Computers & Chemical Engineering 36, 369-85.

References

190

Lancaster, J., Ozbayrak, M., 2007. Evolutionary algorithms applied to project

scheduling problems - a survey of the state-of-the-art. International Journal

of Production Research 45 (2), 425–50.

Land, A.H., Doig, A. G., 1960. An automatic method for solving discrete

programming problems. Econometrica 28, 497–520.

Levis, A.A., Papageorgiou, L.G., 2004. A hierarchical solution approach for

multi-site capacity planning under uncertainty in the pharmaceutical industry.

Computers and Chemical Engineering 28, 707-25.

Malcolm, D.G., Roseboom, J. H., Clark, C.E, Fazar W., 1959. Application of a

technique for research and development program evaluation. Operations

Research 7(5), 646-69.

Maravelias, C.T., Grossmann, I.E., 2004. Optimal resource investment and

scheduling of tests for new product development. Computers and Chemical

Engineering 28, 1021-38.

Marchetti, P.A., Cerda, J., 2009. A general resource-constrained scheduling

framework for multistage batch facilities with sequence-dependent

changeovers. Computers & Chemical Engineering 33 (4), 871-86.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L., 1998. An exact

algorithm for the resource-constrained project scheduling problem based on a

new mathematical formulation. Management Science 44 (5), 715-29.

Minieka, E., 1978. Optimization algorithms for Networks and Graphs. Marcel

Dekker Inc., New York.

Mitchell, J.E., 2001. Branch-and-cut algorithms for integer programming. In

the Encyclopedia of Optimization, Volume II, pages 519-25, Kluwer Academic

Publishers.

References

191

Möhring, R.H., 1984. Minimizing Costs of Resource Requirements in Project

Networks Subject to a Fixed Completion Time, Operations Research 32, 89-

120.

Möhring, R.H., Schulz, A., Stork, F., Uetz, M., 2003. Solving project

scheduling problems by minimum cut computations. Management Science 49

(3), 330-50.

Nabrzyski, J., Węglarz, J., 1994. A Knowledge-Based Multiobjective Project

Scheduling System. Revue des Systemes de Decision, 3, 185-200.

Nemhauser, G. L., Wolsey, L. A., 1999. Integer and Combinatorial

Optimization. Discrete Mathematics and Optimization. Wiley - Interscience,

New York.

Neumann, K., Schwindt, C., 1995. Projects with Minimal and Maximal Time

Lags: Construction of Activity-on-Node Networks and Applications. Technical

Report WIOR-447. Institüt fur Wirtschaftstheorie und Operations Research,

University of Karlsruhe.

Neumann, K., Schwindt, C., Zimmermann, J., 2003. Project Scheduling with

Time Windows and Scarce Resources. Springer, Berlin.

Neumann, K., Schwindt, C., Zimmermann, J., 2002. Project Scheduling with

Time Windows and Scarce Resources: Temporal and Resource-Constrained

Project Scheduling with Regular and Nonregular Objective Functions.

Springer, Berlin.

Neumann, K., Zimmermann, J., 2000. Procedures for resource leveling and

net present value problems in project scheduling with general temporal and

resource constraints. European Journal of Operational Research 127, 425-43.

Neumann, K., Zimmermann, J., 1999. Heuristic methods for resource-

constrained project scheduling with regular and nonregular objective

functions and schedule-dependent time windows. In: Węglarz J (ed) Project

References

192

Scheduling: Recent Models, Algorithms, and Applications. Kluwer Academic

Publishers, Boston, pp 261-87.

Pantelides, C.C., 1994. Unified frameworks for optimal process planning and

scheduling. In: Proceedings of the Second Conference on Foundations of

Computer-Aided Process Operations. CACHE, pp. 253-74.

Papageorgiou, L.G., Rotstein, G.E., Shah, N., 2001. Strategic supply chain

optimization for the pharmaceutical industries. Industrial and Engineering

Chemistry Research 40, 275-86.

Paraskevopoulos, D.C., Tarantilis, C.D., Ioannou, G., 2012. Solving project

scheduling problems with resource constraints via an event list-based

evolutionary algorithm. Expert Systems with Applications 39, 3983–94.

Patterson, J.H., 1976. Project scheduling: The effects of problem structure on

heuristic scheduling. Naval Research Logistics 23 (1), 95-123.

Pinto, J.M., Grossmann, I.E., 1995. A continuous time MILP model for short

term scheduling of batch plants with pre-ordering constraints. Industrial &

Engineering Chemistry Research 34 (9), 3037–51.

Pritsker, A.A.B., Watters, L.J., Wolfe, P.M., 1969. Multiproject scheduling with

limited resources: a zero-one programming approach. Management Science

16 (1), 93-108.

Rieck, J., Zimmermann, J., Gather, T., 2012. Mixed-integer linear

programming for resource leveling problems. European Journal Operational

Research 221, 27-37.

Rosenthal, R.E., 2012. GAMS - A User’s Guide. GAMS Development

Corporation, Washington, Washington, DC, USA.

Russell, J.R.M., 1970. Cash Cows in networks Management Science 16 (5),

357-73.

References

193

Sabzehparvar, M., Seyed-Hosseini, S.M., 2008. A mathematical model for the

multi-mode resource-constrained project scheduling problem with mode

dependent time lags. Journal of Supercomputing 44 (3), 257-73.

Salewski, F., Schirmer, A., Drexl, A., 1997. Project scheduling under resource

and mode identity constraints: Model, complexity, methods, and application.

European Journal Operational Research 102, 88-110.

Schirmer, A., Drexl, A., 1996. Partially Renewable Resources – A

Generalisation of Resource-Constrained Project Scheduling, Paper presented

at the IFORS Triennial Meeting, Vancouver, B.C., July 8-12.

Schilling, G., Pantelides, C.C., 1996. A simple continuous-time process

scheduling formulation and a novel solution algorithm. Computers and

Chemical Engineering 20, S1221-S1226.

Schmidt, C.W., Grossmann, I.E., 1996. Optimization models for the

scheduling of testing tasks in new product development. Industrial and

Engineering Chemistry Research 35, 3498-510.

Schwindt, C., 1996. Generation of resource-constrained scheduling problems

with minimal and maximal time Lags. Technical Report WIOR-489. Institüt fur

Wirtschaftstheorie und Operations Research, University Karlsruhe, Germany.

Schwindt, C., 1998a. A branch-and-bound algorithm for the resource-

constrained project duration problem subject to minimum and maximum time

lags. Technical Report WIOR-544. Institüt fur Wirtschaftstheorie und

Operations Research, University of Karlsruhe, Germany.

Schwindt, C., 1998b. Verfahren zur Lösung des ressourcenbeschränkten

Projektdauerminimierungs problems mit planungsabhängigen Zeitfenstern.

Shaker Verlag, Aachen, Germany.

Slowinski, R., 1980. Two approaches to problems of resource allocation

among project activities - a comparative study. The Journal of the

Operational Research Society 31 (8), 711-23.

References

194

Smith, T., 2004. Windows-based project scheduling algorithms. Dissertation,

University of Oregon.

Sprecher, A., Hartmann, S., Drexl, A., 1997. An exact algorithm for project

scheduling with multiple modes. OR Spektrum 19 (3), 195–203.

Stinson, J.P., Davis, E.W., Khumawala, B.M., 1978. Multiple resource-

constrained scheduling using branch and bound. AIIE Transactions 10, 252–

9.

Talbot, F.B., 1982. Resource-constrained project scheduling with time-

resource tradeoffs: the nonpreemptive case. Management Science 28 (10),

1197-1210.

Tavares, L. V., Ferreira, J. A., Coelho, J. S., 1999. The risk of delay of a

project in terms of the morphology of its network. European Journal of

Operational Research 119 (2), 510-37.

The Mathworks, Inc., 1998. MATLAB: The Language of Technical Computing:

MATLAB Notebook User’s Guide. Natick, MA, USA: The Mathworks Inc.

Valls, V., Ballestin, F., Quintanilla, M.S., 2003. A hybrid genetic algorithm for

the RCPSP. Technical report, Department of Statistics and Operations

Research, University of Valencia.

Valls, V., Ballestin, F., Quintanilla, M.S., 2005. Justification and RCPSP: A

technique that pays. European Journal of Operational Research 165, 375-86.

Van Peteghem, V., Vanhoucke, M., 2010. A genetic algorithm for the

preemptive and non-preemptive multi-mode resource-constrained project

scheduling problem. European Journal of Operational Research 201, 409–18.

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., Tavares, L. V., 2008. An

evaluation of the adequacy of project network generators with systematically

sampled networks. European Journal of Operational Research 187 (2), 511-

24.

References

195

Węglarz, J., 1979. Project scheduling with discrete and continuous resources.

IEEE Transactions on Systems, Man and Cybernetics 9 (10), 644–50.

Węglarz, J., Jozefowska, J., Mika, M., Waligora, G., 2011. Project scheduling

with finite or infinite number of activity processing modes - A survey.

European Journal of Operational Research 208, 177–205.

Yang, X.S., 2008. Introduction to Computational Mathematics. World

Scientific Publishing, Singapore.

Zapata, J.C., Hodge, B.M., Reklaitis, G.V., 2008. The Multimode Resource

Constrained Multiproject Scheduling Problem: Alternative Formulations.

AICHE 54(8), 2101-19.

Zhu, G., Bard, J.F., Ju, G., 2006. A branch-and-cut procedure for the

multimode resource-constrained project-scheduling problem. INFORMS

Journal on Computing 18 (3), 377-90.

Zimmermann, J., 1997. Heuristics for Resource-Leveling Problems in Project

Scheduling with Minimum and Maximum Time-Lags, Technical Report WIOR-

491, Universität Karlsruhe, Germany.

